JP2007051594A - Exhaust emission control system and method for controlling same - Google Patents

Exhaust emission control system and method for controlling same Download PDF

Info

Publication number
JP2007051594A
JP2007051594A JP2005238128A JP2005238128A JP2007051594A JP 2007051594 A JP2007051594 A JP 2007051594A JP 2005238128 A JP2005238128 A JP 2005238128A JP 2005238128 A JP2005238128 A JP 2005238128A JP 2007051594 A JP2007051594 A JP 2007051594A
Authority
JP
Japan
Prior art keywords
ammonia
catalyst device
exhaust gas
aqueous solution
supply amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005238128A
Other languages
Japanese (ja)
Other versions
JP4661452B2 (en
Inventor
Shinji Hara
真治 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2005238128A priority Critical patent/JP4661452B2/en
Publication of JP2007051594A publication Critical patent/JP2007051594A/en
Application granted granted Critical
Publication of JP4661452B2 publication Critical patent/JP4661452B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control system having a selective contact reduction type catalyst device and an oxidation catalyst device arranged in an exhaust gas passage of an internal combustion engine in an order from an upstream side capable of preventing thermal deterioration of a selective contact reduction type catalyst while inhibiting discharge of ammonia to atmosphere, and a method for controlling the same. <P>SOLUTION: Supply quantity Qt of ammonia system water solution is calculated based on first supply quantity Q1 which can be consumed by the selective contact reduction type catalyst device 14 calculated from NOx emission quantity Won discharged from the internal combustion engine 11 and NOx conversion ratio ηnox of the selective contact reduction type catalyst device 14 and second supply quantity Q2 which can be consumed by the oxidation catalyst device 15 calculated from exhaust gas quantity Vg discharged from the internal combustion engine 11 and ammonia conversion efficiency ηnh3 of the oxidation catalyst device 15 when catalyst temperature of the selective contact reduction type catalyst device 14 gets high. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ディーゼルエンジン等の内燃機関の排気ガス中のNOxを浄化するための選択的接触還元型触媒装置を備えた排気ガス浄化システムの制御方法及び排気ガス浄化システムに関するものである。   The present invention relates to an exhaust gas purification system control method and an exhaust gas purification system including a selective catalytic reduction catalyst device for purifying NOx in exhaust gas of an internal combustion engine such as a diesel engine.

ディーゼル内燃機関から排出されるNOxを低減する多くのNOx浄化触媒が開発されており、その中に、SCR触媒と呼ばれる選択的接触還元型触媒を担持した選択的還元触媒装置を備えた排気ガス浄化システムがある。   Many NOx purification catalysts that reduce NOx discharged from diesel internal combustion engines have been developed, and among them, exhaust gas purification equipped with a selective reduction catalyst device carrying a selective catalytic reduction catalyst called an SCR catalyst There is a system.

この排気ガス浄化システムの中に、図1に示すように、選択的接触還元型触媒装置(SCR触媒装置)14をディーゼル内燃機関(エンジン)11の排気通路(排気管)12に配置すると共に、この選択的接触還元型触媒装置14の上流側にディーゼルパティキュレートフィルタ装置(DPF装置)13を、下流側に酸化触媒装置15を配設した排気ガス浄化システム1がある。   In this exhaust gas purification system, as shown in FIG. 1, a selective catalytic reduction catalyst device (SCR catalyst device) 14 is disposed in an exhaust passage (exhaust pipe) 12 of a diesel internal combustion engine (engine) 11, There is an exhaust gas purification system 1 in which a diesel particulate filter device (DPF device) 13 is disposed upstream of the selective catalytic reduction catalyst device 14 and an oxidation catalyst device 15 is disposed downstream.

この排気ガス浄化システム1では、上流側のDPF装置13により、排気ガス中のPM(粒子状物資)を捕集し、選択的接触還元型触媒装置14により、アンモニア等の還元剤を使用してNOxを還元し、酸化触媒装置15で、選択的接触還元型触媒装置14から流出してくる未使用の還元剤を酸化除去して、排気ガスを浄化している。   In this exhaust gas purification system 1, PM (particulate matter) in the exhaust gas is collected by the upstream DPF device 13, and a reducing agent such as ammonia is used by the selective catalytic reduction catalyst device 14. NOx is reduced, and the oxidation catalyst device 15 purifies exhaust gas by oxidizing and removing unused reducing agent flowing out from the selective catalytic reduction catalyst device 14.

そして、尿素選択的接触還元型触媒(尿素SCR触媒)を採用した選択的接触還元型触媒装置14では、還元剤として尿素水を使用するが、この尿素水Sは選択的接触還元型触媒装置14の上流側の排気通路12に取り付けた水溶液供給装置としての尿素水噴射弁21から排気ガス中に供給される。この尿素水は加水分解によりアンモニアを発生する。このアンモニアで、排気ガス中のNOxを、選択的接触還元型触媒の触媒作用により還元する。   In the selective catalytic reduction catalyst device 14 employing the urea selective catalytic reduction catalyst (urea SCR catalyst), urea water is used as a reducing agent. This urea water S is used as the selective catalytic reduction catalyst device 14. Is supplied into the exhaust gas from a urea water injection valve 21 as an aqueous solution supply device attached to the upstream exhaust passage 12. This urea water generates ammonia by hydrolysis. With this ammonia, NOx in the exhaust gas is reduced by the catalytic action of the selective catalytic reduction catalyst.

この尿素水Sは、尿素水タンク22から水溶液供給量調整手段である尿素水噴射制御装置(コントロールユニット)23により、その供給量の調整と排気通路12内への噴射が行われる。この尿素水噴射制御装置23は、尿素水Sの供給量の算出と調整を行う供給量調整装置(ECU)23Aと、尿素水噴射弁21を制御して尿素水噴射を行う噴射弁制御装置(DCU)23Bとから構成される。   The urea water S is adjusted in its supply amount and injected into the exhaust passage 12 from a urea water tank 22 by a urea water injection control device (control unit) 23 which is an aqueous solution supply amount adjusting means. The urea water injection control device 23 includes a supply amount adjusting device (ECU) 23A that calculates and adjusts the supply amount of the urea water S, and an injection valve control device that controls the urea water injection valve 21 to perform urea water injection ( DCU) 23B.

この尿素水噴射制御装置23は、エンジン11の運転制御を行う制御装置(エンジンコントロールユニット:ECU)30からのエンジン運転状況のデータ及び選択的接触還元型触媒装置14の出入口の排気ガス温度などのデータを入力して、これらのデータに基づいて最適な尿素水噴射を行う。   The urea water injection control device 23 includes engine operation status data from a control device (engine control unit: ECU) 30 that controls the operation of the engine 11 and the exhaust gas temperature at the inlet / outlet of the selective catalytic reduction catalyst device 14. Data is input, and optimal urea water injection is performed based on these data.

一方、DPF装置13に関しては、排気ガス中のPMのスート成分は、NO2 によると燃焼が容易となるため、DPF装置より上流側に選択的接触還元型触媒装置を配置して上流側でNOxを浄化してしまうと、DPF装置におけるPMの燃焼効率が低下する。このPMの燃焼効率の低下により、PMを強制的に燃焼させるための強制再生制御を行う頻度が増加するので、燃費が悪化する。そのため、DPF装置13は選択的接触還元型触媒装置14の上流側に配置する。 On the other hand, regarding the DPF device 13, the PM soot component in the exhaust gas is easily combusted according to NO 2. Therefore, a selective catalytic reduction catalyst device is disposed upstream of the DPF device, and the NOx is upstream. If it purifies | cleans, the combustion efficiency of PM in a DPF device will fall. Since the frequency of performing the forced regeneration control for forcibly burning the PM increases due to the decrease in the PM combustion efficiency, the fuel consumption is deteriorated. Therefore, the DPF device 13 is disposed on the upstream side of the selective catalytic reduction catalyst device 14.

また、DPF装置13の強制再生では、ポスト噴射等のエンジン11のシリンダ内噴射制御によって排気温度を上昇させることが一般的に行われる。このポスト噴射量による燃費の悪化を抑制するためには、DPF装置13の入口排気ガス温度が高いことが要求されるので、この面からも、排気ガスの冷却が少ない上流側にDPF装置13を配置することが好ましい。   In the forced regeneration of the DPF device 13, the exhaust temperature is generally increased by in-cylinder injection control of the engine 11 such as post injection. In order to suppress the deterioration of fuel consumption due to the post injection amount, it is required that the exhaust gas temperature at the inlet of the DPF device 13 is high. From this aspect as well, the DPF device 13 is disposed on the upstream side where the exhaust gas is less cooled. It is preferable to arrange.

また、酸化触媒装置15は、尿素水Sの供給量が選択的接触還元型触媒装置14で消費する量より多くなった場合に、選択的接触還元型触媒装置14から流出してくるアンモニアを酸化して、大気中に放出されるアンモニア量を減少する役割を果たす。   Further, the oxidation catalyst device 15 oxidizes ammonia flowing out from the selective catalytic reduction catalyst device 14 when the supply amount of the urea water S is larger than the amount consumed by the selective catalytic reduction catalyst device 14. Thus, it plays a role in reducing the amount of ammonia released into the atmosphere.

このような排気ガス浄化システムの例としては、NOxの浄化率を向上させると共に、アンモニアスリップをも防止することを目指して、排気系における粒子状物質低減装置(DPF装置)の後段にNOx触媒(SCR触媒)を配置し、粒子状物質低減装置の出口温度に基づいてNO/NO2 の割合を算出し、その値に基づいてNOx触媒に供給する尿素の量を制御するディーゼルエンジン用排ガス浄化装置が提案されている(例えば、特許文献1参照。)。 As an example of such an exhaust gas purification system, in order to improve the NOx purification rate and also prevent ammonia slip, a NOx catalyst (in the downstream of the particulate matter reduction device (DPF device) in the exhaust system) ( An exhaust gas purification device for a diesel engine that arranges an SCR catalyst, calculates the ratio of NO / NO 2 based on the outlet temperature of the particulate matter reducing device, and controls the amount of urea supplied to the NOx catalyst based on the value Has been proposed (see, for example, Patent Document 1).

しかしながら、この構成の排気ガス浄化システムでは、上流側のDPF装置のPM燃焼除去の再生制御に伴うSCR触媒の熱劣化の問題がある。
つまり、DPF装置に捕集され堆積したPMを燃焼除去するために強制再生制御を行うと、DPF装置でPMが燃焼するため、下流側に高温の排気ガスが流出する。そのため、下流側のSCR触媒装置に高温の排気ガスが流入することになり、SCR触媒が高温になり熱劣化が進行する。この熱劣化は、走行距離が増すに従って進行し、SCR触媒装置のNOx浄化性能が低下してくる。
However, the exhaust gas purification system having this configuration has a problem of thermal degradation of the SCR catalyst accompanying the regeneration control of the PM combustion removal of the upstream DPF device.
That is, when the forced regeneration control is performed to burn and remove the PM collected and accumulated in the DPF device, the PM burns in the DPF device, so that high-temperature exhaust gas flows out downstream. Therefore, high-temperature exhaust gas flows into the SCR catalyst device on the downstream side, the SCR catalyst becomes high temperature, and thermal degradation proceeds. This thermal deterioration proceeds as the travel distance increases, and the NOx purification performance of the SCR catalyst device decreases.

この熱劣化が進行すると、SCR触媒装置の下流側のNOx排出量が浄化目標のレベルを超えるようになり、NOxが大気中に排出される恐れが生じる。また、それと共に、SCR触媒装置でNOxの還元に使用されなかったアンモニアの流出量が増加し、下流側の酸化触媒装置でこのアンモニアを酸化しきれずに、アンモニアが大気に放出される可能性も生じる。   When this thermal deterioration progresses, the NOx emission amount on the downstream side of the SCR catalyst device exceeds the purification target level, and there is a possibility that NOx is discharged into the atmosphere. At the same time, the amount of ammonia that has not been used for NOx reduction in the SCR catalyst device increases, and the ammonia may not be oxidized in the downstream oxidation catalyst device, and ammonia may be released to the atmosphere. Arise.

また、この上流側のDPF装置の強制再生以外の場合でも、高地で吸入空気量が減った場合、吸入空気温度が高くなった場合、インタークーラーの冷却性能が低下した場合、噴射タイミングの遅れ等の燃料噴射系が異常動作した場合、VGS(可変容積型)ターボチャージャのアクチュエータの異常動作により空気量が低下した場合、EGRクーラーの冷却能力等で、選択的接触還元型触媒装置の温度が上昇する。   Even in cases other than forced regeneration of the upstream DPF device, when the intake air amount decreases at high altitudes, the intake air temperature increases, the cooling performance of the intercooler decreases, the injection timing delays, etc. When the fuel injection system operates abnormally, when the air amount decreases due to the abnormal operation of the actuator of the VGS (variable displacement type) turbocharger, the temperature of the selective catalytic reduction catalyst device increases due to the cooling capacity of the EGR cooler or the like. .

この選択的接触還元型触媒(NOx触媒)の熱劣化対策として、DPF装置を上流側に備えていないが、NOx触媒を保護する観点から、NOx触媒の触媒温度をモニターして、触媒温度に基づいて尿素水の添加量を設定すると共に、この触媒温度が所定温度(過昇温度)以上のときは、噴射する尿素水を、管壁温度に基づいて排気中の飽和蒸気圧から制限される許容水分添加量以下の範囲で尿素水の添加量を増量補正して、尿素水中の水分の蒸発潜熱により排気温度を低下させることにより、尿素水の凝結を未然に回避しながら、触媒温度が過剰に上昇するのを抑制し、触媒の熱劣化を防止する技術が提案されている(例えば、特許文献2及び特許文献3参照。)。
特開平2002−250220号公報 特開平2003−293736号公報 特開平2003−293740号公報
As a countermeasure against thermal degradation of this selective catalytic reduction catalyst (NOx catalyst), a DPF device is not provided on the upstream side, but from the viewpoint of protecting the NOx catalyst, the catalyst temperature of the NOx catalyst is monitored and based on the catalyst temperature. The amount of urea water added is set, and when the catalyst temperature is equal to or higher than the predetermined temperature (overheating temperature), the urea water to be injected is allowed to be restricted from the saturated vapor pressure in the exhaust based on the tube wall temperature. The amount of urea water added is corrected within the range below the amount of water added, and the exhaust temperature is lowered by the latent heat of vaporization of the water in the urea water. Techniques for suppressing the rise and preventing thermal deterioration of the catalyst have been proposed (see, for example, Patent Document 2 and Patent Document 3).
JP-A-2002-250220 Japanese Patent Laid-Open No. 2003-293736 JP 2003-293740 A

本発明の目的は、内燃機関の排気通路に、上流側から順に、選択的接触還元型触媒装置(SCR触媒装置)、酸化触媒装置を配置した排気ガス浄化システムにおいて、アンモニアの大気中への放出を実用上十分に抑制しながら、選択的接触還元型触媒の熱劣化を防止できて、NOx浄化性能の低下を最少限に抑えることができる排気ガス浄化システムの制御方法及び排気ガス浄化システムを提供することにある。   An object of the present invention is to release ammonia into the atmosphere in an exhaust gas purification system in which a selective catalytic reduction catalyst device (SCR catalyst device) and an oxidation catalyst device are arranged in order from the upstream side in an exhaust passage of an internal combustion engine. Of exhaust gas purification system and exhaust gas purification system capable of preventing thermal degradation of selective catalytic reduction catalyst while minimizing NOx purification performance while minimizing NO There is to do.

上記の目的を達成するための本発明の排気ガス浄化システムの制御方法は、内燃機関の排気通路に上流側から順にNOxを浄化するための選択的接触還元型触媒装置と酸化触媒装置を配設し、前記選択的接触還元型触媒装置にアンモニア系水溶液を供給する水溶液供給装置を前記選択的接触還元型触媒装置の上流側に配設すると共に、前記アンモニア系水溶液の供給量を調整する水溶液供給量調整手段を備え、前記選択的接触還元型触媒装置の触媒温度を指標する触媒温度指標値が所定の判定温度より大きくなった場合に、前記選択的接触還元型触媒装置でNOxを還元するためのNOx還元用アンモニア系水溶液に加えて、前記選択的接触還元型触媒装置に流入する排気ガスを冷却して前記選択的接触還元型触媒装置の触媒温度を低下させるための冷却用アンモニア系水溶液を供給する排気ガス浄化システムの制御方法において、前記冷却用アンモニア系水溶液の供給量を、前記選択的接触還元型触媒装置で消費可能なアンモニア量に相当する第1のアンモニア系水溶液供給量と、前記酸化触媒装置で消費可能なアンモニア量に相当する第2のアンモニア系水溶液供給量とに基づいて算出すると共に、前記第1のアンモニア系水溶液供給量を、内燃機関から排出されるNOx排出量と前記選択的接触還元型触媒装置のNOx浄化率とから算出し、前記第2のアンモニア系水溶液供給量を、内燃機関から排出される排気ガス量と前記酸化触媒装置のアンモニア変換効率とから算出することを特徴とする。   In order to achieve the above object, a control method for an exhaust gas purification system of the present invention includes a selective catalytic reduction catalyst device and an oxidation catalyst device for purifying NOx in order from the upstream side in an exhaust passage of an internal combustion engine. An aqueous solution supply device for supplying an ammonia-based aqueous solution to the selective catalytic reduction catalyst device is arranged upstream of the selective catalytic reduction-type catalyst device, and an aqueous solution supply for adjusting the supply amount of the ammonia-based aqueous solution An amount adjusting means for reducing NOx by the selective catalytic reduction catalyst device when a catalyst temperature index value indicating the catalyst temperature of the selective catalytic reduction catalyst device is higher than a predetermined determination temperature; In addition to the ammonia-based aqueous solution for NOx reduction, the exhaust gas flowing into the selective catalytic reduction catalytic device is cooled to lower the catalyst temperature of the selective catalytic reduction catalytic device. In the control method of the exhaust gas purification system for supplying the cooling ammonia-based aqueous solution, the supply amount of the cooling ammonia-based aqueous solution corresponds to a first amount corresponding to the amount of ammonia that can be consumed by the selective catalytic reduction catalyst device. Calculation based on the ammonia aqueous solution supply amount and a second ammonia aqueous solution supply amount corresponding to the ammonia amount that can be consumed by the oxidation catalyst device, and the first ammonia aqueous solution supply amount from the internal combustion engine The second ammonia-based aqueous solution supply amount is calculated from the NOx emission amount discharged and the NOx purification rate of the selective catalytic reduction type catalytic device, and the second ammonia-based aqueous solution supply amount is calculated from the exhaust gas amount discharged from the internal combustion engine and the oxidation catalyst device. It is calculated from the ammonia conversion efficiency.

ここでいうアンモニア系水溶液とは、尿素水、アンモニア、アンモニア水などのアンモニアを発生する水溶液のことをいう。
また、選択的接触還元型触媒装置の触媒温度を指標する触媒温度指標値とは、選択的接触還元型触媒装置の触媒温度の測定値や触媒温度を推定できる物理量のことを言い、選択的接触還元型触媒装置の触媒床温度や選択的接触還元型触媒装置に流入する排気ガスの温度(入口排気ガス温度)や選択的接触還元型触媒装置の前後の排気ガス温度の平均値などを採用することができる。また、エンジン負荷とエンジン回転速度などからマップデータを参照して選択的接触還元型触媒装置の触媒温度を推定する場合は、推定された触媒温度をこの触媒温度指標値とすることができる。
The ammonia-based aqueous solution here refers to an aqueous solution that generates ammonia, such as urea water, ammonia, and ammonia water.
Further, the catalyst temperature index value indicating the catalyst temperature of the selective catalytic reduction catalyst device means a measured value of the catalyst temperature of the selective catalytic reduction catalyst device or a physical quantity capable of estimating the catalyst temperature. Use the catalyst bed temperature of the reduction catalytic device, the temperature of the exhaust gas flowing into the selective catalytic reduction catalytic device (inlet exhaust gas temperature), the average value of the exhaust gas temperature before and after the selective catalytic reduction catalytic device, etc. be able to. Further, when the catalyst temperature of the selective catalytic reduction catalyst device is estimated by referring to the map data from the engine load and the engine rotational speed, the estimated catalyst temperature can be used as the catalyst temperature index value.

この構成により、選択的接触還元型触媒装置で消費可能な量と酸化触媒装置で消費可能な量に基づいて、酸化触媒装置の下流側に流出するアンモニア量を考慮して、排気ガス中に供給するアンモニア系水溶液の供給量を決めることができる。従って、選択的接触還元型の熱劣化の進行を防ぐために、選択的接触還元型触媒装置が高温になった時に、アンモニア系水溶液を通常のNOx浄化用の供給量より多く噴射する場合においても、アンモニア系水溶液の供給量を、酸化触媒装置で酸化可能なアンモニア量を考慮して調整するので、アンモニアの大気中への放出量を所定の濃度以下に抑えながら、選択的接触還元型の熱劣化を防止できる。   With this configuration, the amount of ammonia flowing out downstream of the oxidation catalyst device is taken into account based on the amount that can be consumed by the selective catalytic reduction catalyst device and the amount that can be consumed by the oxidation catalyst device. The amount of ammonia aqueous solution to be supplied can be determined. Therefore, in order to prevent the thermal degradation of the selective catalytic reduction type, when the selective catalytic reduction type catalytic device becomes high temperature, even when injecting the ammonia-based aqueous solution more than the supply amount for normal NOx purification, The supply amount of the ammonia-based aqueous solution is adjusted in consideration of the amount of ammonia that can be oxidized by the oxidation catalyst device, so that selective catalytic reduction thermal degradation is achieved while keeping the amount of ammonia released to the atmosphere below the specified level. Can be prevented.

なお、選択的接触還元型触媒装置へ流入する排気ガス中にアンモニア系水溶液を供給すると、蒸発により潜熱(蒸発熱)を奪うので排気ガスの温度を下げることができ、アンモニア系水溶液の供給量を増加すると、この降温効果が増加し、この降温した排気ガスにより、選択的接触還元型触媒装置を冷却することができる。   In addition, if the ammonia-based aqueous solution is supplied into the exhaust gas flowing into the selective catalytic reduction catalytic device, the latent heat (evaporation heat) is removed by evaporation, so the temperature of the exhaust gas can be lowered, and the supply amount of the ammonia-based aqueous solution can be reduced. When the temperature increases, the temperature lowering effect increases, and the selective catalytic reduction catalyst device can be cooled by the exhaust gas whose temperature has decreased.

上記の排気ガス浄化システムの制御方法において、前記選択的接触還元型触媒装置の上流側に、排気ガス中の粒子状物質を浄化するためのディーゼルパティキュレートフィルタ装置(DPF装置)を配設した場合には、DPF装置の再生制御の際に、DPF装置に蓄積したPMが燃焼して選択的接触還元型触媒装置に流入する排気ガスの温度が高くなるため、大幅に冷却する必要が生じるので、特に効果がある。   In the control method of the exhaust gas purification system, when a diesel particulate filter device (DPF device) for purifying particulate matter in the exhaust gas is disposed upstream of the selective catalytic reduction catalyst device In the regeneration control of the DPF device, the PM accumulated in the DPF device burns and the temperature of the exhaust gas flowing into the selective catalytic reduction catalyst device becomes high. Especially effective.

上記の排気ガス浄化システムの制御方法において、前記酸化触媒装置の下流側に流出するアンモニア流出量が、所定の限界値以下となる量の範囲内に、前記第2のアンモニア系水溶液供給量を設定し、更には、前記所定の限界値を10ppmとする。この構成により、大気中に放出された排気ガスのアンモニアの匂いを消すことができる。   In the control method of the exhaust gas purification system, the second ammonia-based aqueous solution supply amount is set within a range in which the ammonia outflow amount flowing out downstream of the oxidation catalyst device is equal to or less than a predetermined limit value. Further, the predetermined limit value is set to 10 ppm. With this configuration, the smell of ammonia in the exhaust gas released into the atmosphere can be eliminated.

また、上記の目的を達成するための本発明の排気ガス浄化システムは、内燃機関の排気通路に上流側から順にNOxを浄化するための選択的接触還元型触媒装置と酸化触媒装置を配設し、前記選択的接触還元型触媒装置にアンモニア系水溶液を供給する水溶液供給装置を前記選択的接触還元型触媒装置の上流側に配設すると共に、前記アンモニア系水溶液の供給量を調整する水溶液供給量調整手段を備え、前記選択的接触還元型触媒装置の触媒温度を指標する触媒温度指標値が所定の判定温度より大きくなった場合に、前記選択的接触還元型触媒装置でNOxを還元するためのNOx還元用アンモニア系水溶液に加えて、前記選択的接触還元型触媒装置に流入する排気ガスを冷却して前記選択的接触還元型触媒装置の触媒温度を低下させるための冷却用アンモニア系水溶液を供給する排気ガス浄化システムにおいて、前記水溶液供給量調整手段が、前記アンモニア系水溶液の供給量を、前記選択的接触還元型触媒装置で消費可能なアンモニア量に相当する第1のアンモニア系水溶液供給量と、前記酸化触媒装置で消費可能なアンモニア量に相当する第2のアンモニア系水溶液供給量とに基づいて算出すると共に、前記第1のアンモニア系水溶液供給量を、内燃機関から排出されるNOx排出量と前記選択的接触還元型触媒装置のNOx浄化率とから算出し、前記第2のアンモニア系水溶液供給量を、内燃機関から排出される排気ガス量と前記酸化触媒装置のアンモニア変換効率とから算出するように構成する。   The exhaust gas purification system of the present invention for achieving the above object includes a selective catalytic reduction catalyst device and an oxidation catalyst device for purifying NOx in order from the upstream side in an exhaust passage of an internal combustion engine. An aqueous solution supply device for supplying an aqueous ammonia solution to the selective catalytic reduction catalyst device is disposed upstream of the selective catalytic reduction catalyst device, and an aqueous solution supply amount for adjusting the supply amount of the ammonia aqueous solution. Adjusting means for reducing NOx by the selective catalytic reduction catalyst device when the catalyst temperature index value indicating the catalyst temperature of the selective catalytic reduction catalyst device is higher than a predetermined determination temperature. In addition to the ammonia-based aqueous solution for NOx reduction, the exhaust gas flowing into the selective catalytic reduction catalytic device is cooled to lower the catalyst temperature of the selective catalytic reduction catalytic device. In the exhaust gas purification system for supplying the cooling ammonia-based aqueous solution, the aqueous solution supply amount adjusting means has a supply amount of the ammonia-based aqueous solution corresponding to an ammonia amount that can be consumed by the selective catalytic reduction catalyst device. 1 based on an ammonia aqueous solution supply amount and a second ammonia aqueous solution supply amount corresponding to the amount of ammonia that can be consumed by the oxidation catalyst device, and the first ammonia aqueous solution supply amount The second ammonia-based aqueous solution supply amount is calculated from the NOx emission amount discharged from the engine and the NOx purification rate of the selective catalytic reduction catalyst device, and the exhaust gas amount discharged from the internal combustion engine and the oxidation catalyst are calculated. It is configured to calculate from the ammonia conversion efficiency of the apparatus.

上記の排気ガス浄化システムにおいて、前記選択的接触還元型触媒装置の上流側に、排気ガス中の粒子状物質を浄化するためのディーゼルパティキュレートフィルタ装置(DPF装置)を配設する。また、前記酸化触媒装置の下流側に流出するアンモニア流出量が、所定の限界値以下となる量の範囲内に、前記第2のアンモニア系水溶液供給量を設定する。更には、前記所定の限界値を10ppmとする。   In the exhaust gas purification system, a diesel particulate filter device (DPF device) for purifying particulate matter in the exhaust gas is disposed upstream of the selective catalytic reduction catalyst device. Further, the second ammonia-based aqueous solution supply amount is set within a range in which the ammonia outflow amount flowing out downstream of the oxidation catalyst device is equal to or less than a predetermined limit value. Further, the predetermined limit value is set to 10 ppm.

これらの構成により、上記の排気ガス浄化システムの制御方法を実施できる排気ガス浄化システムを提供でき、上記の排気ガス浄化システムの制御方法と同様な作用効果を奏することができる。   With these configurations, it is possible to provide an exhaust gas purification system that can implement the control method of the exhaust gas purification system, and it is possible to achieve the same operational effects as the control method of the exhaust gas purification system.

また、上記のDPF装置としては、フィルタのみのDPF装置、フィルタに酸化触媒を担持させた連続再生型DPF装置、フィルタの上流側に酸化触媒を設けた連続再生型DPF装置、フィルタに触媒を担持させると共に該フィルタの上流側に酸化触媒を設けた連続再生型DPF装置のいずれか一つ又はその組合せを採用することができる。   In addition, as the above DPF device, a filter-only DPF device, a continuous regeneration type DPF device in which an oxidation catalyst is supported on the filter, a continuous regeneration type DPF device in which an oxidation catalyst is provided on the upstream side of the filter, and a catalyst in the filter In addition, any one or a combination of continuous regeneration type DPF devices in which an oxidation catalyst is provided on the upstream side of the filter can be employed.

本発明の排気ガス浄化システムの制御方法及び排気ガス浄化システムによれば、内燃機関の排気通路に上流側から順に、選択的接触還元型触媒装置(SCR触媒装置)、酸化触媒装置を配置した排気ガス浄化システムにおいて、アンモニアの大気中への放出を実用上十分に抑制しながら、選択的接触還元型触媒の熱劣化を防止できる。従って、選択的接触還元型触媒装置のNOx浄化性能の低下を最少限に抑えることができる。   According to the exhaust gas purification system control method and exhaust gas purification system of the present invention, an exhaust gas in which a selective catalytic reduction catalyst device (SCR catalyst device) and an oxidation catalyst device are arranged in order from the upstream side in the exhaust passage of the internal combustion engine. In the gas purification system, it is possible to prevent thermal degradation of the selective catalytic reduction catalyst while practically suppressing release of ammonia into the atmosphere. Therefore, it is possible to minimize the decrease in the NOx purification performance of the selective catalytic reduction catalyst device.

以下、本発明に係る実施の形態の排気ガス浄化システムの制御方法及び排気ガス浄化システムについて、図面を参照しながら説明する。
図1に、この実施の形態の排気ガス浄化システム1の構成を示す。この排気ガス浄化システム1は、ディーゼル内燃機関(エンジン)11の排気通路12に、上流側からディーゼルパティキュレートフィルタ装置(以下、DPF装置)13、選択的接触還元型触媒装置(以下、SCR触媒装置とする)14、酸化触媒装置15を設けて構成される。
Hereinafter, an exhaust gas purification system control method and an exhaust gas purification system according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a configuration of an exhaust gas purification system 1 according to this embodiment. The exhaust gas purification system 1 includes a diesel particulate filter device (hereinafter referred to as a DPF device) 13, a selective catalytic reduction catalyst device (hereinafter referred to as an SCR catalyst device) from an upstream side in an exhaust passage 12 of a diesel internal combustion engine (engine) 11. 14), and an oxidation catalyst device 15 is provided.

この排気ガス浄化システム1では、上流側のDPF装置13により、排気ガス中のPM(パティキュレートマター:粒子状物質)を捕集(トラップ)する。このDPF装置13は、多孔質のセラミックのハニカムのチャンネルの入口と出口を交互に目封じしたモノリスハニカム型ウオールフロータイプのフィルタや、アルミナ等の無機繊維をランダムに積層したフェルト状のフィルタ等で形成される。なお、PMの燃焼を促進するために、このフィルタの部分に白金や酸化セリウム等の触媒を担持させる場合もある。   In the exhaust gas purification system 1, PM (particulate matter) in the exhaust gas is collected (trapped) by the upstream DPF device 13. This DPF device 13 is a monolith honeycomb wall flow type filter in which the inlet and outlet of a porous ceramic honeycomb channel are alternately plugged, a felt-like filter in which inorganic fibers such as alumina are randomly laminated, and the like. It is formed. In order to promote the combustion of PM, a catalyst such as platinum or cerium oxide may be supported on the filter portion.

そして、このDPF装置13に、モノリスハニカム型ウオールフロータイプのフィルタを採用した場合には、多孔質のセラミックの壁で排気ガス中のPMを捕集し、繊維型フィルタタイプを採用した場合には、フィルタの無機繊維でPMを捕集する。   When a monolith honeycomb wall flow type filter is adopted for the DPF device 13, PM in exhaust gas is collected by a porous ceramic wall, and when a fiber type filter type is adopted. , PM is collected by the inorganic fiber of the filter.

そして、DPF装置13のPMの堆積量を推定するために、DPF装置13の前後に接続された導通管に差圧センサ13aを設ける。
そして、SCR触媒装置14は、コージェライトや酸化アルミニウムや酸化チタン等で形成されるハニカム構造の担持体(触媒構造体)に、チタニア−バナジウム、ゼオライト、酸化クロム、酸化マンガン、酸化モリブデン、酸化チタン、酸化タングステン等を担持して形成される。
Then, in order to estimate the amount of PM accumulated in the DPF device 13, a differential pressure sensor 13 a is provided in the conduction pipe connected before and after the DPF device 13.
The SCR catalyst device 14 has a honeycomb structure carrier (catalyst structure) formed of cordierite, aluminum oxide, titanium oxide or the like, titania-vanadium, zeolite, chromium oxide, manganese oxide, molybdenum oxide, titanium oxide. Further, it is formed by supporting tungsten oxide or the like.

このSCR触媒装置14では、酸素過剰の雰囲気で、排気通路12内に尿素水、アンモニア、アンモニア水などのアンモニア系水溶液(この実施の形態では尿素水)Sを噴射して、アンモニア系水溶液から発生するアンモニアをSCR触媒装置14に供給して、排気ガスG中のNOxに対してアンモニアと選択的に接触及び反応させることにより、NOxを窒素に還元して浄化する。   In this SCR catalyst device 14, an ammonia-based aqueous solution (urea water in this embodiment) S such as urea water, ammonia, and ammonia water is injected into the exhaust passage 12 in an oxygen-excess atmosphere, and is generated from the ammonia-based aqueous solution. The ammonia to be supplied is supplied to the SCR catalyst device 14, and the NOx in the exhaust gas G is selectively brought into contact with and reacted with ammonia, whereby the NOx is reduced to nitrogen and purified.

このSCR触媒装置14の上流側で、DPF装置13の下流側の排気通路12に水溶液供給装置としての尿素水噴射弁21を設け、さらに、SCR触媒装置14の入口側に入口排気ガス温度センサ31と出口側に出口排気ガス温度センサ32を設ける。   A urea water injection valve 21 as an aqueous solution supply device is provided upstream of the SCR catalyst device 14 in the exhaust passage 12 downstream of the DPF device 13, and an inlet exhaust gas temperature sensor 31 is provided on the inlet side of the SCR catalyst device 14. An outlet exhaust gas temperature sensor 32 is provided on the outlet side.

この実施の形態では、NOxの還元剤として、安全性の高い尿素水を使用するが、この尿素水Sは尿素水噴射弁21から排気ガス中に供給される。この尿素水S中の尿素は加水分解によりアンモニアに分解する。このアンモニアで、排気ガス中のNOxを、SCR触媒の触媒作用により窒素に還元する。この尿素水Sは、尿素水タンク22から水溶液供給量調整手段である尿素水噴射制御装置(コントロールユニット)23により、その供給量の調整と排気通路12内への噴射が行われる。   In this embodiment, highly safe urea water is used as the NOx reducing agent, but this urea water S is supplied from the urea water injection valve 21 into the exhaust gas. Urea in the urea water S is decomposed into ammonia by hydrolysis. With this ammonia, NOx in the exhaust gas is reduced to nitrogen by the catalytic action of the SCR catalyst. The urea water S is adjusted in its supply amount and injected into the exhaust passage 12 from a urea water tank 22 by a urea water injection control device (control unit) 23 which is an aqueous solution supply amount adjusting means.

酸化触媒装置15は、多孔質のセラミックのハニカム構造等の担持体に、白金(Pt)等の酸化触媒を担持させて形成する。この酸化触媒装置15は、尿素水Sの供給量がSCR触媒装置14で消費される量より多くなった場合に、消費されずにSCR触媒装置14から流出してくるアンモニアを酸化して、大気中に放出されるアンモニアを大幅に減少させる役割を果たす。これにより、大気中へのアンモニアの放出(アンモニアスリップ)を抑制する。この排気ガス浄化システム1で排気ガスGを浄化し、浄化された排気ガスGcを大気中に放出する。   The oxidation catalyst device 15 is formed by carrying an oxidation catalyst such as platinum (Pt) on a carrier such as a porous ceramic honeycomb structure. The oxidation catalyst device 15 oxidizes ammonia that is not consumed and flows out from the SCR catalyst device 14 when the supply amount of the urea water S is larger than the amount consumed by the SCR catalyst device 14, It serves to greatly reduce the ammonia released into it. As a result, release of ammonia into the atmosphere (ammonia slip) is suppressed. The exhaust gas purification system 1 purifies the exhaust gas G, and releases the purified exhaust gas Gc into the atmosphere.

次に、上記の構成の排気ガス浄化システム1の制御について説明する。この排気ガス浄化システム1は、エンジン11の運転制御を行う制御装置(エンジンコントロールユニット:ECU)30と尿素水噴射制御装置23を備えている。   Next, control of the exhaust gas purification system 1 having the above configuration will be described. The exhaust gas purification system 1 includes a control device (engine control unit: ECU) 30 that performs operation control of the engine 11 and a urea water injection control device 23.

制御装置30には、DPF装置13の再生制御を制御するDPF再生制御手段が設けられており、通常運転制御においては、DPF装置14でPMを捕集するが、この通常運転制御中に、DPF装置14の目詰まり状態を差圧センサ13aで検出したDPF前後差圧で、再生時期であるか否かを監視し、再生時期であると判定すると強制再生制御を行う。   The control device 30 is provided with DPF regeneration control means for controlling regeneration control of the DPF device 13. In normal operation control, PM is collected by the DPF device 14. During this normal operation control, DPF Whether or not the regeneration time is reached is monitored by the differential pressure before and after the DPF detected by the differential pressure sensor 13a as to whether the device 14 is clogged. If the regeneration time is determined, forced regeneration control is performed.

この強制再生制御では、ポスト噴射等のエンジン11のシリンダ内噴射制御によって排気温度を上昇させることが一般的に行われる。この強制再生制御の後は、また、通常の運転に戻る。そして、通常の運転とDPF装置14の強制再生制御を繰り返しながら、車両の運転が行われる。   In this forced regeneration control, the exhaust temperature is generally raised by in-cylinder injection control of the engine 11 such as post injection. After this forced regeneration control, the normal operation is resumed. Then, the vehicle is driven while repeating normal driving and forced regeneration control of the DPF device 14.

一方、尿素水噴射制御装置23には、尿素水噴射制御手段が設けられ、尿素水Sの供給量Qtの算出と調整を行う供給量調整装置(水溶液供給量調整手段:ECU)23Aと、尿素水噴射弁21を制御して尿素水噴射を行う噴射弁制御装置(噴射弁制御手段:DCU)23Bとから構成されている。   On the other hand, the urea water injection control device 23 is provided with urea water injection control means, and a supply amount adjusting device (aqueous solution supply amount adjusting means: ECU) 23A for calculating and adjusting the supply amount Qt of the urea water S, urea It is comprised from the injection valve control apparatus (injection valve control means: DCU) 23B which controls the water injection valve 21 and performs urea water injection.

この尿素水噴射制御装置23は、制御装置30からのエンジン運転状況のデータ、及び、入口排気ガス温度センサ31で検出されるSCR触媒入口排気ガス温度T14a や出口排気ガス温度センサ32で検出されるSCR触媒出口排気ガス温度T14b 等のデータを入力して、これらのデータに基づいて尿素水供給量Qtの算出と尿素水噴射を行う。   The urea water injection control device 23 is detected by the engine operation status data from the control device 30 and the SCR catalyst inlet exhaust gas temperature T14a detected by the inlet exhaust gas temperature sensor 31 and the outlet exhaust gas temperature sensor 32. Data such as the SCR catalyst outlet exhaust gas temperature T14b is input, and based on these data, the urea water supply amount Qt is calculated and urea water injection is performed.

この尿素水噴射制御装置23は、SCR触媒装置14の触媒温度Tcを指標する触媒温度指標値(この実施の形態では、SCR触媒入口排気ガス温度)T14a が所定の判定温度Th より大きくなった場合に、SCR触媒装置14でNOxを還元するためのNOx還元用尿素水(NOx還元用アンモニア系水溶液) に加えて、SCR触媒装置14に流入する排気ガスを冷却してSCR触媒装置14の触媒温度Tcを低下させるための冷却用尿素水(冷却用アンモニア系水溶液)を供給するように構成される。   This urea water injection control device 23 is used when the catalyst temperature index value (in this embodiment, the SCR catalyst inlet exhaust gas temperature) T14a that indicates the catalyst temperature Tc of the SCR catalyst device 14 becomes higher than a predetermined judgment temperature Th. In addition to the NOx reducing urea water (NOx reducing ammonia aqueous solution) for reducing NOx by the SCR catalyst device 14, the exhaust gas flowing into the SCR catalyst device 14 is cooled to reduce the catalyst temperature of the SCR catalyst device 14. A cooling urea solution (a cooling ammonia-based aqueous solution) for reducing Tc is supplied.

また、供給量調整装置23Aは、尿素水Sの供給量Qtを、SCR触媒装置14で消費可能なアンモニア量に相当する第1の尿素水供給量(第1のアンモニア系水溶液供給量)Q1と、酸化触媒装置15で消費可能なアンモニア量に相当する第2の尿素水供給量(第2のアンモニア系水溶液供給量)Q2とに基づいて算出するように構成される。この実施の形態では、尿素水Sの供給量Qtは第1の尿素水供給量Q1と第2の尿素水供給量Q2の和として算出するが、これらの供給量Q1,Q2を補正した上で和を算出したり、和に対して補正を行って算出してもよい。   Further, the supply amount adjusting device 23A uses the supply amount Qt of the urea water S as a first urea water supply amount (first ammonia aqueous solution supply amount) Q1 corresponding to the ammonia amount that can be consumed by the SCR catalyst device 14. The second urea water supply amount (second ammonia aqueous solution supply amount) Q2 corresponding to the ammonia amount that can be consumed by the oxidation catalyst device 15 is calculated. In this embodiment, the supply amount Qt of the urea water S is calculated as the sum of the first urea water supply amount Q1 and the second urea water supply amount Q2, but after correcting these supply amounts Q1 and Q2, The sum may be calculated or may be calculated by correcting the sum.

この第1の尿素水供給量Q1は、エンジン11から排出されるNOx排出重量WonとSCR触媒装置14のNOx浄化率ηnoxとから算出する。また、第2の尿素水供給量Q2は、エンジン11から排出される排気ガス量Vgと酸化触媒装置15のアンモニア変換効率ηnh3とから算出する。また、酸化触媒装置15の下流側に流出するアンモニアの濃度が、所定の限界値C0以下となる量の範囲内に、第2の尿素水供給量Q2を設定するように構成される。   The first urea water supply amount Q1 is calculated from the NOx emission weight Won discharged from the engine 11 and the NOx purification rate ηnox of the SCR catalyst device 14. Further, the second urea water supply amount Q2 is calculated from the exhaust gas amount Vg discharged from the engine 11 and the ammonia conversion efficiency ηnh3 of the oxidation catalyst device 15. Further, the second urea water supply amount Q2 is set within a range of an amount in which the concentration of ammonia flowing out downstream of the oxidation catalyst device 15 is equal to or less than a predetermined limit value C0.

次に、上記の構成の排気ガス浄化システム1における制御方法について説明する。なお、触媒温度指標値として、この実施の形態では、SCR触媒装置14に流入する排気ガスの温度(SCR触媒入口排気ガス温度)T14a を採用しているが、SCR触媒装置14の前後の排気ガス温度T14a , T14b の平均値を採用したり、SCR触媒装置14の触媒床温度を測定できる場合にはその温度Tcを採用したりすることができる。要は、SCR触媒装置14の触媒温度Tcの測定値や触媒温度Tcを推定できる物理量であればよい。   Next, a control method in the exhaust gas purification system 1 having the above configuration will be described. In this embodiment, the temperature of the exhaust gas flowing into the SCR catalyst device 14 (SCR catalyst inlet exhaust gas temperature) T14a is adopted as the catalyst temperature index value, but the exhaust gas before and after the SCR catalyst device 14 is used. An average value of the temperatures T14a and T14b can be adopted, and when the catalyst bed temperature of the SCR catalyst device 14 can be measured, the temperature Tc can be adopted. In short, any physical quantity may be used as long as the measured value of the catalyst temperature Tc of the SCR catalyst device 14 and the catalyst temperature Tc can be estimated.

この制御では、図2に示すような制御フローが、メインのエンジンなどを制御する上級の制御フローから繰り返し呼ばれて、この制御がスタートし、実行されてリターンすると、再び、この上級の制御フローに戻るものとして示してある。   In this control, the control flow as shown in FIG. 2 is repeatedly called from the high-level control flow for controlling the main engine and the like. When this control starts, is executed, and returns, this high-level control flow is again. It is shown as returning to

この図2の制御フローがスタートすると、ステップS11で、第1の尿素水供給量Q1を算出する。次のステップS12で、SCR触媒装置14の入口の排気ガス温度(SCR触媒入口排気ガス温度)T14a が、SCR触媒の熱劣化が発生する所定の判定温度Th より大きいか否かの判定を行う。   When the control flow of FIG. 2 starts, a first urea water supply amount Q1 is calculated in step S11. In the next step S12, it is determined whether or not the exhaust gas temperature (SCR catalyst inlet exhaust gas temperature) T14a at the inlet of the SCR catalyst device 14 is higher than a predetermined determination temperature Th at which thermal degradation of the SCR catalyst occurs.

ステップS12の判定で、SCR触媒入口排気ガス温度T14a が、所定の判定温度Th 以下の場合は、SCR触媒装置14が高温にならず、冷却用尿素水の供給は不要であるので、NOx還元制御のステップS15に行く。このステップS15では、冷却用尿素水の供給を中止し、即ち、第2の尿素水供給量Q2を0(ゼロ)として、第1の尿素水供給量Q1(=全体供給量Qt)でNOx還元用尿素水のみを供給する。このNOx還元制御を所定の時間(SCR触媒入口排気ガス温度T14a のチェックのインターバル等に関係する時間)の間行ってNOxを浄化し、リターンする。このステップS12のNOx還元制御は、NOx浄化用の尿素水の供給量Q1で尿素水Sを供給する通常運転の制御と同じ制御である。   If it is determined in step S12 that the SCR catalyst inlet exhaust gas temperature T14a is equal to or lower than the predetermined determination temperature Th, the SCR catalyst device 14 does not reach a high temperature and the supply of cooling urea water is unnecessary. Go to step S15. In step S15, the supply of the cooling urea water is stopped, that is, the second urea water supply amount Q2 is set to 0 (zero), and NOx reduction is performed at the first urea water supply amount Q1 (= total supply amount Qt). Supply only urea water. This NOx reduction control is performed for a predetermined time (time related to the check interval of the SCR catalyst inlet exhaust gas temperature T14a, etc.) to purify NOx and return. The NOx reduction control in step S12 is the same control as the normal operation control for supplying the urea water S with the supply amount Q1 of the urea water for NOx purification.

ステップS12の判定で、SCR触媒入口排気ガス温度T14a が、所定の判定温度Th より大きい場合は、SCR触媒装置14が高温になって熱劣化する可能性があるので、冷却用尿素水の供給によりSCR触媒装置14を冷却する必要があるとして、ステップS13に進む。   If the SCR catalyst inlet exhaust gas temperature T14a is higher than the predetermined determination temperature Th in the determination in step S12, the SCR catalyst device 14 may become hot and thermally deteriorate. As it is necessary to cool the SCR catalyst device 14, the process proceeds to step S13.

このステップS13では、第2の尿素水供給量Q2を算出し、次のSCR触媒冷却制御のステップS14で、SCR触媒装置14に流入する排気ガスGを冷却するための冷却用尿素水の供給を、NOx還元用尿素水の供給に加えて行う。このステップS14では、第1の尿素水供給量Q1と第2の尿素水供給量Q2との合計である全体供給量Qtで尿素水Sを供給し、NOxを還元しながら、増加された尿素水の蒸発による排気ガスGの冷却によりSCR触媒装置14を冷却する。   In this step S13, the second urea water supply amount Q2 is calculated, and in the next SCR catalyst cooling control step S14, the supply of cooling urea water for cooling the exhaust gas G flowing into the SCR catalyst device 14 is performed. In addition to supplying urea water for NOx reduction. In this step S14, the urea water S is supplied at the total supply amount Qt that is the sum of the first urea water supply amount Q1 and the second urea water supply amount Q2, and the urea water increased while reducing NOx. The SCR catalyst device 14 is cooled by cooling the exhaust gas G by evaporating the gas.

このステップS14のSCR触媒冷却制御では、SCR触媒装置14の触媒温度が過剰に上昇して熱劣化を起こさないように、第1の尿素水供給量Q1に加えて第2の尿素水供給量Q2を供給する。この第1の尿素水供給量Q1の尿素水の蒸発に加えて、第2の尿素水供給量Q2の尿素水が蒸発することにより、SCR触媒装置14に流入する排気ガスGが冷却される。この第2尿素水供給量Q2の尿素水は、NOxの還元には寄与せずに、この尿素水から発生したアンモニアは、SCR触媒装置14の下流側に流出するので、酸化触媒装置15により、流出したアンモニアを酸化して無害化する。そして、この第2の尿素水供給量Q2は酸化触媒装置15で酸化可能なアンモニア量を考慮して、流出アンモニアの濃度が所定の判定濃度C0以下となるようにステップS13で設定される。   In the SCR catalyst cooling control in step S14, the second urea water supply amount Q2 is added in addition to the first urea water supply amount Q1 so that the catalyst temperature of the SCR catalyst device 14 does not rise excessively and causes thermal degradation. Supply. In addition to the evaporation of the urea water of the first urea water supply amount Q1, the exhaust gas G flowing into the SCR catalyst device 14 is cooled by the evaporation of the urea water of the second urea water supply amount Q2. The urea water of the second urea water supply amount Q2 does not contribute to the reduction of NOx, and the ammonia generated from the urea water flows out downstream of the SCR catalyst device 14, so that the oxidation catalyst device 15 The spilled ammonia is oxidized and rendered harmless. The second urea water supply amount Q2 is set in step S13 so that the ammonia concentration that can be oxidized by the oxidation catalyst device 15 is taken into account so that the concentration of the effluent ammonia is equal to or lower than the predetermined determination concentration C0.

このステップS14でSCR触媒冷却制御を所定の時間(SCR触媒入口排気ガス温度T14a のチェックのインターバル等に関係する時間)の間行ってから、ステップS16に行く。   In step S14, the SCR catalyst cooling control is performed for a predetermined time (time related to the check interval of the SCR catalyst inlet exhaust gas temperature T14a, etc.), and then the process proceeds to step S16.

ステップS16では、SCR触媒装置14の入口のSCR触媒入口排気ガス温度T14a が、SCR触媒の熱劣化が発生する所定の判定温度Th より大きいか否かの判定を行う。 ステップS16の判定で、SCR触媒入口排気ガス温度T14a が、所定の判定温度Th 以下の場合は、SCR触媒装置14に流入する排気ガスGが冷却されていると判断してそのまま、リターンに行く。   In step S16, it is determined whether or not the SCR catalyst inlet exhaust gas temperature T14a at the inlet of the SCR catalyst device 14 is higher than a predetermined determination temperature Th at which thermal degradation of the SCR catalyst occurs. If it is determined in step S16 that the SCR catalyst inlet exhaust gas temperature T14a is equal to or lower than the predetermined determination temperature Th, it is determined that the exhaust gas G flowing into the SCR catalyst device 14 is cooled, and the process returns.

ステップS16の判定で、SCR触媒入口排気ガス温度T14a が、所定の判定温度Th より高い場合は、SCR触媒装置14に流入する排気ガスGが冷却されていないと判断して、ステップS17に行き、SCR触媒入口排気ガス温度T14a やSCR触媒冷却制御を行った全体の時間等を冷却制御の履歴として記憶する。   If it is determined in step S16 that the SCR catalyst inlet exhaust gas temperature T14a is higher than a predetermined determination temperature Th, it is determined that the exhaust gas G flowing into the SCR catalyst device 14 is not cooled, and the process goes to step S17. The SCR catalyst inlet exhaust gas temperature T14a, the total time when the SCR catalyst cooling control is performed, and the like are stored as a history of cooling control.

そして、ステップS18で、冷却制御の履歴をチェックして、SCR触媒冷却制御の全体時間が所定の時間よりも多くなったり、SCR触媒入口排気ガス温度T14a が所定の第2の判定温度Th2より高かった時間が所定の時間よりも多くなったりした時に、異常であるとして、ステップS19に行き、SCR触媒冷却制御がうまく行かなかったとして、SCR触媒冷却エラーを記憶して、リターンする。また、ステップS18の判定で、まだ異常とは判定されない時は、リターンに行く。   In step S18, the history of the cooling control is checked, and the total time of the SCR catalyst cooling control becomes longer than a predetermined time, or the SCR catalyst inlet exhaust gas temperature T14a is higher than a predetermined second determination temperature Th2. When the measured time exceeds the predetermined time, the process goes to step S19 because it is abnormal, and if the SCR catalyst cooling control is not successful, the SCR catalyst cooling error is stored and the process returns. On the other hand, if it is not determined in step S18 that there is an abnormality, the process returns.

次に、ステップS11の第1の尿素水供給量Q1の算出とステップS13の第2の尿素水供給量Q2の算出について説明する。なお、第1の尿素水供給量Q1と第2の尿素水供給量Q2の和を最終尿素水供給量Qtとするが、この最終尿素水供給量Qtの実際の値は、適応されるエンジンや規制レベル(NOx排出レベル)により異なることになる。   Next, calculation of the first urea water supply amount Q1 in step S11 and calculation of the second urea water supply amount Q2 in step S13 will be described. The sum of the first urea water supply amount Q1 and the second urea water supply amount Q2 is defined as the final urea water supply amount Qt. The actual value of this final urea water supply amount Qt depends on the engine used, It depends on the regulation level (NOx emission level).

先ず、ステップS11の第1の尿素水供給量Q1の算出について図3の制御フローを参照しながら説明する。
ステップS11では、図3に示すように、ステップS11aで、エンジン11から排出される排気ガス中のNOx濃度Cnoxを算出し、ステップS11bで、重量に関係する排気ガス量Wgを算出する。そして、ステップS11cで、NOx濃度Cnoxと排気ガス量Wgと排気ガス密度ρgとからNOx排出重量Wonを算出し、ステップS11dで、このNOx排出重量Wonから第1の尿素水供給量Q1を算出する。
First, calculation of the first urea water supply amount Q1 in step S11 will be described with reference to the control flow of FIG.
In step S11, as shown in FIG. 3, the NOx concentration Cnox in the exhaust gas discharged from the engine 11 is calculated in step S11a, and the exhaust gas amount Wg related to the weight is calculated in step S11b. In step S11c, the NOx discharge weight Won is calculated from the NOx concentration Cnox, the exhaust gas amount Wg, and the exhaust gas density ρg. In step S11d, the first urea water supply amount Q1 is calculated from the NOx discharge weight Won. .

より、詳細には、ステップS11aでは、NOx濃度Cnoxを、図5に示すようなエンジン負荷Ac(縦軸:%)とエンジン回転速度Ne(横軸:rpm)をベースとしたNOx濃度Cnox(ppm)をマップ化したNOx濃度マップを参照して、エンジン運転状態を示すエンジン負荷Acとエンジン回転速度Neから算出する。なお、エンジン負荷Acの代わりにアクセル開度Accを用いてもよい。   More specifically, in step S11a, the NOx concentration Cnox is determined based on the NOx concentration Cnox (ppm) based on the engine load Ac (vertical axis:%) and the engine rotational speed Ne (horizontal axis: rpm) as shown in FIG. ) Is mapped from the engine load Ac indicating the engine operating state and the engine rotation speed Ne. The accelerator opening degree Acc may be used instead of the engine load Ac.

また、ステップS11bで、排気ガス量Wgを、空気流量(吸入空気量)Waと燃料流量Wfの和として算出するが、この空気流量Waを、図6に示すようなブースト圧力Pb(縦軸:mbar)とエンジン回転速度Ne(横軸:rpm)をベースとした空気流量Wa(kg/h)をマップ化した空気流量マップを参照して、ブースト圧力Pbとエンジン回転速度Neから算出する。また、燃料流量Wfを、図7に示すようなエンジン負荷Ac(縦軸:%)とエンジン回転速度Ne(横軸:rpm)をベースとした燃料流量Wf(kg/h)をマップ化した燃料流量マップを参照して、エンジン運転状態を示すエンジン負荷Acとエンジン回転速度Neから算出する。なお、エンジン負荷Acの代わりにアクセル開度Accを用いてもよい。   In step S11b, the exhaust gas amount Wg is calculated as the sum of the air flow rate (intake air amount) Wa and the fuel flow rate Wf. This air flow rate Wa is calculated as a boost pressure Pb (vertical axis: mbar) and the air flow rate map obtained by mapping the air flow rate Wa (kg / h) based on the engine rotational speed Ne (horizontal axis: rpm), and is calculated from the boost pressure Pb and the engine rotational speed Ne. Further, the fuel flow rate Wf is a fuel obtained by mapping the fuel flow rate Wf (kg / h) based on the engine load Ac (vertical axis:%) and the engine rotational speed Ne (horizontal axis: rpm) as shown in FIG. With reference to the flow rate map, calculation is made from the engine load Ac indicating the engine operating state and the engine rotational speed Ne. The accelerator opening degree Acc may be used instead of the engine load Ac.

ステップS11cで、この排気ガス量Wgを排気ガス密度ρgで除し、これにNOx濃度Cnoxを乗じてNOx排出重量Wonを算出する。
ステップS11dでは次のようにして、第1の尿素水供給量Q1を算出する。
In step S11c, this exhaust gas amount Wg is divided by the exhaust gas density ρg, and this is multiplied by the NOx concentration Cnox to calculate the NOx emission weight Won.
In step S11d, the first urea water supply amount Q1 is calculated as follows.

SCR触媒装置14の触媒温度TcをSCR触媒入口排気ガス温度T14a とSCR触媒出口排気ガス温度T14b とから推定して、例えば、両者の平均温度T14m (=(T14a +T14b )/2)とする等して算出する。この触媒温度Tcと触媒内に蓄積されたアンモニア量から図8に示すようなNOx浄化率マップを参照して、NOx浄化率ηnox(%)を算出する。このNOx浄化率マップは、触媒温度Tc(縦軸:℃)とSCR触媒装置14内に蓄積されたアンモニア量Wcnh3(縦軸:g)をベースとしたNOx浄化率ηnox(%)をマップ化したものである。   The catalyst temperature Tc of the SCR catalyst device 14 is estimated from the SCR catalyst inlet exhaust gas temperature T14a and the SCR catalyst outlet exhaust gas temperature T14b, for example, the average temperature T14m of both (= (T14a + T14b) / 2), etc. To calculate. A NOx purification rate ηnox (%) is calculated from the catalyst temperature Tc and the amount of ammonia accumulated in the catalyst with reference to a NOx purification rate map as shown in FIG. This NOx purification rate map maps the NOx purification rate ηnox (%) based on the catalyst temperature Tc (vertical axis: ° C.) and the ammonia amount Wcnh3 (vertical axis: g) accumulated in the SCR catalyst device 14. Is.

このNOx浄化率ηnoxをNOx排出重量Wonに乗じて、処理可能なNOx重量Wanを算出する。この処理可能なNOx重量Wanに対応する尿素を含む尿素水の量が第1の尿素水供給量Q1となる。この第1の尿素水供給量Q1は、SCR触媒装置14で消費可能な尿素量に相当する。   A NOx weight Wan that can be processed is calculated by multiplying the NOx purification rate ηnox by the NOx discharge weight Won. The amount of urea water containing urea corresponding to this processable NOx weight Wan becomes the first urea water supply amount Q1. The first urea water supply amount Q1 corresponds to the amount of urea that can be consumed by the SCR catalyst device 14.

より具体的には、第1の尿素水供給量Q1は以下のようにして算出する。
尿素1モル(60g)からアンモニア2モル(34g)が発生し、アンモニア1モル(17g)がNOx1モル(46g)と反応する。従って、NOx1モル(46g)に対して尿素0.5モル(30g)が必要となる。ここで、SCR触媒装置14に供給する尿素水SをP(%)(32.5%を用いることが多い)の尿素水溶液とすると、エンジン11から発生したNOxのモル数(=NOx排出重量(Won)/46)に対して、尿素はその半分のモル数(=Q1×(P/100)/30)が必要となる。つまり、Q1=(NOx排出重量(Won)/46)×30×(100/P)となる。この第1の尿素水供給量Q1が排気ガス中のNOxを浄化するのに必要な量である。
More specifically, the first urea water supply amount Q1 is calculated as follows.
From 1 mol (60 g) of urea, 2 mol (34 g) of ammonia is generated, and 1 mol (17 g) of ammonia reacts with 1 mol (46 g) of NOx. Therefore, 0.5 mol (30 g) of urea is required for 1 mol (46 g) of NOx. Here, if the urea water S supplied to the SCR catalyst device 14 is a urea aqueous solution of P (%) (32.5% is often used), the number of moles of NOx generated from the engine 11 (= NOx emission weight (= Won) / 46), urea needs half the number of moles (= Q1 × (P / 100) / 30). That is, Q1 = (NOx emission weight (Won) / 46) × 30 × (100 / P). This first urea water supply amount Q1 is an amount necessary for purifying NOx in the exhaust gas.

次に、ステップS13の第2の尿素水供給量Q2の算出について図5の制御フローを参照しながら説明する。
第2の尿素水供給量Q2の上限値Quは、次のようにして算出される。
Next, calculation of the second urea water supply amount Q2 in step S13 will be described with reference to the control flow of FIG.
The upper limit value Qu of the second urea water supply amount Q2 is calculated as follows.

ステップS13aでアンモニア浄化率ηnh3(%)を、図9に示す酸化触媒装置16の触媒温度(℃)とアンモニア浄化率ηnh3(%)との関係から算出する。
次のステップS13bで、第2の尿素水供給量Q2の上限値Quの算出を行う。この上限値Qu(kg/h)は、Qu=K×(C0×Vg/P)/(1−ηnh3/100)で算出される。ここで、C0は所定の判定濃度(ppm)、Vgは容積に関する排気ガス量(m3 /h)、Pは尿素水濃度(%)、Kは(3×10-3/22.4)である。なお、この容積に関する排気ガス量Vg(m3 /h)は重量に関する排気ガス量Wg(kg/h)を排気ガス密度ρ(kg/m3 )で除した値である。即ち、Vg=Wg/ρgである。
In step S13a, the ammonia purification rate ηnh3 (%) is calculated from the relationship between the catalyst temperature (° C.) of the oxidation catalyst device 16 and the ammonia purification rate ηnh3 (%) shown in FIG.
In the next step S13b, the upper limit value Qu of the second urea water supply amount Q2 is calculated. This upper limit value Qu (kg / h) is calculated by Qu = K × (C0 × Vg / P) / (1−ηnh3 / 100). Here, C0 is a predetermined judgment concentration (ppm), Vg is an exhaust gas amount (m 3 / h) related to volume, P is urea water concentration (%), and K is (3 × 10 −3 /22.4). is there. The exhaust gas amount Vg (m 3 / h) related to this volume is a value obtained by dividing the exhaust gas amount Wg (kg / h) related to the weight by the exhaust gas density ρ (kg / m 3 ). That is, Vg = Wg / ρg.

次のステップS13cでは、第2の尿素水供給量Q2を上限値Qu以下の値に設定する。この第2の尿素水供給量Q2は上限値Qu以下であれば良いが、SCR触媒装置14の冷却効果と尿素水Sの消費量のバランスを考慮して決める。   In the next step S13c, the second urea water supply amount Q2 is set to a value not more than the upper limit value Qu. The second urea water supply amount Q2 may be equal to or less than the upper limit value Qu, but is determined in consideration of the balance between the cooling effect of the SCR catalyst device 14 and the consumption amount of the urea water S.

この第2の尿素水供給量Q2は、SCR触媒装置14に流入する排気ガスGのSCR触媒入口排気ガス温度T14a と対応させて、あるいは、SCR触媒入口排気ガス温度T14a の変化に応じて決めるのが好ましい。例えば、冷却効果を強くする必要がある時は前回の第2の尿素水供給量Q2よりも所定の供給量の増分ΔQ2分だけ多くし(Q2=Q2+ΔQ2)、冷却効果を維持する場合はそのままとし(Q2=Q2)、冷却効果を弱くする必要がある時は前回の第2の尿素水供給量Q2よりも所定の供給量の増分ΔQ2分だけ少なくする(Q2=Q2−ΔQ2)。なお、所定の供給量の増分ΔQ2分だけ多くして上限値Quを超えた場合は、第2の尿素水供給量Q2を上限値Quとする(Q2=Qu)。   The second urea water supply amount Q2 is determined according to the SCR catalyst inlet exhaust gas temperature T14a of the exhaust gas G flowing into the SCR catalyst device 14 or according to the change of the SCR catalyst inlet exhaust gas temperature T14a. Is preferred. For example, when the cooling effect needs to be strengthened, it is increased by a predetermined supply amount increment ΔQ2 from the previous second urea water supply amount Q2 (Q2 = Q2 + ΔQ2), and the cooling effect is maintained as it is. (Q2 = Q2) When the cooling effect needs to be weakened, the amount is decreased by a predetermined supply amount increment ΔQ2 from the previous second urea water supply amount Q2 (Q2 = Q2−ΔQ2). When the predetermined supply amount increment ΔQ2 is increased to exceed the upper limit value Qu, the second urea water supply amount Q2 is set to the upper limit value Qu (Q2 = Qu).

なお、第2の尿素水供給量Q2の上限値Quの算出は、次のような考えから導いている。第2の尿素水供給量Q2c(kg/h)の尿素水から発生するアンモニアのモル数ΔMは、ΔM=Q2c×(32.5/100)×(2/60)×103 となる。このアンモニアの標準状態(0℃、1気圧)のガス量ΔVnh3(m3 /h)はΔM×22.4となる。 The calculation of the upper limit value Qu of the second urea water supply amount Q2 is derived from the following idea. The number of moles ΔM of ammonia generated from the urea water of the second urea water supply amount Q2c (kg / h) is ΔM = Q2c × (32.5 / 100) × (2/60) × 10 3 . The amount of gas ΔVnh3 (m 3 / h) in the standard state of ammonia (0 ° C., 1 atm) is ΔM × 22.4.

このアンモニアのガス量ΔVnh3(m3 /h)に、非アンモニア浄化率(1−ηnh3/100)を乗じて、酸化触媒装置15の下流側へ流出するアンモニアのガス量ΔVsnh3(m3 /h)を算出する。この非アンモニア浄化率は、酸化触媒装置15によるアンモニア浄化率ηnh3(%)を1.0から引き算して算出されるが、このアンモニア浄化率ηnh3(%)は、図9に示す酸化触媒装置16の触媒温度(℃)とアンモニア浄化率ηnh3(%)との関係から算出される。 This ammonia gas amount ΔVnh3 (m 3 / h) is multiplied by the non-ammonia purification rate (1-ηnh3 / 100), and the ammonia gas amount ΔVsnh3 (m 3 / h) flowing out downstream of the oxidation catalyst device 15 Is calculated. The non-ammonia purification rate is calculated by subtracting the ammonia purification rate ηnh3 (%) by the oxidation catalyst device 15 from 1.0. This ammonia purification rate ηnh3 (%) is calculated by the oxidation catalyst device 16 shown in FIG. Is calculated from the relationship between the catalyst temperature (° C.) and the ammonia purification rate ηnh3 (%).

そして、アンモニアの流出ガス量ΔVsnh3(m3 /h)を、ステップS11bで算出した排気ガス流量Vg(m3 /h)で除して、流出アンモニア濃度Csnh3(ppm)を算出する。Csnh3=ΔVsnh3×(1−ηnh3/100)/Vg×106 =(Q2c/Vg)×(1−ηnh3/100)×(P/100)×(2/60)×22.4×106 となる。 Then, the ammonia outflow gas amount ΔVsnh3 (m 3 / h) is divided by the exhaust gas flow rate Vg (m 3 / h) calculated in step S11b to calculate the outflow ammonia concentration Csnh3 (ppm). Csnh3 = ΔVsnh3 × (1-ηnh3 / 100) / Vg × 10 6 = (Q2c / Vg) × (1-ηnh3 / 100) × (P / 100) × (2/60) × 22.4 × 10 6 Become.

この流出アンモニア濃度Csnh3(ppm)が所定の判定濃度C0(ppm)となる第2の尿素水供給量(kg/h)Q2cを第2の尿素水供給量Q2の上限値Qu(kg/h)とする。この所定の判定濃度C0(ppm)は、アンモニアの匂いが気にならないようなレベル、例えば、10ppm以下とする。   The second urea water supply amount (kg / h) Q2c at which the outflow ammonia concentration Csnh3 (ppm) becomes a predetermined determination concentration C0 (ppm) is set to the upper limit value Qu (kg / h) of the second urea water supply amount Q2. And The predetermined determination concentration C0 (ppm) is set to a level at which ammonia odor does not matter, for example, 10 ppm or less.

逆算すると、(Qu/Vg)×(1−ηnh3/100)×(P/100)×(2/60)×22.4×106 =C0から、Qu=K×(C0×Vg/P)/(1−ηnh3/100)となる。ここで、K=3×10-3/22.4である。 In reverse calculation, from (Qu / Vg) × (1-ηnh3 / 100) × (P / 100) × (2/60) × 22.4 × 10 6 = C0, Qu = K × (C0 × Vg / P) / (1-ηnh3 / 100). Here, K = 3 × 10 −3 /22.4.

この図2〜図4の制御フローに従って制御により、SCR(選択的接触還元型)触媒装置14の触媒温度Tcを指標する触媒温度指標値T14a が所定の判定温度Th より大きくなった場合に、SCR触媒装置14でNOxを還元するためのNOx還元用尿素水Q1に加えて、SCR触媒装置14に流入する排気ガスを冷却してSCR触媒装置14の触媒温度Tc を低下させるための冷却用尿素水Q2を供給することができる。   When the catalyst temperature index value T14a indicating the catalyst temperature Tc of the SCR (selective catalytic reduction type) catalyst device 14 becomes larger than the predetermined judgment temperature Th by the control according to the control flow of FIGS. In addition to the NOx reducing urea water Q1 for reducing NOx by the catalyst device 14, the cooling urea water for cooling the exhaust gas flowing into the SCR catalyst device 14 to lower the catalyst temperature Tc of the SCR catalyst device 14 Q2 can be supplied.

さらに、尿素水の供給量Qtを、SCR触媒装置14で消費可能な尿素量に相当する第1の尿素水供給量Q1と、酸化触媒装置15で消費可能な尿素量に相当する第2の尿素水供給量Q2とに基づいて算出することができる。   Furthermore, the urea water supply amount Qt is divided into the first urea water supply amount Q1 corresponding to the urea amount that can be consumed by the SCR catalyst device 14 and the second urea amount corresponding to the urea amount that can be consumed by the oxidation catalyst device 15. It can be calculated based on the water supply amount Q2.

そして、第1の尿素水供給量Q1を、エンジン11から排出されるNOx排出量(NOx排出重量)WonとSCR触媒装置14のNOx浄化率ηnoxとから算出し、第2の尿素水供給量Q2を、エンジン11から排出される排気ガス量Vgと酸化触媒装置15のアンモニア変換率ηnh3とから算出することができる。   Then, the first urea water supply amount Q1 is calculated from the NOx discharge amount (NOx discharge weight) Won discharged from the engine 11 and the NOx purification rate ηnox of the SCR catalyst device 14, and the second urea water supply amount Q2 is calculated. Can be calculated from the exhaust gas amount Vg discharged from the engine 11 and the ammonia conversion rate ηnh3 of the oxidation catalyst device 15.

上記の図2〜図4の制御フローに示す実施の形態では、DPF装置13の強制再生時以外でも、SCR触媒装置14に流入する排気ガスGの温度、即ち、SCR触媒入口排気ガス温度T14a を常時モニターし、何らかの原因で、SCR触媒入口排気ガス温度T14a が所定の判定温度Th より大きくなった場合に、SCR触媒冷却制御を行うようにしている。   In the embodiment shown in the control flow of FIGS. 2 to 4 described above, the temperature of the exhaust gas G flowing into the SCR catalyst device 14, that is, the SCR catalyst inlet exhaust gas temperature T 14 a is set even when the DPF device 13 is not forcedly regenerated. The SCR catalyst cooling control is performed when the SCR catalyst inlet exhaust gas temperature T14a becomes higher than a predetermined judgment temperature Th for some reason.

しかし、DPF装置13の強制再生時にSCR触媒入口排気ガス温度T14a が高くなり易いので、DPF装置13の強制再生時のみ、SCR触媒冷却制御を行うように構成してもよい。この場合は、DPF装置13の強制再生時のみ図2〜図4の制御フローに入るようし、強制再生時でない場合は、ステップS15のNOx還元制御を行うように構成すればよい。   However, since the SCR catalyst inlet exhaust gas temperature T14a tends to increase during the forced regeneration of the DPF device 13, the SCR catalyst cooling control may be performed only during the forced regeneration of the DPF device 13. In this case, the control flow of FIGS. 2 to 4 is entered only when the DPF device 13 is forcedly regenerated, and when it is not during forced regeneration, the NOx reduction control in step S15 may be performed.

このDPF装置13の強制再生時の排気ガス昇温制御では、エンジン11のシリンダ内(筒内)噴射においてポスト噴射(後噴射)、又は、マルチ噴射(多段遅延噴射)とポスト噴射を行うと共に排気絞りと吸気絞りを行う。この排気ガス昇温制御において、吸気絞り弁(図示しない)を絞る吸気絞り制御やEGR制御も併用する場合もある。   In the exhaust gas temperature increase control during forced regeneration of the DPF device 13, post-injection (post-injection) or multi-injection (multistage delay injection) and post-injection are performed in the cylinder (in-cylinder) injection of the engine 11 and exhaust is performed. Perform throttle and intake throttle. In this exhaust gas temperature raising control, intake throttle control or EGR control that throttles an intake throttle valve (not shown) may be used in combination.

なお、上記の説明では、排気ガス浄化システム1におけるDPF装置13として、触媒を担持しないフィルタのみのDPF装置を例にして説明したが、本発明はこれに限定されるものではなく、フィルタに酸化触媒を担持させた連続再生型DPF装置、フィルタの上流側に酸化触媒を設けた連続再生型DPF装置、フィルタに触媒を担持させると共に該フィルタの上流側に酸化触媒を設けたDPF装置等の他のタイプのDPFにも適用可能である。   In the above description, the DPF device 13 in the exhaust gas purification system 1 is described as an example of a DPF device having only a filter that does not carry a catalyst. However, the present invention is not limited to this, and the filter is oxidized. Others such as a continuous regeneration type DPF device carrying a catalyst, a continuous regeneration type DPF device provided with an oxidation catalyst on the upstream side of the filter, a DPF device comprising a catalyst supported on the filter and an oxidation catalyst provided on the upstream side of the filter, etc. This type of DPF can also be applied.

本発明に係る実施の形態の排気ガス浄化システムのシステム構成図である。1 is a system configuration diagram of an exhaust gas purification system according to an embodiment of the present invention. 本発明に係る実施の形態の排気ガス浄化システムの制御方法を示す制御フロー図である。It is a control flowchart which shows the control method of the exhaust gas purification system of embodiment which concerns on this invention. 第1の尿素水供給量の算出のフローの一例を示す図である。It is a figure which shows an example of the flow of calculation of the 1st urea water supply amount. 第2の尿素水供給量の算出のフローの一例を示す図である。It is a figure which shows an example of the flow of calculation of the 2nd urea water supply amount. NOx濃度マップの一例を示す図である。It is a figure which shows an example of a NOx density | concentration map. 空気流量マップの一例を示す図である。It is a figure which shows an example of an air flow rate map. 燃料流量マップの一例を示す図である。It is a figure which shows an example of a fuel flow map. NOx浄化率マップの一例を示す図である。It is a figure which shows an example of a NOx purification rate map. アンモニア浄化率と酸化触媒装置の入口排気ガス温度との関係の一例を示す図である。It is a figure which shows an example of the relationship between an ammonia purification rate and the inlet exhaust gas temperature of an oxidation catalyst apparatus.

符号の説明Explanation of symbols

1 排気ガス浄化システム
11 ディーゼル内燃機関(エンジン)
12 排気通路
13 DPF装置
14 選択的接触還元型触媒装置(SCR触媒装置)
15 酸化触媒装置
21 尿素水噴射弁
30 制御装置(ECU)
31 入口排気ガス温度センサ
32 出口排気ガス温度センサ
Ac エンジン負荷
Acc アクセル開度
C0 所定の判定濃度
Cnox エンジンから排出される排気ガス中のNOx濃度
Csnh3 流出アンモニア濃度
K 定数(=3×10-3/22.4)
Ne エンジン回転速度
P 尿素水濃度
Pb ブースト圧力
Q1 第1の尿素水供給量
Q2 第2の尿素水供給量
Qu 第2の尿素水供給量の上限値
T14a SCR触媒入口排気ガス温度
T14b SCR触媒出口排気ガス温度
Tc 触媒温度
Vg 容積に関する排気ガス量(容積/時間)
Wa 空気流量(吸入空気量)
Wan 処理可能なNOx重量
Wf 燃料流量
Wg 重量に関する排気ガス量(重量/時間)
Won NOx排出重量
Wcnh3 SCR触媒装置内に蓄積されたアンモニア量
ηnox NOx浄化率
ηnh3 アンモニア浄化率
ΔVsnh3 アンモニアの流出ガス量
1 Exhaust gas purification system 11 Diesel internal combustion engine (engine)
12 Exhaust passage 13 DPF device 14 Selective catalytic reduction catalyst device (SCR catalyst device)
15 Oxidation catalyst device 21 Urea water injection valve 30 Control device (ECU)
31 Inlet exhaust gas temperature sensor 32 Outlet exhaust gas temperature sensor Ac Engine load Acc Accelerator opening C0 Predetermined concentration Cnox NOx concentration in exhaust gas discharged from engine Csnh3 Outflow ammonia concentration K constant (= 3 × 10 −3 / 22.4)
Ne Engine rotational speed P Urea water concentration Pb Boost pressure Q1 First urea water supply amount Q2 Second urea water supply amount Qu Upper limit value of second urea water supply amount T14a SCR catalyst inlet exhaust gas temperature T14b SCR catalyst outlet exhaust Gas temperature Tc Catalyst temperature Vg Exhaust gas volume (volume / hour)
Wa Air flow rate (intake air amount)
Wan NOx weight that can be processed Wf Fuel flow rate Wg Exhaust gas volume related to weight (weight / hour)
Won NOx emission weight Wcnh3 Amount of ammonia accumulated in the SCR catalyst device ηnox NOx purification rate ηnh3 Ammonia purification rate ΔVsnh3 Ammonia outflow gas amount

Claims (8)

内燃機関の排気通路に上流側から順にNOxを浄化するための選択的接触還元型触媒装置と酸化触媒装置を配設し、前記選択的接触還元型触媒装置にアンモニア系水溶液を供給する水溶液供給装置を前記選択的接触還元型触媒装置の上流側に配設すると共に、前記アンモニア系水溶液の供給量を調整する水溶液供給量調整手段を備え、
前記選択的接触還元型触媒装置の触媒温度を指標する触媒温度指標値が所定の判定温度より大きくなった場合に、前記選択的接触還元型触媒装置でNOxを還元するためのNOx還元用アンモニア系水溶液に加えて、前記選択的接触還元型触媒装置に流入する排気ガスを冷却して前記選択的接触還元型触媒装置の触媒温度を低下させるための冷却用アンモニア系水溶液を供給する排気ガス浄化システムの制御方法において、
前記冷却用アンモニア系水溶液の供給量を、前記選択的接触還元型触媒装置で消費可能なアンモニア量に相当する第1のアンモニア系水溶液供給量と、前記酸化触媒装置で消費可能なアンモニア量に相当する第2のアンモニア系水溶液供給量とに基づいて算出すると共に、
前記第1のアンモニア系水溶液供給量を、内燃機関から排出されるNOx排出量と前記選択的接触還元型触媒装置のNOx浄化率とから算出し、
前記第2のアンモニア系水溶液供給量を、内燃機関から排出される排気ガス量と前記酸化触媒装置のアンモニア変換効率とから算出することを特徴とする排気ガス浄化システムの制御方法。
A selective catalytic reduction catalyst device and an oxidation catalyst device for purifying NOx in order from the upstream side in an exhaust passage of an internal combustion engine, and an aqueous solution supply device for supplying an ammonia-based aqueous solution to the selective catalytic reduction catalyst device And an aqueous solution supply amount adjusting means for adjusting the supply amount of the ammonia-based aqueous solution.
A NOx reducing ammonia system for reducing NOx by the selective catalytic reduction catalyst device when a catalyst temperature index value indicating the catalyst temperature of the selective catalytic reduction catalyst device becomes higher than a predetermined determination temperature. In addition to an aqueous solution, an exhaust gas purification system for supplying an ammonia-based aqueous solution for cooling to cool the exhaust gas flowing into the selective catalytic reduction catalyst device and lower the catalyst temperature of the selective catalytic reduction catalyst device In the control method of
The supply amount of the ammonia aqueous solution for cooling is equivalent to the first ammonia aqueous solution supply amount corresponding to the ammonia amount that can be consumed by the selective catalytic reduction catalyst device and the ammonia amount that can be consumed by the oxidation catalyst device. And calculating based on the second ammonia-based aqueous solution supply amount,
Calculating the first ammonia aqueous solution supply amount from the NOx emission amount discharged from the internal combustion engine and the NOx purification rate of the selective catalytic reduction catalyst device;
A control method for an exhaust gas purification system, wherein the second ammonia-based aqueous solution supply amount is calculated from an exhaust gas amount discharged from an internal combustion engine and an ammonia conversion efficiency of the oxidation catalyst device.
前記選択的接触還元型触媒装置の上流側に、排気ガス中の粒子状物質を浄化するためのディーゼルパティキュレートフィルタ装置を配設したことを特徴とする請求項1記載の排気ガス浄化システムの制御方法。   The exhaust gas purification system control according to claim 1, wherein a diesel particulate filter device for purifying particulate matter in the exhaust gas is disposed upstream of the selective catalytic reduction catalyst device. Method. 前記酸化触媒装置の下流側に流出するアンモニア流出量が、所定の限界値以下となる量の範囲内に、前記第2のアンモニア系水溶液供給量を設定することを特徴とする請求項1又は2記載の排気ガス浄化システムの制御方法。   The second ammonia aqueous solution supply amount is set within a range of an ammonia outflow amount that flows out downstream of the oxidation catalyst device to be a predetermined limit value or less. The control method of the exhaust gas purification system as described. 前記所定の限界値を10ppmとすることを特徴とする請求項3記載の排気ガス浄化システムの制御方法。   The control method for an exhaust gas purification system according to claim 3, wherein the predetermined limit value is 10 ppm. 内燃機関の排気通路に上流側から順にNOxを浄化するための選択的接触還元型触媒装置と酸化触媒装置を配設し、前記選択的接触還元型触媒装置にアンモニア系水溶液を供給する水溶液供給装置を前記選択的接触還元型触媒装置の上流側に配設すると共に、前記アンモニア系水溶液の供給量を調整する水溶液供給量調整手段を備え、
前記選択的接触還元型触媒装置の触媒温度を指標する触媒温度指標値が所定の判定温度より大きくなった場合に、前記選択的接触還元型触媒装置でNOxを還元するためのNOx還元用アンモニア系水溶液に加えて、前記選択的接触還元型触媒装置に流入する排気ガスを冷却して前記選択的接触還元型触媒装置の触媒温度を低下させるための冷却用アンモニア系水溶液を供給する排気ガス浄化システムにおいて、
前記水溶液供給量調整手段が、前記アンモニア系水溶液の供給量を、前記選択的接触還元型触媒装置で消費可能なアンモニア量に相当する第1のアンモニア系水溶液供給量と、前記酸化触媒装置で消費可能なアンモニア量に相当する第2のアンモニア系水溶液供給量とに基づいて算出すると共に、
前記第1のアンモニア系水溶液供給量を、内燃機関から排出されるNOx排出量と前記選択的接触還元型触媒装置のNOx浄化率とから算出し、
前記第2のアンモニア系水溶液供給量を、内燃機関から排出される排気ガス量と前記酸化触媒装置のアンモニア変換効率とから算出することを特徴とする排気ガス浄化システム。
A selective catalytic reduction catalyst device and an oxidation catalyst device for purifying NOx in order from the upstream side in an exhaust passage of an internal combustion engine, and an aqueous solution supply device for supplying an ammonia-based aqueous solution to the selective catalytic reduction catalyst device And an aqueous solution supply amount adjusting means for adjusting the supply amount of the ammonia-based aqueous solution.
A NOx reducing ammonia system for reducing NOx by the selective catalytic reduction catalyst device when a catalyst temperature index value indicating the catalyst temperature of the selective catalytic reduction catalyst device becomes higher than a predetermined determination temperature. In addition to an aqueous solution, an exhaust gas purification system for supplying an ammonia-based aqueous solution for cooling to cool the exhaust gas flowing into the selective catalytic reduction catalyst device and lower the catalyst temperature of the selective catalytic reduction catalyst device In
The aqueous solution supply amount adjusting means consumes the ammonia aqueous solution supply amount in the first ammonia aqueous solution supply amount corresponding to the ammonia amount that can be consumed in the selective catalytic reduction catalyst device, and in the oxidation catalyst device. While calculating based on the second ammonia aqueous solution supply amount corresponding to the possible ammonia amount,
Calculating the first ammonia aqueous solution supply amount from the NOx emission amount discharged from the internal combustion engine and the NOx purification rate of the selective catalytic reduction catalyst device;
The exhaust gas purification system characterized in that the second ammonia-based aqueous solution supply amount is calculated from the amount of exhaust gas discharged from an internal combustion engine and the ammonia conversion efficiency of the oxidation catalyst device.
前記選択的接触還元型触媒装置の上流側に、排気ガス中の粒子状物質を浄化するためのディーゼルパティキュレートフィルタ装置を配設したことを特徴とする請求項5記載の排気ガス浄化システム。   The exhaust gas purification system according to claim 5, wherein a diesel particulate filter device for purifying particulate matter in the exhaust gas is disposed upstream of the selective catalytic reduction catalyst device. 前記水溶液供給量調整手段が、前記酸化触媒装置の下流側に流出するアンモニア流出量が、所定の限界値以下となる量の範囲内に、前記第2のアンモニア系水溶液供給量を設定することを特徴とする請求項5又は6に記載の排気ガス浄化システム。   The aqueous solution supply amount adjusting means sets the second ammonia-based aqueous solution supply amount within an amount range in which the ammonia outflow amount flowing out downstream of the oxidation catalyst device is equal to or less than a predetermined limit value. The exhaust gas purification system according to claim 5 or 6, characterized in that 前記水溶液供給量調整手段が、前記所定の限界値を10ppmとすることを特徴とする請求項7記載の排気ガス浄化システム。
The exhaust gas purification system according to claim 7, wherein the aqueous solution supply amount adjusting means sets the predetermined limit value to 10 ppm.
JP2005238128A 2005-08-19 2005-08-19 Exhaust gas purification system control method and exhaust gas purification system Expired - Fee Related JP4661452B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005238128A JP4661452B2 (en) 2005-08-19 2005-08-19 Exhaust gas purification system control method and exhaust gas purification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005238128A JP4661452B2 (en) 2005-08-19 2005-08-19 Exhaust gas purification system control method and exhaust gas purification system

Publications (2)

Publication Number Publication Date
JP2007051594A true JP2007051594A (en) 2007-03-01
JP4661452B2 JP4661452B2 (en) 2011-03-30

Family

ID=37916202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005238128A Expired - Fee Related JP4661452B2 (en) 2005-08-19 2005-08-19 Exhaust gas purification system control method and exhaust gas purification system

Country Status (1)

Country Link
JP (1) JP4661452B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008136203A1 (en) * 2007-05-01 2008-11-13 Hitachi Construction Machinery Co., Ltd. Construction machine
JP2008274878A (en) * 2007-05-01 2008-11-13 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device for internal combustion engine
WO2009004935A1 (en) * 2007-07-04 2009-01-08 Toyota Jidosha Kabushiki Kaisha Exhaust purification system for internal combustion engine
JP2009127497A (en) * 2007-11-21 2009-06-11 Toyota Motor Corp DIAGNOSTIC DEVICE OF NOx CLEANING DEVICE
JP2010059878A (en) * 2008-09-04 2010-03-18 Toyota Motor Corp Exhaust emission control device for on-vehicle internal combustion engine
JPWO2010087005A1 (en) * 2009-01-30 2012-07-26 トヨタ自動車株式会社 Exhaust purification device
JP5221647B2 (en) * 2008-04-18 2013-06-26 本田技研工業株式会社 Exhaust gas purification device for internal combustion engine
JP2015121199A (en) * 2013-12-25 2015-07-02 トヨタ自動車株式会社 Exhaust purification device of on-vehicle internal combustion engine
EP3064727A1 (en) 2015-03-02 2016-09-07 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102249936B1 (en) * 2019-06-26 2021-05-07 한국교통대학교산학협력단 Monitoring Method of Nitrogen Oxide Exhaust Gas Using Universal Nitrogen Oxide Sensor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001050035A (en) * 1999-08-03 2001-02-23 Toyota Motor Corp Exhaust emission control system for internal combustion engine
JP2002250220A (en) * 2001-02-23 2002-09-06 Isuzu Motors Ltd Exhaust emission control apparatus for diesel engine
JP2003184542A (en) * 2001-12-13 2003-07-03 Isuzu Motors Ltd Exhaust gas emissions control system for diesel engine
JP2003293740A (en) * 2002-04-05 2003-10-15 Mitsubishi Fuso Truck & Bus Corp NOx CLEANING DEVICE FOR INTERNAL COMBUSTION ENGINE
JP2005127256A (en) * 2003-10-24 2005-05-19 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device for internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001050035A (en) * 1999-08-03 2001-02-23 Toyota Motor Corp Exhaust emission control system for internal combustion engine
JP2002250220A (en) * 2001-02-23 2002-09-06 Isuzu Motors Ltd Exhaust emission control apparatus for diesel engine
JP2003184542A (en) * 2001-12-13 2003-07-03 Isuzu Motors Ltd Exhaust gas emissions control system for diesel engine
JP2003293740A (en) * 2002-04-05 2003-10-15 Mitsubishi Fuso Truck & Bus Corp NOx CLEANING DEVICE FOR INTERNAL COMBUSTION ENGINE
JP2005127256A (en) * 2003-10-24 2005-05-19 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device for internal combustion engine

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008274878A (en) * 2007-05-01 2008-11-13 Mitsubishi Fuso Truck & Bus Corp Exhaust emission control device for internal combustion engine
WO2008136203A1 (en) * 2007-05-01 2008-11-13 Hitachi Construction Machinery Co., Ltd. Construction machine
US8371111B2 (en) 2007-07-04 2013-02-12 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system for internal combustion engine
WO2009004935A1 (en) * 2007-07-04 2009-01-08 Toyota Jidosha Kabushiki Kaisha Exhaust purification system for internal combustion engine
JPWO2009004935A1 (en) * 2007-07-04 2010-08-26 トヨタ自動車株式会社 Exhaust gas purification system for internal combustion engine
JP2009127497A (en) * 2007-11-21 2009-06-11 Toyota Motor Corp DIAGNOSTIC DEVICE OF NOx CLEANING DEVICE
US8555623B2 (en) 2008-04-18 2013-10-15 Honda Motor Co., Ltd. Exhaust purification apparatus for internal combustion engine
JP5221647B2 (en) * 2008-04-18 2013-06-26 本田技研工業株式会社 Exhaust gas purification device for internal combustion engine
JP2010059878A (en) * 2008-09-04 2010-03-18 Toyota Motor Corp Exhaust emission control device for on-vehicle internal combustion engine
JPWO2010087005A1 (en) * 2009-01-30 2012-07-26 トヨタ自動車株式会社 Exhaust purification device
JP2015121199A (en) * 2013-12-25 2015-07-02 トヨタ自動車株式会社 Exhaust purification device of on-vehicle internal combustion engine
EP3064727A1 (en) 2015-03-02 2016-09-07 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device
RU2630640C2 (en) * 2015-03-02 2017-09-11 Тойота Дзидося Кабусики Кайся Exhaust gas cleaning device

Also Published As

Publication number Publication date
JP4661452B2 (en) 2011-03-30

Similar Documents

Publication Publication Date Title
JP4661452B2 (en) Exhaust gas purification system control method and exhaust gas purification system
JP5087836B2 (en) Exhaust gas purification system control method and exhaust gas purification system
US8356470B2 (en) Method of controlling NOx purification system and NOx purification system
JP5296291B2 (en) Exhaust gas purification system
EP1793099B1 (en) Method of exhaust gas purification and exhaust gas purification system
JP4304447B2 (en) Exhaust gas purification method and exhaust gas purification system
JP5131391B2 (en) Exhaust gas purification device for internal combustion engine
JP4592504B2 (en) Exhaust purification device
JP5118331B2 (en) Exhaust purification device
JP2010519459A (en) Exhaust gas aftertreatment system (EATS)
JP2005155374A (en) Exhaust emission control method and exhaust emission control system
JP2007205240A (en) Control method for exhaust emission control system and exhaust emission control system
JP3948437B2 (en) Exhaust gas purification method and exhaust gas purification system
JP2007198283A (en) Exhaust emission control method and system
JP2007120325A (en) Control method of exhaust emission control system and exhaust emission control system
JP5830832B2 (en) Filter regeneration device
JP2004108320A (en) Method and system for exhaust emission control
JP2010031833A (en) Exhaust emission control device for diesel engine
JP2007002697A (en) Exhaust emission control device
JP5071341B2 (en) Engine exhaust purification system
JP4273985B2 (en) Control device for multi-cylinder internal combustion engine
JP6191380B2 (en) Exhaust gas purification system for internal combustion engine and exhaust gas purification method for internal combustion engine
JP3858779B2 (en) Exhaust gas purification device
JP2005320880A (en) Exhaust emission control device
JP6069820B2 (en) Exhaust purification system for internal combustion engine, internal combustion engine, and exhaust purification method for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees