JP2007051354A - Method and apparatus for manufacturing gear - Google Patents

Method and apparatus for manufacturing gear Download PDF

Info

Publication number
JP2007051354A
JP2007051354A JP2005238601A JP2005238601A JP2007051354A JP 2007051354 A JP2007051354 A JP 2007051354A JP 2005238601 A JP2005238601 A JP 2005238601A JP 2005238601 A JP2005238601 A JP 2005238601A JP 2007051354 A JP2007051354 A JP 2007051354A
Authority
JP
Japan
Prior art keywords
shot
gear
tooth
tooth surface
vicinity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005238601A
Other languages
Japanese (ja)
Inventor
Satohiko Tsuda
聡彦 津田
Shinji Asano
晋司 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005238601A priority Critical patent/JP2007051354A/en
Publication of JP2007051354A publication Critical patent/JP2007051354A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To perform a shot-peening process to compensate the decrease of strength in the vicinity of a tooth surface edge caused by vacuum carburizing. <P>SOLUTION: When performing the shot-peening process after subjecting a hypoid gear 1 to vacuum carburizing and quenching treatment, a shot jetting direction of a shot jetting nozzle 5 is shifted radially outward relative to a plane containing a central axis 7 of the hypoid gear 1. In this way, shot-peening is performed on a tooth bottom 1a as well as the vicinity of the tooth surface edge 1c of the hypoid gear 1 to thereby increase a residual compression stress in the vicinity of the tooth surface edge 1c and compensate the decrease of strength. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、歯車を真空浸炭焼入れ処理した後、ショットピーニング加工を行う歯車の製造方法および製造装置に関する。   The present invention relates to a gear manufacturing method and a manufacturing apparatus that perform shot peening after vacuum carburizing and quenching of a gear.

自動車の変速機などに使用するハイポイドギヤのガス浸炭焼入れ工程は、歯数の違いなど各種仕様の歯車部品を、自動車などの組立手順に合わせて生産を行えるように、処理時間の大幅な短縮が求められている。ところが、一般的に行われているガス浸炭工法は、処理時間短縮に関わる技術開発が既に限界にきており、大幅な時間短縮は困難である。   The gas carburizing and quenching process for hypoid gears used in automobile transmissions, etc. requires a significant reduction in processing time so that gear parts of various specifications, such as the number of teeth, can be produced according to the assembly procedure of automobiles, etc. It has been. However, in the gas carburizing method that is generally performed, technological development related to shortening the processing time has already reached its limit, and it is difficult to significantly reduce the time.

また、近年導入されてきた真空浸炭工法は、常にある一定濃度のガス雰囲気中での平衡反応であるガス浸炭工法に対し、真空中で少量のガスを吹き付けて行う直接・非平衡反応であるが故に、大幅な処理時間短縮が可能となるが、その反面処理部品の炭素濃度分布が不均一になることが分かっており、ガス浸炭と同等の強度を確保することが困難である。   In addition, the vacuum carburizing method that has been introduced in recent years is a direct / non-equilibrium reaction in which a small amount of gas is blown in a vacuum in contrast to the gas carburizing method, which is always an equilibrium reaction in a gas atmosphere of a certain concentration. Therefore, it is possible to greatly reduce the processing time, but on the other hand, it has been found that the carbon concentration distribution of the processed parts becomes non-uniform, and it is difficult to ensure the same strength as gas carburizing.

この際、上記した迅速浸炭に対応する真空浸炭工法の特徴である炭素濃度の不均一性により、歯底と比較して、歯面の特に歯幅方向外側の端部付近は炭素濃度が高まり、この炭素濃度が高まった部位付近については、残留オーステナイトが増加し、機械的特性が悪化して疲労強度の低下を招く。   At this time, due to the non-uniformity of the carbon concentration that is a feature of the vacuum carburization method corresponding to the rapid carburization described above, the carbon concentration is increased in the vicinity of the end of the tooth surface, particularly in the tooth width direction, compared to the tooth bottom, In the vicinity of the portion where the carbon concentration is increased, retained austenite is increased, the mechanical properties are deteriorated, and the fatigue strength is reduced.

これに対し、例えば下記特許文献1には、真空浸炭焼き入れ処理した後に、ショットピーニング加工を施すことで、疲労強度を高めることが記載されている。
特公平6−72254号公報
On the other hand, for example, the following Patent Document 1 describes increasing the fatigue strength by performing shot peening after vacuum carburizing and quenching.
Japanese Examined Patent Publication No. 6-72254

上記した特許文献1に記載されているように、真空浸炭焼入れ処理の後、疲労強度を高めるためにショットピーニング加工を施すことは有効であるが、通常適用しているショットピーニングの手法は、ハイポイドギヤの強度ネックである歯底にショット投射ノズルの中心を合わせているため、真空浸炭での歯面の歯幅方向外側の端部付近における強度低下を補うことはできないものとなっている。   As described in the above-mentioned Patent Document 1, it is effective to perform shot peening to increase fatigue strength after vacuum carburizing and quenching. However, a shot peening method that is usually applied is a hypoid gear. Since the center of the shot projection nozzle is aligned with the bottom of the tooth, which is the strength neck, it is not possible to compensate for the strength reduction in the vicinity of the end of the tooth surface in the tooth width direction due to vacuum carburization.

そこで、本発明は、真空浸炭での歯面の歯幅方向外側の端部付近における強度低下を補うようにショットピーニング加工を行うことを目的としている。   Therefore, an object of the present invention is to perform shot peening so as to compensate for strength reduction in the vicinity of the end of the tooth surface in the width direction of the tooth surface in vacuum carburization.

本発明は、外周面に歯部を備えた円形の歯車に対し、真空浸炭焼入れ処理した後、ショットピーニング加工を行う歯車の製造方法において、前記ショットピーニング加工を前記歯車の歯底とともに歯面における歯幅方向外側の端部に対して行うように、ショット投射ノズルのショット投射方向を、前記歯車の中心軸線を含む平面に対し、前記歯車の半径方向外側にずれた方向とすることを最も主要な特徴とする。   The present invention relates to a gear manufacturing method for performing shot peening after vacuum carburizing and quenching on a circular gear having teeth on an outer peripheral surface, and performing shot peening on the tooth surface together with the tooth bottom of the gear. It is most important that the shot projection direction of the shot projection nozzle is shifted to the outer side in the radial direction of the gear with respect to the plane including the central axis of the gear, as performed on the outer end portion in the tooth width direction. Features.

本発明によれば、通常のガス浸炭焼入れ処理に比較して大幅な処理時間短縮が可能な真空浸炭焼入れ処理後に、歯底と比較して歯面における歯幅方向外側の端部の炭素濃度が高まって残留オーステナイトの増加により疲労強度が低下しても、真空浸炭焼入れ処理後のショットピーニング加工を、ショット投射ノズルのショット投射方向を歯車の中心軸線を含む平面に対し、歯車の半径方向外側にずれた方向として、歯車の歯底とともに歯面における歯幅方向外側の端部に対して行うようにしたので、歯面における歯幅方向外側の端部の疲労強度低下を補うことができる。   According to the present invention, after the vacuum carburizing and quenching process, which can significantly reduce the processing time as compared with a normal gas carburizing and quenching process, the carbon concentration at the outer edge in the tooth width direction on the tooth surface is compared with the tooth bottom. Even if fatigue strength decreases due to an increase in retained austenite, shot peening after vacuum carburizing and quenching is performed so that the shot projection direction of the shot projection nozzle is on the radially outer side of the gear with respect to the plane including the central axis of the gear. Since the deviation direction is performed on the outer end portion of the tooth surface in the tooth width direction together with the tooth bottom of the gear, the decrease in fatigue strength at the outer end portion of the tooth surface in the tooth width direction can be compensated.

以下、本発明の実施の形態を図面に基づき説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、真空浸炭焼入れ処理(以下、単に真空浸炭と呼ぶ)と通常のガス浸炭焼入れ処理(同ガス浸炭と呼ぶ)を行った場合の、図3に示す外周面に歯部を備えた円形の歯車であるハイポイドギヤ1の歯底1aおよび、歯面1bの特に歯幅方向外側の端部に相当する歯面エッジ部(歯面稜線部)1c付近の表面炭素濃度を示している。上記図1では、実線がガス浸炭に対応し、破線が真空浸炭に対応している。   FIG. 1 shows a circular shape having teeth on the outer peripheral surface shown in FIG. 3 when a vacuum carburizing and quenching process (hereinafter simply referred to as vacuum carburizing) and a normal gas carburizing and quenching process (referred to as gas carburizing) are performed. The surface carbon concentration in the vicinity of a tooth surface edge portion (tooth surface ridge line portion) 1c corresponding to the end portion of the hypoid gear 1 which is the gear of the tooth and the tooth surface 1b, particularly the outer end portion in the tooth width direction, is shown. In FIG. 1, the solid line corresponds to gas carburization, and the broken line corresponds to vacuum carburization.

図1では、ハイポイドギヤ1に真空浸炭を適用した場合、歯底1aの疲労強度をガス浸炭と同等に確保するために、炭素濃度をガス浸炭と同等の炭素濃度(0.75〜0.85%)に設定している。このとき、歯面エッジ部1c付近の炭素濃度に関しては、真空浸炭がガス浸炭に対し、前述した炭素濃度の不均一性により、0.2〜0.25%高くなっている。   In FIG. 1, when vacuum carburizing is applied to the hypoid gear 1, the carbon concentration is equivalent to that of gas carburizing (0.75 to 0.85%) in order to ensure the fatigue strength of the root 1a equivalent to that of gas carburizing. ) Is set. At this time, with respect to the carbon concentration in the vicinity of the tooth surface edge portion 1c, vacuum carburization is 0.2 to 0.25% higher than gas carburization due to the carbon concentration non-uniformity described above.

歯面エッジ部1c付近の炭素濃度が高くなると、Ms(Martensite Start)点が70〜88℃下がることによって歯面エッジ部1c付近の残留オーステナイト(γ)量が増加し、機械的特性が悪化して疲労強度の低下を招く。   When the carbon concentration in the vicinity of the tooth surface edge portion 1c increases, the amount of retained austenite (γ) in the vicinity of the tooth surface edge portion 1c increases due to a decrease in the Ms (Martensite Start) point by 70 to 88 ° C, and the mechanical characteristics deteriorate. This causes a decrease in fatigue strength.

図2は、上記したガス浸炭および真空浸炭後のそれぞれのハイポイドギヤに、現状のショットピーニング加工を行った場合の、ハイポイドギヤの噛み合い疲労強度を比較している。   FIG. 2 compares the meshing fatigue strength of hypoid gears when the current shot peening is performed on the hypoid gears after gas carburizing and vacuum carburizing.

現状のショットピーニング加工は、図3に示すように、ハイポイドギヤ1を回転駆動軸3に水平に設置して回転させた状態で、ショット投射ノズル5を、ハイポイドギヤ1の外方から水平面に対して45度傾け、かつハイポイドギヤ1の中心軸線7を含む平面P(図5参照)上で、歯部に向けて投射している。これにより、ハイポイドギヤ1の強度ネックである歯底1aにショットが確実に投射される。   In the current shot peening process, as shown in FIG. 3, in a state where the hypoid gear 1 is horizontally installed on the rotary drive shaft 3 and rotated, the shot projection nozzle 5 is moved 45 to the horizontal plane from the outside of the hypoid gear 1. The light is projected toward the tooth portion on a plane P (see FIG. 5) that is tilted and includes the central axis 7 of the hypoid gear 1. Thereby, a shot is reliably projected on the root 1a which is the strength neck of the hypoid gear 1.

前記した図2においては、横軸を破損回数、縦軸を入力軸トルクとしており、実線が「ガス浸炭+現状(通常)のショット」で、破線が「真空浸炭+現状(通常)のショット」に対応している。   In FIG. 2, the horizontal axis is the number of breaks and the vertical axis is the input shaft torque. The solid line is “gas carburized + current (normal) shot” and the broken line is “vacuum carburized + current (normal) shot”. It corresponds to.

これによれば、「真空浸炭+現状(通常)のショット」の方が、「ガス浸炭+現状(通常)のショット」よりも、噛み合い疲労強度が低下していることがわかる。ここで、破損回数Tは10万回強度に対応し、このとき前者が後者に対し約10%低い疲労強度となっている。   According to this, it is understood that the mesh fatigue strength is lower in “vacuum carburizing + current (normal) shot” than in “gas carburizing + current (normal) shot”. Here, the number of breaks T corresponds to a strength of 100,000 times. At this time, the former has a fatigue strength that is about 10% lower than the latter.

このように、迅速浸炭に対応する真空浸炭を実施した後、前記図3に示す現状(通常)のショットピーニング加工を行った場合には、ショットを強度ネックである歯底1aに向けて投射しているので、歯面エッジ部1c付近の疲労強度が低下したものとなる。この歯面エッジ部1c付近は、他の歯車との噛み合い時に、応力を特に受ける部位であり、高い疲労強度が要求されている。   As described above, after the vacuum carburization corresponding to the rapid carburization is performed, when the current (normal) shot peening process shown in FIG. 3 is performed, the shot is projected toward the root 1a which is the strength neck. Therefore, the fatigue strength in the vicinity of the tooth surface edge portion 1c is reduced. The vicinity of the tooth surface edge portion 1c is a portion that receives stress particularly when engaged with another gear, and high fatigue strength is required.

そこで、本実施形態では、上記した歯面エッジ部1c付近の疲労強度低下を補うために、図4に示すようなショットピーニング加工を行う。   Therefore, in the present embodiment, shot peening is performed as shown in FIG. 4 in order to compensate for the fatigue strength reduction in the vicinity of the tooth surface edge portion 1c.

図4(a)は、本発明の一実施形態に係わるショットピーニング加工を行っている状態を示す、前記図3に相当する斜視図、図4(b)は同正面図である。なお、ここでは、前記図3と同一部分に同一符号を付している。   FIG. 4A is a perspective view corresponding to FIG. 3 showing a state in which shot peening processing according to an embodiment of the present invention is performed, and FIG. 4B is a front view thereof. Here, the same parts as those in FIG.

この実施形態は、図3に示した現状のショット方法に対し、ショット投射ノズル5のショット投射方向を、ハイポイドギヤ1の中心軸線7を含む平面P(図5参照)に対し、ハイポイドギヤ1の半径方向外側(図5中で下部側)にずれた方向としている。この際、ショット投射ノズル5の先端を上記ずれた方向に向け、また歯幅Hの全域にショットを投射するために、ショット投射ノズル5を円周方向に沿って複数設置してもよい。   This embodiment is different from the current shot method shown in FIG. 3 in that the shot projection direction of the shot projection nozzle 5 is set in the radial direction of the hypoid gear 1 with respect to the plane P including the central axis 7 of the hypoid gear 1 (see FIG. 5). The direction is shifted to the outside (lower side in FIG. 5). At this time, a plurality of shot projection nozzles 5 may be provided along the circumferential direction in order to direct the tip of the shot projection nozzle 5 in the shifted direction and project a shot over the entire tooth width H.

ショット投射ノズル5のショット投射方向を上記のように設定することで、ハイポイドギヤ1の強度ネックである歯底1aとともに、真空浸炭によって強度低下している歯面エッジ部1c付近に対しても、ショットを充分照射して疲労強度を高めることができる。   By setting the shot projection direction of the shot projection nozzle 5 as described above, it is possible to perform shots on the vicinity of the tooth surface edge portion 1c where the strength is reduced by vacuum carburization together with the root 1a which is the strength neck of the hypoid gear 1. Can be sufficiently irradiated to increase the fatigue strength.

ここで、ショット投射ノズル5の、ショット投射方向の中心軸線7を含む平面Pに対するずれ量は、ハイポイドギヤ1の外径の15〜25%が好ましい。なお、ここでのずれ量は、上記した平面Pからショット投射ノズル5の投射口中心の延長線が歯部に交差する点までの、図5中で上下方向長さに相当するものとする。   Here, the amount of deviation of the shot projection nozzle 5 from the plane P including the central axis 7 in the shot projection direction is preferably 15 to 25% of the outer diameter of the hypoid gear 1. The shift amount here corresponds to the length in the vertical direction in FIG. 5 from the plane P to the point where the extension line at the center of the projection port of the shot projection nozzle 5 intersects the tooth portion.

図5は、ハイポイドギヤ1に対しショット投射ノズル5のショット方向を変化させた場合の平面図で、水準1は、前記図3に示した現状のショット方法に対応し、中心軸線7を含む平面Pに沿ってショットを投射する状態に相当し、水準2は、上記したずれ量をハイポイドギヤ1の外径の5%とした状態に相当する。以後、水準3〜5は、水準2に対してずれ量を順次5%ずつ増加させている。   FIG. 5 is a plan view when the shot direction of the shot projection nozzle 5 is changed with respect to the hypoid gear 1. Level 1 corresponds to the current shot method shown in FIG. The level 2 corresponds to a state in which the amount of deviation described above is 5% of the outer diameter of the hypoid gear 1. Thereafter, levels 3 to 5 increase the amount of deviation sequentially by 5% with respect to level 2.

図6は、ショットピーニング後の歯部表面からの距離に応じた残留圧縮応力値を、上記した水準1における歯底1aと歯面エッジ部1c付近および、水準5における歯底1aと歯面エッジ部1c付近について示している。これによれば、歯底1aについては、水準1と水準5でほぼ同等の残留圧縮応力値であるが、歯面エッジ部1c付近については、ショット投射ノズル5のずれ量を20%とした水準5が、水準1に対して残留圧縮応力値が25〜30%程度向上している。これは、ガス浸炭に水準1のショット手法を適用した場合と同等のレベルである。   FIG. 6 shows residual compressive stress values according to the distance from the tooth surface after shot peening, in the vicinity of the tooth bottom 1a and tooth surface edge portion 1c in level 1 and in the tooth bottom 1a and tooth surface edge in level 5. The vicinity of the portion 1c is shown. According to this, for the tooth bottom 1a, the residual compressive stress values are almost the same in the level 1 and the level 5, but in the vicinity of the tooth surface edge portion 1c, the deviation amount of the shot projection nozzle 5 is set to 20%. 5 has a residual compressive stress value of about 25 to 30% higher than level 1. This is the same level as when the level 1 shot technique is applied to gas carburizing.

なお、ショット投射ノズル5のショット投射方向の中心軸線7を含む平面Pに対するずれ量を、上記の20%からさらに25%と増やすことで、歯面エッジ部1c付近の残留圧縮応力は増加していくが、歯底1aへのショット投射量が減少するため、歯底1aの残留圧縮応力が低下して強度低下が予想されるので、ずれ量を20%とすることで、歯底1aおよび歯面エッジ部1c付近の双方の疲労強度を所望に確保することができる。   The residual compressive stress in the vicinity of the tooth surface edge portion 1c is increased by increasing the deviation amount of the shot projection nozzle 5 with respect to the plane P including the central axis 7 in the shot projection direction from 25% to 25%. However, since the amount of shot projection onto the tooth bottom 1a is reduced, the residual compressive stress of the tooth bottom 1a is lowered and a decrease in strength is expected. Therefore, by setting the amount of deviation to 20%, the tooth bottom 1a and the tooth Both fatigue strengths in the vicinity of the surface edge portion 1c can be ensured as desired.

このように、本実施形態では、通常の浸炭焼入れ処理に比較して大幅な処理時間短縮が可能な真空浸炭焼入れ処理後に、歯底1aと比較して歯面エッジ部1c付近の炭素濃度が高まって残留オーステナイトの増加により疲労強度が低下しても、真空浸炭焼入れ処理後のショットピーニング加工を、ショット投射ノズル5のショット投射方向をハイポイドギヤ1の中心軸線7を含む平面Pから半径方向外側にずれた方向として、ハイポイドギヤ1の歯底1aとともに歯面エッジ部1c付近に対して行うようにしたので、歯面エッジ部1c付近の疲労強度低下を補うことができる。   Thus, in this embodiment, the carbon concentration near the tooth surface edge portion 1c is increased compared to the tooth bottom 1a after the vacuum carburizing and quenching processing, which can significantly reduce the processing time compared to the normal carburizing and quenching processing. Even if the fatigue strength decreases due to an increase in retained austenite, the shot peening process after the vacuum carburizing and quenching process is performed, and the shot projection direction of the shot projection nozzle 5 is shifted radially outward from the plane P including the central axis 7 of the hypoid gear 1. Since it is performed on the vicinity of the tooth surface edge portion 1c together with the tooth bottom 1a of the hypoid gear 1, the decrease in fatigue strength near the tooth surface edge portion 1c can be compensated.

ガス浸炭および真空浸炭を行った場合のハイポイドギヤの歯底および歯面エッジ部付近の表面炭素濃度を示す説明図である。It is explanatory drawing which shows the surface carbon density | concentration of the hypoid gear near the tooth bottom and tooth surface edge part at the time of performing gas carburization and vacuum carburization. ガス浸炭および真空浸炭後のハイポイドギヤに、現状のショットピーニング加工を行った場合の、ハイポイドギヤの噛み合い疲労強度を示す説明図である。It is explanatory drawing which shows the meshing fatigue strength of a hypoid gear at the time of performing the present shot peening process to the hypoid gear after gas carburizing and vacuum carburizing. 現状のショットピーニング加工を示す斜視図である。It is a perspective view which shows the present shot peening process. (a)は、本発明の一実施形態に係わるショットピーニング加工を行っている状態を示す、図3に相当する斜視図、(b)は同正面図である。(A) is the perspective view equivalent to FIG. 3 which shows the state which is performing the shot peening process concerning one Embodiment of this invention, (b) is the same front view. ハイポイドギヤに対しショット投射ノズルのショット方向を変化させた場合の平面図である。It is a top view at the time of changing the shot direction of a shot projection nozzle with respect to a hypoid gear. ショットピーニング後の表面からの距離に応じた残留圧縮応力値を、水準1における歯底と歯面エッジ部付近および、水準5における歯底と歯面エッジ部付近についてそれぞれ示した説明図である。It is explanatory drawing which showed the residual compressive-stress value according to the distance from the surface after shot peening about the tooth bottom and tooth surface edge part in level 1, and the tooth bottom and tooth surface edge part in level 5, respectively.

符号の説明Explanation of symbols

1 ハイポイドギヤ(円形の歯車)
1a 歯底
1b 歯面
1c 歯面エッジ部(歯面における歯幅方向外側の端部)
5 ショット投射ノズル
7 ハイポイドギヤの中心軸線
P ハイポイドギヤの中心軸線を含む平面
1 Hypoid gear (circular gear)
1a Tooth base 1b Tooth surface 1c Tooth surface edge part (end part on the tooth surface in the tooth width direction)
5 Shot projection nozzle 7 Center axis of hypoid gear P Plane including the center axis of hypoid gear

Claims (2)

外周面に歯部を備えた円形の歯車に対し、真空浸炭焼入れ処理した後、ショットピーニング加工を行う歯車の製造方法において、前記ショットピーニング加工を前記歯車の歯底とともに歯面における歯幅方向外側の端部に対して行うように、ショット投射ノズルのショット投射方向を、前記歯車の中心軸線を含む平面に対し、前記歯車の半径方向外側にずれた方向とすることを特徴とする歯車の製造方法。   In a gear manufacturing method in which shot peening is performed after vacuum carburizing and quenching is performed on a circular gear having teeth on an outer peripheral surface, the shot peening is performed on the tooth surface in the tooth width direction along with the tooth bottom of the gear. The shot projection direction of the shot projection nozzle is set to a direction shifted radially outward of the gear with respect to the plane including the central axis of the gear, as is performed on the end of the gear. Method. 外周面に歯部を備えた円形の歯車に対し、真空浸炭焼入れ処理した後、ショットピーニング加工を行う歯車の製造装置において、前記ショットピーニング加工を前記歯車の歯底とともに歯面における歯幅方向外側の端部に対して行うように、ショット投射方向が前記歯車の中心軸線を含む平面に対して前記歯車の半径方向外側にずれた方向となるショット投射ノズルを備えていることを特徴とする歯車の製造装置。   In a gear manufacturing apparatus that performs shot peening after vacuum carburizing and quenching for a circular gear having teeth on an outer peripheral surface, the shot peening is performed on the tooth surface in the tooth width direction along with the tooth bottom of the gear. A gear having a shot projection nozzle in which the shot projection direction is shifted to the outer side in the radial direction of the gear with respect to a plane including the central axis of the gear, as performed on the end of the gear. Manufacturing equipment.
JP2005238601A 2005-08-19 2005-08-19 Method and apparatus for manufacturing gear Withdrawn JP2007051354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005238601A JP2007051354A (en) 2005-08-19 2005-08-19 Method and apparatus for manufacturing gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005238601A JP2007051354A (en) 2005-08-19 2005-08-19 Method and apparatus for manufacturing gear

Publications (1)

Publication Number Publication Date
JP2007051354A true JP2007051354A (en) 2007-03-01

Family

ID=37915990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005238601A Withdrawn JP2007051354A (en) 2005-08-19 2005-08-19 Method and apparatus for manufacturing gear

Country Status (1)

Country Link
JP (1) JP2007051354A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1965321A1 (en) 2007-03-01 2008-09-03 Sony Corporation Information processing apparatus, method, and program
CN103495935A (en) * 2013-09-27 2014-01-08 江苏太平洋精锻科技股份有限公司 Positioning device of conical gear with upward tooth surface
CN109271711A (en) * 2018-09-25 2019-01-25 重庆大学 A kind of comentation hardening gear finite element modeling method considering uneven characteristic

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1965321A1 (en) 2007-03-01 2008-09-03 Sony Corporation Information processing apparatus, method, and program
CN103495935A (en) * 2013-09-27 2014-01-08 江苏太平洋精锻科技股份有限公司 Positioning device of conical gear with upward tooth surface
CN109271711A (en) * 2018-09-25 2019-01-25 重庆大学 A kind of comentation hardening gear finite element modeling method considering uneven characteristic

Similar Documents

Publication Publication Date Title
JP5164539B2 (en) Shot peening method
JP2006028541A (en) Method for manufacturing components for high-strength mechanical structure and components for high-strength mechanical structure
WO2014203610A1 (en) Gear and process for producing same
JP2007051354A (en) Method and apparatus for manufacturing gear
JP5505364B2 (en) Composite steel parts and manufacturing method thereof
JP5668592B2 (en) Manufacturing method of composite steel parts
JP2007262505A (en) Heat treatment method of steel member
WO2007023936A1 (en) Method of shot peening
JP5522105B2 (en) Steel gear and manufacturing method thereof
JP2006105352A (en) Gear having superior fatigue characteristics and its fatigue characteristics improving method
JP2007262506A (en) Method for producing machine parts
EP1291445B1 (en) Steel material production method
CN105814230B (en) The method for manufacturing ferrous metal part
JP2009057597A (en) Gear and manufacturing method thereof
JP2011173203A (en) Apparatus and method for shot peening
JPH05140726A (en) Manufacture of driving system machine parts having high fatigue strength
JP2020110876A (en) Surface processing method of gear tooth surface
WO2018173588A1 (en) Reduced pressure carburizing and nitriding treatment method for steel material
JP3028624B2 (en) How to strengthen carburized parts
JP2016033251A (en) Method for restoring nitride layer
JP2003055711A (en) Surface treatment method for steel member, and hardened component thereof
JP6287656B2 (en) Planetary carrier manufacturing method and planetary carrier
JP4858071B2 (en) Steel surface treatment method and surface-treated steel material
JP2018028113A (en) Method for manufacturing steel material
JP2005256870A (en) Method for manufacturing endless metal belt

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080625

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090914