JP2007051247A - Method for preparing electroconductive polymer solution - Google Patents

Method for preparing electroconductive polymer solution Download PDF

Info

Publication number
JP2007051247A
JP2007051247A JP2005238775A JP2005238775A JP2007051247A JP 2007051247 A JP2007051247 A JP 2007051247A JP 2005238775 A JP2005238775 A JP 2005238775A JP 2005238775 A JP2005238775 A JP 2005238775A JP 2007051247 A JP2007051247 A JP 2007051247A
Authority
JP
Japan
Prior art keywords
component
solvent
sulfonic acid
conductive polymer
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005238775A
Other languages
Japanese (ja)
Other versions
JP4751669B2 (en
Inventor
Hitoshi Yoshikawa
均 吉川
Noriyuki Kuramoto
憲幸 倉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2005238775A priority Critical patent/JP4751669B2/en
Publication of JP2007051247A publication Critical patent/JP2007051247A/en
Application granted granted Critical
Publication of JP4751669B2 publication Critical patent/JP4751669B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for preparing an electroconductive solution which can obtain an electroconductive polymer soluble in general-purpose organic solvents, excellent in electroconductivity, and excellent in dissolution stability as well. <P>SOLUTION: The method for preparing an electroconductive polymer solution comprises dissolving component (A) of a compound in which at least one sulfonic acid functional group of a sulfonic acid group and a sulfonic acid salt group is bound with a benzene ring or a naphthalene ring and is soluble in a solvent containing a solvent having a solubility parameter of 8.0-10.0 as the major component in the above solvent, thereafter adding component (B) of a monomer composed of at least one of aniline and an aniline derivative having an alkyl group or an oxyalkyl group and component (C) of a 0.3-3.0 N acid, emulsifying them to introduce a sulfonic acid structure derived from the monomer of the above component (A) into the monomer of the above component (B), and then polymerizing the monomer of the above component (B) into which this sulfonic acid structure has been introduced. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、導電性ポリマー溶液の製法に関するものであり、詳しくは、電気、電子、材料等の諸分野において、高分子材料表面の導電性化や各種絶縁材料の導電性化、もしくは金属材料の表面被覆等に有用な導電性ポリマー溶液の製法に関するものである。   The present invention relates to a method for producing a conductive polymer solution. Specifically, in various fields such as electricity, electronics, and materials, the surface of a polymer material is made conductive, various types of insulating materials are made conductive, or metal materials are made. The present invention relates to a method for producing a conductive polymer solution useful for surface coating and the like.

一般に、ポリアニリン、ポリフェニレン、ポリチオフェン、ポリピロール等の芳香族系の導電性高分子は、空気中における安定性に優れ、また合成も容易であることから、その活用が注目されている。例えば、これら導電性高分子の中でも、ポリアニリンは、空気中における安定性に特に優れ、また安価な材料であるため、二次電池の正極材料として実用化されている。   In general, aromatic conductive polymers such as polyaniline, polyphenylene, polythiophene, and polypyrrole are attracting attention because of their excellent stability in the air and easy synthesis. For example, among these conductive polymers, polyaniline is practically used as a positive electrode material for secondary batteries because it is particularly excellent in stability in air and is an inexpensive material.

しかし、従来、上記ポリアニリン等の芳香族系の導電性高分子は、溶媒に不溶、不融であるため、成形性に劣り、その応用分野は限られていた。このため、溶解性の良好な導電性高分子の実現が求められていた。   However, conventionally, an aromatic conductive polymer such as polyaniline is insoluble and infusible in a solvent, and therefore has poor moldability, and its application field has been limited. For this reason, realization of a conductive polymer having good solubility has been demanded.

そこで、本発明者は、界面活性剤構造を持ったアニリンを重合してなるポリアニリンが、水や有機溶剤に可溶であることを突き止め、このポリアニリンについてすでに特許出願をしている(特許文献1参照)。   Therefore, the present inventor has found that polyaniline obtained by polymerizing aniline having a surfactant structure is soluble in water or an organic solvent, and has already filed a patent application for this polyaniline (Patent Document 1). reference).

しかし、本発明者は、さらに研究を続けた結果、上記ポリアニリンは、メチルエチルケトン(MEK)のようなケトン系溶剤や、トルエンのような芳香族系溶剤への分散(溶解)性に対する要求に充分に応えられず、求められるような均一溶液になりにくいということを突き止めた。   However, as a result of further studies by the present inventors, the polyaniline is sufficient for the demand for dispersibility (solubility) in a ketone solvent such as methyl ethyl ketone (MEK) and an aromatic solvent such as toluene. It was found that it was difficult to achieve a uniform solution as required without being able to respond.

そこで、本発明者は、これらの問題を解決するため、鋭意研究を続けた結果、界面活性剤構造を有する導電性ポリアニリンの溶液であって、上記界面活性剤構造を形成するために用いられる界面活性剤が、分子構造中に、アルキレンエーテルの繰り返し構造を有する導電性ポリアニリンの溶液により、上記問題を解決できることを突き止め、このような導電性ポリアニリン溶液について、先に特許出願した(特許文献2参照)。
特開平6−279584号公報 特開2003−277500号公報
Accordingly, the present inventor has conducted intensive research to solve these problems, and as a result, the present inventors have obtained a solution of a conductive polyaniline having a surfactant structure, and the interface used to form the surfactant structure. It has been found that the activator can solve the above problem by a solution of conductive polyaniline having a repeating structure of alkylene ether in the molecular structure, and such a conductive polyaniline solution has been filed for a patent earlier (see Patent Document 2). ).
Japanese Patent Laid-Open No. Hei 6-279594 JP 2003-277500 A

しかしながら、上記特許文献2に記載の導電性ポリアニリン溶液について、さらに研究を続けた結果、導電性ポリアニリンの溶液を所定時間、例えば、1週間程度放置すると、ポリアニリンの沈殿物が生じる傾向にあることを突き止めた。この沈殿を生じたポリアニリンは、再溶解がやや難しく、したがって、導電性ポリアニリンは、その溶解安定性にやや劣るという傾向がみられる。   However, as a result of further research on the conductive polyaniline solution described in Patent Document 2, it is found that if the conductive polyaniline solution is left for a predetermined time, for example, about one week, a precipitate of polyaniline tends to be generated. I found it. The polyaniline that causes this precipitation is somewhat difficult to re-dissolve, and therefore, conductive polyaniline tends to be slightly inferior in its dissolution stability.

本発明は、このような事情に鑑みなされたもので、汎用の有機溶剤に可溶で、導電性に優れるとともに、溶解安定性にも優れた導電性ポリマーを得ることができる、導電性ポリマー溶液の製法の提供をその目的とする。   The present invention has been made in view of such circumstances, and is a conductive polymer solution that is soluble in a general-purpose organic solvent and that can provide a conductive polymer that is excellent in conductivity and also in dissolution stability. The purpose is to provide a manufacturing method.

上記の目的を達成するために、本発明の導電性ポリマー溶液の製法は、溶解性パラメーターが8.0〜10.0である溶剤を主成分とする溶剤中に、下記の(A)成分を溶解した後、(B)成分と(C)成分とを添加し、これらを乳化させて上記(B)成分のモノマー中に上記(A)成分に由来するスルホン酸構造を導入した後、このスルホン酸構造が導入された上記(B)成分のモノマーを重合するという構成をとる。
(A)スルホン酸基およびスルホン酸塩基の少なくとも一方のスルホン酸官能基が、ベンゼン環またはナフタレン環に結合した、上記溶剤に可溶な化合物。
(B)アニリン,およびアルキル基またはオキシアルキル基を有するアニリン誘導体の少なくとも一方からなるモノマー。
(C)0.3〜3.0Nの酸。
In order to achieve the above object, the method for producing a conductive polymer solution of the present invention includes the following component (A) in a solvent mainly composed of a solvent having a solubility parameter of 8.0 to 10.0. After dissolution, the component (B) and the component (C) are added and emulsified to introduce the sulfonic acid structure derived from the component (A) into the monomer of the component (B). The monomer (B) having an acid structure introduced therein is polymerized.
(A) A compound soluble in the above-mentioned solvent, wherein at least one sulfonic acid functional group of a sulfonic acid group and a sulfonic acid group is bonded to a benzene ring or a naphthalene ring.
(B) A monomer comprising aniline and at least one of an aniline derivative having an alkyl group or an oxyalkyl group.
(C) 0.3-3.0N acid.

すなわち、本発明者らは、汎用の有機溶剤に可溶で、導電性に優れるとともに、溶解安定性にも優れた導電性ポリマーを得るため、鋭意研究を重ねた。そして、溶解性パラメーターが8.0〜10.0である溶剤を主成分とする特定の溶剤中に、特定の化合物を予め溶解した後、アニリンおよび特定のアニリン誘導体の少なくとも一方のモノマーと、特定濃度の酸とを添加し、これらを攪拌して乳化させることを想起した。このようにすると、上記特定のモノマー中に、上記特定の化合物のスルホン酸構造が導入(ドーピング)され、その後、このスルホン酸構造が導入(ドーピング)された上記モノマーを重合すると、上記特定の化合物から誘導される部分(上記化合物で構成される部分)が、スルホン酸イオンを介して、上記モノマーの重合体(導電性ポリマー)のイオン性部分と強固に結合(イオン結合)するようになると考えられる。すなわち、アニリン等のモノマーの重合体(ポリアニリン等)の「−NH+ 」のようなイオン性部分と、上記化合物のスルホン酸官能基の「SO3 - 」イオンとがイオン結合し、ポリアニリン等と上記化合物とが強固に結合すると考えられる。その結果、得られる導電性ポリマーは、溶解安定性に優れるとともに、有機溶剤に可溶で、導電性にも優れるようになる。しかも、それを湿熱(高湿高温)環境に放置した場合でも、上記強固な結合(イオン結合)によって、導電性ポリマーの凝集現象が殆どみられず、湿熱環境での電気抵抗の変化が少なく、湿熱環境での安定性にも優れるようになる。 That is, the present inventors have conducted extensive research in order to obtain a conductive polymer that is soluble in a general-purpose organic solvent, excellent in conductivity, and excellent in dissolution stability. And after dissolving a specific compound beforehand in the specific solvent which has a solvent whose solubility parameter is 8.0-10.0 as a main component, at least one monomer of aniline and a specific aniline derivative is specified. It was recalled that a concentration of acid was added and these were stirred and emulsified. In this way, the sulfonic acid structure of the specific compound is introduced (doping) into the specific monomer, and then the monomer having the sulfonic acid structure introduced (doping) is polymerized to obtain the specific compound. It is thought that the part derived from the above (part composed of the above compound) is strongly bonded (ionic bond) to the ionic part of the polymer (conductive polymer) of the monomer via the sulfonate ion. It is done. That is, an ionic moiety such as “—NH + ” of a polymer of a monomer such as aniline (polyaniline or the like) and the “SO 3 ” ion of the sulfonic acid functional group of the above compound are ionically bonded to form polyaniline or the like. It is considered that the above compound is firmly bonded. As a result, the obtained conductive polymer is excellent in dissolution stability, soluble in an organic solvent, and excellent in conductivity. Moreover, even when it is left in a humid heat (high humidity and high temperature) environment, there is almost no aggregation phenomenon of the conductive polymer due to the strong bond (ionic bond), and there is little change in electrical resistance in the humid heat environment, It also has excellent stability in a humid heat environment.

このように、本発明の導電性ポリマー溶液の製法によると、上記特定の化合物から誘導される部分が、スルホン酸イオンを介して、上記モノマーの重合体(導電性ポリマー)のイオン性部分と強固に結合(イオン結合)するようになると考えられる。その結果、得られる導電性ポリマーは、溶解安定性に優れるとともに、有機溶剤に可溶で、導電性にも優れるようになる。しかも、それを湿熱環境に放置した場合でも、上記強固な結合(イオン結合)によって、導電性ポリマーの凝集現象が殆どみられず、湿熱環境での電気抵抗の変化が少なく、湿熱環境での安定性にも優れるようになる。なお、本発明の製法により得られる導電性ポリマー溶液は、少量の有機溶剤で導電性ポリマーを溶解できるため、例えば、この導電性ポリマー溶液を用いて導電性薄膜を作製した場合には、有機溶剤の乾燥時間を短縮でき、また、厚塗りが可能になったり、他のポリマーとブレンドが可能になる等の利点がある。   As described above, according to the method for producing a conductive polymer solution of the present invention, a portion derived from the specific compound is strongly bonded to an ionic portion of the polymer (conductive polymer) of the monomer via a sulfonate ion. It is thought that it becomes bound (ion bond). As a result, the obtained conductive polymer is excellent in dissolution stability, soluble in an organic solvent, and excellent in conductivity. Moreover, even when it is left in a moist heat environment, the above-mentioned strong bond (ionic bond) hardly causes a cohesive phenomenon of the conductive polymer, and there is little change in electrical resistance in the moist heat environment, and the stability in the moist heat environment. It will also be excellent in performance. In addition, since the conductive polymer solution obtained by the manufacturing method of the present invention can dissolve the conductive polymer with a small amount of organic solvent, for example, when a conductive thin film is produced using this conductive polymer solution, the organic solvent There are advantages such as shortening the drying time, enabling thick coating, and blending with other polymers.

また、上記特定の化合物(A成分)が、スルホン酸基およびスルホン酸塩基の少なくとも一方のスルホン酸官能基と、親油性成分とを有し、数平均分子量が368〜30,000の範囲内の化合物(界面活性剤、相溶化剤等)であると、溶剤への溶解性を保つことが容易となり、上記のモノマー(B成分)と、強固な結合(イオン結合)を形成しやすいため、湿熱環境での安定性がさらに向上する。   The specific compound (component A) has at least one sulfonic acid functional group of a sulfonic acid group and a sulfonic acid group and a lipophilic component, and has a number average molecular weight in the range of 368 to 30,000. When it is a compound (surfactant, compatibilizer, etc.), it becomes easy to maintain solubility in a solvent, and it is easy to form a strong bond (ionic bond) with the above monomer (component B). Environmental stability is further improved.

そして、上記の酸(C成分)の混合割合が、上記のモノマー(B成分)1モルに対して、1.0〜30.0モルの範囲であると、上記特定の化合物(A成分)と、上記のモノマー(B成分)の重合体と、のイオン結合が強固になり、湿熱環境での安定性が優れるようになる。   And when the mixing ratio of said acid (C component) is the range of 1.0-30.0 mol with respect to 1 mol of said monomers (B component), said specific compound (A component) and The ionic bond with the polymer of the above monomer (component B) becomes strong, and the stability in a humid heat environment becomes excellent.

また、上記特定の化合物(A成分)の上記溶剤に対する溶解度が15%以上であると、本発明の製法により得られる導電性ポリマーの溶解性が増し、厚塗りが可能になるとともに、乾燥時間の短縮も可能になる。   Further, when the solubility of the specific compound (component A) in the solvent is 15% or more, the solubility of the conductive polymer obtained by the production method of the present invention is increased, thick coating is possible, and the drying time is reduced. Shortening is also possible.

また、上記溶解性パラメーターが8.0〜10.0である溶剤が、芳香族系溶剤およびケトン系溶剤の少なくとも一方の溶剤であると、上記特定の化合物(A成分)への溶解性が高く、上記の酸(C成分)を混合攪拌する時の乳化が微細になり、均一で強固なスルホン酸基を導入することができるとともに、均一な重合反応が可能になるという効果が得られる。   Further, when the solvent having the solubility parameter of 8.0 to 10.0 is at least one of an aromatic solvent and a ketone solvent, the solubility in the specific compound (component A) is high. The emulsification at the time of mixing and stirring the above acid (C component) becomes fine, so that uniform and strong sulfonic acid groups can be introduced and a uniform polymerization reaction can be achieved.

つぎに、本発明の実施の形態について説明する。   Next, an embodiment of the present invention will be described.

本発明の導電性ポリマー溶液の製法は、溶解性パラメーターが8.0〜10.0である溶剤を主成分とする溶剤中に、下記の(A)成分を溶解した後、(B)成分と(C)成分とを添加し、これらを乳化させて上記(B)成分のモノマー中に上記(A)成分に由来するスルホン酸構造を導入した後、このスルホン酸構造が導入された上記(B)成分のモノマーを重合するという構成をとる。
(A)スルホン酸基およびスルホン酸塩基の少なくとも一方のスルホン酸官能基が、ベンゼン環またはナフタレン環に結合した、上記溶剤に可溶な化合物。
(B)アニリン,およびアルキル基またはオキシアルキル基を有するアニリン誘導体の少なくとも一方からなるモノマー。
(C)0.3〜3.0Nの酸。
The method for producing a conductive polymer solution of the present invention is obtained by dissolving the following component (A) in a solvent whose main component is a solvent having a solubility parameter of 8.0 to 10.0, (C) component is added, these are emulsified and the sulfonic acid structure derived from the said (A) component is introduce | transduced in the monomer of the said (B) component, Then, this (B ) Component monomer is polymerized.
(A) A compound soluble in the above-mentioned solvent, wherein at least one sulfonic acid functional group of a sulfonic acid group and a sulfonic acid group is bonded to a benzene ring or a naphthalene ring.
(B) A monomer comprising aniline and at least one of an aniline derivative having an alkyl group or an oxyalkyl group.
(C) 0.3-3.0N acid.

本発明では、溶解性パラメーターが8.0〜10.0である溶剤を主成分とする溶剤を用い、かつ、特定の化合物(A成分)をドーパントとして用い予め溶解するとともに、特定の酸(C成分)を併用し、モノマー(B成分)の重合時を中心に効率的にA成分をドーピングするのであって、これらが最大の特徴である。   In the present invention, a solvent whose main component is a solvent having a solubility parameter of 8.0 to 10.0 is used, and a specific compound (component A) is used as a dopant and dissolved in advance, and a specific acid (C Component A) is used in combination, and the A component is efficiently doped mainly at the time of polymerization of the monomer (B component), and these are the greatest features.

ここで、主成分とするとは、上記の溶解性パラメーターを有する溶剤が、C成分を除いた溶剤全体の少なくとも60重量%を占めることをいい、溶剤全体が上記パラメーターを有する溶剤で占められていてもよい。   Here, the main component means that the solvent having the above solubility parameter occupies at least 60% by weight of the entire solvent excluding the C component, and the entire solvent is occupied by the solvent having the above parameter. Also good.

また、本発明において、スルホン酸官能基とは、スルホン酸基およびスルホン酸塩基(スルホン酸ナトリウム塩基,スルホン酸カリウム塩基等のスルホン酸金属塩基や、スルホン酸アンモニウム塩基等)からなる群から選ばれた少なくとも一つの官能基をいう。そして、このスルホン酸官能基は、導入されたモノマー中において、スルホン酸構造(スルホン酸金属塩構造,スルホン酸アンモニウム塩構造等)を形成する。   In the present invention, the sulfonic acid functional group is selected from the group consisting of a sulfonic acid group and a sulfonic acid base (a sulfonic acid metal base such as sodium sulfonate and potassium sulfonate, and an ammonium sulfonate base). And at least one functional group. The sulfonic acid functional group forms a sulfonic acid structure (sulfonic acid metal salt structure, ammonium sulfonate structure, etc.) in the introduced monomer.

上記特定の化合物(A成分)は、スルホン酸官能基量が0.3〜2.3mmol/gの範囲内が好ましく、特に好ましくは0.5 〜2.0mmol/gの範囲内である。すなわち、上記の化合物(A成分)のスルホン酸官能基量が0.3mmol/g未満であると、上記のモノマー(B成分)へのスルホン酸構造の導入が行いにくくなるため、湿熱環境での安定性の効果が悪くなる傾向がみられ、また、上記のモノマー(B成分)のみが重合して沈殿が生じる傾向がみられるからである。逆に、上記の化合物(A成分)のスルホン酸官能基量が2.3mmol/gを超えると、溶剤への溶解性が低下する傾向がみられるからである。   The specific compound (component A) preferably has a sulfonic acid functional group amount in the range of 0.3 to 2.3 mmol / g, particularly preferably in the range of 0.5 to 2.0 mmol / g. That is, when the amount of the sulfonic acid functional group of the compound (component A) is less than 0.3 mmol / g, it becomes difficult to introduce the sulfonic acid structure into the monomer (component B). This is because the stability effect tends to deteriorate, and only the monomer (component B) tends to polymerize and precipitate. Conversely, if the amount of the sulfonic acid functional group of the above compound (component A) exceeds 2.3 mmol / g, the solubility in the solvent tends to decrease.

また、上記スルホン酸官能基量の測定は、例えば、上記の化合物(A成分)をフラスコで燃焼させ、イオンクロマトグラフ法でイオウ元素量を求め、これをスルホン酸官能基量として換算することにより求めることができる。   The amount of the sulfonic acid functional group is measured by, for example, burning the above compound (component A) in a flask, obtaining the amount of sulfur element by ion chromatography, and converting this as the amount of sulfonic acid functional group. Can be sought.

本発明において、上記の化合物(A成分)が溶剤に可溶であるとは、溶解性パラメーターが8.0〜10.0である溶剤を主成分とする溶剤に対する、上記の化合物(A成分)の溶解度が、10%以上であることを意味し、好ましくは15%以上、特に好ましくは30%以上である。すなわち、溶解度が10%未満であると、重合時の乳化状態が不均一化したり、重合によって得られる導電性ポリマーの、溶液に対する溶解性が悪くなるからである。   In the present invention, the above compound (component A) is soluble in a solvent. The above compound (component A) with respect to a solvent whose main component is a solvent having a solubility parameter of 8.0 to 10.0. The solubility is 10% or more, preferably 15% or more, and particularly preferably 30% or more. That is, when the solubility is less than 10%, the emulsified state at the time of polymerization becomes non-uniform or the solubility of the conductive polymer obtained by polymerization in the solution deteriorates.

上記の化合物(A成分)としては、スルホン酸基およびスルホン酸塩基の少なくとも一方のスルホン酸官能基が、ベンゼン環またはナフタレン環に結合した、上記溶剤に可溶な化合物が用いられ、通常、界面活性剤や、相溶化剤として用いられる場合が多い。   As the compound (component A), a compound soluble in the above solvent in which at least one sulfonic acid functional group of a sulfonic acid group and a sulfonic acid group is bonded to a benzene ring or a naphthalene ring is used. Often used as an activator or compatibilizer.

上記界面活性剤としては、例えば、炭素数4〜18の長鎖アルキル基を少なくとも1つ含むベンゼンスルホン酸(塩)やナフタレンスルホン酸(塩),エーテル基等を少なくとも1つ含むポリオキシアルキレンアルキルフェニルエーテルスルホン酸(塩)等があげられる。   Examples of the surfactant include polyoxyalkylene alkyls containing at least one benzenesulfonic acid (salt), naphthalenesulfonic acid (salt), ether group, etc. containing at least one long-chain alkyl group having 4 to 18 carbon atoms. And phenyl ether sulfonic acid (salt).

また、上記界面活性剤としては、具体的には、下記の式(1)で表れるアルキルベンゼンスルホン酸ナトリウム塩が好ましい。   Moreover, as said surfactant, specifically, the alkylbenzenesulfonic acid sodium salt represented by following formula (1) is preferable.

Figure 2007051247
Figure 2007051247

また、上記の化合物(A成分)は、少なくとも1つのアルキル置換基を有し、それらアルキル置換基の炭素数の合計が15〜25であるものが好ましい。   In addition, the compound (component A) preferably has at least one alkyl substituent, and the total number of carbon atoms of the alkyl substituent is 15 to 25.

上記の化合物(A成分)は、その数平均分子量(Mn)は、368〜30,000の範囲内が好ましく、特に好ましくは400〜3,000の範囲内である。すなわち、上記の化合物(A成分)の数平均分子量(Mn)が368未満であると、溶剤への溶解性が低下する傾向がみられ、逆に30,000を超えると、モノマー(B成分)へのスルホン酸構造の導入が行いにくくなったり、または合成時の増粘により、均一な重合が行いにくくなる傾向がみられるからである。   The number average molecular weight (Mn) of the above compound (component A) is preferably in the range of 368 to 30,000, particularly preferably in the range of 400 to 3,000. That is, when the number average molecular weight (Mn) of the above compound (component A) is less than 368, the solubility in a solvent tends to be reduced, and conversely when it exceeds 30,000, the monomer (component B) This is because it tends to be difficult to introduce a sulfonic acid structure into the polymer, or to make uniform polymerization difficult due to thickening during synthesis.

つぎに、本発明においては、上記の化合物(A成分)とともに、アニリン,およびアルキル基またはオキシアルキル基を有するアニリン誘導体の少なくとも一方からなるモノマー(B成分)が用いられる。   Next, in the present invention, a monomer (component B) comprising at least one of aniline and an aniline derivative having an alkyl group or an oxyalkyl group is used together with the above compound (component A).

上記のアニリン誘導体は、アニリンのベンゼン環に、アルキル基またはオキシアルキル基を置換基として有するものであれば特に限定はなく、炭素数1〜2のアルキル基またはオキシアルキル基が好ましく、特に好ましくは炭素数1〜1のアルキル基またはオキシアルキル基である。上記特定のアニリン誘導体としては、例えば、o−アニシジン、o−トルイジン、2−エチルアニリン、メトキシアニリン、m−アニシジン,m−トルイジン等があげられる。これらは単独でもしくは2種以上併せて用いられる。   The aniline derivative is not particularly limited as long as it has an alkyl group or an oxyalkyl group as a substituent on the benzene ring of aniline, preferably an alkyl group having 1 to 2 carbon atoms or an oxyalkyl group, particularly preferably. It is a C1-C1 alkyl group or oxyalkyl group. Examples of the specific aniline derivative include o-anisidine, o-toluidine, 2-ethylaniline, methoxyaniline, m-anisidine, m-toluidine and the like. These may be used alone or in combination of two or more.

前記の化合物(A成分)と、上記のモノマー(B成分)との混合比(モル比)は、A成分/B成分=1/0.5〜1/20.0の範囲内が好ましく、特に好ましくはA成分/B成分=1/5.0〜1/15.0の範囲内である。なお、A成分は、スルホン酸基1つに対する分子量(モル当量)を1モルとして計算する。   The mixing ratio (molar ratio) between the compound (component A) and the monomer (component B) is preferably in the range of component A / component B = 1 / 0.5 to 1 / 20.0. Preferably, A component / B component = 1 / 5.0 to 1 / 15.0. In addition, A component calculates the molecular weight (molar equivalent) with respect to one sulfonic acid group as 1 mol.

前記の化合物(A成分)および上記のモノマー(B成分)とともに用いられる酸(C成分)としては、アレニウス,ブレンステッド・ローリー,ルイスの定義にして用いられるものであれば制限はないが、例えば、塩酸、リン酸、硫酸、硝酸、ホウ素化合物、クロラニル(テトラクロロ−p−ベンゾキノン)等のp−ベンゾキノン構造をもった化合物等があげられる。これらは単独でもしくは2種以上併せて用いられる。   The acid (component C) used together with the compound (component A) and the monomer (component B) is not limited as long as it is used according to the definition of Arrhenius, Bronsted Raleigh, Lewis. , Hydrochloric acid, phosphoric acid, sulfuric acid, nitric acid, boron compounds, compounds having a p-benzoquinone structure such as chloranil (tetrachloro-p-benzoquinone), and the like. These may be used alone or in combination of two or more.

上記酸(C成分)の濃度は、0.3〜3.0Nの範囲内であれば特に限定はないが、好ましく0.5〜2.0Nの範囲内である。すなわち、上記酸(C成分)の濃度が0.3N未満であれば、上記特定のモノマー(B成分)へのスルホン酸構造の導入が困難となり、逆に3.0Nを超えると、重合時に、前記化合物(A成分)の分解が生じたり、導電性ポリマーとしての高分子量化が困難になるからである。   The concentration of the acid (component C) is not particularly limited as long as it is in the range of 0.3 to 3.0N, but is preferably in the range of 0.5 to 2.0N. That is, if the concentration of the acid (C component) is less than 0.3 N, it is difficult to introduce a sulfonic acid structure into the specific monomer (B component). This is because decomposition of the compound (component A) occurs or it is difficult to increase the molecular weight as a conductive polymer.

また、上記酸(C成分)の混合割合は、上記特定のモノマー(B成分)1モルに対して、1.0〜30.0モルの範囲内が好ましく、特に好ましくは12.0〜25.0モルの範囲内である。混合の方法は、重合前に酸の全量をモノマーと混合してもよいし、酸を分割し重合の進行段階に応じて混合してもよい。
The mixing ratio of the acid (C component) is preferably in the range of 1.0 to 30.0 mol, particularly preferably 12.0 to 25. mol, per 1 mol of the specific monomer (component B). Within the range of 0 mole. As a mixing method, the whole amount of the acid may be mixed with the monomer before the polymerization, or the acid may be divided and mixed according to the progress of the polymerization.

本発明の導電性ポリマー溶液の製法に用いられる特定の溶剤は、溶解性パラメーター(SP値)が8.0〜10.0である溶剤を主成分とするものである。   The specific solvent used in the process for producing the conductive polymer solution of the present invention is mainly composed of a solvent having a solubility parameter (SP value) of 8.0 to 10.0.

ここで、溶解性パラメーター(SP値)とは、溶解度係数(solubility parameter)と同義であり、液体間の混合性の尺度となる液体の特性値である。このSP値をδ、液体の分子凝集エネルギーをE、分子容をVとすると、δ=(E/V)1/2 で表される。 Here, the solubility parameter (SP value) is synonymous with a solubility parameter (solubility parameter), and is a characteristic value of a liquid that is a measure of the mixing property between liquids. When the SP value is δ, the molecular cohesive energy of the liquid is E, and the molecular volume is V, δ = (E / V) 1/2 .

上記特定の溶剤としては、上述のように、SP値が8.0〜10.0である溶剤を主成分とするものであれば特に限定はなく、SP値が8.0〜10.0である溶剤を、1種もしくは2種以上混合しても差し支えない。また、上記特定の溶剤は、SP値が8.0〜10.0である溶剤(x)のみからなる場合が好ましいが、上記SP値が8.0〜10.0である溶剤(x)と、SP値が8.0未満もしくはSP値が10を超える溶剤(y)とを混合するすることも可能である。この場合、溶剤(y)の割合は、特定の溶剤(混合溶剤)全体の30重量%未満とすることが好ましい。すなわち、SP値が8.0〜10.0である溶剤(x)の割合が少なすぎると、上記特定の化合物(A成分)の溶解性が悪く、特定のモノマー(B成分)へのドーピングが効率的に起こらないからである。なお、上記溶剤(y)としては、例えば、n−ヘキサン(SP値:7.3)、n−ブタノール(SP値:11.4)、N−メチル−2−ピロリドン(NMP)(SP値:11.2)、ジメチルスルホキシド(SP値:12.8)、N,N−ジメチルホルムアミド(SP値:11.5)等があげられる。   The specific solvent is not particularly limited as long as it is mainly composed of a solvent having an SP value of 8.0 to 10.0 as described above, and the SP value is 8.0 to 10.0. One solvent or a mixture of two or more may be used. The specific solvent is preferably composed of only the solvent (x) having an SP value of 8.0 to 10.0, but the solvent (x) having an SP value of 8.0 to 10.0 It is also possible to mix with a solvent (y) having an SP value of less than 8.0 or an SP value of more than 10. In this case, the ratio of the solvent (y) is preferably less than 30% by weight of the entire specific solvent (mixed solvent). That is, when the proportion of the solvent (x) having an SP value of 8.0 to 10.0 is too small, the solubility of the specific compound (component A) is poor, and the specific monomer (component B) is not doped. This is because it does not happen efficiently. Examples of the solvent (y) include n-hexane (SP value: 7.3), n-butanol (SP value: 11.4), N-methyl-2-pyrrolidone (NMP) (SP value: 11.2), dimethyl sulfoxide (SP value: 12.8), N, N-dimethylformamide (SP value: 11.5) and the like.

上記SP値が8.0〜10.0である溶剤としては、特に限定はなく、例えば、芳香族系溶剤、ケトン系溶剤、エステル系溶剤、エーテル系溶剤等があげられ、これらは単独でもしくは2種以上併せて用いられる。上記SP値が8.0〜10.0である溶剤としては、好ましくは芳香族系溶剤およびケトン系溶剤の少なくとも一方の溶剤が用いられ、両者を混合する場合の混合比は特に限定されるものではない。   The solvent having the SP value of 8.0 to 10.0 is not particularly limited, and examples thereof include aromatic solvents, ketone solvents, ester solvents, ether solvents, and the like. Two or more types are used in combination. As the solvent having an SP value of 8.0 to 10.0, at least one of an aromatic solvent and a ketone solvent is preferably used, and the mixing ratio when both are mixed is particularly limited. is not.

上記芳香族系溶剤としては、例えば、トルエン(SP値:8.9)、キシレン(SP値: 8.8)等があげられる。上記ケトン系溶剤としては、例えば、MEK(SP値:9.3)、アセトン(SP値:10)、メチルイソブチルケトン(SP値:8.4)、シクロヘキサノン(SP値:9.9)等があげられる。また、上記エステル系溶剤としては、例えば、酢酸エチル(SP値:9.1)、酢酸ブチル(SP値:8.5)等があげられる。上記エーテル系溶剤としては、例えば、テトラヒドロフラン(THF)(SP値:9.5)、エチルセロソルブ(SP値:9.9)、ブチルセロソルブ(SP値:8.9)等があげられる。   Examples of the aromatic solvent include toluene (SP value: 8.9), xylene (SP value: 8.8), and the like. Examples of the ketone solvent include MEK (SP value: 9.3), acetone (SP value: 10), methyl isobutyl ketone (SP value: 8.4), cyclohexanone (SP value: 9.9), and the like. can give. Examples of the ester solvent include ethyl acetate (SP value: 9.1) and butyl acetate (SP value: 8.5). Examples of the ether solvent include tetrahydrofuran (THF) (SP value: 9.5), ethyl cellosolve (SP value: 9.9), butyl cellosolve (SP value: 8.9), and the like.

ここで、本発明の導電性ポリマー溶液の製法について、具体的に説明する。すなわち、溶解性パラメーター(SP値)が8.0〜10.0である溶剤を主成分とする特定の溶剤、好ましくはトルエン等の芳香族系溶剤およびMEK等のケトン系溶剤の少なくとも一方の溶液を準備する。つぎに、上記特定の溶剤中に上記の化合物(A成分)を溶解し、さらに、上記のモノマー(B成分)と、上記の酸(C成分)とをそれぞれ所定量添加し、所定温度(好ましくは−10〜30℃)に調節する。つぎに、この溶液を所定温度(好ましくは2〜10℃)に保ちながら攪拌して乳化させ、上記のモノマー(B成分)中に、上記の化合物(A成分)に由来するスルホン酸構造を導入する。つぎに、過硫酸アンモニウム等の化学酸化剤を所定量加え、所定時間(好ましくは、10〜25時間)重合反応を行うことにより、目的とする導電性ポリマー溶液を得ることができる。   Here, the production method of the conductive polymer solution of the present invention will be specifically described. That is, a specific solvent mainly comprising a solvent having a solubility parameter (SP value) of 8.0 to 10.0, preferably at least one solution of an aromatic solvent such as toluene and a ketone solvent such as MEK. Prepare. Next, the above compound (component A) is dissolved in the specific solvent, and a predetermined amount of each of the monomer (component B) and the acid (component C) is added, and a predetermined temperature (preferably Is adjusted to −10 to 30 ° C.). Next, this solution is stirred and emulsified while maintaining a predetermined temperature (preferably 2 to 10 ° C.), and a sulfonic acid structure derived from the compound (A component) is introduced into the monomer (B component). To do. Next, a predetermined amount of a chemical oxidizing agent such as ammonium persulfate is added, and a polymerization reaction is performed for a predetermined time (preferably, 10 to 25 hours), whereby a target conductive polymer solution can be obtained.

また、上記導電性ポリマー溶液に、水やメタノール等の貧溶剤を加えて、未反応物、化学酸化剤や、その分解物等を取り除き(洗浄)、高純度な導電性ポリマーを得た後、これを芳香族系溶剤、ケトン系溶剤、エーテル系溶剤等の溶剤に溶解させ、静置または遠心分離し、吸引濾過して不溶分を取り出すことにより精製すると、凝集不純物の殆どない均一な導電性ポリマー溶液を得ることができる。   In addition, after adding a poor solvent such as water or methanol to the conductive polymer solution to remove unreacted substances, chemical oxidants, decomposition products thereof, etc. (washing), a high-purity conductive polymer is obtained. When this is dissolved in a solvent such as an aromatic solvent, ketone solvent, ether solvent, etc., it is left standing or centrifuged, and purified by suction filtration to remove the insoluble matter. A polymer solution can be obtained.

なお、本発明の製法において、上記化学酸化剤として過硫酸アンモニウムを用いたが、これに限定するものではなく、過酸化水素水や過酸化ベンゾイル等の過酸化物、クロラニル等のベンゾキノン、塩化第二鉄等の公知の酸化剤を用いることも可能である。   In the production method of the present invention, ammonium persulfate was used as the chemical oxidant. However, the present invention is not limited to this. A peroxide such as hydrogen peroxide or benzoyl peroxide, a benzoquinone such as chloranil, a second chloride. It is also possible to use a known oxidizing agent such as iron.

このような本発明の製法により得られる導電性ポリマー溶液は、1週間程度放置しても、凝集のない均一な溶液に保たれていることから、溶液安定性に優れている。また、本発明の製法により得られる導電性ポリマー溶液から作製した導電性フィルム(塗膜)は、前述のように、強固な結合(イオン結合)によって、例えば、湿熱環境下に10日間程度放置しても、塗膜中において導電性ポリマーの凝集現象が殆どみられず、湿熱環境での電気抵抗の変化が少なく、湿熱環境での安定性に優れている。   The conductive polymer solution obtained by the production method of the present invention is excellent in solution stability because it is kept in a uniform solution without aggregation even after being left for about one week. Further, as described above, the conductive film (coating film) produced from the conductive polymer solution obtained by the production method of the present invention is allowed to stand for about 10 days in a moist heat environment, for example, by strong bonding (ionic bonding). However, almost no aggregation phenomenon of the conductive polymer is observed in the coating film, the change in electric resistance in the wet heat environment is small, and the stability in the wet heat environment is excellent.

本発明の製法により得られる導電性ポリマー(主鎖部分)の数平均分子量(Mn)は、500〜100,000の範囲内が好ましく、特に好ましくは1,000〜20,000の範囲内である。   The number average molecular weight (Mn) of the conductive polymer (main chain portion) obtained by the production method of the present invention is preferably in the range of 500 to 100,000, particularly preferably in the range of 1,000 to 20,000. .

本発明の製法により得られる導電性ポリマー溶液は、例えば、ラングミュアーブロジェット(LB)膜形成手法や、スピンコーティング法、スプレーコーティング法、インクジェット法、ディップ法、遠心成型法等によって、ポリマー薄膜とすることが可能である。また、ミセル、ベシクル構造を形成する両親媒性物質(界面活性剤)とともに、ミセル、共ベシクルを形成して、ポリマー複合体を形成することも可能である。   The conductive polymer solution obtained by the production method of the present invention can be produced by, for example, a Langmuir Blodget (LB) film formation method, a spin coating method, a spray coating method, an ink jet method, a dip method, a centrifugal molding method, or the like. Is possible. It is also possible to form micelles and co-vesicles together with amphiphiles (surfactants) that form micelles and vesicle structures to form polymer composites.

また、本発明の製法により得られる導電性ポリマー溶液をSUS板上に塗布し、乾燥させて、厚み20μmの塗膜を作製した後、25℃×50%RHの環境下において、10Vの電圧を印加した時の塗膜の電気抵抗を、JIS K 7194に準じて測定した場合、その電気抵抗は、1×10-2〜1×1010Ω・cmの範囲内が好ましく、特に好ましくは1×100 〜1×106 Ω・cmの範囲内である。 In addition, a conductive polymer solution obtained by the production method of the present invention was applied on a SUS plate and dried to prepare a coating film having a thickness of 20 μm, and then a voltage of 10 V was applied in an environment of 25 ° C. × 50% RH. When the electrical resistance of the coating film when applied is measured according to JIS K 7194, the electrical resistance is preferably within the range of 1 × 10 −2 to 1 × 10 10 Ω · cm, particularly preferably 1 ×. It is in the range of 10 0 to 1 × 10 6 Ω · cm.

また、本発明の製法により得られる導電性ポリマー溶液は、単独で用いても、他の樹脂やゴム,塗料,無機物と混合した複合物として用いてもよく、その加工性や電気特性の安定性を生かした分野である電気、電子、材料等の諸分野において、特に有用である。具体的には、静電気防止用のコーティング剤、電子写真機器等のプリンター、コピー機に用いられる、ローラ,ベルト,ブレード部材、繊維の処理剤、自動車用燃料ホースの帯電防止材料、二次電池の正極材料、有機薄膜太陽電池や色素増感型太陽電池の電極や活性層材料、防錆塗料、電磁波シールド材、IDタグのアンテナ材料、高分子アクチュエータ、スーパーキャパシターの電極材料、有機EL用材料、有機トランジスタの半導体等に用いることができる。   In addition, the conductive polymer solution obtained by the production method of the present invention may be used alone or as a composite mixed with other resins, rubbers, paints, and inorganic materials, and its processability and electrical property stability It is particularly useful in various fields such as electricity, electronics, and materials, which are fields that make the best use of. Specifically, antistatic coating agents, rollers, belts, blade members, fiber treatment agents, antistatic materials for automobile fuel hoses, secondary batteries used in printers and copiers for electrophotographic equipment, etc. Cathode materials, organic thin-film solar cells and dye-sensitized solar cell electrodes and active layer materials, anti-corrosion paints, electromagnetic shielding materials, ID tag antenna materials, polymer actuators, supercapacitor electrode materials, organic EL materials, It can be used for a semiconductor of an organic transistor.

つぎに、実施例について比較例と併せて説明する。ただし、本発明はこれら実施例に限定されるものではない。   Next, examples will be described together with comparative examples. However, the present invention is not limited to these examples.

〔実施例1〕
(導電性ポリマーの調製)
メチルエチルケトン(SP値:9.3)4500mlに、下記の式(2)で表されるジノニルナフタレンスルホン酸(Mn:460.7、スルホン酸基量:2.2mmol/g、メチルエチルケトンへの溶解度15%以上)1モル(スルホン酸官能基換算)を予め溶解し、アニリン1モルを加えた後、1N塩酸15リットル(15モル相当)を加え、この溶液を−5〜0℃に保ちながら攪拌して乳化させ、上記アニリンに、ジノニルナフタレンスルホン酸に由来するスルホン酸構造を導入した。ここで、上記酸(塩酸)の混合割合は、上記アニリン1モルに対して15.0モルである。ついで、酸化剤(過硫酸アンモニウム)1.2モルを加え、20時間重合反応を行った。重合反応が進行するにつれて、ポリアニリン特有の緑色の溶液が得られた。そして、この溶液にメタノールを加え、生じた沈殿を乾燥して導電性ポリマーを得た。
[Example 1]
(Preparation of conductive polymer)
In 4500 ml of methyl ethyl ketone (SP value: 9.3), dinonylnaphthalenesulfonic acid represented by the following formula (2) (Mn: 460.7, sulfonic acid group amount: 2.2 mmol / g, solubility in methyl ethyl ketone 15 1 mol (in terms of sulfonic acid functional group) is dissolved in advance, 1 mol of aniline is added, 15 liters of 1N hydrochloric acid (corresponding to 15 mol) is added, and this solution is stirred while maintaining at -5 to 0 ° C. The emulsion was emulsified and a sulfonic acid structure derived from dinonylnaphthalenesulfonic acid was introduced into the aniline. Here, the mixing ratio of the acid (hydrochloric acid) is 15.0 mol with respect to 1 mol of the aniline. Next, 1.2 mol of an oxidizing agent (ammonium persulfate) was added, and a polymerization reaction was performed for 20 hours. As the polymerization reaction proceeded, a green solution peculiar to polyaniline was obtained. Then, methanol was added to this solution, and the resulting precipitate was dried to obtain a conductive polymer.

Figure 2007051247
Figure 2007051247

つぎに、上記導電性ポリマー5gに、トルエン95gを加えて攪拌したところ、トルエンに完全に溶解した導電性ポリマー溶液を得た。この導電性ポリマー溶液を7日間静置したところ、均一に相溶したままで溶液の状態は変化しなかった。この溶液をSUS板上に塗布し、乾燥させて、厚み20μmの塗膜を作製した後、25℃×50%RHの環境下において、10Vの電圧を印加した時の塗膜の電気抵抗を、JIS K 7194に準じて測定した結果、電気抵抗は8×101 Ω・cmであった。また、この導電性ポリマー塗膜を湿熱環境(80℃×95%)下に10日間放置し、25℃×50%RHの環境下での電気抵抗を、上記と同様にして測定した結果、電気抵抗は9.0×101 Ω・cmであった。 Next, when 95 g of toluene was added to 5 g of the conductive polymer and stirred, a conductive polymer solution completely dissolved in toluene was obtained. When this conductive polymer solution was allowed to stand for 7 days, the state of the solution did not change while still being uniformly compatible. This solution was applied on a SUS plate and dried to prepare a coating film having a thickness of 20 μm, and then the electrical resistance of the coating film when a voltage of 10 V was applied in an environment of 25 ° C. × 50% RH, As a result of measurement according to JIS K 7194, the electric resistance was 8 × 10 1 Ω · cm. In addition, the conductive polymer coating film was allowed to stand for 10 days in a humid heat environment (80 ° C. × 95%), and the electrical resistance in an environment of 25 ° C. × 50% RH was measured in the same manner as described above. The resistance was 9.0 × 10 1 Ω · cm.

〔実施例2〕
(導電性ポリマーの調製)
酢酸エチル(SP値:9.1)4500mlに、前記式(1)で表されるアルキルベンゼンスルホン酸ナトリウム塩(3つのアルキル置換基を有し、アルキル置換基の炭素数の合計が20)(Mn:460、スルホン酸基量:2.2mmol/g、酢酸エチルへの溶解度15%以上)1モル(スルホン酸官能基換算)を溶解し、o−アニシジン1モルを加えた後、1N塩酸15リットル(15モル相当)を加え、この溶液を2〜8℃に保ちながら攪拌して乳化させ、上記o−アニシジンに、上記アルキルベンゼンスルホン酸ナトリウム塩に由来するスルホン酸構造を導入した。ここで、上記酸(塩酸)の混合割合は、上記o−アニシジン1モルに対して15.0モルである。ついで、酸化剤(過硫酸アンモニウム)1.2モルを加え、20時間重合反応を行った。重合反応が進行するにつれて、ポリo−アニシジン特有の緑色の溶液が得られた。そして、この溶液にメタノールを加え、生じた沈殿を乾燥して導電性ポリマーを得た。
[Example 2]
(Preparation of conductive polymer)
In 4500 ml of ethyl acetate (SP value: 9.1), alkylbenzenesulfonic acid sodium salt represented by the formula (1) (having three alkyl substituents, the total number of carbon atoms of the alkyl substituents being 20) (Mn : 460, sulfonic acid group amount: 2.2 mmol / g, solubility in ethyl acetate of 15% or more) 1 mol (in terms of sulfonic acid functional group) was dissolved, 1 mol of o-anisidine was added, and then 15 liters of 1N hydrochloric acid (Equivalent to 15 mol) was added, and this solution was stirred and emulsified while maintaining at 2 to 8 ° C., and a sulfonic acid structure derived from the sodium alkylbenzene sulfonate was introduced into the o-anisidine. Here, the mixing ratio of the acid (hydrochloric acid) is 15.0 mol with respect to 1 mol of the o-anisidine. Next, 1.2 mol of an oxidizing agent (ammonium persulfate) was added, and a polymerization reaction was performed for 20 hours. As the polymerization reaction proceeded, a green solution specific to poly-o-anisidine was obtained. Then, methanol was added to this solution, and the resulting precipitate was dried to obtain a conductive polymer.

つぎに、上記導電性ポリマー5gに、MEK95gを加えて攪拌したところ、MEKに完全に溶解した導電性ポリマー溶液を得た。この導電性ポリマー溶液を7日間静置したところ、均一に相溶したままで溶液の状態は変化しなかった。この溶液をSUS板上に塗布し、乾燥させて、厚み20μmの塗膜を作製した後、25℃×50%RHの環境下において、10Vの電圧を印加した時の塗膜の電気抵抗を、JIS K 7194に準じて測定した結果、電気抵抗は3×102 Ω・cmであった。また、この導電性ポリマー塗膜を湿熱環境(80℃×95%)下に10日間放置し、25℃×50%RHの環境下での電気抵抗を、上記と同様にして測定した結果、電気抵抗は2.2×102 Ω・cmであった。 Next, when 95 g of MEK was added to 5 g of the conductive polymer and stirred, a conductive polymer solution completely dissolved in MEK was obtained. When this conductive polymer solution was allowed to stand for 7 days, the state of the solution did not change while still being uniformly compatible. This solution was applied on a SUS plate and dried to prepare a coating film having a thickness of 20 μm, and then the electrical resistance of the coating film when a voltage of 10 V was applied in an environment of 25 ° C. × 50% RH, As a result of measurement according to JIS K 7194, the electric resistance was 3 × 10 2 Ω · cm. In addition, the conductive polymer coating film was allowed to stand for 10 days in a humid heat environment (80 ° C. × 95%), and the electrical resistance in an environment of 25 ° C. × 50% RH was measured in the same manner as described above. The resistance was 2.2 × 10 2 Ω · cm.

〔実施例3〕
(導電性ポリマーの調製)
MIBK(SP値:8.4)4500mlに、ペンタデシルベンゼンスルホン酸ナトリウム塩(1つのアルキル置換基を有し、アルキル置換基の炭素数の合計が15)(Mn:368、スルホン酸基量:2.7mmol/g、MIBKへの溶解度12%)1モル(スルホン酸官能基換算)を予め溶解し、m−トルイジン1モルを加えた後、1N塩酸15リットル(15モル相当)を加え、この溶液を2〜8℃に保ちながら攪拌して乳化させ、上記m−トルイジンに、上記アルキルベンゼンスルホン酸ナトリウム塩に由来するスルホン酸構造を導入した。ここで、上記酸(塩酸)の混合割合は、上記m−トルイジン1モルに対して15.0モルである。ついで、酸化剤(過硫酸アンモニウム)1.2モルを加え、20時間重合反応を行った。重合反応が進行するにつれて、ポリm−トルイジン特有の緑色の溶液が得られた。そして、この溶液にメタノールを加え、生じた沈殿を乾燥して導電性ポリマーを得た。
Example 3
(Preparation of conductive polymer)
MIBK (SP value: 8.4) in 4500 ml, pentadecylbenzenesulfonic acid sodium salt (having one alkyl substituent, the total number of carbons of the alkyl substituent is 15) (Mn: 368, amount of sulfonic acid group: 2.7 mmol / g, 12% solubility in MIBK) 1 mol (converted to sulfonic acid functional group) was dissolved in advance, 1 mol of m-toluidine was added, and then 15 liters of 1N hydrochloric acid (equivalent to 15 mol) was added. The solution was stirred and emulsified while maintaining at 2 to 8 ° C., and the sulfonic acid structure derived from the sodium alkylbenzene sulfonate was introduced into the m-toluidine. Here, the mixing ratio of the acid (hydrochloric acid) is 15.0 mol with respect to 1 mol of the m-toluidine. Next, 1.2 mol of an oxidizing agent (ammonium persulfate) was added, and a polymerization reaction was performed for 20 hours. As the polymerization reaction proceeded, a green solution specific to poly m-toluidine was obtained. Then, methanol was added to this solution, and the resulting precipitate was dried to obtain a conductive polymer.

つぎに、上記導電性ポリマー3gに、トルエン97gを加えて攪拌したところ、トルエンに25%の溶解度で溶解した導電性ポリマー溶液を得た。この溶解した導電性ポリマー溶液を7日間静置したところ、均一に相溶したままで溶液の状態は変化しなかった。この溶液をSUS板上に塗布し、乾燥させて、厚み20μmの塗膜を作製した後、25℃×50%RHの環境下において、10Vの電圧を印加した時の塗膜の電気抵抗を、JIS K 7194に準じて測定した結果、電気抵抗は3×102 Ω・cmであった。また、この導電性ポリマー塗膜を湿熱環境(80℃×95%)下に10日間放置し、25℃×50%RHの環境下での電気抵抗を、上記と同様にして測定した結果、電気抵抗は2.2×102 Ω・cmであった。 Next, 97 g of toluene was added to 3 g of the above conductive polymer and stirred to obtain a conductive polymer solution dissolved in toluene with a solubility of 25%. When this dissolved conductive polymer solution was allowed to stand for 7 days, the solution state remained unchanged and remained unchanged. This solution was applied on a SUS plate and dried to prepare a coating film having a thickness of 20 μm, and then the electrical resistance of the coating film when a voltage of 10 V was applied in an environment of 25 ° C. × 50% RH, As a result of measurement according to JIS K 7194, the electric resistance was 3 × 10 2 Ω · cm. In addition, the conductive polymer coating film was allowed to stand for 10 days in a humid heat environment (80 ° C. × 95%), and the electrical resistance in an environment of 25 ° C. × 50% RH was measured in the same manner as described above. The resistance was 2.2 × 10 2 Ω · cm.

〔実施例4〕
実施例2の1N塩酸量15.0リットルを1.5リットルに変え、かつo−アニシジンに代えて2−エチルアニリンを用いたものの電気抵抗は3×104 Ω・cmであり、湿熱環境放置で、3.5×104 Ω・cmとなった。
Example 4
The amount of 1N hydrochloric acid in Example 2 was changed from 15.0 liters to 1.5 liters, and 2-ethylaniline was used instead of o-anisidine, and the electrical resistance was 3 × 10 4 Ω · cm, which was left in a wet and heat environment. Thus, it was 3.5 × 10 4 Ω · cm.

〔比較例1〕
アニリン塩酸塩0.2モルと、水100mlとの混合液に、界面活性剤であるドデシル硫酸ナトリウム(SDS)0.2モルを加えた後、0℃に調節した。つぎに、この溶液を0℃以下に保った状態で攪拌しながら、過硫酸アンモニウム0.25モルを加え、4時間重合反応を行った。溶液は、当初、不均一系であったが、重合反応が進行するにつれて、均一系となり、ポリアニリン特有の緑色の溶液が得られた。ついで、この溶液に、メタノールを加え、ポリアニリンの沈殿物を得た後、JIS K 7194に準じて、電気抵抗を測定した結果、電気抵抗は115Ω・cmであった。
[Comparative Example 1]
After adding 0.2 mol of surfactant sodium dodecyl sulfate (SDS) to a mixed solution of 0.2 mol of aniline hydrochloride and 100 ml of water, the temperature was adjusted to 0 ° C. Next, 0.25 mol of ammonium persulfate was added while stirring the solution while maintaining the solution at 0 ° C. or lower, and a polymerization reaction was performed for 4 hours. Although the solution was initially heterogeneous, it became homogeneous as the polymerization reaction proceeded, and a green solution peculiar to polyaniline was obtained. Next, methanol was added to this solution to obtain a polyaniline precipitate, and then the electrical resistance was measured according to JIS K 7194. As a result, the electrical resistance was 115 Ω · cm.

つぎに、上記ポリアニリンの沈殿物に、MEKを加えて攪拌し、上澄みを分離させたところ、ポリアニリンとMEKとの相溶性が悪く、均一な溶液とならなかった。この上澄み液をガラス板上に塗布し、乾燥させて、厚み1μmの塗膜を作製した後、25℃×50%RHの環境下において、10Vの電圧を印加した時の塗膜の電気抵抗を、JIS K 7194に準じて測定した結果、電気抵抗は7800Ω・cmであった。   Next, MEK was added to the polyaniline precipitate and stirred, and the supernatant was separated. As a result, the compatibility between polyaniline and MEK was poor and a uniform solution was not obtained. The supernatant is applied on a glass plate and dried to produce a 1 μm thick coating, and then the electrical resistance of the coating when a voltage of 10 V is applied in an environment of 25 ° C. × 50% RH. As a result of measurement according to JIS K 7194, the electric resistance was 7800 Ω · cm.

また、上記ポリアニリンの沈殿物に、トルエンを加えて攪拌し、上澄みを分離させたところ、ポリアニリンとトルエンとの相溶性が悪く、均一な溶液とならなかった。この上澄み液をガラス板上に塗布し、乾燥させて、厚み20μmの塗膜を作製した後、25℃×50%RHの環境下において、10Vの電圧を印加した時の塗膜の電気抵抗を、JIS K 7194に準じて測定した結果、電気抵抗は10500Ω・cmであった。   In addition, when toluene was added to the polyaniline precipitate and stirred, and the supernatant was separated, the compatibility between polyaniline and toluene was poor and a uniform solution was not obtained. The supernatant liquid was applied on a glass plate and dried to prepare a coating film having a thickness of 20 μm, and then the electrical resistance of the coating film when a voltage of 10 V was applied in an environment of 25 ° C. × 50% RH. As a result of measurement according to JIS K 7194, the electric resistance was 10500 Ω · cm.

〔比較例2〕
特開2003−277500号公報の実施例1に準じて、ポリアニリン溶液を作製した。すなわち、アニリン塩酸塩0.2モルと、水100mlとの混合液に、界面活性剤であるポリオキシアルキレンアルキルフェニルエーテルスルホン酸アンモニウム塩(第一工業製薬社製、ハイテノールNo.8)0.2モルを加えた後、5℃に調節した。つぎに、この溶液を2〜8℃に保った状態で攪拌しながら、過硫酸アンモニウム0.2モルを加え、8時間重合反応を行った。溶液は、当初、不均一系であったが、重合反応が進行するにつれて、均一系となり、ポリアニリン特有の緑色の溶液が得られた。ついで、この溶液に、メタノールを加え、ポリアニリンの沈殿物を得た後、JIS K 7194に準じて、電気抵抗を測定した結果、電気抵抗は35Ω・cmであった。
[Comparative Example 2]
A polyaniline solution was prepared according to Example 1 of JP-A-2003-277500. That is, in a mixed solution of 0.2 mol of aniline hydrochloride and 100 ml of water, a surfactant polyoxyalkylene alkylphenyl ether sulfonate ammonium salt (Daiichi Kogyo Seiyaku Co., Ltd., Hightenol No. 8). After adding 2 mol, it was adjusted to 5 ° C. Next, 0.2 mol of ammonium persulfate was added while stirring the solution while keeping the solution at 2 to 8 ° C., and a polymerization reaction was performed for 8 hours. Although the solution was initially heterogeneous, it became homogeneous as the polymerization reaction proceeded, and a green solution peculiar to polyaniline was obtained. Next, methanol was added to the solution to obtain a polyaniline precipitate, and then the electrical resistance was measured according to JIS K 7194. As a result, the electrical resistance was 35 Ω · cm.

つぎに、上記ポリアニリンの沈殿物に、MEKを加えて攪拌し、上澄みを分離させたところ、上澄み部分では、ポリアニリンと、MEKとが相溶し、均一溶液となった。この上澄み液をガラス板上に塗布し、乾燥させて、厚み20μmの塗膜を作製した後、25℃×50%RHの環境下において、10Vの電圧を印加した時の塗膜の電気抵抗を、JIS K 7194に準じて測定した結果、電気抵抗は49Ω・cmであった。また、その上澄み液の7日後の状態は、ポリアニリンの凝集物(沈殿物)が発生しており、再度上記と同様にして塗膜を作製し、電気抵抗を測定したところ2880Ω・cmであった。   Next, MEK was added to the polyaniline precipitate and stirred to separate the supernatant. As a result, polyaniline and MEK were compatible with each other in the supernatant to form a uniform solution. The supernatant liquid was applied on a glass plate and dried to prepare a coating film having a thickness of 20 μm, and then the electrical resistance of the coating film when a voltage of 10 V was applied in an environment of 25 ° C. × 50% RH. As a result of measurement according to JIS K 7194, the electric resistance was 49 Ω · cm. In addition, the state of the supernatant after 7 days was that polyaniline aggregates (precipitates) were generated, and a coating film was again prepared in the same manner as described above, and the electrical resistance was measured to be 2880 Ω · cm. .

また、上記ポリアニリンの沈殿物に、トルエンを加えて攪拌し、上澄みを分離させたところ、上澄み部分では、ポリアニリンと、トルエンとが相溶し、均一溶液となった。この上澄み液をガラス板上に塗布し、乾燥させて、厚み20μmの塗膜を作製した後、25℃×50%RHの環境下において、10Vの電圧を印加した時の塗膜の電気抵抗を、JIS K 7194に準じて測定した結果、電気抵抗は120Ω・cmであった。また、その上澄み液の7日後の状態は、ポリアニリンの凝集物(沈殿物)が発生しており、再度上記と同様にして塗膜を作製し、電気抵抗を測定したところ4380Ω・cmであった。   In addition, toluene was added to the polyaniline precipitate and stirred, and the supernatant was separated. As a result, polyaniline and toluene were compatible with each other in the supernatant to form a uniform solution. The supernatant liquid was applied on a glass plate and dried to prepare a coating film having a thickness of 20 μm, and then the electrical resistance of the coating film when a voltage of 10 V was applied in an environment of 25 ° C. × 50% RH. As a result of measurement according to JIS K 7194, the electric resistance was 120 Ω · cm. In addition, the state of the supernatant after 7 days was an aggregate (precipitate) of polyaniline, and a coating film was again prepared in the same manner as described above, and the electrical resistance was measured to be 4380 Ω · cm. .

上記結果から、全実施例品は、MEKやトルエンとの相溶性に優れるとともに、経時での安定性(溶解安定性)や、導電性に優れていた。また、湿熱環境での安定性に優れていた。   From the above results, the products of all the examples were excellent in compatibility with MEK and toluene, and were excellent in stability over time (dissolution stability) and conductivity. Moreover, it was excellent in stability in a humid heat environment.

これに対して、比較例1品は、MEKやトルエンとの相溶性がやや劣っていた。比較例2品は、MEKやトルエンに対する可溶性は初期的には良好だが、保管による安定性が若干劣っていた。   On the other hand, the product of Comparative Example 1 was slightly inferior in compatibility with MEK and toluene. The product of Comparative Example 2 was initially good in solubility in MEK and toluene, but was slightly inferior in storage stability.

本発明の導電性ポリマー溶液の製法は、電気、電子、材料等の諸分野において、高分子材料表面の導電性化、もしくは各種絶縁材料の導電性化等に有用である。   The method for producing a conductive polymer solution of the present invention is useful for making the surface of a polymer material conductive or making various insulating materials conductive in various fields such as electricity, electronics, and materials.

Claims (5)

溶解性パラメーターが8.0〜10.0である溶剤を主成分とする溶剤中に、下記の(A)成分を溶解した後、(B)成分と(C)成分とを添加し、これらを乳化させて上記(B)成分のモノマー中に上記(A)成分に由来するスルホン酸構造を導入した後、このスルホン酸構造が導入された上記(B)成分のモノマーを重合することを特徴とする導電性ポリマー溶液の製法。
(A)スルホン酸基およびスルホン酸塩基の少なくとも一方のスルホン酸官能基が、ベンゼン環またはナフタレン環に結合した、上記溶剤に可溶な化合物。
(B)アニリン,およびアルキル基またはオキシアルキル基を有するアニリン誘導体の少なくとも一方からなるモノマー。
(C)0.3〜3.0Nの酸。
The following (A) component is dissolved in a solvent whose main component is a solvent having a solubility parameter of 8.0 to 10.0, and then the (B) component and the (C) component are added. After emulsifying and introducing the sulfonic acid structure derived from the component (A) into the monomer of the component (B), the monomer of the component (B) introduced with the sulfonic acid structure is polymerized. A process for producing a conductive polymer solution.
(A) A compound soluble in the above-mentioned solvent, in which at least one sulfonic acid functional group of a sulfonic acid group and a sulfonic acid group is bonded to a benzene ring or a naphthalene ring.
(B) A monomer comprising aniline and at least one of an aniline derivative having an alkyl group or an oxyalkyl group.
(C) 0.3-3.0N acid.
上記(A)成分が、少なくとも1つのアルキル置換基を有し、その炭素数の合計が15〜25である請求項1記載の導電性ポリマー溶液の製法。   The method for producing a conductive polymer solution according to claim 1, wherein the component (A) has at least one alkyl substituent, and the total number of carbon atoms thereof is 15 to 25. 上記(C)成分の酸の混合割合が、上記(B)成分のモノマー1モルに対して、1.0〜30.0モルの範囲である請求項1または2に記載の導電性ポリマー溶液の製法。   The mixing ratio of the acid of the component (C) is in the range of 1.0 to 30.0 mol with respect to 1 mol of the monomer of the component (B). The conductive polymer solution according to claim 1 or 2, Manufacturing method. 上記(A)成分の上記溶剤に対する溶解度が15%以上である請求項1〜3のいずれか一項に記載の導電性ポリマー溶液の製法。   The method for producing a conductive polymer solution according to any one of claims 1 to 3, wherein the solubility of the component (A) in the solvent is 15% or more. 上記溶解性パラメーターが8.0〜10.0である溶剤が、芳香族系溶剤およびケトン系溶剤の少なくとも一方の溶剤である請求項1〜4のいずれか一項に記載の導電性ポリマー溶液の製法。   The solvent having a solubility parameter of 8.0 to 10.0 is at least one of an aromatic solvent and a ketone solvent, and the conductive polymer solution according to any one of claims 1 to 4. Manufacturing method.
JP2005238775A 2005-08-19 2005-08-19 Production method of conductive polymer solution Expired - Fee Related JP4751669B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005238775A JP4751669B2 (en) 2005-08-19 2005-08-19 Production method of conductive polymer solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005238775A JP4751669B2 (en) 2005-08-19 2005-08-19 Production method of conductive polymer solution

Publications (2)

Publication Number Publication Date
JP2007051247A true JP2007051247A (en) 2007-03-01
JP4751669B2 JP4751669B2 (en) 2011-08-17

Family

ID=37915907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005238775A Expired - Fee Related JP4751669B2 (en) 2005-08-19 2005-08-19 Production method of conductive polymer solution

Country Status (1)

Country Link
JP (1) JP4751669B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021530610A (en) * 2018-07-16 2021-11-11 エスエイエス・ナノテクノロジーズ・リミテッド・ライアビリティ・カンパニーSAS Nanotechnologies LLC Stimulus-responsive microreservoir for releasing capsules

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01254764A (en) * 1988-04-01 1989-10-11 Nitto Denko Corp Water-soluble electrically conductive organic polymer and production thereof
JP2001278975A (en) * 2000-03-24 2001-10-10 Council Scient Ind Res Highly electric conductive polyaniline capable of melt processing or solution processing and production method of the same and blend of the same with pvc and eva
JP2001288264A (en) * 2000-03-31 2001-10-16 Kanpoly Technology Co Ltd Method for producing polyaniline-containing solution

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01254764A (en) * 1988-04-01 1989-10-11 Nitto Denko Corp Water-soluble electrically conductive organic polymer and production thereof
JP2001278975A (en) * 2000-03-24 2001-10-10 Council Scient Ind Res Highly electric conductive polyaniline capable of melt processing or solution processing and production method of the same and blend of the same with pvc and eva
JP2001288264A (en) * 2000-03-31 2001-10-16 Kanpoly Technology Co Ltd Method for producing polyaniline-containing solution

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021530610A (en) * 2018-07-16 2021-11-11 エスエイエス・ナノテクノロジーズ・リミテッド・ライアビリティ・カンパニーSAS Nanotechnologies LLC Stimulus-responsive microreservoir for releasing capsules

Also Published As

Publication number Publication date
JP4751669B2 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
Palaniappan et al. Polyaniline materials by emulsion polymerization pathway
US9552903B2 (en) Polymer compositions, polymer films, polymer gels, polymer foams, and electronic devices containing such films, gels and foams
TWI300419B (en) Process for the preparation of neutral polyethylenedioxythiophene, and corresponding polyethlenedioxythiophenes
Jaymand Recent progress in chemical modification of polyaniline
US20050269555A1 (en) Conductive polymers having highly enhanced solubility in organic solvent and electrical conductivity and synthesizing process thereof
JP4688125B2 (en) Conductive polymer and solid electrolytic capacitor using the same
WO2004113441A1 (en) Conductive composition, conductive coating material, conductive resin, capacitor, photo-electric converting element, and process for producing the same
EP4027353A1 (en) Conductive material and substrate
TW201825504A (en) Dopant for conductive polymer, conductive polymer using dopant, and method for producing conductive polymer
JP3066431B2 (en) Method for producing conductive polymer composite
De Paoli et al. Conductive polymer blends: preparation, properties and applications
CN107189083B (en) Conductive polymer PEDOT organic dispersion system and preparation method thereof
JP4751669B2 (en) Production method of conductive polymer solution
JP2000204158A (en) Aromatic amine derivative and soluble conductive compounds
JP4501030B2 (en) Conductive fine particles and method for producing the same
JPH08295746A (en) Production of polyaniline film and its composite material
JP4035353B2 (en) Preparation of conductive polyaniline solution
JP4501031B2 (en) Conductive fine particles and method for producing the same
KR20010112574A (en) Method for preparation of Polypyrrole having a solubility in various organic solvents and various molecular weight
JP2007314606A (en) Method for producing conductive polymer and conductive polymer obtained by the same
JP4751670B2 (en) Production method of conductive polymer solution
JP3957231B2 (en) Conductive microgel dispersion and method for producing the same
US9378860B2 (en) Polyvinyl copolymer, dopant having the same, and conductive polymer composite having the dopant
JP2576403B2 (en) Conductive polymer compound
JP5019201B2 (en) Conductive paint and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110502

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110523

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4751669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees