JP2007050328A - Contaminated soil purification method - Google Patents

Contaminated soil purification method Download PDF

Info

Publication number
JP2007050328A
JP2007050328A JP2005236308A JP2005236308A JP2007050328A JP 2007050328 A JP2007050328 A JP 2007050328A JP 2005236308 A JP2005236308 A JP 2005236308A JP 2005236308 A JP2005236308 A JP 2005236308A JP 2007050328 A JP2007050328 A JP 2007050328A
Authority
JP
Japan
Prior art keywords
contaminated soil
volatile organic
far
water
organic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005236308A
Other languages
Japanese (ja)
Inventor
Tsunezo Nakamura
常蔵 中村
Shizuo Ikuta
静夫 生田
Koichi Furusaki
孝一 古崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAND CREATIVE KK
Original Assignee
LAND CREATIVE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LAND CREATIVE KK filed Critical LAND CREATIVE KK
Priority to JP2005236308A priority Critical patent/JP2007050328A/en
Publication of JP2007050328A publication Critical patent/JP2007050328A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a soil purification method effective when contaminated soil contains a clay mineral and volatile organic compound. <P>SOLUTION: The contaminated soil purification method comprises the steps of adding a conditioning material containing a far-infrared radiator to the contaminated soil containing the clay mineral and volatile organic compound to agitate or mix. As a conditioning material, an RD material where a nanoparticle comprising the far-infrared radiator is firmly fixed on a substrate consisting of a volcanic glass particle, or an RDW material where the nanoparticle comprising the far-infrared radiator is firmly fixed on a substrate consisting of a calcium mineral powder is used, so that the contaminated soil which contains the clay mineral and makes it hard to remove the volatile organic compound can be cleared of the volatile organic compound up to the environmental standard value or less about a few weeks after a concrete placing. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、粘土鉱物と揮発性有機化合物とを含有する汚染土壌の浄化方法に関するものである。   The present invention relates to a method for purifying contaminated soil containing clay minerals and volatile organic compounds.

揮発性有機化合物、例えば、ジクロロメタン、四塩化炭素、1,2−ジクロロメタン、1,1−ジクロロエチレン、シス−1,2−ジクロロエチレン、1,1,1−トリクロロエチレン、テトラクロロエチレン、ベンゼン、1,2−ジクロロエチレン等は、IC基板や電子部品の洗浄、金属部品の前処理洗浄、ドライクリーニング用の溶剤等、様々な用途に、大量に使用されてきた。   Volatile organic compounds such as dichloromethane, carbon tetrachloride, 1,2-dichloromethane, 1,1-dichloroethylene, cis-1,2-dichloroethylene, 1,1,1-trichloroethylene, tetrachloroethylene, benzene, 1,2-dichloroethylene Have been used in large quantities for various purposes such as cleaning of IC substrates and electronic parts, pretreatment cleaning of metal parts, and solvents for dry cleaning.

揮発性有機化合物は、ベンゼンを除き、水よりも比重が大であり、水に溶けにくく、蒸気圧が高いため、大気などに揮散しやすい、という性質を持つ。   Except for benzene, volatile organic compounds have a specific gravity greater than that of water, are not easily dissolved in water, and have a high vapor pressure, so that they easily evaporate into the atmosphere.

このため、揮発性有機化合物が使用された現場あるいは揮発性有機化合物が地下水面等を経て移動した先に、揮発性有機化合物による汚染土のホットスポット(汚染中心)が形成され、その対策を講ずることが急務となっている。   For this reason, a hot spot (contamination center) of soil contaminated with volatile organic compounds is formed at the site where volatile organic compounds are used or where volatile organic compounds have moved through the groundwater surface, etc., and measures are taken. There is an urgent need.

そこで本発明者らは、先に有効な汚染土処理方法を提案した(特許文献1:特許第3634849号公報)。   Therefore, the present inventors previously proposed an effective method for treating contaminated soil (Patent Document 1: Japanese Patent No. 3634849).

ところで、汚染土は、しばしば粘土鉱物を多く含む。粘土鉱物を含む汚染土の大半は、負の電荷を帯び、土粒子の表面には、水分やカチオンを強く吸着する強吸着水帯が形成される。一方、揮発性有機化合物は、土壌吸着係数が小さいため、強吸着水帯の外側に形成される、弱吸着水帯〜間隙水帯に存在していると考えられる。   By the way, the contaminated soil often contains a lot of clay minerals. Most of the contaminated soil containing clay mineral is negatively charged, and a strongly adsorbed water zone that strongly adsorbs moisture and cations is formed on the surface of the soil particles. On the other hand, since the volatile organic compound has a small soil adsorption coefficient, it is considered that the volatile organic compound exists in the weakly adsorbed water zone to the interstitial water zone formed outside the strong adsorbed water zone.

室内空気中あるいは砂等の土壌中の揮発性有機化合物は、基本的に自由に移動できるから、それを取り除くのは、さしたる困難性を伴わない。しかしながら、汚染土が粘土鉱物と揮発性有機化合物とを含むとき、揮発性有機化合物を除去するのは、非常に難しい。粘性土は、撹拌すると、シキソトロピー現象が発生し、一旦は軟化して弱吸着水帯が破壊され、揮発性有機化合物は、粘土粒子に結合しない状態になる。しかし、その後まもなく粘土粒子は、再硬化し弱吸着水帯が再構成される。このとき、粘土粒子に揮発性有機化合物が再結合すると、もはや揮発性有機化合物を取り除けなくなる。このため、粘性土から揮発性有機化合物を有効に取り除くための対策が知られていなかった。   Since volatile organic compounds in indoor air or soil such as sand can basically move freely, it is not difficult to remove them. However, when the contaminated soil contains clay minerals and volatile organic compounds, it is very difficult to remove the volatile organic compounds. When the clay is stirred, a thixotropy phenomenon occurs, and once softens, the weakly adsorbed water zone is destroyed, and the volatile organic compound is not bonded to the clay particles. However, shortly thereafter, the clay particles are re-cured to reconstitute the weakly adsorbed water zone. At this time, when the volatile organic compound is recombined with the clay particles, the volatile organic compound can no longer be removed. For this reason, the countermeasure for removing a volatile organic compound from a viscous soil effectively was not known.

簡単に言えば、従来技術では、汚染土が粘土鉱物と揮発性有機化合物とを含む場合、揮発性有機化合物の除去は、シキソトロピー硬化過程に阻まれて、不可能であるとあきらめられていた。
特許第3634849号公報 特開2002−146335号公報
In brief, in the prior art, when contaminated soil contains clay minerals and volatile organic compounds, removal of volatile organic compounds was impeded by the thixotropic hardening process and impossible.
Japanese Patent No. 3634849 JP 2002-146335 A

本発明者らは、汚染土が粘土鉱物と揮発性有機化合物とを含むときにおいて、有効な土壌浄化法を鋭意研究し、新たな浄化法を開発し、実験によりその有効性を確認した。   When the contaminated soil contains clay minerals and volatile organic compounds, the present inventors diligently studied an effective soil purification method, developed a new purification method, and confirmed its effectiveness through experiments.

即ち、本発明は、汚染土が粘土鉱物と揮発性有機化合物とを含むときに有効な土壌浄化法を提供することを目的とする。   That is, an object of the present invention is to provide an effective soil purification method when contaminated soil contains clay minerals and volatile organic compounds.

請求項1記載の汚染土壌浄化方法は、粘土鉱物と揮発性有機化合物とを含有する汚染土壌に、遠赤外線放射体を含む改良材を添加し、撹拌・混合する。   In the contaminated soil purification method according to claim 1, an improving material containing a far-infrared radiator is added to the contaminated soil containing a clay mineral and a volatile organic compound, followed by stirring and mixing.

この構成において、遠赤外線放射体を含む改良材を添加することにより、汚染土が粘土鉱物と揮発性有機化合物とを含み、揮発性有機化合物の除去が難しい場合であっても、後述する実験例により明らかなように、揮発性有機化合物が数週間の材令により環境基準値を満たす状態に遷移し、有効な土壌浄化を行える。   In this configuration, by adding an improving material containing a far-infrared radiator, the contaminated soil contains clay minerals and volatile organic compounds, and even if it is difficult to remove the volatile organic compounds, an experimental example to be described later As can be seen, the volatile organic compound transitions to a state satisfying the environmental standard value due to the material age for several weeks, and effective soil remediation can be performed.

請求項2記載の汚染土壌浄化方法では、改良材は、火山ガラス系粒子からなる基材に、遠赤外線放射体からなるナノ粒子を定着させたRD材である。   In the contaminated soil purification method according to claim 2, the improving material is an RD material in which nanoparticles made of a far-infrared radiator are fixed on a base material made of volcanic glass-based particles.

この構成により、RD材の基材である火山ガラス系粒子は、水素吸蔵性がほとんどなく、アルカリ化が進まない状態において、有効な土壌浄化を行える。   With this configuration, the volcanic glass-based particles that are the base material of the RD material have almost no hydrogen occlusion and can perform effective soil purification in a state where alkalinization does not proceed.

請求項3記載の汚染土壌浄化方法では、改良材は、カルシウム系鉱物のパウダーからなる基材に、遠赤外線放射体からなるナノ粒子を定着させたRDW材である。   In the contaminated soil purification method according to claim 3, the improvement material is an RDW material in which nanoparticles made of a far-infrared radiator are fixed on a substrate made of calcium mineral powder.

この構成により、RD材よりも少ない材令により、揮発性有機化合物が環境基準値を満たす状態に遷移し、より迅速な土壌浄化を行える。   With this configuration, the volatile organic compound transitions to a state satisfying the environmental standard value with less material age than the RD material, and more rapid soil purification can be performed.

請求項4記載の汚染土壌浄化方法では、少なくとも撹拌・混合前に、還元水をさらに添加し、還元水は、水と遠赤外線放射体とを混ぜ静置し、その上澄み水からなる。   In the contaminated soil purification method according to claim 4, at least before stirring and mixing, reduced water is further added, and the reduced water is made by mixing water and a far-infrared radiator and allowing to stand, and consisting of the supernatant water.

この構成において、還元水を添加しており、還元水は高い電気陰性度を有するため、還元水により、揮発性有機化合物の吸着水帯からの離脱が促進され、土壌浄化を効果的に行える。   In this configuration, reduced water is added, and the reduced water has a high electronegativity. Therefore, the reduced water promotes the detachment of the volatile organic compound from the adsorbed water zone and can effectively perform soil purification.

本発明によれば、実験例により明らかなように、汚染土が粘土鉱物と揮発性有機化合物とを含む場合であっても、数週間程度の材令により、揮発性有機化合物を環境基準値以下まで除去できる。   According to the present invention, as is apparent from the experimental examples, even if the contaminated soil contains clay minerals and volatile organic compounds, the volatile organic compounds are reduced to an environmental standard value or less by a material age of about several weeks. Can be removed.

以下図面を参照しながら、本発明の実施の形態を説明する。まず、本発明における重要な要素について説明する。   Embodiments of the present invention will be described below with reference to the drawings. First, important elements in the present invention will be described.

本形態では、改良材は、次のRD材、RDW材の少なくとも一方を用いる。   In this embodiment, the improvement material uses at least one of the following RD material and RDW material.

RD材は、火山ガラス系粒子からなる基材に、遠赤外線放射体からなるナノ粒子を定着させたものである。   The RD material is obtained by fixing nanoparticles made of a far-infrared radiator on a base material made of volcanic glass-based particles.

RDW材は、カルシウム系鉱物のパウダーからなる基材に、遠赤外線放射体からなるナノ粒子を定着させたものである。   The RDW material is obtained by fixing nanoparticles made of a far-infrared radiator on a base made of calcium mineral powder.

いずれの改良材においても、「定着」法については、特許文献2(特開2002−146335号公報)に記載の技術を用いればよい。   In any improvement material, the technique described in Patent Document 2 (Japanese Patent Laid-Open No. 2002-146335) may be used for the “fixing” method.

これらのナノ粒子は、直径:5〜50ナノメートル程度であり、水分子に接触すると微弱な放電により、水の電気分解を促進し、また、常温において、常時遠赤外線(波長:6〜14μメートル)を放射する。   These nanoparticles have a diameter of about 5 to 50 nanometers. When they come into contact with water molecules, they promote electrolysis of water by a weak discharge, and are always far infrared (wavelength: 6 to 14 μm) at room temperature. ).

還元水は、適当な容器内で、水と遠赤外線放射体(好ましくは、RDW材)とを混ぜ約一晩ほど静置したものから、取り出した上澄み液である。   Reduced water is a supernatant taken from a mixture of water and a far-infrared radiator (preferably RDW material) in a suitable container and left to stand for about one night.

次に、実験例について説明する。以上の定義にあうRD材、RDW材及び還元水を用意し、本発明者らは、次のように実験を行った。まず、粘土鉱物を豊富に含む土壌として関東ロームを選び、擬似的な汚染物(揮発性有機化合物)としてトリクロロエチレンを選んだ。なお、他の揮発性有機化合物についても、同様の結果となると想定される。   Next, experimental examples will be described. An RD material, an RDW material, and reduced water that meet the above definitions were prepared, and the inventors conducted experiments as follows. First, Kanto Loam was selected as a soil rich in clay minerals, and trichlorethylene was selected as a pseudo pollutant (volatile organic compound). It is assumed that the same result is obtained for other volatile organic compounds.

(試料の作成)
1.乾燥状態の関東ローム60gをビニール袋に入れ、水道水24ml(土壌含水比40%相当)を添加し、ビニール袋内で十分に手混合した。
(Sample preparation)
1. 60 g of dried Kanto loam was put in a plastic bag, 24 ml of tap water (equivalent to 40% soil water content) was added, and thoroughly mixed by hand in the plastic bag.

2.水道水6mlに、トリクロロエチレン(関東化学製、特級)20μlを添加し、よく混ぜた後、ビニール袋内に添加し、十分に手混合した。   2. To 6 ml of tap water, 20 μl of trichlorethylene (manufactured by Kanto Chemical Co., Ltd., special grade) was added, mixed well, then added to a plastic bag, and thoroughly mixed by hand.

3.土壌含水比がそれぞれ60%相当になるように、以下のように、1)ブランク(還元水のみ)、2)RD材(還元水及びRD材)、3)RDW材(還元水及びRDW材)をビニール袋内に添加し、十分手混合(混合・撹拌)した。なお、1)〜3)は、それぞれ4試料、合計12試料を作成した。また、還元水は、試料全体重量の約6%前後添加するのが望ましい。   3. 1) Blank (reduced water only), 2) RD material (reduced water and RD material), 3) RDW material (reduced water and RDW material), so that the soil moisture content is equivalent to 60% respectively. Was added to the inside of the plastic bag and thoroughly mixed (mixed and stirred). In 1) to 3), 4 samples were prepared and 12 samples in total were prepared. Further, it is desirable to add about 6% of the reduced water with respect to the total weight of the sample.

1)ブランク 還元水:6ml
2)RD材 還元水:6ml、RD材 :4.5g
3)RDW材 還元水:6ml、RDW材:4.5g
4.混合後、ビニール袋内の試料を、直ちに褐色のガラス製保管瓶(容量:50ml)に移し替え、保管した。
1) Blank Reduced water: 6ml
2) RD material Reduced water: 6 ml, RD material: 4.5 g
3) RDW material Reduced water: 6 ml, RDW material: 4.5 g
4). After mixing, the sample in the plastic bag was immediately transferred to a brown glass storage bottle (capacity: 50 ml) and stored.

(試験及びその結果)
材令による経時変化を測定する試験を行った。
(Test and results)
The test which measures the time-dependent change by material age was done.

1.混合直後の試料について、土壌含水比%(水の重量/乾燥土壌重量×100)を測定したところ、次の結果を得た。   1. When the soil moisture content% (water weight / dry soil weight × 100) was measured for the sample immediately after mixing, the following results were obtained.

1)ブランク 59.0%
2)RD材 59.7%
3)RDW材 62.3%
土壌含水比は、約60%と所定の値になった。
1) Blank 59.0%
2) RD material 59.7%
3) RDW material 62.3%
The soil water content was a predetermined value of about 60%.

2.混合直後、材令1週、3週、6週について、環境庁告示46号法によるトリクロロエチレンの溶出試験を行い、検液をJIS K0125 5.4.1により測定したところ、次の結果を得た。なお、トリクロロエチレン溶出量の土壌環境基準値は、0.03mg/lである。
<トリクロロエチレン濃度(mg/l)>
試料 材令1日 材令7日 材令21日 材令42日
1)ブランク 2.8 3.1 1.4 1
2)RD材 2.7 0.90 1.3 0.001
3)RDW材 2.6 6.9 0.005 測定せず
また、各試料のpHも合わせて計測したところ、次の結果を得た。
<pH>
試料 材令1日 材令7日 材令21日 材令42日
1)ブランク 測定せず 5.90 6.10 6.51
2)RD材 測定せず 6.14 6.81 6.50
3)RDW材 測定せず 10.74 10.75 測定せず
トリクロロエチレン濃度について、1)ブランクは、材令経過毎に濃度減衰が見られる。これは、還元水内の単分子化した水分子イオンが、トリクロロエチレンの分解を促進していることを示す。しかしながら、材令42日(6週)では、環境基準値を満たしていない。なお、還元水を添加しない、単なる土壌試料のみでは、このような明確な濃度減衰は、得られないものと考えられる。
2. Immediately after mixing, the elution test of trichlorethylene by the Environmental Agency Notification No. 46 method was conducted for the 1st, 3rd, and 6th weeks of the material age, and the test solution was measured according to JIS K0125 5.4.1, and the following results were obtained. . In addition, the soil environmental standard value of trichlorethylene elution amount is 0.03 mg / l.
<Concentration of trichlorethylene (mg / l)>
Sample Material 1 day Material 7 days Material 21 days Material 42 days
1) Blank 2.8 3.1 1.4 1
2) RD material 2.7 0.90 1.3 0.001
3) RDW material 2.6 6.9 0.005 Not measured Moreover, when the pH of each sample was also measured, the following result was obtained.
<PH>
Sample Material 1 day Material 7 days Material 21 days Material 42 days
1) Blank Not measured 5.90 6.10 6.51
2) RD material Not measured 6.14 6.81 6.50
3) RDW material Not measured 10.74 10.75 Not measured Concerning trichlorethylene concentration, 1) In the blank, the concentration decay is observed at every age. This indicates that the monomolecular water molecular ion in the reduced water promotes the decomposition of trichlorethylene. However, on the 42nd day (6 weeks), the environmental standard value is not satisfied. In addition, it is thought that such clear concentration attenuation | damping cannot be obtained only with a simple soil sample which does not add reduced water.

2)RD材は、材令42日(6週)で環境基準値を満たす結果となり、還元水とRD材を組み合わせて、土壌に添加し、混合・撹拌することにより、有効な土壌浄化を行えることがわかる。濃度減衰は、1)ブランクよりも迅速である。   2) The RD material satisfies the environmental standard value on the 42nd day (6 weeks) of the material age. By combining the reduced water and the RD material, adding to the soil, mixing and stirring, the soil can be effectively purified. I understand that. Concentration decay is faster than 1) blank.

3)RDW材は、材令7日(1週)で一時的に1)ブランクの2倍以上の濃度が検出されたが、材令21日(3週)で環境基準値以下となり、2)RD材よりもさらに迅速な濃度減衰が得られた。   3) RDW material temporarily detected 1) more than double the concentration of blank on 7th day (1 week), but it was below the environmental standard value on 21st day (3 weeks). 2) Concentration decay more rapid than that of the RD material was obtained.

pHの測定結果から、3)RDW材では、アルカリ化が進むことがわかる。これについて、次のように考察できる。   From the measurement results of pH, it can be seen that 3) RDW material is alkalized. This can be considered as follows.

まず、RDW材の基材は、カルシウム系鉱物のパウダーであり、それ自体が水に溶けてアルカリ化することはない。ナノ粒子は、上述したように、水分子に接触すると微弱な放電により、水の電気分解を促進し、また、常温において、常時遠赤外線(波長:6〜14μメートル)を放射するという、作用を奏する。   First, the base material of the RDW material is a calcium mineral powder, which itself does not dissolve in water and become alkaline. As described above, the nanoparticle promotes the electrolysis of water by a weak discharge when it comes into contact with water molecules, and emits far infrared rays (wavelength: 6 to 14 μm) at normal temperature. Play.

これらの複合作用により、単分子化された水分子イオン(ヒドロキシルマイナスイオン)が生成され、このイオンは、高い界面活性作用、加水分解力、浸透力及び還元力を有し、トリクロロエチレンの分解に資する。   These combined actions produce water molecules ions that are unimolecularized (hydroxyl negative ions), which have high surface activity, hydrolytic power, osmotic power, and reducing power, and contribute to the decomposition of trichlorethylene. .

また、水は電気分解すると、水素イオンと水酸イオンとに分かれる。ここで、RDW材のカルシウム系鉱物は、水素イオンを吸蔵する特性を持つため、溶液中の水素イオンが減少し、相対的に水酸イオンの濃度が上昇する。つまり、アルカリ化が促進される。   Further, when water is electrolyzed, it is divided into hydrogen ions and hydroxide ions. Here, since the calcium-based mineral of the RDW material has a property of occluding hydrogen ions, the hydrogen ions in the solution are reduced, and the concentration of hydroxide ions is relatively increased. That is, alkalinization is promoted.

トリクロロエチレンは、上述したように、粘土粒子の表面が負電荷を帯びていることにより、弱吸着水帯に結合していると考えられるが、RDW材によるアルカリ化が進行すると、溶液自体が負電荷に富むことになり、粘土粒子表面の負電荷に対抗できるものと考えられる。したがって、弱吸着水帯におけるトリクロロエチレンの結合力を相対的に弱めることができ、その遊離及び分解を促進できるものと考えられる。また、この遊離及び分解は、粘土粒子の外側から順次内側へ向けて進行してゆくものと考えられる。   As described above, trichlorethylene is considered to be bound to the weakly adsorbed water zone because the surface of the clay particles is negatively charged. However, when alkalization with the RDW material proceeds, the solution itself becomes negatively charged. It is thought that it can counter the negative charge on the clay particle surface. Therefore, it is considered that the binding force of trichlorethylene in the weakly adsorbed water zone can be relatively weakened and the release and decomposition thereof can be promoted. In addition, the liberation and decomposition are considered to proceed from the outside to the inside sequentially from the clay particles.

なお、RDW材を使用するときは、還元水の添加は省略できる。なぜなら、RDW材が試料中において水と接触し、しばらく静置されるのであれば、試料中において、還元水と同様の水が生成されると考えられるからである。   In addition, when using RDW material, the addition of reducing water can be omitted. This is because if the RDW material comes into contact with water in the sample and is allowed to stand for a while, water similar to reduced water is considered to be generated in the sample.

加えて、RDW材を添加し、混合・撹拌することにより、アルカリ化が進むが、これは安全面において問題ない。なぜなら、例えば水酸ナトリウムのような溶質によるpHの変化ではなく、溶媒である水そのもののpHの変化に関するものであり、pHが高くなっても刺激反応は起きないからである。   In addition, by adding the RDW material, mixing and stirring, alkalization proceeds, but this is not a problem in terms of safety. This is because it is not a change in pH due to a solute such as sodium hydroxide, but a change in the pH of the solvent water itself, and a stimulating reaction does not occur even when the pH is increased.

汚染土が粘土鉱物と揮発性有機化合物とを含む場合、従来技術では、揮発性有機化合物の除去は、シキソトロピー硬化過程に阻まれて、不可能であるとあきらめられていたが、以上の実験例により明らかになったとおり、本発明によれば、有効な土壌浄化を実現できるのである。   When contaminated soil contains clay minerals and volatile organic compounds, in the prior art, removal of volatile organic compounds was impeded by the thixotropic hardening process and was given up as impossible. Thus, according to the present invention, effective soil purification can be realized.

次に、以上の知見をふまえ、上記改良材を使用する具体的な土壌浄化法について説明する。   Next, based on the above knowledge, a specific soil purification method using the above-described improving material will be described.

(1)浅層処理法
表層又は浅層の揮発性有機化合物汚染土壌を浄化する。処理方式により、以下の3つの処理法を挙げることができる。いずれも浅い不飽和地盤の土壌汚染に適し、地中の水分と空隙とを介し、遠赤外線放射体の浄化機能を発揮させることを意図するものである。自然の降雨、特に小雨が望ましい、があれば、その浸透水が遠赤外線放射体の浄化機能の媒体としての役割を果たす(つまり、遠赤外線放射体の作用を遠くまで運搬する)ので、一層の効果が見込める。
(1) Shallow layer treatment method The surface layer or shallow layer volatile organic compound contaminated soil is purified. The following three processing methods can be listed depending on the processing method. Both are suitable for soil contamination of shallow unsaturated ground, and are intended to demonstrate the purification function of far-infrared radiators through underground moisture and voids. If natural rainfall, especially light rain, is desired, the permeated water will serve as a medium for the purification function of the far-infrared emitter (ie, carry the action of the far-infrared emitter far) The effect can be expected.

1.原位置浅層混合処理法
バックホウやスタビライザー等の機械を使用し、改良材と現地表層土壌を原位置で一様に混合・撹拌することにより浄化する。
1. In-situ shallow layer mixing method Using a machine such as a backhoe or a stabilizer, the improved material and the local surface soil are mixed and stirred uniformly in-situ.

2.プラント混合敷設法
現地にプラントを設け、現地土を一旦掘り出し、それを地上のプラントで改良材と混合させるか、または、改良材を添加した液体と混合し、乾燥定着させて処理する。
2. Plant mixing and laying method A plant is set up on the site, and the local soil is dug once and mixed with the improved material in the plant on the ground, or mixed with the liquid to which the improved material is added and dried and fixed.

3.原位置散布法
改良材またはそれを添加した液体を地表面に均一に散布し、浄化する。これは最も簡易な方法であるが、現地の土質条件、晴天日が続くあるいは乾期などの気象条件があえば、添加した液を散布すると、より有効である。
3. In-situ spraying method Disperse the improved material or the liquid to which it is added evenly on the ground surface and purify it. This is the simplest method, but if there are local soil conditions, weather conditions such as a sunny day or dry season, it is more effective to spray the added liquid.

(2)深層混合処理法
地下数メートルを超える深部の汚染土壌を対象とし、深層地盤改良機又はチェーンコンベアカッタ掘削機などを用い、改良材を注入しながら、汚染土壌と改良材とを混合・撹拌して改良柱を形成し、改良柱内及びその周辺の汚染土壌を浄化する。
(2) Deep-layer mixing treatment method Contaminated soil and improvement material are mixed while injecting the improved material using a deep ground improvement machine or chain conveyor cutter excavator, etc. Stir to form improved pillars and purify contaminated soil in and around the improved pillars.

汚染の度合い、分布、規模等によって、次の3つの処理法を使い分けることが望ましい。   Depending on the degree of contamination, distribution, scale, etc., it is desirable to use the following three treatment methods.

1.定間隔配置法
図1(a)の平面図、図1(b)の地中立面図に示すように、一定の配置間隔で改良柱1を構築してゆく。現場の汚染の強弱に合わせ、改良柱同士の配置間隔(つまり密度)を変更することもできる。汚染が広く分散してしまっている場合に有効である。また、地表部については、図1(b)の斜線部に示すように、浄化作用を補強すべく、定間隔配置法に対して、追加的に上述の浅層処理法を施すのが望ましい。
1. Fixed interval arrangement method As shown in the plan view of FIG. 1 (a) and the underground elevation view of FIG. 1 (b), the improved pillars 1 are constructed at a constant arrangement interval. It is also possible to change the arrangement interval (that is, the density) between the improved columns according to the level of contamination at the site. This is effective when the contamination is widely dispersed. Further, as shown by the hatched portion in FIG. 1B, it is desirable that the above-mentioned shallow layer processing method is additionally applied to the surface portion in order to reinforce the purification action.

2.格子状配置法
図2に示すように、改良柱を連続して形成して連続壁となし、この連続壁により、汚染土を包囲する。定間隔配置法に比べ、改良柱の量が増えるだけ、工事費が増加するが、改良柱が連続することにより、浄化機能が向上する。特に、汚染土の強弱や分布にバラツキが大きい現場においては、有効である。
2. Lattice arrangement method As shown in FIG. 2, improved columns are continuously formed to form a continuous wall, and the contaminated soil is surrounded by the continuous wall. Compared to the fixed spacing method, the construction cost increases as the amount of improved pillars increases, but the purification function improves as the improved pillars continue. This is especially effective at sites where there are large variations in the strength and distribution of contaminated soil.

なお、定間隔配置法と同様に、地表部について追加的に上述の浅層処理法を施すのが望ましい。   As in the case of the fixed interval arrangement method, it is desirable to additionally perform the above-described shallow layer processing method on the ground surface portion.

3.全断面法
いわゆるホットスポット等、局所的に汚染物質が集中しているような場合、図3に示すように、その断面の全部を、改良柱で覆い尽くす。単位体積あたりの工事費は、格子状配置法よりさらに割高になるが、汚染物質の拡散の根元をたつことができるため、効果的である。しかも、この根元から、汚染物質の拡散ルート上を、遠赤外線放射体の作用を受けた水が流れてゆき、浄化機能の媒体としての役割を果たすので、意図したよりもさらに広範囲において、一層の浄化効果が見込める。
3. Whole Cross-Section Method When a contaminant is concentrated locally, such as a so-called hot spot, the entire cross-section is covered with an improved column as shown in FIG. The construction cost per unit volume is higher than that of the lattice arrangement method, but it is effective because it can provide the root of the diffusion of pollutants. In addition, from this root, the water affected by the far-infrared radiator flows on the diffusion route of the pollutant and plays a role as a medium for the purification function. A purification effect can be expected.

(a)本発明の一実施の形態における定間隔配置法の平面説明図 (b)本発明の一実施の形態における定間隔配置法の立面説明図(A) Plane explanatory diagram of the regular interval arrangement method in one embodiment of the present invention (b) Elevation explanatory diagram of the regular interval arrangement method in one embodiment of the present invention 本発明の一実施の形態における格子状配置法の説明図Explanatory drawing of the grid | lattice arrangement | positioning method in one embodiment of this invention 本発明の一実施の形態における全断面法の説明図Explanatory drawing of the whole cross-section method in one embodiment of this invention

符号の説明Explanation of symbols

1 改良柱 1 Improvement pillar

Claims (5)

粘土鉱物と揮発性有機化合物とを含有する汚染土壌に、遠赤外線放射体を含む改良材を添加し、撹拌・混合することを特徴とする汚染土壌浄化方法。 A method for purifying contaminated soil, comprising adding an improving material containing a far-infrared radiator to a contaminated soil containing a clay mineral and a volatile organic compound, followed by stirring and mixing. 前記改良材は、火山ガラス系粒子からなる基材に、遠赤外線放射体からなるナノ粒子を定着させたRD材である請求項1記載の汚染土壌浄化方法。 The contaminated soil purification method according to claim 1, wherein the improving material is an RD material in which nanoparticles made of a far-infrared emitter are fixed on a base material made of volcanic glass-based particles. 前記改良材は、カルシウム系鉱物のパウダーからなる基材に、遠赤外線放射体からなるナノ粒子を定着させたRDW材である請求項1記載の汚染土壌浄化方法。 The contaminated soil purification method according to claim 1, wherein the improvement material is an RDW material in which nanoparticles made of a far-infrared emitter are fixed on a base material made of calcium-based mineral powder. 少なくとも撹拌・混合前に、還元水をさらに添加し、前記還元水は、水と遠赤外線放射体とを混ぜ静置し、その上澄み水からなる請求項1から3記載の汚染土壌浄化方法。 4. The method for purifying contaminated soil according to claim 1, wherein reduced water is further added at least before stirring and mixing, and the reduced water is made by mixing water and a far-infrared radiator and allowing to stand, and consisting of the supernatant water. 前記ナノ粒子の直径は、5ナノメートル以上50ナノメートル以下である請求項2または3記載の汚染土壌浄化方法。 The diameter of the said nanoparticle is 5 nanometers or more and 50 nanometers or less, The contaminated soil purification method of Claim 2 or 3.
JP2005236308A 2005-08-17 2005-08-17 Contaminated soil purification method Pending JP2007050328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005236308A JP2007050328A (en) 2005-08-17 2005-08-17 Contaminated soil purification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005236308A JP2007050328A (en) 2005-08-17 2005-08-17 Contaminated soil purification method

Publications (1)

Publication Number Publication Date
JP2007050328A true JP2007050328A (en) 2007-03-01

Family

ID=37915138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005236308A Pending JP2007050328A (en) 2005-08-17 2005-08-17 Contaminated soil purification method

Country Status (1)

Country Link
JP (1) JP2007050328A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008308573A (en) * 2007-06-14 2008-12-25 Hotta Koichi Cleaning agent
JP2020519004A (en) * 2017-05-03 2020-06-25 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Optoelectronic semiconductor chips and methods of making optoelectronic semiconductor chips

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07265836A (en) * 1994-04-01 1995-10-17 Nippon Carbon Seiko Kk Treatment of crude refuse and its treating vessel
JP2003105313A (en) * 2001-09-27 2003-04-09 Tosoh Corp Treatment for making treated material which is polluted with organohalogen compound innoxious and treating method for making the material innoxious by using the same
JP2004212038A (en) * 2002-12-20 2004-07-29 Toko Kogyo:Kk Air conditioning ventilation system for building
JP2005161171A (en) * 2003-12-01 2005-06-23 Koken Boring Mach Co Ltd Soil pollution cleaning structure and method for the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07265836A (en) * 1994-04-01 1995-10-17 Nippon Carbon Seiko Kk Treatment of crude refuse and its treating vessel
JP2003105313A (en) * 2001-09-27 2003-04-09 Tosoh Corp Treatment for making treated material which is polluted with organohalogen compound innoxious and treating method for making the material innoxious by using the same
JP2004212038A (en) * 2002-12-20 2004-07-29 Toko Kogyo:Kk Air conditioning ventilation system for building
JP2005161171A (en) * 2003-12-01 2005-06-23 Koken Boring Mach Co Ltd Soil pollution cleaning structure and method for the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008308573A (en) * 2007-06-14 2008-12-25 Hotta Koichi Cleaning agent
JP2020519004A (en) * 2017-05-03 2020-06-25 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Optoelectronic semiconductor chips and methods of making optoelectronic semiconductor chips

Similar Documents

Publication Publication Date Title
US10005684B2 (en) Treatment of aquifer matrix back diffusion
Rees et al. Short‐term effects of biochar on soil heavy metal mobility are controlled by intra‐particle diffusion and soil pH increase
Balarak et al. Studies on the removal of amoxicillin by single walled carbon nanotubes
US9770743B2 (en) Colloidal agents for aquifer remediation
Lukman et al. Coupled electrokinetics-adsorption technique for simultaneous removal of heavy metals and organics from saline-sodic soil
Li et al. The role of clay minerals and the effect of H+ ions on removal of heavy metal (Pb2+) from contaminated soils
CN103464102A (en) Porous composite adsorbing agent for removing stream substrate sludge contamination and preparation process of agent
CN103521171B (en) A kind of cadmium pollution composite rock ore deposit renovation agent and preparation method thereof
Ali et al. Sustainable use of concrete demolition waste as reactive material in permeable barrier for remediation of groundwater: batch and continuous study
Barbagli et al. Assessment of soil buffer capacity on nutrients and pharmaceuticals in nature-based solution applications
Fer et al. Sorption of atenolol, sulfamethoxazole and carbamazepine onto soil aggregates from the illuvial horizon of the Haplic Luvisol on loess.
Pla et al. Effectiveness of two lightweight aggregates for the removal of heavy metals from contaminated urban stormwater
Cameselle Electrokinetic remediation and other physico-chemical remediation techniques for in situ treatment of soil from contaminated nuclear and NORM sites
Fronczyk et al. Treatment efficiency of synthetic urban runoff by low-cost mineral materials under various flow conditions and in the presence of salt: Possibilities and limitations
JP2007050328A (en) Contaminated soil purification method
Reddy et al. Enhanced sequential flushing process for removal of mixed contaminants from soils
CN102380356B (en) Adsorbent and preparation method thereof
JP2006263509A (en) Method for fixing substance easily eluted in water, and material obtained by it
JP7167460B2 (en) Contaminated water purification method
Turan et al. Utilizing natural liner materials for heavy metal removal in simulated landfill conditions
JP2008173557A (en) Water-permeable purifying wall and purification treatment method of polluted underground water
Ugwu et al. Column experiment for the removal of cadmium, copper, lead and zinc from artificially contaminated soil using EDTA, rhamnolipids, and soapnut
JP2013053938A (en) Radioactive soil decontamination system
Harada et al. Decrease of non-point zinc runoff using porous concrete
JP5244321B2 (en) Permeability purification wall and purification method of contaminated groundwater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111019