JP2007050326A - Method for utilizing final disposal site, and final disposal facility - Google Patents

Method for utilizing final disposal site, and final disposal facility Download PDF

Info

Publication number
JP2007050326A
JP2007050326A JP2005236245A JP2005236245A JP2007050326A JP 2007050326 A JP2007050326 A JP 2007050326A JP 2005236245 A JP2005236245 A JP 2005236245A JP 2005236245 A JP2005236245 A JP 2005236245A JP 2007050326 A JP2007050326 A JP 2007050326A
Authority
JP
Japan
Prior art keywords
leachate
final disposal
disposal site
facility
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005236245A
Other languages
Japanese (ja)
Inventor
Yoshihito Shimabukuro
良仁 島袋
Hirokazu Miyagi
弘和 宮城
Akira Hidaka
彰 日高
Koichi Mukumoto
浩一 椋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IESON
Pacific Consultants Co Ltd
Original Assignee
IESON
Pacific Consultants Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IESON, Pacific Consultants Co Ltd filed Critical IESON
Priority to JP2005236245A priority Critical patent/JP2007050326A/en
Publication of JP2007050326A publication Critical patent/JP2007050326A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for utilizing a final disposal site, by which waste can be maintained at a low cost and to provide a final disposal facility. <P>SOLUTION: The final disposal site is constituted so that a recessed part is formed on the ground and covered with a liner sheet to enable the recessed part to shut off water and waste is buried in the recessed part having a water sealing structure. A circulation waterway is arranged on the slope of the final disposal site, exuding water produced at the final disposal site is returned to the circulation waterway, the returned exuding water is vaporized in the circulation waterway while flowing therein, so that the amount of the exuding water remaining in an exuding water regulating pond can be reduced owing to the vaporization. The exuding water is cleaned by a microbe deposited on crushed stones arranged in the circulation waterway and on the crushed stones arranged at the bottom of the final disposal site. The treatment load to be imposed on an exuding water treatment facility is decreased since heavy metals are removed by heavy metal adsorption ability of the crushed stones. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は廃棄物を埋立処分する最終処分地運用方法及びこの運用方法で運用される最終処分施設に関する。   The present invention relates to a final disposal site operation method for landfill disposal of waste and a final disposal facility operated by this operation method.

図5に従来から使われている最終処分地の構造を示す。図中10は最終処分地を示す。この最終処分地10は凹部面を持つ地面を遮水シート11で被覆し、その凹部面を遮水構造とし、この遮水構造の凹部面にごみなどの廃棄物20を埋立処分する。
最終処分地10が満杯に至るには10〜20年間程度の運用期間を要し、その運用期間中に廃棄物の埋立処分を行う。運用期間中に廃棄物20には雨水21が降り掛かり、廃棄物20にふれた雨水は廃棄物20により汚染されたと見做なされ浸出水22と呼ばれることになる。浸出水22は浄化処理することが義務付けられる。このために最終処分地10の底面等には排水管12が敷設され、排水管12で浸出水22を集水し、集水した浸出水22は最終処分地10の外部に設けた浸出水調整池30に集水される。
Fig. 5 shows the structure of the final disposal site that has been used in the past. In the figure, 10 indicates the final disposal site. In this final disposal site 10, the ground surface having a recessed surface is covered with a water-impervious sheet 11, and the recessed surface is formed as a water-impervious structure.
An operation period of about 10 to 20 years is required for the final disposal site 10 to become full, and the landfill disposal of waste is performed during the operation period. During the operation period, the rainwater 21 falls on the waste 20, and the rainwater touched by the waste 20 is regarded as contaminated by the waste 20 and is called leachate 22. The leachate 22 is required to be purified. For this purpose, a drain pipe 12 is laid on the bottom surface of the final disposal site 10, and the leachate 22 is collected by the drain pipe 12, and the collected leachate 22 is adjusted to the leachate provided outside the final disposal site 10. Water is collected in the pond 30.

浸出水調整池30で水量調整された後、浸出水処理施設40で適正に浄化処理され、浄化処理後に水域に放流される。
浸出水処理施設40の規模設定に当たっての留意点としては、
1、最終処分地10の運用期間は10〜20年程度と長期であり、その間の降雨に対し、適正処理が可能でなければならない。
2、最終処分地10内の廃棄物の分解促進により早期安定化を図るためには、最終処分地10内を好気的な雰囲気にする必要があり、最終処分地10内に浸出水を滞水(嫌気的雰囲気)させることなく、最終処分地10外へ速やかに排除しなければならない。
After the amount of water is adjusted in the leachate adjustment reservoir 30, it is appropriately purified at the leachate treatment facility 40 and discharged into the water area after the purification treatment.
As points to keep in mind when setting the scale of the leachate treatment facility 40,
1. The operation period of the final disposal site 10 is as long as about 10 to 20 years, and it must be possible to properly handle the rain during that period.
2. In order to achieve early stabilization by promoting the decomposition of waste in the final disposal site 10, it is necessary to make the final disposal site 10 an aerobic atmosphere, and the leachate is stagnated in the final disposal site 10. It must be quickly removed out of the final disposal site 10 without water (anaerobic atmosphere).

浸出水処理施設40で行われる水質浄化にはBODなどの有機性汚濁物質対策と重金属処理対策とが存在する。
BOD等有機性汚濁物質対策
現状のBOD等有機性汚濁物質対策に対しては、浸出水処理施設40において、活性汚泥法、回転円盤法、接触ばっ気法等の生物処理が行われている。
(活性汚泥法)
曝気槽の中の流入排水に、返送汚泥をまぜてブロワー等で曝気する。排水中の有機物は活性汚泥微生物により浄化される。活性汚泥の混合液を沈殿槽に導入して沈殿分離した後、上澄水を処理水として放流する。同時に活性汚泥の一部を曝気槽に返送し、他の一部は余剰汚泥として処理し、処分する。
(回転円盤法)
半円形の水槽の中で円板を回転させる。円板は空気中水中と回転をくり返し、空気中に現れた時に酸素をとり入れる。この円板を一定の速度で回転させ、表面に付着した微生物によって排水を浄化する。
(接触ばっ気法)
曝気槽の中に接触充填剤を入れ曝気する。排水中の有機物は、濾材表面に付着する微生物により浄化される。沈殿分離や汚泥の返送、引抜は活性汚泥の原理と似通っている。
Water purification performed at the leachate treatment facility 40 includes measures for organic pollutants such as BOD and measures for heavy metal treatment.
Measures for organic pollutants such as BOD For the current measures for organic pollutants such as BOD, biological treatment such as the activated sludge method, rotating disk method, contact aeration method, etc. is performed in the leachate treatment facility 40.
(Activated sludge method)
Mix the returned sludge into the influent wastewater in the aeration tank and aerate with a blower. Organic matter in the wastewater is purified by activated sludge microorganisms. After introducing and mixing the activated sludge mixed liquid into the settling tank, the supernatant water is discharged as treated water. At the same time, part of the activated sludge is returned to the aeration tank, and the other part is treated as excess sludge and disposed of.
(Rotating disk method)
Rotate the disc in a semicircular aquarium. The disk repeats rotation in the air and takes in oxygen when it appears in the air. This disc is rotated at a constant speed, and the waste water is purified by microorganisms attached to the surface.
(Contact aeration method)
Place the contact filler in the aeration tank and aerate. The organic matter in the waste water is purified by microorganisms adhering to the filter medium surface. Sediment separation, sludge return and extraction are similar to the principle of activated sludge.

これらの処理は、流入される浸出水の有機性汚濁物質濃度により生物処理槽の容量や薬剤量やばっ気量などを調整し処理するものであり、浸出水の有機性汚濁物質濃度が高い状況であれば、その分維持管理費は高くなることになる。
重金属対策
現状の浸出水中の重金属類は、前述の生物処理とは別途に、水酸化物法、硫化ソーダ法、フェライト法、キレート樹脂法等により除去している。
(水酸化法)
排水のpHをアルカリ性にして、重金属を水に難溶な水酸化物にしたうえで凝集剤を用いて沈殿分離する。
(硫化ソーダ法)
重金属と硫化ソーダを反応させ、水に難溶な硫化物を生成し、凝集剤を用いて沈殿分離する。
(フェライト法)
排水の温度を70℃以上に加温し、硫化第一鉄を添加した上で排水のpHをアルカリ性にして反応させると、水に不溶なフェライトが生成する。これを磁気分離する。
(キレート樹脂法)
一種のイオン交換でキレート系接着剤の官能基に排水中の重金属をキレート結合させ、除去する。キレート樹脂には、水銀吸着用と一般金属吸着用がある。
These treatments are performed by adjusting the volume of the biological treatment tank, the amount of chemicals, the amount of aeration, etc. according to the concentration of the organic pollutant in the leachate that flows in, and the organic pollutant concentration in the leachate is high If so, the maintenance cost will increase accordingly.
Heavy metal countermeasures Heavy metals in the current leachate are removed by the hydroxide method, sodium sulfide method, ferrite method, chelate resin method, etc. separately from the aforementioned biological treatment.
(Hydroxylation method)
The pH of the wastewater is made alkaline, and the heavy metal is made into a hydroxide that is hardly soluble in water, and then precipitated and separated using a flocculant.
(Sodium sulfide method)
A heavy metal and sodium sulfide are reacted to form a sulfide which is hardly soluble in water, and is precipitated and separated using a flocculant.
(Ferrite method)
When the temperature of the waste water is heated to 70 ° C. or more and ferrous sulfide is added and the pH of the waste water is made alkaline, the ferrite insoluble in water is generated. This is magnetically separated.
(Chelate resin method)
A kind of ion exchange is used to chelate and remove heavy metals in the wastewater from the functional groups of the chelating adhesive. Chelate resins include mercury adsorption and general metal adsorption.

これらの処理は専用設備の設置となり、維持管理後も高価な薬品代やキレート等の消耗品の再生・交換代、設備の点検補修代などの費用が発生する。また、運転に対しても専門技術による管理が必要である。   These treatments require the installation of dedicated equipment, and after maintenance, costs such as expensive chemicals, recycling and replacement of consumables such as chelates, and equipment inspection and repair are incurred. In addition, management by specialized technology is necessary for operation.

上述したように浸出水処理施設40では高度の水質浄化処理が実施され、浄化処理に要する経費は浸出水の処理量及び負荷量に比例し増大する。更に、浄化処理に要する経費は最終処分地10を運用している期間(10〜20年間)継続するため、その累積額は大きい。
この発明の目的は浸出水処理施設40における浸出水の処理量及び負荷量を軽減し、運用に要する経費を可及的に少なくすることができる最終処分地運用方法と、この運用方法で運用される最終処分施設の構成を提案するものである。
As described above, the leachate treatment facility 40 performs advanced water quality purification treatment, and the cost required for the purification treatment increases in proportion to the treatment amount and load amount of the leachate. Furthermore, since the expense required for the purification process continues for a period (10 to 20 years) in which the final disposal site 10 is operated, the accumulated amount is large.
The object of the present invention is a final disposal site operation method capable of reducing the amount of leachate treated and load in the leachate treatment facility 40 and reducing the cost required for operation as much as possible, and the operation method. The final disposal facility is proposed.

本発明では凹部面を遮水構造とし、この遮水構造の凹部面に廃棄物を埋立処分する最終処分地運用方法において、最終処分地内に発生する浸出水を浸出水調整池へ集水する過程と、浸出水調整池に集水された浸出水を上記最終処分地に設けた循環水路に環流する過程と、環流した浸出水を上記循環水路で蒸発させる蒸発過程と、浸出水調整池に残された浸出水を浸出水処理施設に導水する過程とを含むことを特徴とする。
更に、本発明による最終処分地運用方法において、最終処分地の底部及び循環水路の底部に石灰岩で構成される砕石を配置し、生物処理過程と重金属処理過程とを含むことを特徴とする。
In the present invention, in the final disposal site operation method in which the recessed surface has a water-impervious structure and waste is landfilled in the recessed surface of the water-impervious structure, the process of collecting leachate generated in the final disposal site into the leachate adjustment pond And the process of circulating the leachate collected in the leachate control pond to the circulation channel provided in the final disposal site, the evaporation process of evaporating the returned leachate in the circulation channel, and the remaining in the leachate adjustment pond And a step of introducing the leachate into the leachate treatment facility.
Furthermore, the final disposal site operation method according to the present invention is characterized in that crushed stone composed of limestone is disposed at the bottom of the final disposal site and the bottom of the circulation channel, and includes a biological treatment process and a heavy metal treatment process.

本発明による最終処分施設は凹部面を遮水シートで被覆して構成した遮水構造の凹部面を備えた最終処分地と、この最終処分地内に発生する浸出水を最終処分地の外部に排出する排水処理部と、この排水処理部で排水した浸出水を集水する浸出水調整池と、この浸出水調整池に集水された浸出水の一部を上記最終処分地に環流させるポンプと、最終処分地に設けられ、ポンプによって環流された浸出水を受けて浸出水を循環させ、浸出水を蒸発させる循環水路と、浸出水調整池に残された浸出水を導水し、浸出水を処理する浸出水処理施設ととを備えることを特徴とする。   The final disposal facility according to the present invention has a final disposal site having a concave surface with a water-impervious structure constituted by covering the concave surface with a water shielding sheet, and discharges leachate generated in this final disposal site to the outside of the final disposal site. A wastewater treatment section that collects the leachate discharged from the wastewater treatment section, and a pump that recirculates a portion of the leachate collected in the leachate adjustment pond to the final disposal site. In the final disposal site, the leachate is circulated by receiving the leachate circulated by the pump, and the leachate is circulated, and the leachate remaining in the leachate adjustment pond is introduced and the leachate is circulated. And a leachate treatment facility to be treated.

更に、本発明による最終処分施設は、最終処分地の底部及び循環水路の底部に石灰岩から成る砕石を配置したことを特徴とする。   Furthermore, the final disposal facility according to the present invention is characterized in that crushed stone made of limestone is arranged at the bottom of the final disposal site and the bottom of the circulation channel.

本発明による最終処分地運用方法及び最終処分施設によれば最終処分地から排出した浸出水を、最終処分地内に設けた循環水路に返送し、この循環水路において蒸発させるから、浸出水調整池に残される浸出水の量を軽減することができる。この結果、浸出水処理施設40で浄化処理する浸出水の量を減らすことができる。更に、本発明によれば循環水路に配置した砕石及び最終処分地の底部に配置した砕石についた微生物による浸出水の浄化と、これらの砕石の重金属吸着能による重金属類の除去作用により浄化処理に要する経費を削減することができるとする本発明独特の効果を得ることができる。   According to the final disposal site operation method and the final disposal facility according to the present invention, the leachate discharged from the final disposal site is returned to the circulation channel established in the final disposal site and evaporated in this circulation channel. The amount of leachate remaining can be reduced. As a result, the amount of leachate to be purified at the leachate treatment facility 40 can be reduced. Furthermore, according to the present invention, the purification of leachate by microorganisms attached to the crushed stones arranged in the circulation channel and the crushed stone arranged at the bottom of the final disposal site, and the removal of heavy metals by the heavy metal adsorption capacity of these crushed stones for purification treatment. An effect peculiar to the present invention that the cost required can be reduced can be obtained.

本発明による最終処分地運用方法及び最終処分施設は最終処分地から排出した浸出水を最終処分地に設けた循環水路に環流させ、環流中に蒸発させて浸出水の量を低減させるものである。このためには本発明による最終処分地運用方法及び最終処分施設は温暖な気候の地域で実施することが最良の実施形態である。   The final disposal site operation method and the final disposal facility according to the present invention reduce the amount of leachate by circulating the leachate discharged from the final disposal site to a circulation channel provided in the final disposal site and evaporating it in the circulation. . For this purpose, it is the best embodiment that the final disposal site operation method and the final disposal facility according to the present invention are implemented in an area having a warm climate.

図1及び図2を用いて、本発明の最終処分施設の一実施例を説明する。図5と対応する部分には同一符号を付して示す。図中10は最終処分地を示す。この最終処分地10は図5でも説明したように、所望の面積を持つ土地に凹部面を形成し、この凹部面を遮水シート11等で被覆し、遮水構造とする。凹部面の形状としては土砂が崩れることがなきように四周が法面とされ、各法面及び底面を遮水シート11で被覆する。底面等には排水管12を設置し、排水管12を通じて浸出水を最終処分地10の外部に排出する。排水管12を通じて排水した浸出水は浸出水調整池30に集水する。   One embodiment of the final disposal facility of the present invention will be described with reference to FIGS. Parts corresponding to those in FIG. 5 are denoted by the same reference numerals. In the figure, 10 indicates the final disposal site. As described in FIG. 5, the final disposal site 10 forms a concave surface on land having a desired area, and the concave surface is covered with a water shielding sheet 11 or the like to form a water shielding structure. As the shape of the concave surface, the four sides are sloped so that the earth and sand will not collapse, and each slope and bottom are covered with the water shielding sheet 11. A drain pipe 12 is installed on the bottom surface and the leachate is discharged to the outside of the final disposal site 10 through the drain pipe 12. The leachate discharged through the drain pipe 12 is collected in the leachate adjustment pond 30.

この発明では浸出水調整池30にポンプPを設置し、このポンプPによって浸出水調整池30に集水した浸出水の一部を、最終処分地10に設けた循環水路50に返送する。循環水路50は例えば最終処分地10を形成する法面小段にU字溝等を配列して構成することができる。循環水路50には勾配が付され、この勾配によって浸出水は循環水路50内を一方的に流れる。循環水路50は図1及び図2では法面の一部のみに構築した例を示すが、2〜3面の法面にわたって構築してもよい。循環水路50の総延長は長い方がよく、長く形成することにより浸出水の蒸発量を多くすることができる。浸出水の蒸発量を多くすることにより循環水路50の最下流から最終処分地10に再注入される浸出水の量を少なくできる利点が得られる。最終処分地10に再注入された浸出水は廃棄物20の間を通って再び最終処分地10の底面に達し、排水管12を通じて再び浸出水調整池30に戻される。循環水路50における蒸発量が多い場合、循環水路50から最終処分地10に回帰される浸出量の量を少なくできる利点が得られる。   In this invention, the pump P is installed in the leachate adjustment pond 30, and part of the leachate collected in the leachate adjustment pond 30 by this pump P is returned to the circulation channel 50 provided in the final disposal site 10. For example, the circulation channel 50 can be configured by arranging U-shaped grooves or the like on the small slopes forming the final disposal site 10. The circulation water channel 50 is provided with a gradient, and the leachate flows unilaterally in the circulation water channel 50 due to this gradient. 1 and 2 show an example in which the circulation channel 50 is constructed only on a part of the slope, but it may be constructed over two or three slopes. The total length of the circulation channel 50 is preferably long, and the evaporation amount of the leachate can be increased by forming it long. By increasing the evaporation amount of the leachate, there is an advantage that the amount of leachate reinjected into the final disposal site 10 from the most downstream side of the circulation channel 50 can be reduced. The leachate reinjected into the final disposal site 10 passes through the waste 20 and reaches the bottom surface of the final disposal site 10 again, and is returned to the leachate adjustment reservoir 30 through the drain pipe 12 again. When the evaporation amount in the circulation channel 50 is large, there is an advantage that the amount of the leaching amount returned from the circulation channel 50 to the final disposal site 10 can be reduced.

このように浸出水調整池30に集水された浸出水を循環水路50を通じて最終処分地10に戻すことにより、浸出水調整池30に残される浸出水の量を少なくすることができる。この結果、浸出水処理施設40で処理しなければならない浸出水の量を少なくでき、処理に要する経費を軽減することができる利点が得られる。   Thus, by returning the leachate collected in the leachate adjustment pond 30 to the final disposal site 10 through the circulation channel 50, the amount of leachate remaining in the leachate adjustment pond 30 can be reduced. As a result, the amount of leachate that must be treated at the leachate treatment facility 40 can be reduced, and the cost required for treatment can be reduced.

図3及び図4にこの発明の第2の実施例を示す。この実施例では最終処分地10の底部及び循環水路50の底部に砕石60を敷き詰め、この砕石60によりBOD等の有機性汚濁物質を分解処理する生物処理と、重金属類の吸着処理を行わせる構造とした実施例を示す。
砕石60としては例えば琉球石灰岩を砕いたものを用いることができる。
生物処理の原理としては、接触ばっ気法や、回転円盤法と同様の付着型生物膜処理であり、浸出水との接触により、砕石60の表面に微生物が付着し、生物膜が形成される。この生物処理を併用することにより循環水路50内では第1実施例で説明した蒸発効果に加え、返送する浸出水の水質負荷の低減を図ることができ、浸出水処理施設40で消費される薬品や、ばっ気に要する経費を軽減することができ、維持管理費の低減に繋がることとなる。
3 and 4 show a second embodiment of the present invention. In this embodiment, a crushed stone 60 is laid on the bottom of the final disposal site 10 and the bottom of the circulation channel 50, and a biological treatment for decomposing organic pollutants such as BOD by the crushed stone 60 and a heavy metal adsorption treatment are performed. Examples are shown.
As the crushed stone 60, what crushed Ryukyu limestone can be used, for example.
The principle of the biological treatment is an adhesion type biofilm treatment similar to the contact aeration method or the rotating disk method. By contact with the leachate, microorganisms adhere to the surface of the crushed stone 60 and a biofilm is formed. . By using this biological treatment together, in the circulation channel 50, in addition to the evaporation effect described in the first embodiment, it is possible to reduce the water quality load of the returned leachate, and the chemicals consumed in the leachate treatment facility 40 In addition, the cost required for aeration can be reduced, leading to a reduction in maintenance costs.

一方、砕石60として琉球石灰岩を用いた場合、琉球石灰岩は琉球サンゴ海のサンゴ礁堆積物である。この琉球石灰岩は好気性の条件下のもとでは重金属の吸収能力があることが知られている。具体的には、最終処分地10内の微生物介在の下、琉球サンゴに含まれるカルシウム分と酸素及び重金属類が反応し、重金属が不溶性の化合物となり、石灰岩内に固定される現象を呈する。利用方法としては、前述したように循環水路50内及び最終処分地10の底部等、浸出水と接触する箇所に琉球石灰岩からなる砕石60を配置することにより、最終処分地10内で浸出水中の重金属類の吸着を図る。   On the other hand, when Ryukyu limestone is used as the crushed stone 60, the Ryukyu limestone is a coral reef deposit in the Ryukyu coral sea. This Ryukyu limestone is known to be capable of absorbing heavy metals under aerobic conditions. Specifically, calcium contained in the Ryukyu coral reacts with oxygen and heavy metals under the presence of microorganisms in the final disposal site 10, and the heavy metal becomes an insoluble compound and exhibits a phenomenon of being fixed in limestone. As described above, by placing the crushed stone 60 made of Ryukyu limestone in the circulating water channel 50 and the bottom portion of the final disposal site 10 as described above, the crushed stone 60 made of Ryukyu limestone is disposed in the final disposal site 10. Adsorb heavy metals.

この重金属吸着方法を用いることにより、従来は浸出水処理施設40に整備されていた重金属処理専用設備は本発明では不要となり、また重金属類を処理するための薬品代等を縮減することができることになるから、浸出水処理施設の施設整備費及び維持管理費の縮減に繋がることとなる。更に、専用設備が不要のため、専用技術による管理を必要としない利点が得られる。   By using this heavy metal adsorption method, the special equipment for heavy metal treatment that has been conventionally provided in the leachate treatment facility 40 is not required in the present invention, and the cost of chemicals for treating heavy metals can be reduced. Therefore, it leads to reduction of facility maintenance cost and maintenance cost of leachate treatment facility. Furthermore, since dedicated equipment is unnecessary, there is an advantage that management by dedicated technology is not required.

本発明による最終処分地運用方法及び最終処分施設は地方自治体などが運用する一般廃棄物及び産業廃棄物を処理する最終処分地の運用に活用される。   The final disposal site operation method and the final disposal facility according to the present invention are utilized for the operation of the final disposal site for processing general waste and industrial waste operated by local governments.

本発明の第1実施例を説明するための平面図。The top view for demonstrating 1st Example of this invention. 図1のA−A線上の断面図。Sectional drawing on the AA line of FIG. 本発明の第2実施例を説明するための平面図。The top view for demonstrating 2nd Example of this invention. 図3のB−B線上の断面図。Sectional drawing on the BB line of FIG. 従来の最終処分地の構造を説明するための断面図。Sectional drawing for demonstrating the structure of the conventional final disposal site.

符号の説明Explanation of symbols

10 最終処分地 30 浸出水調整池
11 遮水シート 40 浸出水処理施設
12 排水管 50 循環水路
20 廃棄物 60 砕石
10 Final disposal site 30 Leachate adjustment pond 11 Impermeable sheet 40 Leachate treatment facility 12 Drain pipe 50 Circulating water channel 20 Waste 60 Crushed stone

Claims (4)

凹部面を遮水構造とし、この遮水構造の凹部面に廃棄物を埋立処分する最終処分地運用方法において、
上記凹部面で発生する浸出水を浸出水調整池へ集水する過程と、
浸出水調整池に集水された浸出水を上記最終処分地に設けた循環水路に環流する過程と、
環流した浸出水を上記循環水路で蒸発させる蒸発過程と、
上記浸出水調整池に残された浸出水を浸出水処理施設に導水する過程と、
を含むことを特徴とする最終処分地運用方法。
In the final disposal site operation method in which the recessed surface has a water shielding structure, and waste is landfilled on the recessed surface of this water shielding structure.
The process of collecting leachate generated on the concave surface into the leachate adjustment pond
The process of circulating the leachate collected in the leachate control pond to the circulation channel provided in the final disposal site,
An evaporation process for evaporating the refluxed leachate in the circulation channel;
A process of introducing the leachate remaining in the leachate adjustment pond to the leachate treatment facility;
The final disposal site operation method characterized by including.
請求項1記載の最終処分地運用方法において、
上記最終処分地の底部及び循環水路の底部に石灰岩で構成される砕石を配置し、生物処理過程と重金属処理過程とを含むことを特徴とする最終処分地運用方法。
In the final disposal site operation method according to claim 1,
A final disposal site operating method, comprising arranging a crushed stone made of limestone at the bottom of the final disposal site and the bottom of a circulation channel, and including a biological treatment process and a heavy metal treatment process.
凹部面を遮水シートで被覆して構成した遮水構造の底部面を備えた最終処分地と、
この最終処分地内に発生する浸出水を上記最終処分地の外部に排出する排水処理部と、
この排水処理部で排水した浸出水を集水する浸出水調整池と、
この浸出水調整池に集水された浸出水の一部を上記最終処分地に環流させるポンプと、
上記最終処分地に設けられ、上記ポンプによって環流された浸出水を受けて浸出水を循環させ、浸出水を蒸発させる循環水路と、
上記浸出水調整池に残された浸出水を導水し、浸出水を浄化処理する浸出水処理施設と、
とを備えることを特徴とする最終処分施設。
A final disposal site with a bottom surface of a water shielding structure constituted by covering the concave surface with a water shielding sheet;
A wastewater treatment unit for discharging leachate generated in the final disposal site to the outside of the final disposal site;
A leachate adjustment pond that collects leachate drained from this wastewater treatment section;
A pump for circulating a portion of the leachate collected in the leachate control pond to the final disposal site;
A circulation channel that is provided in the final disposal site, receives the leachate circulated by the pump, circulates the leachate, and evaporates the leachate;
A leachate treatment facility for introducing leachate remaining in the leachate adjustment pond and purifying the leachate;
And a final disposal facility.
請求項3記載の最終処分施設において、
上記最終処分地の底部及び上記循環水路の底部に石灰岩から成る砕石を配置したことを特徴とする最終処分施設。
In the final disposal facility according to claim 3,
A final disposal facility, characterized in that crushed stone made of limestone is disposed at the bottom of the final disposal site and the bottom of the circulation channel.
JP2005236245A 2005-08-17 2005-08-17 Method for utilizing final disposal site, and final disposal facility Pending JP2007050326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005236245A JP2007050326A (en) 2005-08-17 2005-08-17 Method for utilizing final disposal site, and final disposal facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005236245A JP2007050326A (en) 2005-08-17 2005-08-17 Method for utilizing final disposal site, and final disposal facility

Publications (1)

Publication Number Publication Date
JP2007050326A true JP2007050326A (en) 2007-03-01

Family

ID=37915136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005236245A Pending JP2007050326A (en) 2005-08-17 2005-08-17 Method for utilizing final disposal site, and final disposal facility

Country Status (1)

Country Link
JP (1) JP2007050326A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101241817B1 (en) 2010-01-29 2013-03-14 주식회사 건화 Treatment method of leachates from landfill and device thereof
CN104069823A (en) * 2014-06-20 2014-10-01 苏州科技学院 Corynebacterium pekinense microbe adsorption agent and preparation method thereof
JP5997401B1 (en) * 2016-03-24 2016-09-28 公信 山▲崎▼ Rainwater treatment method for soil purification facilities to purify contaminated soil
JP5997402B1 (en) * 2016-03-24 2016-09-28 公信 山▲崎▼ Rainwater treatment method for soil purification facilities to purify contaminated soil
JP5997403B1 (en) * 2016-03-29 2016-09-28 公信 山▲崎▼ Rainwater treatment method for soil purification facilities to purify contaminated soil

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101241817B1 (en) 2010-01-29 2013-03-14 주식회사 건화 Treatment method of leachates from landfill and device thereof
CN104069823A (en) * 2014-06-20 2014-10-01 苏州科技学院 Corynebacterium pekinense microbe adsorption agent and preparation method thereof
JP5997401B1 (en) * 2016-03-24 2016-09-28 公信 山▲崎▼ Rainwater treatment method for soil purification facilities to purify contaminated soil
JP5997402B1 (en) * 2016-03-24 2016-09-28 公信 山▲崎▼ Rainwater treatment method for soil purification facilities to purify contaminated soil
JP5997403B1 (en) * 2016-03-29 2016-09-28 公信 山▲崎▼ Rainwater treatment method for soil purification facilities to purify contaminated soil

Similar Documents

Publication Publication Date Title
US8192626B2 (en) Wastewater chemical/biological treatment method for open water discharge
Tsihrintzis The use of vertical flow constructed wetlands in wastewater treatment
Ye et al. Full-scale treatment of landfill leachate by using the mechanical vapor recompression combined with coagulation pretreatment
Bali et al. Removal of phosphorus from secondary effluents using infiltration–percolation process
Babaei et al. Combined landfill leachate treatment methods: an overview
Yildiz Water and wastewater treatment: Biological processes
US8147702B2 (en) Method of making and using adsorbent to remove heavy metal from waste water
Fazal et al. Biological treatment of combined industrial wastewater
KR101218767B1 (en) Vegetation Wetland System for Treatment of Urban Non-Contaminant Pollutants by Aerobic and Anaerobic Decomposition
Abdel-Shafy et al. Landfill leachate: Sources, nature, organic composition, and treatment: An environmental overview
KR101030690B1 (en) Apparatus and method for control wastewater reuse and sewer overflows
JP2007050326A (en) Method for utilizing final disposal site, and final disposal facility
CN105036465A (en) Zero-emission process for oil refining wastewater
US20090230054A1 (en) Contaminant Removal System And Method For A Body Of Water
CN105439286B (en) A kind of vertical current sewage ecological treatment system
Hasnine et al. An overview of physicochemical and biological treatment of landfill leachate
KR100810556B1 (en) Water treatment equipment for purifying the polluted water including the storm water runoff using soil and vegetation
Yang et al. Roof runoff pollution control with operating time based on a field-scale assembled bioretention facility: Performance and microbial community dynamics
KR100619094B1 (en) A waste water disposal plant
Bodzek et al. Treatment of landfill leachate
KR100439535B1 (en) Mine drainage disposal system forming under the ground channel and method for treating of mine drainage using the same
BR102013018093B1 (en) PROCESS OF TREATMENT OF CHORUMES FROM SANITARY AND / OR INDUSTRIAL LANDFILLS
Torabian et al. Physicochemical and biological treatability studies of urban solid waste leachate
JP5273608B2 (en) Leachate treatment method and leachate treatment facility at waste disposal site
Heinzmann et al. An integrated water management concept to ensure a safe water supply and high drinking water quality on an ecologically sound basis

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080430

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080924