JP2007050314A - Method for optimizing how to decontaminate contaminated soil, and infiltration rate measuring instrument used therefor - Google Patents

Method for optimizing how to decontaminate contaminated soil, and infiltration rate measuring instrument used therefor Download PDF

Info

Publication number
JP2007050314A
JP2007050314A JP2005235387A JP2005235387A JP2007050314A JP 2007050314 A JP2007050314 A JP 2007050314A JP 2005235387 A JP2005235387 A JP 2005235387A JP 2005235387 A JP2005235387 A JP 2005235387A JP 2007050314 A JP2007050314 A JP 2007050314A
Authority
JP
Japan
Prior art keywords
chemical solution
contaminated soil
container
soil
chemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005235387A
Other languages
Japanese (ja)
Other versions
JP4680718B2 (en
Inventor
Yasuhide Furukawa
靖英 古川
Nobuyasu Okuda
信康 奥田
Takaaki Shimizu
孝昭 清水
Hiroshi Iwamoto
宏 岩本
Akira Morishima
章 森嶋
Katsumi Shirai
克巳 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2005235387A priority Critical patent/JP4680718B2/en
Publication of JP2007050314A publication Critical patent/JP2007050314A/en
Application granted granted Critical
Publication of JP4680718B2 publication Critical patent/JP4680718B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for optimizing how to decontaminate contaminated soil, in which a suitable condition can easily be decided with high precision when a liquid chemical is injected into contaminated soil at a site to decontaminate the contaminated soil while dispensing with the excavation/movement of the contaminated soil. <P>SOLUTION: The method for optimizing how to decontaminate the contaminated soil comprises: a sample collecting steps of digging the contaminated soil and collecting a sample of the contaminated soil to be decontaminated; an infiltration rate measuring step of packing the collected contaminated soil in a vessel having an injection port and a discharge port of the liquid chemical, injecting the liquid chemical to be used for decontamination in the predetermined pressure from the injection port and measuring a time and a flow rate to be taken since the liquid chemical is injected from the injection port until the injected liquid chemical is discharged from the discharge port to obtain the infiltration rate of the liquid chemical; and an optimization step of deciding at least one of what kind of the liquid chemical is used, how much of the liquid chemical is used and what pressure is applied to the liquid chemical on the basis of the obtained infiltration rate of the liquid chemical. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、汚染土壌を効率よく修復する条件を事前に決定するための汚染土壌修復の最適化方法及びそれに用いる浸透速度測定装置に関する。   The present invention relates to a method for optimizing contaminated soil repair for determining in advance conditions for efficiently repairing contaminated soil and an infiltration rate measuring apparatus used therefor.

近年、環境汚染問題の解決策として、有機物質等で汚染された土壌の汚染物質を除去し、土壌を修復するための種々の試みがなされており、例えば、汚染された土壌を掘削して表面に露出させ、汚染物質を分解する機能を有する微生物に有用な水や栄養素を注入し、微生物の機能により汚染物質を分解除去するいわゆるオンサイト(on−site)法が広く用いられてきた。   In recent years, as a solution to environmental pollution problems, various attempts have been made to remove soil pollutants contaminated with organic substances, etc., and repair the soil. A so-called on-site method has been widely used in which water and nutrients that are useful for microorganisms having a function of decomposing pollutants are injected, and the pollutants are decomposed and removed by the function of the microorganisms.

しかしながら、オンサイト法による処理においては、土壌を一旦掘削して処理し、さらにもとの状態に戻すための後処理を要するため、掘削した土壌の移動、堆積が煩雑であり、狭い場所における処理が不可能であった、さらに、比較的浅い土壌の処理には有効であるものの、深い部分の処理には、土壌の掘削、移動に要する手間と時間が掛るため処理が困難であった。   However, in the on-site process, the soil must be excavated once and then post-processed to return it to its original state. In addition, although it is effective for the treatment of relatively shallow soil, the treatment of deep portions is difficult due to the time and labor required for excavating and moving the soil.

このため、汚染された土壌に、処理に必要な薬剤を、その汚染物質の量によって決定した量で直接注入し、土壌中に拡散させ、そこに存在する汚染物質を処理する方法が行われている。従来は、現場土壌を採取してその土質、主として空隙率を測定し、透水係数、間隙比などから注入する間隔を決定し、その後、地盤の空隙率、充填率・注入率や使用薬剤量を決定し、その後、経験的に決定された基準速度で薬剤を注入する方法が一般的であった。このようにして決定された薬剤の注入量、注入速度に従い現地で薬剤注入を実施し、これに伴い汚染物質が汚染土壌周辺に拡散して影響を及ぼすことが確認された場合には、注入速度を低下させるなどの対応をとっていた。   For this reason, there is a method in which the chemicals required for treatment are directly injected into the contaminated soil in an amount determined by the amount of the pollutant and diffused into the soil to treat the pollutants present there. Yes. Conventionally, the soil in the field is collected and the soil quality, mainly the porosity, is measured, and the injection interval is determined from the hydraulic conductivity, the gap ratio, etc., and then the soil porosity, filling rate / injection rate and amount of drug used are determined. The method of determining and then injecting the drug at an empirically determined reference rate was common. If the drug injection is carried out on site according to the injection amount and injection rate determined in this way, and it is confirmed that the contaminants diffuse and affect the contaminated soil, the injection rate The measures such as lowering were taken.

汚染物質を処理する薬剤は、目的に応じて様々であり、例えば、重金属を不溶化するセメントなどの不溶化剤、水ガラスなど、VOCを還元脱塩素化するための金属系還元剤など、酸化分解のための過酸化水素などが選択され、土壌に注入される。この際、薬剤の量が過剰であったり、注入速度、注入圧が必要以上に高い場合には、コスト的に不利になるばかりでなく、処理対象の土壌以外に影響を与え、周辺井戸への薬剤流入など、環境的に好ましくない事態を引き起こすことも懸念される。
従来、現地で汚染土壌に薬剤を注入する際に、モデル的に決定した標準的な施工で、目的とする土壌の修復がなされているかを確認するために、チェックボーリング、掘削などを行って土壌の状態を観察してそれをフィードバックするなどの煩雑な方法をとっており、薬剤注入を用いた汚染土壌の修復に際しては、その最適化を簡易に行う方法が望まれているのが現状である。
The chemicals for treating the pollutants vary depending on the purpose. For example, insoluble agents such as cement that insolubilizes heavy metals, water glass, and other metal-based reducing agents for reductive dechlorination of VOCs. Hydrogen peroxide or the like is selected and injected into the soil. At this time, if the amount of the drug is excessive or the injection speed and pressure are higher than necessary, it will not only be disadvantageous in terms of cost, but it will affect other than the soil to be treated. There is also concern about causing environmentally unfavorable situations such as drug inflow.
Conventionally, when injecting chemicals into contaminated soil locally, in order to confirm whether the target soil has been repaired by standard construction determined in a model manner, the soil is subjected to check boring, excavation, etc. It is a complicated method, such as observing the state of the soil and feeding it back, and it is currently desired that a method for easily optimizing the contaminated soil using chemical injection is desired. .

上記問題点を考慮した本発明の目的は、土壌の掘削移動を必要とせず、現地において薬液を注入して汚染土壌を修復する際の好適な条件を、簡易に精度高く決定することができる汚染土壌修復の最適化方法を提供することにある。また、本発明の別の目的は、前記本発明の汚染土壌修復の最適化方法に好適に用いられる浸透速度測定装置を提供することにある。   The object of the present invention in consideration of the above problems is contamination that can easily and accurately determine suitable conditions for repairing contaminated soil by injecting chemicals in the field without requiring excavation and movement of soil. It is to provide a method for optimizing soil remediation. Another object of the present invention is to provide an infiltration rate measuring device suitably used in the method for optimizing contaminated soil repair of the present invention.

本発明の汚染土壌修復の最適化方法は、修復の対象となる汚染土壌試料を採取する試料採取工程と、採取された汚染土壌を、薬液の注入口と排出口とを有する容器に充填し、修復に使用する薬液を所定の圧力で注入口から注入し、容器内に充填された汚染土壌を通過した薬液が排出口から排出される間での時間及び流量を計測し、薬液の浸透速度を測定する浸透速度測定工程と、得られた薬液の浸透速度より、汚染土壌へ供給する薬液の種類、供給量、供給する際の注入圧力のうち少なくとも1つを決定する最適化工程と、を有することを特徴とする。   The method for optimizing a contaminated soil repair according to the present invention includes a sampling step for collecting a contaminated soil sample to be repaired, filling the collected contaminated soil into a container having a chemical solution inlet and a discharge port, The chemical solution used for restoration is injected from the injection port at a predetermined pressure, and the time and flow rate during which the chemical solution that has passed through the contaminated soil filled in the container is discharged from the discharge port is measured to determine the penetration rate of the chemical solution. An osmosis rate measuring step for measuring, and an optimization step for determining at least one of the type of chemical solution supplied to the contaminated soil, the supply amount, and the injection pressure at the time of supply from the penetration rate of the obtained chemical solution It is characterized by that.

本発明においては、前記浸透速度測定工程を1回行って所定の条件を決めてもよいが、浸透速度測定工程を薬液の注入圧力を変えて複数回行い、薬液の最適な注入圧力を決定することもできる。
また、前記浸透速度測定工程に先立って、採取された汚染土壌を充填した前記容器内に、水を注入する事前注水工程を実施することで、汚染土壌の透水係数を予め測定することができる。この事前注水工程は、標準的な土壌の場合には、モデル的に決定された透水係数を用いることもできる。
さらに、本発明においては、目的に応じて、浸透速度測定工程による薬液注入試験を行った後、事後の注水工程を実施し、薬液浸透による土壌の透水性の変化などを予測することもできる。
In the present invention, the permeation rate measurement step may be performed once to determine a predetermined condition, but the permeation rate measurement step is performed a plurality of times while changing the injection pressure of the chemical solution to determine the optimal injection pressure of the chemical solution. You can also.
Moreover, prior to the permeation rate measurement step, the hydraulic conductivity of the contaminated soil can be measured in advance by performing a pre-water injection step of injecting water into the container filled with the collected contaminated soil. In the case of standard soil, this pre-water injection process can use a hydraulic conductivity determined in a model manner.
Furthermore, in the present invention, depending on the purpose, after the chemical solution injection test by the permeation rate measurement step is performed, a subsequent water injection step can be performed to predict changes in soil permeability due to the chemical solution permeation.

本発明の請求項7に係る浸透速度測定装置は、採取した土壌試料を収納可能な容器と、前記容器の側面から容器内へ薬液を圧送する薬液注入手段と、前記容器の側面に設けられ、前記薬液注入手段で圧送され前記土壌試料を横方向に透過した薬液を回収し、薬液量を測定する薬液回収手段と、を有することを特徴とする。
このような浸透速度測定装置において、前記薬液注入手段が、前記容器の側面へ接続され、容器内部と連通する液送管と、前記液送管へ圧力を付与した薬液を圧送する圧力槽と、送液管に設けられ、容器内に圧送される薬液の圧力を検出する圧力センサとを有すること、前記送液管が分岐して前記容器の側面へ接続されること、或いは、前記容器の内壁と土壌試料との間にフィルターを設け、前記内壁とフィルターとの間に空隙を形成することが好ましい態様である。
The penetration rate measuring device according to claim 7 of the present invention is provided on a side surface of the container, a container capable of storing the collected soil sample, a chemical liquid injection means for pumping the chemical liquid from the side surface of the container into the container, And a chemical solution collecting means for collecting the chemical solution which is pumped by the chemical solution injection means and permeates the soil sample in the lateral direction, and measures the amount of the chemical solution.
In such a permeation rate measuring device, the chemical solution injection means is connected to the side surface of the container and communicates with the inside of the container, and a pressure tank that pumps the chemical solution applied with pressure to the liquid supply tube, A pressure sensor that is provided in the liquid feeding pipe and detects the pressure of the chemical liquid pumped into the container, the liquid feeding pipe is branched and connected to the side surface of the container, or the inner wall of the container It is a preferred embodiment that a filter is provided between the soil sample and the soil sample, and a gap is formed between the inner wall and the filter.

本発明の汚染土壌修復の最適化方法によれば、土壌の掘削移動を必要とせず、現地において薬液を注入して汚染土壌を修復する際の好適な条件を、室内試験により簡易に、且つ、高い精度で決定することができる。   According to the method for optimizing contaminated soil repair according to the present invention, it is not necessary to excavate and move the soil. It can be determined with high accuracy.

本発明の汚染土壌修復の最適化方法は、(1)修復の対象となる汚染土壌試料を採取する試料採取工程と、(2)採取された汚染土壌を、薬液の注入口と排出口とを有する容器に充填し、修復に使用する薬液を所定の圧力で注入口から注入し、容器内に充填された汚染土壌を通過した薬液が排出口から排出される間での時間と流量とを計測し、薬液の浸透速度を測定する浸透速度測定工程と、(3)得られた薬液の浸透速度より、汚染土壌へ供給する薬液の種類、供給量、供給する際の注入圧力のうち少なくとも1つを決定する最適化工程と、を有することを特徴とする。   The method for optimizing a contaminated soil according to the present invention includes (1) a sample collecting step for collecting a contaminated soil sample to be repaired, and (2) the collected contaminated soil with a chemical injection port and a discharge port. Measure the time and flow rate of the chemical solution that is filled in the container, injects the chemical solution used for repair from the injection port at a predetermined pressure, and the chemical solution that has passed through the contaminated soil filled in the container is discharged from the discharge port. And at least one of the kind of chemical solution supplied to the contaminated soil, the supply amount, and the injection pressure at the time of supply, based on the penetration rate of the obtained chemical solution. And an optimization step for determining.

以下、本発明の方法を詳細に説明する。
図1は、本発明の方法の概要を示すフローチャートである。
まず、前記(1)試料採取工程では、汚染土壌試料の採取と、所望により現場における土質調査を行う。この土壌試料を使用して薬液の注入試験を行う〔フローにおける工程(A)〕。このデータを基に土壌試料における薬液の移動の態様をプロットし〔フローにおける工程(B)〕、注入モデル式の作成と注入圧力の決定が行われ〔フローにおける工程(C)〕、さらに注入間隔の決定〔フローにおける工程(D)〕が実施されて、最終的な施工条件が決定される〔フローにおける工程(E)〕。
Hereinafter, the method of the present invention will be described in detail.
FIG. 1 is a flowchart showing an outline of the method of the present invention.
First, in the (1) sample collection step, a sample of contaminated soil is collected and, if desired, a soil survey is performed on site. A chemical injection test is performed using this soil sample [step (A) in the flow]. Based on this data, the mode of chemical movement in the soil sample is plotted [step (B) in the flow], the injection model formula is created and the injection pressure is determined [step (C) in the flow], and the injection interval [Step (D) in the flow] is performed, and final construction conditions are determined [Step (E) in the flow].

本発明の方法を適用する処理の対象となる汚染土壌の種類は任意であり、例えば、油類、重金属、ダイオキシン、PCB、VOCなどの有機ハロゲン化物、酸性物質、アルカリ性物質などが挙げられる。また、修復方法に用いられる薬液は汚染物質に応じて選択され、水ガラスなどの不溶化剤を薬剤として用い土壌中に汚染物質を固定化して汚染の拡散を抑制する方法の他、薬剤として、酸化マグネシウム、フェントン試薬などを用い、油分を処理する方法、水素除放剤(例えば、HRC:商品名、リジェネシス社製)、固体水素供与体(例えば、アムテクリーン:商品名、松下情報産業機器社製)、微生物分解促進剤(例えば、EDC:商品名、エコサイクル株式会社製)、金属系還元剤(例えば、特殊酸化鉄微粒子含有スラリーやナノアイロン:商品名:RNIP、戸田工業株式会社製)などを用い揮発性有機塩素化合物(本明細書中では、適宜、VOCと称する)を処理する方法、前記したフェントン試薬、金属系還元剤などを用い、ダイオキシン、PCBなどの有機塩素化合物を処理する方法、過酸化水素、酸化剤、アルカリ剤などを用いて酸性、或いはアルカリ性の物質を含有する土壌を中和する方法、などの、土壌中の汚染物質の無毒化、中和など、環境や人体への影響を抑制する方法のいずれにも適用できるが、薬剤の処理による影響を考慮すれば、所望されない薬剤を含む薬液を用いる方法や、固体微粒子、増粘剤などを含有し、土壌に浸透することで、土壌の透水性などを変化させる可能性のある薬剤を含む薬液を用いる際に、本発明の最適化方法を適用することで顕著な効果が得られるといえる。   The type of contaminated soil to be treated by applying the method of the present invention is arbitrary, and examples thereof include organic halides such as oils, heavy metals, dioxins, PCBs, and VOCs, acidic substances, and alkaline substances. In addition, the chemical solution used in the restoration method is selected according to the pollutant. In addition to the method of immobilizing the pollutant in the soil by using an insolubilizing agent such as water glass as a chemical to suppress the diffusion of the contamination, Method for treating oil using magnesium, Fenton reagent, etc., hydrogen release agent (for example, HRC: trade name, manufactured by Regenesis), solid hydrogen donor (for example, Amteclean: trade name, manufactured by Matsushita Information Industrial Equipment Co., Ltd.) ), Microbial degradation promoter (for example, EDC: trade name, manufactured by Ecocycle Co., Ltd.), metal-based reducing agent (for example, special iron oxide fine particle-containing slurry or nano iron: trade name: RNIP, manufactured by Toda Kogyo Co., Ltd.), etc. Using a method for treating a volatile organochlorine compound (referred to as VOC as appropriate in this specification), the above-described Fenton reagent, metal-based reducing agent, etc. Pollutants in soil, such as methods for treating organic chlorine compounds such as oxine and PCB, and methods for neutralizing soil containing acidic or alkaline substances using hydrogen peroxide, oxidizing agents, alkaline agents, etc. It can be applied to any method that suppresses the effects on the environment and human body, such as detoxification and neutralization, but considering the effect of the treatment of the drug, a method using a chemical solution containing an undesired drug, solid fine particles, By using the optimization method of the present invention when using a chemical solution containing a thickener and the like and containing a chemical that may change the water permeability of the soil by penetrating into the soil, a remarkable effect is obtained. It can be said that

〔(1)試料採取工程〕
まず、修復対象となる土壌の試料を採取する。修復の対象となる汚染土壌試料を採取する方法としては、土壌の掘削など公知の方法を任意に適用することができる。試料採取工程においては、公知の掘削装置、例えば、興亜開発株式会社製のジオプローブなど、ドリルなどによる掘削と、所定の深さにおける土壌サンプリングが可能であれば、いずれの装置を適用してもよい。
試料採取は処理対象領域において1カ所のみ行ってもよく、複数箇所で行ってもよい。
[(1) Sample collection process]
First, a soil sample to be repaired is collected. As a method for collecting a contaminated soil sample to be repaired, a known method such as soil excavation can be arbitrarily applied. In the sampling process, any well-known drilling device, for example, a geoprobe made by Koa Development Co., Ltd. can be used as long as drilling with a drill or the like and soil sampling at a predetermined depth are possible. Good.
Sampling may be performed at only one place in the processing target area, or may be performed at a plurality of places.

また、同時に汚染領域を特定することを要する場合には、所定の間隔、例えば、1m或いはそれ以下、間隔5m、10m、30mなど調査の精度に応じた間隔で試料を採取してもよく、そこに含まれる対象物質を分析して汚染領域を特定することができる。採取した土壌試料は、その後、後述する(2)工程における試料として用いることができる。   If it is necessary to specify the contaminated area at the same time, samples may be taken at predetermined intervals, for example, 1 m or less, intervals 5 m, 10 m, 30 m, etc., depending on the accuracy of the survey. It is possible to identify the contaminated area by analyzing the target substance contained in the. The collected soil sample can then be used as a sample in step (2) described later.

〔(2)浸透速度測定工程〕
図2は、この浸透速度測定工程と、所望により実施される予備試験である透水試験と、所望により実施される、薬液注入の影響を検知するための後透水試験とを含むフローチャートである。
(2)工程では、(2−1)採取された汚染土壌を、薬液の注入口と排出口とを有する試料容器に充填する工程と、(2−2)修復に使用する薬液を所定の圧力で注入口から注入する工程と、(2−3)容器内に充填された汚染土壌を通過した薬液が排出口から排出される間での時間と流量とを計測して薬液の浸透速度を測定する工程と、を含む。
[(2) Penetration rate measurement process]
FIG. 2 is a flowchart including the permeation rate measurement step, a water permeability test that is a preliminary test that is optionally performed, and a post-water permeability test that is optionally performed to detect the influence of chemical injection.
In the step (2), (2-1) a step of filling the sampled contaminated soil into a sample container having a chemical solution inlet and a discharge port; and (2-2) a chemical solution used for restoration at a predetermined pressure. And (2-3) measuring the time and flow rate during which the chemical solution that has passed through the contaminated soil filled in the container is discharged from the discharge port to measure the penetration rate of the chemical solution And a step of performing.

(2−1)採取された土壌試料を容器に充填するにあたっては、複数箇所から採取された土壌を混合した試料を用いることで、平均的な土壌試料による試験を行うことができる。また、汚染土壌の存在する箇所が予め検知され、その領域でのより詳細なデータをとろうとする場合、或いは、水平方向の浸透を正確に検知しようとする場合には、図3に示すように、ボーリングして採取した円筒形の土壌試料のうち、所定の領域の土壌をそのまま容器に充填して試験することができる。また、汚染土壌の存在する領域がある程度の深さにわたる場合には、図4に示すように、ボーリングして採取した円筒形の土壌(ボーリングコア試料)〔図4(A)〕を容器に充填しやすい形状に成形して〔図4(B)〕、その形状に適した容器に土壌試料として充填したもの〔図4(C)〕を用いることで、浸透速度測定に際し、より実際に即した浸透状態を観察することができる〔図4(D)〕。なお、図4(A)に示すようなボーリングコア試料は、通常、1m深度毎に採取する。   (2-1) When filling a collected soil sample into a container, an average soil sample test can be performed by using a sample obtained by mixing soil collected from a plurality of locations. Moreover, when the location where the contaminated soil exists is detected in advance and more detailed data in the area is to be obtained, or when it is intended to accurately detect horizontal infiltration, as shown in FIG. The cylindrical soil sample collected by boring can be tested by filling a predetermined region of soil into a container as it is. In addition, when the area where the contaminated soil exists extends to a certain depth, as shown in FIG. 4, the container is filled with cylindrical soil (boring core sample) [FIG. 4 (A)] collected by boring. It is more realistic to measure the infiltration rate by using a shape suitable for that shape (Fig. 4 (B)) and filling a container suitable for that shape as a soil sample (Fig. 4 (C)). The penetration state can be observed [FIG. 4D]. In addition, the boring core sample as shown in FIG. 4A is usually collected every 1 m depth.

ここで(2−2)工程に先立って、薬剤ではなく、水を注入する工程を行い、透水性を測定して土壌の特性(空隙係数など)を知ることが好ましい。
また、土壌の空隙係数は、所定のモデルに置き換えて予測することも可能であり、その場合には、この水を注入する工程(予備注水試験)は特に実施しなくてもかまわない。
Here, prior to the step (2-2), it is preferable to perform a step of injecting water instead of a drug, and measure water permeability to know soil properties (such as a void coefficient).
In addition, the soil void coefficient can be predicted by replacing it with a predetermined model. In this case, the step of injecting this water (preliminary water injection test) may not be particularly performed.

まず、現地で採取した土壌試料に薬液を注入し、移動距離を算出する。透水係数より各圧力における薬液の移動距離を予測し、現地での注入条件について事前に基礎データを得る。
図5は、本発明の方法に用いうる浸透速度計測装置10の一態様を示すモデル図である。
浸透速度計測装置10は、加圧手段を備えた薬液タンク12と透水試験に用いる水を供給するための水タンク14と土壌試料を充填する容器16と、薬液回収タンク18とを備え、これらは液送管(パイプ)20により連結されている。
First, a chemical solution is injected into a soil sample collected locally, and the travel distance is calculated. Predict the movement distance of the chemical solution at each pressure from the hydraulic conductivity, and obtain basic data in advance on the injection conditions at the site.
FIG. 5 is a model diagram showing an aspect of the permeation rate measuring apparatus 10 that can be used in the method of the present invention.
The permeation rate measuring apparatus 10 includes a chemical tank 12 having a pressurizing means, a water tank 14 for supplying water used for the water permeability test, a container 16 for filling a soil sample, and a chemical recovery tank 18. They are connected by a liquid feed pipe (pipe) 20.

土壌試料を充填する容器16は、円筒形を横にして配置した状態、即ち、円筒の端部が両側面となるように配置され、容器側面から水平方向に液が供給される。容器16は、該円筒形の容器の側面内壁の近傍に、土壌を通過させず液体を通過させうる一対のフィルター22A、22Bを備えており、この一対のフィルター22A、22Bが形成する空間に土壌が充填される。円筒形の容器において、薬液の注入側における内壁24Aとフィルター22Aとの間には空隙が設けられている。薬液の浸透速度を測定する場合、薬液タンク12から容器16に薬液が加圧供給されると、まず、薬液がフィルター22Aと側壁24Aと円筒形の外壁により形成された空間を満たし、その後、フィルター22Aを通過して円筒形の容器の側面から均一の圧力により土壌中に浸透する。土壌中の薬液の浸透状態を確認しやすいという観点からは円筒形の容器はガラス、アクリルなどの光透過性材料で形成されていることが好ましい。   The container 16 for filling the soil sample is disposed in a state where the cylinder is placed sideways, that is, the end of the cylinder is on both sides, and the liquid is supplied from the container side surface in the horizontal direction. The container 16 includes a pair of filters 22A and 22B that allow liquid to pass through without passing through the soil in the vicinity of the inner side wall of the cylindrical container, and the soil is formed in the space formed by the pair of filters 22A and 22B. Is filled. In the cylindrical container, a gap is provided between the inner wall 24A and the filter 22A on the chemical solution injection side. When measuring the permeation rate of the chemical solution, when the chemical solution is pressurized and supplied from the chemical solution tank 12 to the container 16, the chemical solution first fills the space formed by the filter 22A, the side wall 24A, and the cylindrical outer wall, and then the filter It passes through 22A and penetrates into the soil with uniform pressure from the side of the cylindrical container. From the viewpoint that it is easy to check the state of penetration of the chemical solution in the soil, the cylindrical container is preferably formed of a light transmissive material such as glass or acrylic.

容器16への薬液の注入方向は側面から横向きとし、注入を開始する。薬液の注入圧は薬液タンク12に連結されたコンプレッサー26及び圧力調整弁30により一定に維持される。圧力調整は加圧気体を充填したボンベから気体を供給することにより行うこともできる。液体の圧力は、容器16へ接続するパイプ20に取り付けられた圧力検出センサ32により行われる。
薬液が充填した土壌内に浸透し、フィルター22Bを通過して側壁24Bに連通された液送管20により薬液回収タンク18へ排出される。薬液回収タンク18内の液体はその体積を計測するための目盛りを備える。排出される薬液の総量が一定の量となったとき、例えば、排出される薬液の総量が1000mLとなった時点で注入を停止する。注入開始から停止までの時間と各時間における排出量を計測する。
The injection direction of the chemical liquid into the container 16 is set laterally from the side, and injection is started. The injection pressure of the chemical liquid is maintained constant by the compressor 26 and the pressure adjustment valve 30 connected to the chemical liquid tank 12. Pressure adjustment can also be performed by supplying gas from a cylinder filled with pressurized gas. The pressure of the liquid is performed by a pressure detection sensor 32 attached to the pipe 20 connected to the container 16.
It penetrates into the soil filled with the chemical solution, passes through the filter 22B, and is discharged to the chemical solution recovery tank 18 through the liquid feed tube 20 communicated with the side wall 24B. The liquid in the chemical solution recovery tank 18 has a scale for measuring its volume. When the total amount of discharged chemical solution reaches a certain amount, for example, the injection is stopped when the total amount of discharged chemical solution reaches 1000 mL. The time from the start of injection to the stop and the amount discharged at each time are measured.

この試験において、単位時間あたりの排水量をQ、動水勾配をi、円筒形ケースの断面積をAとして、これらの数値から流速vを以下の式に従って算出し、さらに透水係数kを求める。
Q=k・A・iにおいて、Q=A・vから、v=k・iで表される。このようにして土壌試料特有の、当該薬液に対する透水係数kを求める。
この使用薬液に対する透水係数kは、流れが層流の場合、当該土壌については定数である。
In this test, Q is the amount of drainage per unit time, i is the hydraulic gradient, and A is the cross-sectional area of the cylindrical case. From these values, the flow velocity v is calculated according to the following equation, and the permeability coefficient k is obtained.
In Q = k · A · i, from Q = A · v, v = k · i. Thus, the hydraulic conductivity k with respect to the said chemical | medical solution peculiar to a soil sample is calculated | required.
The hydraulic conductivity k for the chemical solution used is a constant for the soil when the flow is laminar.

ここで、本発明の浸透速度測定装置について説明する。
本発明の浸透速度測定装置は、採取した土壌試料を収納可能な容器16と、前記容器の側面から容器内へ薬液を圧送する薬液注入手段と、前記容器の側面に設けられ、前記薬液注入手段で圧送され前記土壌試料を横方向に透過した薬液を回収し、薬液量を測定する薬液回収手段18と、を有することを特徴とする。
Here, the penetration rate measuring apparatus of the present invention will be described.
The penetration rate measuring device of the present invention is provided with a container 16 capable of storing a collected soil sample, a chemical solution injection means for pumping a chemical solution from the side surface of the container into the container, a side surface of the container, and the chemical solution injection means And a chemical solution collecting means 18 for collecting the chemical solution that has been pumped in and passed through the soil sample in the lateral direction and measures the amount of the chemical solution.

前記薬液注入手段が、容器16の側面へ接続され、容器16内部と連通する液送管20と、前記液送管へ圧力を付与した薬液を圧送する圧力槽12と、送液管に設けられ、容器内に圧送される薬液の圧力を検出する圧力センサ32とを有することが好ましい。また、側面からの薬液の浸透を均一にするという観点からは、容器に薬液を供給する送液管が、図6に示すように分岐して容器16の側面へ接続されることが好ましい。また、同様の目的で、図5に示すように、容器16の内壁24Aと土壌試料との間にフィルター22Aを設け、内壁24Aとフィルター22Aとの間に空隙を形成することも好ましい。   The chemical solution injection means is connected to the side surface of the container 16 and is provided in the liquid supply tube 20 that communicates with the inside of the container 16, the pressure tank 12 that pumps the chemical solution applied with pressure to the liquid supply tube, and the liquid supply tube. It is preferable to have a pressure sensor 32 that detects the pressure of the chemical liquid fed into the container. Further, from the viewpoint of making the permeation of the chemical solution from the side surface uniform, it is preferable that the liquid supply pipe for supplying the chemical solution to the container is branched and connected to the side surface of the container 16 as shown in FIG. For the same purpose, as shown in FIG. 5, it is also preferable to provide a filter 22A between the inner wall 24A of the container 16 and the soil sample, and to form a gap between the inner wall 24A and the filter 22A.

薬液の浸透状態を確認するという観点からは、容器16は光透過性の素材、例えば、ガラスや透明のプラスチック板で形成されることが好ましい。この観察により、均一に浸透する注入圧力を選択することが均一な修復処理の観点からは好ましい。試料土壌に対して圧力が高すぎる場合、局所的に浸透の早い部分と遅い部分が生じ(脈状注入或いは割裂注入)、結果として、部分的に薬液が浸透しない箇所ができ、汚染物質が浄化されないまま一部残存する懸念があり、好ましくない。具体的には、図4(D)に示すように、局所的に薬液が早く浸透する空隙が存在する場合が挙げられる。このような浸透の不均一は薬液の注入圧力を選択することで緩和することも可能であるが、これが土壌の局所的な不均一、例えば、比較的大きな礫が存在することに起因する場合には、圧力による緩和が困難であり、土壌中の不均一による透水しやすい箇所を見出した場合、予め固形化剤などを注入し、透水しやすい空隙を塞いだ後、注入工程を行うといった対策をとることもできる。即ち、本発明の最適化方法により、土壌の実際の状態に即した条件を選択することができる。   From the viewpoint of confirming the state of penetration of the chemical solution, the container 16 is preferably formed of a light transmissive material, for example, glass or a transparent plastic plate. From this observation, it is preferable to select an injection pressure that penetrates uniformly from the viewpoint of a uniform repair process. If the pressure is too high for the sample soil, there will be a locally fast penetration part and a slow penetration part (pulse injection or split injection). There is a concern that a part of it may remain without being preferable. Specifically, as shown in FIG. 4D, there may be a case where there is a space where the chemical solution penetrates quickly locally. Such non-uniformity of infiltration can be mitigated by selecting the injection pressure of the chemical solution, but this is caused by local non-uniformity of the soil, for example, the presence of relatively large gravel. If it is difficult to relax due to pressure and finds a place where water is easily permeable due to unevenness in the soil, a solidifying agent or the like is injected in advance, and after filling the easily permeable space, an injection process is performed. It can also be taken. That is, the optimization method of the present invention can select conditions that are in line with the actual state of the soil.

この工程においては、薬液に含有させる有効成分の量を事前に計測し、薬液への供給量を決定した後、実際に使用する薬液の比重、粘度などを測定することが好ましい。
また、温度により粘度が変化する薬液を用いる場合には、薬液温度も重要な浸透性に対する重要なファクターとなる。
In this step, it is preferable to measure the specific gravity, viscosity, and the like of the actually used chemical solution after measuring the amount of the active ingredient contained in the chemical solution in advance and determining the supply amount to the chemical solution.
In addition, when using a chemical solution whose viscosity changes with temperature, the chemical solution temperature is also an important factor for penetrability.

先に図2のフローチャートの説明で述べたように、前記薬液による注入試験の前後に、必要に応じて透水試験を行う。透水試験を行う場合、薬液タンク12のバルブを閉じておき、水タンク14から水を、定水位法、即ち、水タンクの液面を常に一定に維持することで水圧を一定に維持しながら供給する他は、前記薬液による試験と同様に行い、水の透水係数kを得る。この透水試験を行うことで土壌の特性などを予め知ることで、薬液注入試験における液の供給条件をある程度予測することができるという利点を有する。
また、当該土壌が均一であり、モデル的な環境に近い場合には、公知のモデル試料、例えば、豊浦標準砂、浅間山砂など、の透水性に係る既存データを適用することができ、このような場合には、土壌試料を用いた事前の透水試験は特に必要ではない。
As described above with reference to the flowchart of FIG. 2, a water permeability test is performed as necessary before and after the injection test with the chemical solution. When conducting a water permeability test, the valve of the chemical liquid tank 12 is closed and water is supplied from the water tank 14 while maintaining the water pressure constant by the constant water level method, that is, by constantly maintaining the liquid level of the water tank. Otherwise, the water permeability coefficient k is obtained in the same manner as in the test using the chemical solution. By knowing the characteristics of the soil in advance by performing this water permeability test, the liquid supply conditions in the chemical liquid injection test can be predicted to some extent.
In addition, when the soil is uniform and close to a model environment, existing data related to water permeability of known model samples such as Toyoura standard sand and Asama mountain sand can be applied. In such a case, a prior water permeability test using a soil sample is not particularly necessary.

薬液注入試験の後で透水試験を行うことは、薬液注入後の土壌の物性変化を予測する点で有用である。即ち、用いる薬液が金属微粒子などの固体を含む場合、或いは、増粘剤、分散剤などを含む場合には、これらの使用により土壌の透水特性が変化する可能性があり、この点を予め予測できる。もし、この変化が大きく、環境に影響を与えることが懸念される場合などは、使用する薬液の種類を変更したり、或いは、薬液注入による汚染土壌修復方法そのものを断念し、他の代替方法をとる等の事態も起こりうる。
これらの水を用いた事前或いは事後の透水試験は、薬液注入試験前後で同じ方法で行うことができる。
Performing a water permeability test after a chemical solution injection test is useful for predicting changes in physical properties of the soil after the chemical solution injection. In other words, when the chemical solution used contains solids such as metal fine particles, or when it contains a thickener, dispersant, etc., the water permeability characteristics of the soil may change due to their use, and this point is predicted in advance. it can. If this change is large and there is a concern that it may affect the environment, change the type of chemical solution used, or give up the method for remediating contaminated soil by injecting chemical solution, and replace it with another alternative method. It can happen.
The previous or subsequent water permeability test using these waters can be performed by the same method before and after the chemical solution injection test.

〔(3)最適化工程〕
このようにして、薬液の浸透速度、透水係数kなどを求めることにより、汚染土壌へ供給する薬液の種類及び供給量を最適化することができる。即ち、汚染土壌の量、存在する場所、及び修復を行う地域の周辺環境(例えば、井戸使用状況)などにより、速やかに浸透する薬液、或いは、必要以上に浸透しない薬液のいずれを選択すべきか、即ち、使用する薬液の種類、また、汚染土壌の量や存在する領域の体積に適合する当該薬液の最適な供給量、供給する際の注入圧力などのいずれか或いは全てを精度高く予測し、決定することが可能となる。
(2)浸透速度測定工程で得られた、各薬液毎の注入圧力と移動距離とをプロットして、注入モデルを近似し、汚染土壌に最適な薬液量を決定し、必要な移動距離を確保しうる注入圧力を決定することができる。
また、移動距離と時間とのファクターを考慮し、汚染土壌修復対象領域においてどのような間隔で薬液注入を行えば最適かを予測することも可能である。
さらにこの方法により、薬液、注入圧力、注入のためのボーリング間隔などを予測することができるため、コストを考慮した最適化を行うことができるという利点をも有するものである。
[(3) Optimization process]
Thus, by obtaining the permeation rate of the chemical solution, the water permeability coefficient k, etc., the type and supply amount of the chemical solution supplied to the contaminated soil can be optimized. In other words, depending on the amount of contaminated soil, the location where it is present, and the surrounding environment (for example, well use conditions) of the area to be repaired, it should be selected whether the chemical solution penetrates quickly or does not penetrate more than necessary. In other words, it accurately predicts and determines any or all of the types of chemicals to be used, the optimal amount of chemicals that match the volume of contaminated soil and the volume of the existing area, and the injection pressure at the time of supply. It becomes possible to do.
(2) Plotting the injection pressure and movement distance for each chemical solution obtained in the permeation rate measurement process, approximating the injection model, determining the optimal amount of chemical solution for contaminated soil, and securing the necessary movement distance Possible injection pressures can be determined.
In addition, it is possible to predict the optimal time when the chemical solution is injected in the contaminated soil restoration target region in consideration of the factors of the moving distance and time.
Furthermore, since this method can predict the chemical solution, the injection pressure, the boring interval for injection, etc., it has an advantage that optimization considering cost can be performed.

また、本発明の方法により、使用する薬液、注入圧力、注入のためのボーリング間隔などを決定することにより、処理対象土壌の量、施工場所の面積、使用する装置などを考慮すれば、予め、正確なコストを予測することも可能となる。   In addition, by determining the chemical solution to be used, the injection pressure, the boring interval for injection, etc. by the method of the present invention, considering the amount of soil to be treated, the area of the construction site, the device to be used, etc., in advance, It is also possible to predict an accurate cost.

本発明の方法で最適化した施工条件で汚染土壌の存在する領域で薬液注入を行う方法には特に制限はなく、二重管ダブルパッカー、二重管ストレーナー、ジオプローブ(興亜開発株式会社製)、単管ロッド注入、三重管ロッド注入など公知の注入工法を用いることができる。   There is no particular limitation on the method of injecting the chemical solution in the region where the contaminated soil exists under the construction conditions optimized by the method of the present invention. Double tube double packer, double tube strainer, Geoprobe (manufactured by Koa Development Co., Ltd.) Well-known injection methods such as single tube rod injection and triple tube rod injection can be used.

以下、本発明を、実施例を挙げてより具体的に説明するが本発明はこれらに限定されるものではない。
(実施例1)
本発明の方法を用いて、使用する薬液の種類を最適化する方法の例を示す。
まず、現地の試料土壌を採取し、薬液の透水性試験を行ない、当該地盤における薬液の移動速度を求め、適した薬液を選定する。
Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.
Example 1
The example of the method of optimizing the kind of chemical | medical solution to be used using the method of this invention is shown.
First, a sample soil is collected and a chemical permeability test is performed to determine the movement speed of the chemical on the ground, and a suitable chemical is selected.

使用する浸透速度計測装置は図5のモデル図で示した装置である。
加圧手段を備えた薬液タンク12はステンレス製で直径97.6φ、高さ200mmであり、薬液充填後にコンプレッサ−により上部から加圧して所定の注入圧を確保する。土壌試料を充填する容器16本体はアクリル樹脂製の透明な円筒であり、直径90mm、長さ113mmである。注入口側に配置されたフィルター22Aは、直径1〜10mm程度の鉛玉と穴あきプラスチック板とを積層して形成したものであり、薬液の浸透は妨げないが、土壌は通過できない。排出口側に配置されたフィルター22Bもまた、直径1〜10mm程度の鉛玉を用いて作製されたものである。
薬液タンク12と容器16とはステンレス製パイプ20により連結されている。注入圧力は圧力計〔Pressure Transducer PA−850(商品名:日本電産コパル電子社製)〕32を用いて測定し、データロガー サーミック Model 2300A(商品名:江藤電気株式会社製)に接続して、連続的に計測を行っている。
The permeation rate measuring device used is the device shown in the model diagram of FIG.
The chemical tank 12 provided with a pressurizing means is made of stainless steel and has a diameter of 97.6φ and a height of 200 mm. After filling the chemical liquid, it is pressurized from above by a compressor to ensure a predetermined injection pressure. The main body of the container 16 filled with the soil sample is a transparent cylinder made of acrylic resin, and has a diameter of 90 mm and a length of 113 mm. The filter 22A disposed on the inlet side is formed by laminating a lead ball having a diameter of about 1 to 10 mm and a perforated plastic plate, and does not prevent the penetration of the chemical solution, but cannot pass through the soil. The filter 22B disposed on the discharge port side is also produced using a lead ball having a diameter of about 1 to 10 mm.
The chemical tank 12 and the container 16 are connected by a stainless steel pipe 20. The injection pressure was measured using a pressure gauge [Pressure Transducer PA-850 (trade name: manufactured by Nidec Copal Electronics)] 32 and connected to a data logger Thermic Model 2300A (trade name: manufactured by Eto Denki Co., Ltd.). Measure continuously.

この場合、浸透性の異なる3種の薬液(高浸透型の薬液A、通常浸透型の薬液B、低浸透型の薬液C)を用いて注入試験を行った。各薬液の詳細は以下の通りである。
高浸透型薬液A:平均粒径70nmのα−Fe・Fe34複合粒子をポリアスパラギン酸ナトリウム塩20質量%水溶液に25質量%分散させた分散液
通常浸透型の薬液B:平均粒径70nmのα−Fe・Fe34複合粒子をポリアスパラギン酸ナトリウム塩5質量%水溶液に25質量%分散させた分散液、
低浸透型の薬液C:平均粒径70nmのα−Fe・Fe34複合粒子を水に25質量%分散させた分散液
In this case, an injection test was performed using three types of chemical solutions having different permeability (a high-penetration type chemical solution A, a normal osmotic type chemical solution B, and a low-penetration type chemical solution C). Details of each chemical solution are as follows.
High penetration type chemical solution A: Dispersion in which α-Fe · Fe 3 O 4 composite particles having an average particle size of 70 nm are dispersed in an aqueous solution of 20% by mass of polyaspartic acid sodium salt, 25% by mass Normal osmotic type chemical solution B: Average particle size A dispersion obtained by dispersing 25% by mass of 70 nm α-Fe · Fe 3 O 4 composite particles in a 5% by mass aqueous solution of polyaspartic acid sodium salt;
Low penetration type chemical C: Dispersion in which α-Fe · Fe 3 O 4 composite particles having an average particle diameter of 70 nm are dispersed in water by 25% by mass

所定の圧力注入での各薬液の移動速度の計算結果を下記表1に示す。図7は、その計算結果をプロットしたグラフである。薬液を注入する前の試料土壌の透水係数は、8×10-3〜23×10-3cm/secの範囲であり、ほぼ、対象地盤の透水性を再現できている。
経済的な観点から、注入井戸一本あたりの影響半径はより広く取ることが望ましく、計画目標値は移動距離100cm以上の確保を目指した。
The calculation results of the moving speed of each chemical solution at a predetermined pressure injection are shown in Table 1 below. FIG. 7 is a graph plotting the calculation results. The water permeability coefficient of the sample soil before injecting the chemical solution is in the range of 8 × 10 −3 to 23 × 10 −3 cm / sec, and substantially reproduces the water permeability of the target ground.
From an economic point of view, it is desirable that the influence radius per injection well be wider, and the planned target value is to secure a moving distance of 100 cm or more.

Figure 2007050314
Figure 2007050314

表1及び図7のグラフに明らかなように、高浸透型の薬液Aは、注入圧300kPaで、51.2cm/hrの移動速度が見込めるが、低浸透型の薬液C、通常浸透型の薬液Bでは移動速度が4.7cm/hr、12.5cm/hrに留まることが確認できた。このため、前記移動距離を考慮すると使用薬液としては高浸透型の薬液Aを選定することが好ましいことがわかる。
本地盤における注入条件としては、注入圧力300kPa、注入時間1時間で、移動距離51.2cmとなることから、計画目標値を達成するためには高浸透型の薬液Aを用い、注入圧力600kPaとすることで、移動距離100cmを確保できることがわかり、この移動距離に応じて注入井戸の間隔、設置本数を設定することができる。
As is apparent from the graphs in Table 1 and FIG. 7, the high penetration type chemical solution A can be expected to have a moving speed of 51.2 cm / hr at an injection pressure of 300 kPa, but the low penetration type chemical solution C, the normal penetration type chemical solution. In B, it was confirmed that the moving speed remained at 4.7 cm / hr and 12.5 cm / hr. For this reason, when the movement distance is taken into consideration, it is understood that it is preferable to select the highly osmotic chemical A as the chemical used.
As the injection conditions in this ground, the injection pressure is 300 kPa, the injection time is 1 hour, and the moving distance is 51.2 cm. In order to achieve the planned target value, the high penetration type chemical solution A is used, and the injection pressure is 600 kPa. By doing this, it can be seen that a moving distance of 100 cm can be secured, and the interval and number of installed wells can be set according to this moving distance.

本発明の汚染土壌修復の最適化方法の概要を示すフローチャートである。It is a flowchart which shows the outline | summary of the optimization method of the contaminated soil repair of this invention. 本発明の汚染土壌修復の最適化方法のうち、浸透速度測定工程の概要を示すフローチャートである。It is a flowchart which shows the outline | summary of an osmosis | permeation rate measurement process among the optimization methods of the contaminated soil repair of this invention. ボーリングして採取した円筒形の土壌(ボーリングコア試料)から浸透速度測定装置に適用する土壌試料を地面と水平方向に採取する態様を示すモデル図である。It is a model figure which shows the aspect which extract | collects the soil sample applied to an osmosis | permeation rate measuring apparatus from the cylindrical soil (boring core sample) extract | collected by boring in the horizontal direction. (A)〜(C)はボーリングして採取した円筒形の土壌(ボーリングコア試料)から、深さ方向における浸透速度測定を測定するために浸透速度測定装置に適用する土壌試料を作製する態様を示すモデル図であり、(D)は、容器中における薬液浸透の不均一性を示すモデル図である。(A) to (C) show a mode of preparing a soil sample to be applied to a permeation rate measuring device in order to measure a permeation rate measurement in the depth direction from a cylindrical soil (boring core sample) collected by boring. It is a model figure to show, (D) is a model figure which shows the nonuniformity of the chemical | medical solution osmosis | permeation in a container. 本発明の汚染土壌修復の最適化方法に用いられる浸透速度計測装置の一態様を示すモデル図である。It is a model figure which shows the one aspect | mode of the osmosis | permeation rate measuring apparatus used for the optimization method of the contaminated soil repair of this invention. 薬液を供給する送液管が分岐して土壌試料を充填する容器に接続される態様を示すモデル図である。It is a model figure which shows the aspect connected to the container into which the liquid feeding pipe which supplies a chemical | medical solution branches and is filled with a soil sample. 実施例1における薬液の注入圧力と薬液の移動距離との関係を示すグラフである。4 is a graph showing the relationship between the injection pressure of the chemical liquid and the movement distance of the chemical liquid in Example 1.

符号の説明Explanation of symbols

10 浸透速度測定装置
12 薬液タンク(圧力槽)
16 土壌試料を充填する容器
18 排出タンク(薬液回収手段)
10 Penetration rate measuring device 12 Chemical tank (pressure tank)
16 Container filled with soil sample 18 Discharge tank (chemical solution recovery means)

Claims (10)

修復の対象となる汚染土壌試料を採取する試料採取工程と、
採取された汚染土壌を、薬液の注入口と排出口とを有する容器に充填し、修復に使用する薬液を所定の圧力で注入口から注入し、容器内に充填された汚染土壌を通過した薬液が排出口から排出される間での時間及び流量を計測し、薬液の浸透速度を測定する浸透速度測定工程と、
得られた薬液の浸透速度より、汚染土壌へ供給する薬液の種類、供給量、供給する際の注入圧力のうち少なくとも1つを決定する最適化工程と、を有する汚染土壌修復の最適化方法。
A sampling process for collecting contaminated soil samples to be repaired;
The collected contaminated soil is filled into a container having a chemical solution inlet and outlet, the chemical solution used for repair is injected from the inlet at a predetermined pressure, and the chemical solution passes through the contaminated soil filled in the container. A permeation rate measurement process for measuring the time and flow rate during which the liquid is discharged from the discharge port and measuring the permeation rate of the chemical solution;
An optimization method for remediating contaminated soil, comprising: an optimization step for determining at least one of the type of chemical solution supplied to the contaminated soil, the supply amount, and the injection pressure at the time of supply from the penetration rate of the obtained chemical solution.
前記浸透速度測定工程を、薬液の注入圧力を変えて複数回行い、薬液の最適な注入圧力を決定することを特徴とする請求項1に記載の汚染土壌修復の最適化方法。   The method for optimizing a contaminated soil according to claim 1, wherein the permeation rate measurement step is performed a plurality of times while changing the injection pressure of the chemical solution to determine the optimal injection pressure of the chemical solution. 前記浸透速度測定工程に先立って、採取された汚染土壌を充填した前記容器内に、水を注入する事前注水工程を実施することを特徴とする請求項1又は請求項2に記載の汚染土壌修復の最適化方法。   The contaminated soil remediation according to claim 1 or 2, wherein a pre-water injection step of injecting water into the container filled with the collected contaminated soil is performed prior to the infiltration rate measuring step. Optimization method. 前記汚染土壌が汚染物質として揮発性有機塩素化合物(VOC)を含有し、注入する薬液が金属系還元剤の分散液であることを特徴とする請求項1又は請求項2に記載の汚染土壌修復の最適化方法。   The contaminated soil remediation according to claim 1 or 2, wherein the contaminated soil contains a volatile organochlorine compound (VOC) as a contaminant, and the injected chemical is a dispersion of a metal-based reducing agent. Optimization method. 前記汚染土壌が汚染物質として揮発性有機塩素化合物(VOC)を含有し、注入する薬液がフェントン試薬であることを特徴とする請求項1又は請求項2に記載の汚染土壌修復の最適化方法。   The method for optimizing a contaminated soil according to claim 1 or 2, wherein the contaminated soil contains a volatile organic chlorine compound (VOC) as a contaminant, and a chemical to be injected is a Fenton reagent. 前記汚染土壌が汚染物質として油分を含有し、注入する薬液がフェントン試薬であることを特徴とする請求項1又は請求項2に記載の汚染土壌修復の最適化方法。   The method for optimizing a contaminated soil according to claim 1 or 2, wherein the contaminated soil contains oil as a contaminant, and a chemical solution to be injected is a Fenton reagent. 採取した土壌試料を収納可能な容器と、
前記容器の側面から容器内へ薬液を圧送する薬液注入手段と、
前記容器の側面に設けられ、前記薬液注入手段で圧送され前記土壌試料を横方向に透過した薬液を回収し、薬液量を測定する薬液回収手段と、を有することを特徴とする浸透速度測定装置。
A container that can store the collected soil sample;
Chemical injection means for pumping the chemical from the side of the container into the container;
An osmotic rate measuring device, comprising: a chemical solution collecting means for collecting a chemical solution which is provided on a side surface of the container and is pumped by the chemical solution injecting means and permeates the soil sample in a lateral direction, and measures the amount of the chemical solution. .
前記薬液注入手段が、前記容器の側面へ接続され、容器内部と連通する液送管と、前記液送管へ圧力を付与した薬液を圧送する圧力槽と、送液管に設けられ、容器内に圧送される薬液の圧力を検出する圧力センサとを有することを特徴とする請求項7に記載の浸透速度測定装置。   The chemical solution injecting means is connected to a side surface of the container and communicates with the inside of the container, a pressure tank for pumping a chemical solution applied with pressure to the liquid supply tube, and a liquid supply tube. The osmotic velocity measuring device according to claim 7, further comprising a pressure sensor that detects a pressure of the chemical liquid pumped to the surface. 前記送液管が分岐して前記容器の側面へ接続されることを特徴とする請求項7又は請求項8に記載の浸透速度測定装置。   The permeation rate measuring device according to claim 7 or 8, wherein the liquid feeding pipe is branched and connected to a side surface of the container. 前記容器の内壁と土壌試料との間にフィルターを設け、前記内壁とフィルターとの間に空隙を形成することを特徴とする請求項7乃至請求項9のいずれか1項に記載の浸透速度測定装置。   The permeation rate measurement according to any one of claims 7 to 9, wherein a filter is provided between the inner wall of the container and a soil sample, and a gap is formed between the inner wall and the filter. apparatus.
JP2005235387A 2005-08-15 2005-08-15 Optimization method for remediation of contaminated soil and permeation rate measuring device used therefor Expired - Fee Related JP4680718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005235387A JP4680718B2 (en) 2005-08-15 2005-08-15 Optimization method for remediation of contaminated soil and permeation rate measuring device used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005235387A JP4680718B2 (en) 2005-08-15 2005-08-15 Optimization method for remediation of contaminated soil and permeation rate measuring device used therefor

Publications (2)

Publication Number Publication Date
JP2007050314A true JP2007050314A (en) 2007-03-01
JP4680718B2 JP4680718B2 (en) 2011-05-11

Family

ID=37915126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005235387A Expired - Fee Related JP4680718B2 (en) 2005-08-15 2005-08-15 Optimization method for remediation of contaminated soil and permeation rate measuring device used therefor

Country Status (1)

Country Link
JP (1) JP4680718B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103424341A (en) * 2013-08-08 2013-12-04 河海大学 Simulator for transport of soil pollutant
CN104833788A (en) * 2014-12-26 2015-08-12 中国科学院武汉岩土力学研究所 Polluted soil repairing process simulation test system
CN106124366A (en) * 2016-08-31 2016-11-16 温州大学 The undisturbed soil sampling device used in undisturbed soil contaminant transportation test method under load action and test
CN109883894A (en) * 2019-03-29 2019-06-14 西南石油大学 A kind of superhigh temperature super-pressure stable state air water mutually seeps test device and test method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02268249A (en) * 1989-04-11 1990-11-01 Taisei Corp Water permeability testing method
JPH0775772A (en) * 1993-06-18 1995-03-20 Kankyo Eng Kk Method for restoring soil
JPH08108170A (en) * 1994-10-14 1996-04-30 Canon Inc Purification of contaminated soil and contaminated ground water
JP2003145129A (en) * 2001-11-15 2003-05-20 Mitsubishi Heavy Ind Ltd Cleaning agent and method for cleaning contaminated soil using this
JP2003166987A (en) * 2001-11-29 2003-06-13 Sumikon Serutekku Kk Soil-filled column testing system
JP2004361193A (en) * 2003-06-04 2004-12-24 Tobishima Corp Water permeability test apparatus
JP2005095750A (en) * 2003-09-24 2005-04-14 Tosoh Corp Treatment method for detoxicating object matter polluted with organic halogen compound

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02268249A (en) * 1989-04-11 1990-11-01 Taisei Corp Water permeability testing method
JPH0775772A (en) * 1993-06-18 1995-03-20 Kankyo Eng Kk Method for restoring soil
JPH08108170A (en) * 1994-10-14 1996-04-30 Canon Inc Purification of contaminated soil and contaminated ground water
JP2003145129A (en) * 2001-11-15 2003-05-20 Mitsubishi Heavy Ind Ltd Cleaning agent and method for cleaning contaminated soil using this
JP2003166987A (en) * 2001-11-29 2003-06-13 Sumikon Serutekku Kk Soil-filled column testing system
JP2004361193A (en) * 2003-06-04 2004-12-24 Tobishima Corp Water permeability test apparatus
JP2005095750A (en) * 2003-09-24 2005-04-14 Tosoh Corp Treatment method for detoxicating object matter polluted with organic halogen compound

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103424341A (en) * 2013-08-08 2013-12-04 河海大学 Simulator for transport of soil pollutant
CN104833788A (en) * 2014-12-26 2015-08-12 中国科学院武汉岩土力学研究所 Polluted soil repairing process simulation test system
CN104833788B (en) * 2014-12-26 2023-09-29 中国科学院武汉岩土力学研究所 Polluted soil restoration process simulation test system
CN106124366A (en) * 2016-08-31 2016-11-16 温州大学 The undisturbed soil sampling device used in undisturbed soil contaminant transportation test method under load action and test
CN109883894A (en) * 2019-03-29 2019-06-14 西南石油大学 A kind of superhigh temperature super-pressure stable state air water mutually seeps test device and test method
CN109883894B (en) * 2019-03-29 2024-03-26 西南石油大学 Ultrahigh-temperature ultrahigh-pressure steady-state gas-water permeability testing device and testing method

Also Published As

Publication number Publication date
JP4680718B2 (en) 2011-05-11

Similar Documents

Publication Publication Date Title
US7264419B2 (en) System and method for remediating contaminated soil and groundwater in situ
US20060046297A1 (en) In situ remedial alternative and aquifer properties evaluation probe system
US7845883B1 (en) Method for remediation of contaminated subsurface area
KR101410905B1 (en) System and method for removing a residual dense non-aqueous liquid in a zone of saturation
Wilson et al. In situ pore-liquid sampling in the vadose zone
Dearden et al. Release of contaminants from a heterogeneously fractured low permeability unit underlying a DNAPL source zone
JP4680718B2 (en) Optimization method for remediation of contaminated soil and permeation rate measuring device used therefor
Qi et al. A numerical model to optimize LNAPL remediation by multi-phase extraction
Flury et al. First results of operating and monitoring an innovative design of a permeable reactive barrier for the remediation of chromate contaminated groundwater
JP5569618B1 (en) In-situ purification method by multi-point injection
US20090039031A1 (en) Controlling the formation of hexavalent chromium during an oxidative remediation of a contaminated site
Klein Sediment porewater exchange and solute release during ebullition
Tunnicliffe et al. Mass removal of chlorinated ethenes from rough-walled fractures using permanganate
US10525514B2 (en) Soil treatment device and use thereof for treating contaminated soil and/or groundwater contained therein
JP2008188478A (en) Method and system for purifying polluted soil
Woodman et al. Doublet tracer tests to determine the contaminant flushing properties of a municipal solid waste landfill
Ho et al. Development of an injection system for in situ catalyzed peroxide remediation of contaminated soil
Zawadzki et al. Electrical resistivity methods for landfill monitoring
Krug et al. Emulsified zero-valent nano-scale iron treatment of chlorinated solvent DNAPL source areas
EP1914015A1 (en) Method based on the use of a gas mixture for sizing systems of gas diffusion in groundwater and evaluating the aquifer contamination
JP5789289B2 (en) Survey method for contaminated soil
CN115815311B (en) Management and control restoration system and method for polluted underground water
Pitkin Detailed subsurface characterization using the Waterloo Profiler
TWI275046B (en) Multi-section depth-variable underground environment multi-phase fluid monitoring and remediation system capable of withdrawing and/or injecting substance and method thereof
Noland et al. Innovative Injection Technique to Treat DNAPL in Granular and Fine Grained Matrices

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110203

R150 Certificate of patent or registration of utility model

Ref document number: 4680718

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees