JP2007049910A - Method for producing gamma-aminobutyric acid and production apparatus - Google Patents

Method for producing gamma-aminobutyric acid and production apparatus Download PDF

Info

Publication number
JP2007049910A
JP2007049910A JP2005235772A JP2005235772A JP2007049910A JP 2007049910 A JP2007049910 A JP 2007049910A JP 2005235772 A JP2005235772 A JP 2005235772A JP 2005235772 A JP2005235772 A JP 2005235772A JP 2007049910 A JP2007049910 A JP 2007049910A
Authority
JP
Japan
Prior art keywords
glutamic acid
glutamate
reaction
aminobutyric acid
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005235772A
Other languages
Japanese (ja)
Inventor
Takaaki Suematsu
孝章 末松
Kazutaka Suzuki
一隆 鈴木
Mototake Higuchi
元剛 樋口
Masahiko Nakamura
雅彦 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAIMATSU SHOKUHIN KK
Hitachi Plant Technologies Ltd
Original Assignee
TAIMATSU SHOKUHIN KK
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAIMATSU SHOKUHIN KK, Hitachi Plant Technologies Ltd filed Critical TAIMATSU SHOKUHIN KK
Priority to JP2005235772A priority Critical patent/JP2007049910A/en
Publication of JP2007049910A publication Critical patent/JP2007049910A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To increase the conversion ratio from glutamic acid or glutamic acid salt to γ-aminobutyric acid without adding a particular coenzyme. <P>SOLUTION: γ-Aminobutyric acid is produced batchwise by adding glutamic acid or a glutamic acid salt to a solution incorporated with a material containing glutamic acid decarboxylase to effect decarboxylation reaction with the glutamic acid decarboxylase. The addition of glutamic acid or glutamic acid salt in the batch reaction process is carried out dividedly to keep the substrate concentration of glutamic acid or glutamic acid salt below a warning level. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はγ−アミノ酪酸の製造方法及び製造装置に関する。   The present invention relates to a production method and production apparatus for γ-aminobutyric acid.

γ−アミノ酪酸は血圧上昇抑制作用、動脈硬化抑制作用、精神安定作用などの機能を有するアミノ酸であり、健康食品成分や医療用成分として注目されている。γ−アミノ酪酸の製造方法としては、グルタミン酸又はグルタミン酸塩の溶液にグルタミン酸脱炭酸酵素を含む材料を添加する方法が知られている。この方法によればグルタミン酸脱炭酸酵素の触媒作用によって、グルタミン酸又はグルタミン酸塩のカルボキシル基が脱炭酸し、γ−アミノ酪酸を生成する。グルタミン酸脱炭酸酵素を含む材料としては、米胚芽、胚芽を含む米糠、かぼちゃ、にんじんなどの植物や乳酸菌、麹菌などの微生物が知られている。   γ-Aminobutyric acid is an amino acid having functions such as an antihypertensive action, an arteriosclerosis inhibiting action, and a tranquilizing action, and has attracted attention as a health food ingredient and a medical ingredient. As a method for producing γ-aminobutyric acid, a method in which a material containing glutamic acid decarboxylase is added to a glutamic acid or glutamic acid solution is known. According to this method, the carboxyl group of glutamic acid or glutamate is decarboxylated by the catalytic action of glutamic acid decarboxylase to produce γ-aminobutyric acid. Known materials containing glutamic acid decarboxylase include rice germ, rice bran containing germ, pumpkin, carrot and other plants, and lactic acid bacteria and koji molds.

特許文献1に米胚芽や胚芽を含む米糠をグルタミン酸脱炭酸酵素源として用いたγ−アミノ酪酸の生成方法が開示されている。米胚芽や胚芽を含む米糠は精米時の副生物として大量に排出され、安価に入手することができる利点がある。この特許文献1にはグルタミン酸脱炭酸酵素源にプラスして補酵素であるピリドキサルリン酸を添加し、γ−アミノ酪酸の生成量を増加させることも開示されている。   Patent Document 1 discloses a method for producing γ-aminobutyric acid using rice germ or rice bran containing germ as a glutamate decarboxylase source. Rice bran and rice bran containing embryos are discharged in large quantities as a by-product during rice milling and have the advantage that they can be obtained at low cost. This Patent Document 1 also discloses that pyridoxal phosphate, which is a coenzyme, is added to the glutamate decarboxylase source to increase the amount of γ-aminobutyric acid produced.

特許文献2にも米糠をグルタミン酸脱炭酸酵素源として用いたγ−アミノ酪酸の生成方法が開示されており、その際に補酵素であるピリドキサルリン酸を微量に含む酵母を添加してγ−アミノ酪酸の生成量を増加させることが記載されている。
特開2000―201651号公報 特開2003―245093号公報
Patent Document 2 also discloses a method for producing γ-aminobutyric acid using rice bran as a glutamic acid decarboxylase source. At that time, a yeast containing a small amount of pyridoxalphosphate which is a coenzyme is added, and γ-aminobutyric acid is added. It is described that the production amount of is increased.
JP 2000-201651 A Japanese Patent Laid-Open No. 2003-245093

特許文献1に記載された方法は、基質であるグルタミン酸又はグルタミン酸塩の濃度によってはγ−アミノ酪酸への転換率が著しく低下する場合がある。この欠点は補酵素であるピリドキサルリン酸を添加することによって改善することができる。しかしながら、ピリドキサルリン酸は現時点では食品添加物として認められておらず、ピリドキサルリン酸を用いた食品向けのγ−アミノ酪酸の製造はできない。また、将来、ピリドキサルリン酸が食品添加物として認められた場合でも、高価なピリドキサルリン酸を消費する方法は得策ではない。特許文献2に記載された方法は、補酵素源として酵母を用いるので食品添加物としての問題はない。しかしながら、この方法では副生物として酪酸が生成するため、生成したγ−アミノ酪酸から酪酸を分離する後処理工程が必要となり、製造コストが上昇する欠点がある。   In the method described in Patent Document 1, the conversion rate to γ-aminobutyric acid may be remarkably reduced depending on the concentration of glutamic acid or glutamate as a substrate. This drawback can be remedied by adding a coenzyme pyridoxal phosphate. However, pyridoxal phosphate is not currently recognized as a food additive, and γ-aminobutyric acid for foods using pyridoxal phosphate cannot be produced. In the future, even when pyridoxal phosphate is recognized as a food additive, a method of consuming expensive pyridoxal phosphate is not a good idea. Since the method described in Patent Document 2 uses yeast as a coenzyme source, there is no problem as a food additive. However, in this method, since butyric acid is generated as a by-product, a post-treatment step for separating butyric acid from the generated γ-aminobutyric acid is required, and there is a disadvantage that the manufacturing cost increases.

本発明の目的は上記従来技術の欠点を解消し、ピリドキサルリン酸や酵母を添加しなくても、グルタミン酸又はグルタミン酸塩からγ−アミノ酪酸への転換率を高くすることができるγ−アミノ酪酸の製造方法及び製造装置を提供することにある。   The object of the present invention is to produce γ-aminobutyric acid that eliminates the disadvantages of the prior art and can increase the conversion rate of glutamic acid or glutamate to γ-aminobutyric acid without adding pyridoxal phosphate or yeast. It is to provide a method and a manufacturing apparatus.

上記の目的を達成するために、本発明に係るγ−アミノ酪酸の製造方法は、グルタミン酸脱炭酸酵素を含む材料が添加された溶液にグルタミン酸又はグルタミン酸塩を投入し、前記グルタミン酸脱炭酸酵素による脱炭酸反応によってγ−アミノ酪酸を回分式に製造するγ−アミノ酪酸の製造方法において、前記回分式反応の過程で前記グルタミン酸又はグルタミン酸塩を前記溶液に分割して投入することを特徴とする。   In order to achieve the above-described object, the method for producing γ-aminobutyric acid according to the present invention includes adding glutamic acid or glutamate to a solution to which a material containing glutamic acid decarboxylase has been added, and removing the glutamic acid decarboxylase using the glutamic acid decarboxylase. In the method for producing γ-aminobutyric acid in which γ-aminobutyric acid is produced batchwise by a carbonic acid reaction, the glutamic acid or glutamate is dividedly added to the solution in the course of the batchwise reaction.

また、本発明に係るγ−アミノ酪酸の製造方法は、前記グルタミン酸脱炭酸酵素を含む材料が米胚芽又は胚芽を含む米糠であることを特徴とする。なお、上記γ−アミノ酪酸の製造方法では、前記溶液中のグルタミン酸又はグルタミン酸塩の濃度が常時30g/L以下となるように前記グルタミン酸又はグルタミン酸塩の投入量を調整することが望ましい。   The method for producing γ-aminobutyric acid according to the present invention is characterized in that the material containing glutamic acid decarboxylase is rice germ or rice bran containing germ. In the method for producing γ-aminobutyric acid, it is desirable to adjust the amount of glutamic acid or glutamate added so that the concentration of glutamic acid or glutamate in the solution is always 30 g / L or less.

本発明に係るγ−アミノ酪酸の製造装置は、グルタミン酸脱炭酸酵素を含む材料が添加された溶液にグルタミン酸又はグルタミン酸塩を投入し、所定時間、回分式に反応させることによってγ−アミノ酪酸を生成させる反応容器と、前記反応容器内の溶液の温度を30〜50℃の範囲内に保持する温度調整手段と、前記反応容器内の溶液のpHを4.5〜6.5の範囲内に保持するpH調整手段と、前記反応容器における回分式反応の過程でグルタミン酸又はグルタミン酸塩を分割して投入する基質投入手段と、前記反応容器での回分式反応が終了した溶液をろ過する膜分離手段とを具備したことを特徴とする。   The apparatus for producing γ-aminobutyric acid according to the present invention generates γ-aminobutyric acid by adding glutamic acid or glutamate to a solution to which a material containing glutamic acid decarboxylase is added, and reacting in a batch manner for a predetermined time. Reaction temperature vessel, temperature adjusting means for keeping the temperature of the solution in the reaction vessel in a range of 30 to 50 ° C., and keeping the pH of the solution in the reaction vessel in a range of 4.5 to 6.5 PH adjusting means, substrate introducing means for dividing and adding glutamic acid or glutamate in the process of batch reaction in the reaction vessel, membrane separation means for filtering the solution after completion of the batch reaction in the reaction vessel, It is characterized by comprising.

本発明において、基質であるグルタミン酸又はグルタミン酸塩(以下、単に基質と称する場合がある)を回分式反応の過程で分割して投入する理由は、以下の基礎実験結果に基く。基礎実験ではγ−アミノ酪酸の生産性を把握するために基質の初期濃度を10〜60g/Lの範囲で変化させ、反応時間48時間後における転換率(基質であるグルタミン酸又はグルタミン酸塩がγ−アミノ酪酸に転換した割合)を調べた。なお、グルタミン酸脱炭酸酵素源としては米胚芽を用い、その添加量は、いずれの実験でも米胚芽を水中で良好に攪拌できる最大量である220g/Lと一定とした。   In the present invention, the reason why the substrate glutamic acid or glutamate (hereinafter sometimes simply referred to as substrate) is added in the course of batch reaction is based on the following basic experimental results. In the basic experiment, in order to grasp the productivity of γ-aminobutyric acid, the initial concentration of the substrate was changed in the range of 10 to 60 g / L, and the conversion rate after 48 hours of reaction (the substrate glutamate or glutamate was γ- The ratio of aminobutyric acid converted) was examined. In addition, rice germ was used as a glutamic acid decarboxylase source, and the amount added was constant at 220 g / L, which is the maximum amount of rice germ that can be well stirred in water in any experiment.

図2は基礎実験結果を示すグラフであり、横軸は基質の初期濃度、縦軸は転換率を示している。図2から明らかなように転換率は基質の初期濃度に大きく依存し、基質の初期濃度が30g/L以下では転換率はほぼ100%を示す。しかしながら基質の初期濃度が40g/Lでは転換率は90%以下に低下し、以降、基質の初期濃度を高くするに従って転換率が低下することが判明した。このように基質の初期濃度が高いと転換率が低下する原因については未だ十分に解明されていない。基質濃度が高いとグルタミン酸脱炭酸酵素に対して何らかの障害が発生し、グルタミン酸脱炭酸酵素の活性が低下するためと推測される。   FIG. 2 is a graph showing the results of basic experiments, in which the horizontal axis represents the initial concentration of the substrate and the vertical axis represents the conversion rate. As apparent from FIG. 2, the conversion rate greatly depends on the initial concentration of the substrate, and the conversion rate is almost 100% when the initial concentration of the substrate is 30 g / L or less. However, it was found that when the initial concentration of the substrate was 40 g / L, the conversion rate decreased to 90% or less, and thereafter the conversion rate decreased as the initial concentration of the substrate was increased. Thus, the reason why the conversion rate decreases when the initial concentration of the substrate is high has not been fully elucidated. If the substrate concentration is high, it is presumed that some kind of disorder occurs with respect to glutamate decarboxylase and the activity of glutamate decarboxylase decreases.

本発明は上記基礎実験結果に基き、基質の初期濃度及びその後の回分式反応の過程において反応系における基質濃度が所定値、望ましくは30g/L以下となるように、基質であるグルタミン酸又はグルタミン酸塩を回分式反応の過程で分割して投入するようにしたものである。   The present invention is based on the results of the above basic experiment, and the substrate glutamate or glutamate is used so that the initial concentration of the substrate and the substrate concentration in the reaction system in the subsequent batch reaction become a predetermined value, preferably 30 g / L or less. In the batch reaction process.

本発明に係るγ−アミノ酪酸の製造方法及び製造装置によれば、基質であるグルタミン酸又はグルタミン酸塩を回分式反応の過程において分割して反応系に投入する。このため、回分反応の全過程で反応系での基質濃度を警戒値(例えば30g/L)以下に抑えることができ、基質濃度が高いために生じる基質障害を回避した転換率の高い回分反応を実現することができる。   According to the production method and production apparatus for γ-aminobutyric acid according to the present invention, glutamic acid or glutamate which is a substrate is divided in a batch reaction and charged into a reaction system. For this reason, the substrate concentration in the reaction system can be suppressed to a warning value (eg, 30 g / L) or less throughout the batch reaction, and batch conversion with a high conversion rate avoiding substrate failure caused by the high substrate concentration. Can be realized.

また、米胚芽や米糠は精米工場から大量に排出される安価な材料である。したがって、グルタミン酸脱炭酸酵素源として米胚芽や胚芽を含む米糠を用いるとγ−アミノ酪酸を安価に製造することができる。また、米胚芽や米糠自体がグルタミン酸を含んでおり、γ−アミノ酪酸を製造するための基質の一部として利用できる利点がある。   Rice germ and rice bran are inexpensive materials that are discharged in large quantities from a rice mill. Therefore, γ-aminobutyric acid can be produced at low cost by using rice germ or rice bran containing germ as a glutamate decarboxylase source. In addition, rice germ and rice bran itself contain glutamic acid, and there is an advantage that it can be used as a part of a substrate for producing γ-aminobutyric acid.

図1は本発明に係るγ−アミノ酪酸の製造方法及び製造装置の実施形態を示す系統図である。反応容器10には薬品類の投入路12が設けられ、管路14からはグルタミン酸又はグルタミン酸塩が注入ポンプ16を介して反応容器10に投入可能とされる。また、投入路12から水(温水)18やグルタミン酸脱炭酸酵素を含む材料20(例えば米胚芽又は胚芽を含む米糠)が、それぞれ投入可能とされる。   FIG. 1 is a system diagram showing an embodiment of a method and apparatus for producing γ-aminobutyric acid according to the present invention. The reaction vessel 10 is provided with a chemical introduction path 12, and glutamic acid or glutamate can be introduced into the reaction container 10 from the pipe line 14 via the injection pump 16. Further, water (warm water) 18 and a material 20 containing glutamic acid decarboxylase (for example, rice germ or rice bran containing embryo) can be introduced from the introduction path 12.

反応容器10の外周にはジャケット22が取付けられ、このジャケット22内に管路24から温水などの熱媒を供給することによって、反応容器10に張り込んだ溶液の温度を設定値に保持することができる。ジャケット22内に供給した熱媒は管路26から排出される。反応容器10には攪拌機28が取付けられており、前記投入路12から反応容器10内に投入した水(温水)、米糠、基質などをこの攪拌機28によって混合攪拌する。また、反応容器10には内部溶液のpHを計測するpH計30が取付けられており、このpH計30で計測される溶液のpHが設定値となるようにpH調整手段32からpH調整剤が添加される。反応容器10の底部には開閉弁34を備えた排出管36が接続しており、排出管36の下流側にはポンプ38を介して精密ろ過膜(又は限外ろ過膜)40を備えた膜分離手段42が配置されている。   A jacket 22 is attached to the outer periphery of the reaction vessel 10, and the temperature of the solution stuck in the reaction vessel 10 is maintained at a set value by supplying a heat medium such as hot water from the conduit 24 into the jacket 22. Can do. The heat medium supplied into the jacket 22 is discharged from the pipe line 26. A stirrer 28 is attached to the reaction vessel 10, and water (warm water), rice bran, a substrate and the like charged into the reaction vessel 10 from the charging path 12 are mixed and stirred by the stirrer 28. Further, a pH meter 30 for measuring the pH of the internal solution is attached to the reaction vessel 10, and a pH adjusting agent is supplied from the pH adjusting means 32 so that the pH of the solution measured by the pH meter 30 becomes a set value. Added. A discharge pipe 36 having an open / close valve 34 is connected to the bottom of the reaction vessel 10, and a membrane having a microfiltration membrane (or ultrafiltration membrane) 40 via a pump 38 on the downstream side of the discharge pipe 36. Separation means 42 is arranged.

上記構成の製造装置は回分式(バッチ式)によって運転される。まず、反応容器10に水(温水)18を投入するとともに、ジャケット22に熱媒を通して、反応容器10に張り込んだ水(温水)の温度を30〜50℃の範囲内、好ましくは35〜40℃に保持する。次に、投入路12からグルタミン酸脱炭酸酵素を含む材料20として例えば米糠を反応容器10内に投入する。米糠は精米工場から大量に排出される安価な材料であるため、グルタミン酸脱炭酸酵素源として有効である。なお、米糠中のグルタミン酸脱炭酸酵素は主に米胚芽に由来しているから、グルタミン酸脱炭酸酵素を含む材料として米胚芽を用いることも有効である。米胚芽は米糠を篩いにかけることによって米糠から容易に分離することができる。管路14からは基質としてグルタミン酸又はグルタミン酸塩を溶液として又は結晶粉末状で反応容器10内に投入する。   The manufacturing apparatus having the above configuration is operated by a batch system. First, water (warm water) 18 is charged into the reaction vessel 10 and a temperature of water (warm water) stuck to the reaction vessel 10 through a heat medium through the jacket 22 is within a range of 30 to 50 ° C., preferably 35 to 40. Hold at ° C. Next, for example, rice bran is charged into the reaction vessel 10 as the material 20 containing glutamate decarboxylase from the charging path 12. Rice bran is an inexpensive material that is discharged in large quantities from rice mills, so it is an effective source of glutamate decarboxylase. Since glutamate decarboxylase in rice bran is mainly derived from rice germ, it is also effective to use rice germ as a material containing glutamate decarboxylase. Rice germ can be easily separated from rice bran by sieving the rice bran. From the conduit 14, glutamic acid or glutamate as a substrate is charged into the reaction vessel 10 as a solution or in the form of crystal powder.

そして、攪拌機28を駆動させることによって、投入した水(温水)、米糠、基質を混合し、この混合溶液の温度を上記の温度範囲に保持する。その結果、基質と米糠に含まれるグルタミン酸脱炭酸酵素が相互に接触し、グルタミン酸脱炭酸酵素による脱炭酸反応によって基質であるグルタミン酸又はグルタミン酸塩がγ−アミノ酪酸に転換する。この脱炭酸反応を所定時間、継続させることによって、初期に投入した基質のほとんどがγ−アミノ酪酸に転換する。γ−アミノ酪酸の生成速度を大きくするためには、内部溶液のpH管理が重要である。したがって、pH計30で計測される内部液のpHが4.5〜6.5の範囲内、好ましくは5〜6となるようにpH調整手段32ではpH調整剤の添加量を制御する。
基質であるグルタミン酸又はグルタミン酸塩は、上記回分式反応の途中においても分割して反応容器10内に投入される。
Then, by driving the stirrer 28, the charged water (warm water), rice bran, and the substrate are mixed, and the temperature of the mixed solution is maintained in the above temperature range. As a result, glutamate decarboxylase contained in the substrate and rice bran comes into contact with each other, and glutamate or glutamate as a substrate is converted to γ-aminobutyric acid by a decarboxylation reaction by glutamate decarboxylase. By continuing this decarboxylation reaction for a predetermined time, most of the initially charged substrate is converted to γ-aminobutyric acid. In order to increase the production rate of γ-aminobutyric acid, pH control of the internal solution is important. Therefore, the pH adjusting means 32 controls the amount of the pH adjusting agent so that the pH of the internal solution measured by the pH meter 30 is in the range of 4.5 to 6.5, preferably 5 to 6.
The substrate, glutamic acid or glutamate, is divided into the reaction vessel 10 even during the batch reaction.

図3は基質投入方法の第1モデルを示した説明図であり、横軸は経過時間、縦軸は基質濃度又は累計投入量を示している。この第1モデルは例えば基質の累計投入量が60g/Lである場合に、これを均等に3分割して投入するケースを示している。すなわち、初期には20g/Lの基質を反応容器10に投入する。初期投入から約8時間が経過するまでは反応は起きないが、その後は図2に示したように脱炭酸反応が活発に行われγ−アミノ酪酸への転換が進む。このため、基質濃度は破線で示したように時間の経過とともに低くなる。   FIG. 3 is an explanatory diagram showing a first model of the substrate charging method, in which the horizontal axis indicates the elapsed time, and the vertical axis indicates the substrate concentration or the total amount charged. This first model shows a case where, for example, when the cumulative amount of substrate is 60 g / L, this is equally divided into three. That is, initially, 20 g / L of substrate is charged into the reaction vessel 10. The reaction does not occur until about 8 hours have elapsed from the initial charging, but thereafter, as shown in FIG. 2, the decarboxylation reaction is actively performed and the conversion to γ-aminobutyric acid proceeds. For this reason, the substrate concentration decreases with time as shown by the broken line.

したがって、18時間後に実線で示したように2回目の基質の投入を行い、基質の累計投入量を40g/Lとする。初期に投入した基質の大部分は18時間後にはγ−アミノ酪酸に転換しているので、この2回目の基質の投入によっても反応容器10内の基質濃度は、二点鎖線で示した警戒値(例えば30g/L)を越えることはない。このため、基質濃度が高いために生じる基質障害を受けることなく、2回目の基質の投入後も脱炭酸反応が活発に進行する。同様の考え方で28時間後に3回目の基質の投入を行い、基質の累計投入量を目標の60g/Lとし、以降は基質を投入せずに48時間後に1回分の回分反応を終了する。   Therefore, after 18 hours, as shown by the solid line, the second substrate is introduced, and the cumulative amount of substrate introduced is 40 g / L. Since most of the substrate initially charged is converted to γ-aminobutyric acid after 18 hours, the substrate concentration in the reaction vessel 10 is also a warning value indicated by a two-dot chain line even after the second substrate is charged. (For example, 30 g / L) is not exceeded. For this reason, the decarboxylation reaction proceeds actively even after the second substrate injection without suffering from substrate damage caused by the high substrate concentration. In the same way, the substrate is introduced for the third time after 28 hours, the cumulative amount of substrate is set to the target of 60 g / L, and thereafter, the batch reaction is completed 48 hours later without introducing the substrate.

図4は基質投入方法の第2モデルを示した説明図である。この第2モデルでは基質の累計投入量が上記と同様に60g/Lである場合に、初期に3分の1の20g/Lを投入し、12時間経過から残りの3分の2を6回に分割して4時間毎に投入する。この方法によれば反応容器10内での基質濃度の変動が少なくなり、安定した操作が可能になる。   FIG. 4 is an explanatory view showing a second model of the substrate charging method. In this second model, when the cumulative amount of substrate input is 60 g / L as described above, 20 g / L of one third is initially input, and the remaining two thirds are applied 6 times after 12 hours. Divided into 4 and every 4 hours. According to this method, fluctuations in the substrate concentration in the reaction vessel 10 are reduced, and stable operation is possible.

図5は基質投入方法の第3モデルを示した説明図である。この第3モデルでは基質の累計投入量が同様に60g/Lである場合に、初期に3分の1の20g/Lを投入し、残りの3分の2を経過時間12時間〜34時間の間に定流量で連続投入する。この方法によれば反応容器10内での基質濃度の変動がより一層少なくなり、安定した操作が可能になる。   FIG. 5 is an explanatory view showing a third model of the substrate charging method. In this third model, when the cumulative amount of substrate is similarly 60 g / L, 20 g / L of one third is initially introduced, and the remaining two thirds are elapsed time 12 hours to 34 hours. Introduce continuously at a constant flow rate. According to this method, the fluctuation of the substrate concentration in the reaction vessel 10 is further reduced, and stable operation is possible.

図3〜図5に示したいずれの投入方法も回分反応の全過程で反応容器10内での基質濃度が二点鎖線で示した警戒値(例えば30g/L)を越えることがないので、基質濃度が高いために生じる基質障害を回避した転換率の高い回分反応を実現することができる。なお、これらの投入方法を実行する際にはタイマー及び基質の流量調節機能を備えたコントローラによって、管路14に設けた注入ポンプ16の駆動を制御すればよい。   In any of the charging methods shown in FIGS. 3 to 5, the substrate concentration in the reaction vessel 10 does not exceed a warning value (for example, 30 g / L) indicated by a two-dot chain line in the entire batch reaction. A batch reaction with a high conversion rate that avoids substrate damage caused by a high concentration can be realized. Note that when performing these charging methods, the driving of the infusion pump 16 provided in the pipe line 14 may be controlled by a controller having a timer and a substrate flow rate adjusting function.

なお、回分反応は図3〜図5に示したように例えば合計48時間で終了させるが、最後に投入した基質が十分にγ−アミノ酪酸に転換するためには8時間程度の反応時間を必要とする。したがって、最後に投入する基質は反応終了時の8時間以上前までに投入を完了させることが望ましい。   As shown in FIGS. 3 to 5, the batch reaction is completed in, for example, 48 hours in total, but a reaction time of about 8 hours is required in order for the last substrate to be fully converted to γ-aminobutyric acid. And Therefore, it is desirable to complete the loading of the substrate to be loaded last at least 8 hours before the end of the reaction.

1回分の回分反応を終了すると、反応容器10内の下部に配した開閉弁34を開放し、反応容器10内の溶液をポンプ38によって膜分離手段42に送り込む。膜分離手段42では精密ろ過膜(又は限外ろ過膜)40を透過したγ−アミノ酪酸を含む溶液が管路44から製品として取り出される。米糠や米胚芽などの固形分は精密ろ過膜(又は限外ろ過膜)40によって溶液から分離され、使用済み材料46として装置外に排出される。   When the batch reaction for one batch is completed, the on-off valve 34 arranged at the lower part in the reaction vessel 10 is opened, and the solution in the reaction vessel 10 is sent to the membrane separation means 42 by the pump 38. In the membrane separation means 42, a solution containing γ-aminobutyric acid that has permeated through the microfiltration membrane (or ultrafiltration membrane) 40 is taken out from the conduit 44 as a product. Solids such as rice bran and rice germ are separated from the solution by a microfiltration membrane (or ultrafiltration membrane) 40 and discharged out of the apparatus as used material 46.

上述のとおり、本実施形態のγ−アミノ酪酸の製造方法及び製造装置によれば、基質であるグルタミン酸又はグルタミン酸塩を回分式反応の過程において分割して反応容器10内に投入するようにした。このため、回分反応の全過程で反応容器10内での基質濃度が警戒値(例えば30g/L)を越えることがないので、基質濃度が高いために生じる基質障害を回避した転換率の高い回分反応を実現することができる。また、グルタミン酸脱炭酸酵素源として米胚芽や胚芽を含む米糠を用いるとγ−アミノ酪酸を安価に製造することができる。米胚芽や米糠自体がグルタミン酸を含んでおり、γ−アミノ酪酸を製造するための基質の一部として利用できる利点がある。   As described above, according to the production method and production apparatus for γ-aminobutyric acid of this embodiment, glutamic acid or glutamate as a substrate is divided and introduced into the reaction vessel 10 during the batch reaction. For this reason, since the substrate concentration in the reaction vessel 10 does not exceed a warning value (for example, 30 g / L) in the entire batch reaction, a batch with a high conversion rate that avoids substrate failure caused by a high substrate concentration. A reaction can be realized. Further, when rice germ containing rice germ or germ is used as a glutamate decarboxylase source, γ-aminobutyric acid can be produced at low cost. Rice germ and rice bran itself contain glutamic acid, and there is an advantage that it can be used as a part of a substrate for producing γ-aminobutyric acid.

このため、本実施形態のγ−アミノ酪酸の製造方法及び製造装置によれば、ピリドキサルリン酸や酵母を添加しなくても、グルタミン酸又はグルタミン酸塩からの転換率を高くしたγ−アミノ酪酸の製造を実現することができる。ただし、本発明は補酵素成分としてのピリドキサルリン酸や酵母の添加を排除するものではなく、より一層の生産性を上げるために必要に応じてこれらの補酵素成分を添加するようにしてもよい。本実施形態ではグルタミン酸脱炭酸酵素源として米胚芽や胚芽を含む米糠を用いる場合について説明した。しかしながら、本発明はこれに限定されず、グルタミン酸脱炭酸酵素を含む材料として他の植物や微生物を用いる場合にも適用することができる。   For this reason, according to the manufacturing method and manufacturing apparatus of γ-aminobutyric acid of this embodiment, it is possible to manufacture γ-aminobutyric acid with a high conversion rate from glutamic acid or glutamate without adding pyridoxalphosphoric acid or yeast. Can be realized. However, the present invention does not exclude the addition of pyridoxal phosphate or yeast as a coenzyme component, and these coenzyme components may be added as necessary in order to further increase productivity. In the present embodiment, the case where rice germ or rice bran containing germ is used as the glutamate decarboxylase source has been described. However, the present invention is not limited to this, and can also be applied to the case where other plants or microorganisms are used as a material containing glutamate decarboxylase.

実験例
第1の実験では、40℃の水道水30Lにグルタミン酸ナトリウム(結晶粉末)1.5kg(50g/L)を一括添加して完全に溶解させた後に、米胚芽6.6kg(220g/L)を添加し攪拌しながら反応させた。反応開始から48時間後の溶液を孔径0.5μmのフィルタでろ過した後に、高速液体クロマトグラフィで溶液中のγ−アミノ酪酸の濃度を分析した。分析したγ−アミノ酪酸の濃度から投入したグルタミン酸ナトリウムに対するγ−アミノ酪酸への転換率を計算した。その結果、転換率は74%であった。
Experimental Example In the first experiment, 1.5 kg (50 g / L) of sodium glutamate (crystal powder) was added to 30 L of tap water at 40 ° C. and dissolved completely, and then 6.6 kg (220 g / L) of rice germ. ) Was added and allowed to react with stirring. The solution 48 hours after the start of the reaction was filtered with a filter having a pore size of 0.5 μm, and then the concentration of γ-aminobutyric acid in the solution was analyzed by high performance liquid chromatography. From the analyzed concentration of γ-aminobutyric acid, the conversion rate to γ-aminobutyric acid with respect to sodium glutamate added was calculated. As a result, the conversion rate was 74%.

第2の実験では、40℃の水道水30Lにグルタミン酸ナトリウム450g(15g/L)を添加して完全に溶解させた後に、米胚芽6.6kg(220g/L)を添加し攪拌しながら反応を開始した。反応開始から13時間後にグルタミン酸ナトリウム450g(15g/L)を添加した。さらに反応開始から21時間後にグルタミン酸ナトリウム600g(20g/L)を添加してグルタミン酸ナトリウムの累計投入量を第1の実験と同様の1.5kg(50g/L)とした。反応開始後48時間の溶液について第1の実験と同様の方法で処理、分析し、転換率を計算した結果、転換率は86%であった。   In the second experiment, 450 g (15 g / L) of sodium glutamate was added to 30 L of tap water at 40 ° C. and completely dissolved, and then 6.6 kg (220 g / L) of rice germ was added and the reaction was conducted while stirring. Started. After 13 hours from the start of the reaction, 450 g (15 g / L) of sodium glutamate was added. Further, 21 hours after the start of the reaction, 600 g (20 g / L) of sodium glutamate was added, and the total amount of sodium glutamate added was 1.5 kg (50 g / L) as in the first experiment. The solution for 48 hours after the start of the reaction was treated and analyzed in the same manner as in the first experiment, and the conversion rate was calculated. As a result, the conversion rate was 86%.

第3の実験では、40℃の水道水30Lにグルタミン酸ナトリウム480g(16g/L)を添加して完全に溶解させた後に、米胚芽6.6kg(220g/L)を添加し攪拌しながら反応を開始した。反応開始から8時間後から24時間後まで1時間毎にグルタミン酸ナトリウム60g(2g/L)を添加してグルタミン酸ナトリウムの累計投入量を第1の実験と同様の1.5kg(50g/L)とした。反応開始後48時間の溶液について第1の実験と同様の方法で処理、分析し、転換率を計算した結果、転換率は99%であった。   In the third experiment, after adding 480 g (16 g / L) of sodium glutamate to 30 L of tap water at 40 ° C. and completely dissolving it, 6.6 kg (220 g / L) of rice germ was added and the reaction was carried out with stirring. Started. From 8 hours to 24 hours after the start of the reaction, 60 g (2 g / L) of sodium glutamate was added every hour, and the total amount of sodium glutamate added was 1.5 kg (50 g / L) as in the first experiment. did. The solution for 48 hours after the start of the reaction was treated and analyzed in the same manner as in the first experiment, and the conversion rate was calculated. As a result, the conversion rate was 99%.

第1〜第3の実験から明らかなように、本発明に係る第2及び第3の実験では、従来技術に係る第1の実験に比べて高い転換率を示す。また、第3の実験のように分割回数を増やして、基質をこまめに添加すると転換率がより一層向上することが判明した。   As is clear from the first to third experiments, the second and third experiments according to the present invention show a higher conversion rate than the first experiment according to the prior art. Further, it was found that the conversion rate was further improved by increasing the number of divisions as in the third experiment and adding the substrate frequently.

本発明に係るγ−アミノ酪酸の製造方法及び製造装置の実施形態を示す系統図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a systematic diagram which shows embodiment of the manufacturing method and manufacturing apparatus of (gamma) -aminobutyric acid which concern on this invention. 基礎実験結果を示すグラフである。It is a graph which shows a basic experiment result. 基質投入方法の第1モデルを示した説明図である。It is explanatory drawing which showed the 1st model of the substrate injection | throwing-in method. 基質投入方法の第2モデルを示した説明図である。It is explanatory drawing which showed the 2nd model of the substrate injection | throwing-in method. 基質投入方法の第3モデルを示した説明図である。It is explanatory drawing which showed the 3rd model of the substrate injection | throwing-in method.

符号の説明Explanation of symbols

10………反応容器、12………投入路、14………(基質用の)管路、16………注入ポンプ、18………水(温水)、20………グルタミン酸脱炭酸酵素を含む材料、22………ジャケット、28………攪拌機、30………pH計、32………pH調整手段、34………開閉弁、36………排出管、38………ポンプ、40………精密ろ過膜(又は限外ろ過膜)、42………膜分離手段。 10 ......... Reaction vessel, 12 ......... Input path, 14 ......... Substrate (for substrate), 16 ......... Infusion pump, 18 ......... Water (warm water), 20 ...... Glutamate decarboxylase 22 ......... jacket, 28 ......... stirrer, 30 ......... pH meter, 32 ......... pH adjusting means, 34 ......... open / close valve, 36 ......... discharge pipe, 38 ......... pump , 40... Microfiltration membrane (or ultrafiltration membrane), 42.

Claims (4)

グルタミン酸脱炭酸酵素を含む材料が添加された溶液にグルタミン酸又はグルタミン酸塩を投入し、前記グルタミン酸脱炭酸酵素による脱炭酸反応によってγ−アミノ酪酸を回分式に製造するγ−アミノ酪酸の製造方法において、前記回分式反応の過程で前記グルタミン酸又はグルタミン酸塩を前記溶液に分割して投入することを特徴とするγ−アミノ酪酸の製造方法。   In a method for producing γ-aminobutyric acid, in which glutamic acid or glutamate is added to a solution to which a material containing glutamic acid decarboxylase is added, and γ-aminobutyric acid is produced batchwise by a decarboxylation reaction using the glutamic acid decarboxylase, A process for producing γ-aminobutyric acid, wherein the glutamic acid or glutamate is dividedly added to the solution during the batch reaction. 前記グルタミン酸脱炭酸酵素を含む材料が米胚芽又は胚芽を含む米糠であることを特徴とする請求項1に記載のγ−アミノ酪酸の製造方法。   The method for producing γ-aminobutyric acid according to claim 1, wherein the material containing glutamic acid decarboxylase is rice germ or rice bran containing germ. 前記溶液中のグルタミン酸又はグルタミン酸塩の濃度が常時30g/L以下となるように前記グルタミン酸又はグルタミン酸塩の投入量を調整することを特徴とする請求項1又は請求項2に記載のγ−アミノ酪酸の製造方法。   The γ-aminobutyric acid according to claim 1 or 2, wherein an input amount of the glutamic acid or glutamate is adjusted so that a concentration of glutamic acid or glutamate in the solution is always 30 g / L or less. Manufacturing method. グルタミン酸脱炭酸酵素を含む材料が添加された溶液にグルタミン酸又はグルタミン酸塩を投入し、所定時間、回分式に反応させることによってγ−アミノ酪酸を生成させる反応容器と、前記反応容器内の溶液の温度を30〜50℃の範囲内に保持する温度調整手段と、前記反応容器内の溶液のpHを4.5〜6.5の範囲内に保持するpH調整手段と、前記反応容器における回分式反応の過程で前記グルタミン酸又はグルタミン酸塩を分割して投入する基質投入手段と、前記反応容器での回分式反応が終了した溶液をろ過する膜分離手段とを具備したことを特徴とするγ−アミノ酪酸の製造装置。   A reaction vessel for producing γ-aminobutyric acid by adding glutamic acid or glutamate to a solution to which a material containing glutamic acid decarboxylase has been added and reacting batchwise for a predetermined time, and the temperature of the solution in the reaction vessel Temperature adjusting means for maintaining the pH in the range of 30 to 50 ° C., pH adjusting means for maintaining the pH of the solution in the reaction container in the range of 4.5 to 6.5, and batch reaction in the reaction container Γ-aminobutyric acid, characterized in that it comprises a substrate loading means for dividing and feeding the glutamic acid or glutamate in the course of the step, and a membrane separation means for filtering the solution after completion of the batch reaction in the reaction vessel Manufacturing equipment.
JP2005235772A 2005-08-16 2005-08-16 Method for producing gamma-aminobutyric acid and production apparatus Pending JP2007049910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005235772A JP2007049910A (en) 2005-08-16 2005-08-16 Method for producing gamma-aminobutyric acid and production apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005235772A JP2007049910A (en) 2005-08-16 2005-08-16 Method for producing gamma-aminobutyric acid and production apparatus

Publications (1)

Publication Number Publication Date
JP2007049910A true JP2007049910A (en) 2007-03-01

Family

ID=37914789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005235772A Pending JP2007049910A (en) 2005-08-16 2005-08-16 Method for producing gamma-aminobutyric acid and production apparatus

Country Status (1)

Country Link
JP (1) JP2007049910A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100857215B1 (en) 2007-04-09 2008-09-05 주식회사 엠에이치투 바이오케미칼 Method for preparing highly pure gamma;-amino butyric acid using enzymic reaction

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07213252A (en) * 1994-02-01 1995-08-15 Norin Suisansyo Chugoku Nogyo Shikenjo Food material enriched with gamma-amino acid and production of gamma-amino acid
JP2001252091A (en) * 2000-03-10 2001-09-18 Lotte Co Ltd Material highly containing gamma-aminobutyric acid, its preparation method and food and drink containing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07213252A (en) * 1994-02-01 1995-08-15 Norin Suisansyo Chugoku Nogyo Shikenjo Food material enriched with gamma-amino acid and production of gamma-amino acid
JP2001252091A (en) * 2000-03-10 2001-09-18 Lotte Co Ltd Material highly containing gamma-aminobutyric acid, its preparation method and food and drink containing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100857215B1 (en) 2007-04-09 2008-09-05 주식회사 엠에이치투 바이오케미칼 Method for preparing highly pure gamma;-amino butyric acid using enzymic reaction

Similar Documents

Publication Publication Date Title
US8785698B2 (en) Methods and apparatus for production of natural L-menthol
Sajjad et al. Development of a novel process to mitigate membrane fouling in a continuous sludge system by seeding aerobic granules at pilot plant
US10294127B2 (en) Method of operating reverse osmosis membrane apparatus
EP3040108B1 (en) Production method for concentrated product using membrane-concentration method and freeze-concentration method
JPWO2009041009A1 (en) Organic waste treatment method and apparatus
JP6431363B2 (en) Water treatment system and aeration air volume control method thereof
WO2012169381A1 (en) Method and apparatus for biological treatment of organic wastewater
JP7070416B2 (en) Manufacturing method and equipment for chemical products by continuous fermentation
JP2007049910A (en) Method for producing gamma-aminobutyric acid and production apparatus
JP6761245B2 (en) How to treat organic wastewater
Mangal et al. Application of a smart dosing pump algorithm in identifying real-time optimum dose of antiscalant in reverse osmosis systems
CA2160362A1 (en) Recycling salt solution in food processing and apparatus therefor
CN108212019B (en) Automatic control device and method for dropwise adding reaction process
JP2019181388A (en) Organic waste processing method and organic waste processing apparatus
JP2006002032A (en) Polymer producing method and apparatus therefor
JP2004121075A (en) Corn steep liquor not producing sediment and method for producing the same
JP2008161071A (en) Method for operating membrane bioreactor
JP2011230100A (en) Method and apparatus for methane fermentation
RU2391388C1 (en) Method of preparing beer wort
JP2007509071A (en) Crystallization of adipic acid from solution in nitric acid water
JP2016510214A (en) Method for improving the productivity of polyhydroxyalkanoate (PHA) in a fed-batch process for biomass, obtained from wastewater treatment
Celik Onar et al. Investigating the Role of Citric Acid as a Natural Acid on the Crystallization of Amoxicillin Trihydrate
CN217627966U (en) Ultrapure water polishing circulation system
JP2017119248A (en) Organic wastewater treatment method
WO2024029069A1 (en) Production system

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080215

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20101022

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110301