JP2007049782A - Controller of synchronous motor - Google Patents

Controller of synchronous motor Download PDF

Info

Publication number
JP2007049782A
JP2007049782A JP2005229325A JP2005229325A JP2007049782A JP 2007049782 A JP2007049782 A JP 2007049782A JP 2005229325 A JP2005229325 A JP 2005229325A JP 2005229325 A JP2005229325 A JP 2005229325A JP 2007049782 A JP2007049782 A JP 2007049782A
Authority
JP
Japan
Prior art keywords
axis current
frequency
current
converter
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005229325A
Other languages
Japanese (ja)
Inventor
Masaki Nakai
政樹 中井
Sukeatsu Inazumi
祐敦 稲積
Yoichi Yamamoto
陽一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2005229325A priority Critical patent/JP2007049782A/en
Publication of JP2007049782A publication Critical patent/JP2007049782A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To find a d-axis current idm and a q-axis current iqm by using a simple calculation for implementing a d-q conversion of an α-axis current and a β-axis current in a synchronous motor controller from an estimated magnetic pole position θ into an electric angle of 45°. <P>SOLUTION: A calculation circuit for finding the d-axis current idm and the q-axis current iqm by using a d-axis current id and a q-axis current iq outputted from a d-q converter comprises an adder 21q, a subtracter 21d, and a gain 22. The d-q converter 10 implements the d-q conversion by using the α-axis current I_alpha, the β-axis current and an estimated magnetic pole phase theta_est, and outputs the d-axis current id and the q-axis current iq. The adder 21q adds the d-axis current id and the q-axis current iq outputted from the d-q converter 10. The subtracter 21d subtracts the q-axis current iq from the d-axis current id. Outputs from the adder 21q and the subtracter 21d are multiplied by the gain 22 so as to obtain the d-axis current idm and the q-axis current iqm. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電気的突極性を持つ電動機の制御装置に関する。   The present invention relates to a control device for an electric motor having electrical saliency.

同期電動機を駆動するためには、回転子の磁極位置をセンサー又はセンサレスにより検出して適切な電流制御を行なう必要があるが、コスト、信頼性の観点からセンサーを必要としないセンサレス方式による磁極位置検出が有利であるため、センサレス方式に関して数多くの研究がなされている。
特にゼロ速状態においても磁極推定可能な方法として、駆動周波数とは異なる高周波数の電流又は電圧を重畳し、回転子構造の突極性に基づいて回転子の磁極位置を推定する方法がある(例えば特開2000−102300号公報)。このような従来の同期電動機の制御方式の一例を図2に示す。
In order to drive the synchronous motor, it is necessary to detect the magnetic pole position of the rotor with a sensor or sensorless and perform appropriate current control, but from the viewpoint of cost and reliability, the magnetic pole position by the sensorless method that does not require a sensor Due to the advantage of detection, many studies have been made on sensorless systems.
In particular, there is a method for estimating the magnetic pole position of the rotor based on the saliency of the rotor structure by superimposing a high-frequency current or voltage different from the drive frequency and superimposing the magnetic pole in the zero speed state (for example, JP 2000-102300 A). An example of such a conventional synchronous motor control method is shown in FIG.

図2において、同期電動機の電機子電流Iu、Iwがα-β変換器9に入力されα軸電流i_alphaとβ軸電流i_betaが出力される。d-q変換器10は、i_alphaとi_betaを推定磁極位置theta_estを用いてd-q変換し、d軸電流idとq軸電流iqを出力する。ローパスフィルタLPF11は高周波発生器1により重畳された高周波電圧と同じ周波数成分を除去した電流id_lpfとiq_lpfを出力する。減算器13はiq_lpfとiq指令iq_refとの偏差iq_errを出力する。減算器14はid_lpfとid指令id_refとの偏差id_errを出力する。電流制御器4は入力されたid_errとiq_errがゼロとなるような電圧指令Vd_refとVq_refを生成して出力することにより電流制御を実行する。高周波発生器1は駆動周波数とは異なる高周波電圧をVinjを発生する。加算器15は電圧指令Vd_refと高周波電圧Vinjとを加算しVd_ref2を出力する。座標変換器5は推定磁極位置theta_estを用いて、高周波電圧を重畳された電圧指令Vd_ref2とVq_refを2−3相座標変換しPWMインバータ回路2へ指令する。PWMインバータ回路2は座標変換器5の指令に基づいて同期電動機3の制御を行なう。
減算器12は推定磁極位置theta_estから45度(π/4ラジアン)減算した値を出力する。
d-q変換器7はα軸電流i_alphaとβ軸電流i_betaを減算器12から出力された位相を用いてd-q変換した値idmとiqmを出力する。バンドパスフィルタBPF19はidmとiqmから高周波発生器1により重畳された高周波電圧と同じ周波数成分を抽出し、idm_bpfとiqm_bpfを出力する。BPF19の出力idm_bpfとiqm_bpfと高周波電圧Vinjが高周波インピーダンス推定器6に入力され、高周波インピーダンス推定器6は推定磁極軸から電気角で45度進んだ点と遅れた点の2点で高周波インピーダンスZdmとZqmを推定する。
磁極位置推定器8は、例えば図3で示すように、減算器16と乗算器17と積分器18から構成され、高周波インピーダンスZdmとZqmが等しくなるような磁極位置theta_estを推定する。
減算器16は高周波インピーダンスZqmからZdmを減算した値を出力する。
乗算器17は減算器16の出力にゲイン(Kp+Ki/s)を乗算したものを出力する。ここでKpは比例ゲイン、Kiは積分ゲインである。
積分器18は乗算器17の出力を積分し推定磁極theta_estとして出力する。
このように、従来の装置は磁極推定を行い、同期電動機の制御を行なうのである。
In FIG. 2, armature currents Iu and Iw of the synchronous motor are input to the α-β converter 9 and an α-axis current i_alpha and a β-axis current i_beta are output. The dq converter 10 performs dq conversion on i_alpha and i_beta using the estimated magnetic pole position theta_est, and outputs a d-axis current id and a q-axis current iq. The low pass filter LPF 11 outputs currents id_lpf and iq_lpf from which the same frequency component as the high frequency voltage superimposed by the high frequency generator 1 is removed. The subtractor 13 outputs a deviation iq_err between iq_lpf and the iq command iq_ref. The subtracter 14 outputs a deviation id_err between id_lpf and the id command id_ref. The current controller 4 executes current control by generating and outputting voltage commands Vd_ref and Vq_ref so that the input id_err and iq_err become zero. The high frequency generator 1 generates Vinj with a high frequency voltage different from the driving frequency. The adder 15 adds the voltage command Vd_ref and the high-frequency voltage Vinj and outputs Vd_ref2. The coordinate converter 5 uses the estimated magnetic pole position theta_est to convert the voltage commands Vd_ref2 and Vq_ref on which the high-frequency voltage is superimposed into a 2-3 phase coordinate and sends the command to the PWM inverter circuit 2. The PWM inverter circuit 2 controls the synchronous motor 3 based on a command from the coordinate converter 5.
The subtractor 12 outputs a value obtained by subtracting 45 degrees (π / 4 radians) from the estimated magnetic pole position theta_est.
The dq converter 7 outputs values idm and iqm obtained by dq conversion of the α-axis current i_alpha and the β-axis current i_beta using the phase output from the subtractor 12. The band pass filter BPF 19 extracts the same frequency component as the high frequency voltage superimposed by the high frequency generator 1 from idm and iqm, and outputs idm_bpf and iqm_bpf. The outputs idm_bpf and iqm_bpf and the high-frequency voltage Vinj of the BPF 19 are input to the high-frequency impedance estimator 6, and the high-frequency impedance estimator 6 generates a high-frequency impedance Zdm at two points, a point advanced by 45 degrees in electrical angle and a point delayed from the estimated magnetic pole axis. Estimate Zqm.
For example, as shown in FIG. 3, the magnetic pole position estimator 8 includes a subtracter 16, a multiplier 17, and an integrator 18, and estimates the magnetic pole position theta_est so that the high-frequency impedances Zdm and Zqm are equal.
The subtracter 16 outputs a value obtained by subtracting Zdm from the high frequency impedance Zqm.
The multiplier 17 outputs a product obtained by multiplying the output of the subtracter 16 by a gain (Kp + Ki / s). Here, Kp is a proportional gain, and Ki is an integral gain.
The integrator 18 integrates the output of the multiplier 17 and outputs it as an estimated magnetic pole theta_est.
Thus, the conventional apparatus performs magnetic pole estimation and controls the synchronous motor.

しかしながら、上記の従来の装置構成により制御装置を構成すると、磁極推定のために必要な演算量はかなりの量となり、例えば、安価なCPUを使用して装置を構成した場合などはCPU演算能力を超える演算量となることもある。そのため、産業上の必要性から安価なCPUを使用せざるを得ない状況においては、磁極推定のための演算量を少しでも低減することが求められている。
本発明はこのような問題点に鑑みてなされたものであり、磁極推定に必要となる演算量を軽減することができる装置を提供することを目的とする。
However, if the control device is configured with the above-described conventional device configuration, the amount of calculation required for magnetic pole estimation becomes a considerable amount. For example, when the device is configured using an inexpensive CPU, the CPU calculation capability is reduced. The amount of computation may exceed. Therefore, in a situation where an inexpensive CPU must be used due to industrial necessity, it is required to reduce the amount of calculation for magnetic pole estimation as much as possible.
The present invention has been made in view of such problems, and an object of the present invention is to provide an apparatus capable of reducing the amount of calculation required for magnetic pole estimation.

上記問題を解決するため、本発明は、次のように構成したのである。
請求項1記載の発明は、同期電動機の制御装置に係り、インバータ回路からの交流電力により電気的突極性を有する永久磁石形同期電動機を可変速制御する制御装置であって、同期電動機に供給される少なくとも2相分のステータ電流をα-β座標変換するα-β変換器と、前記α-β変換器から出力されたα軸電流とβ軸電流をd-q変換するd-q変換器と、前記d-q変換器から出力されたd軸電流idとq軸電流iqのそれぞれの電流指令値との偏差をゼロにするように電流制御を実施する電流制御器と、前記電流制御器から出力されたd軸電圧指令に高周波電圧を重畳する高周波発生器と、前記高周波発生器により高周波電圧を重畳されたd軸電圧指令とq軸電圧指令とを2−3相変換する座標変換器と、座標変換器からの出力指令に基づいて同期電動機の制御を行うPWMインバータ回路とを備えた同期電動機制御装置において、前記d-q変換器から出力された前記d軸電流idと前記q軸電流iqとを用いて、前記α軸電流と前記β軸電流とを推定磁極位置θから電機角度45度の位置にd−q変換を行った結果のd軸電流idmとq軸電流iqmを求める演算回路と、前記高周波発生器により重畳された周波数と同じ周波数成分を前記演算回路の出力電流であるd軸電流idmとq軸電流iqmから抽出する高周波抽出器と、前記高周波抽出器により抽出された電流と前記高周波電圧に基づいて推定磁極軸から電気角45度進んだ点と遅れた点の二点でそれぞれ高周波インピーダンスを測定し、二点間でのインピーダンス偏差を推定する高周波インピーダンス推定器と、前記二つの高周波インピーダンス間の偏差がゼロとなるような磁極位置を推定する磁極位置推定器と、を備えることを特徴としている。
請求項2記載の発明は、請求項1記載の同期電動機の制御装置において、前記演算回路が、次式
idm=(id−iq)/21/2、 iqm=(id+iq)/21/2
を演算することにより、前記d軸電流idと前記q軸電流iqから前記d軸電流idmと前記q軸電流iqmを求めることを特徴としている。
In order to solve the above problem, the present invention is configured as follows.
The invention according to claim 1 relates to a control device for a synchronous motor, and is a control device for variable speed control of a permanent magnet type synchronous motor having electrical saliency by AC power from an inverter circuit, and is supplied to the synchronous motor. An α-β converter that converts the stator current for at least two phases by α-β coordinates, and a dq converter that converts the α-axis current and β-axis current output from the α-β converter by dq conversion A current controller that performs current control so that a deviation between each of the d-axis current id output from the dq converter and the current command value of the q-axis current iq is zero; and the current controller A high-frequency generator that superimposes a high-frequency voltage on the d-axis voltage command output from the coordinate generator, and a coordinate converter that converts the d-axis voltage command and the q-axis voltage command on which the high-frequency voltage is superimposed by the high-frequency generator into a 2-3 phase And synchronous power based on the output command from the coordinate converter. In a synchronous motor control device including a PWM inverter circuit for controlling a machine, the α-axis current and the q-axis current iq are output using the d-axis current id and the q-axis current iq output from the dq converter. An arithmetic circuit for obtaining a d-axis current idm and a q-axis current iqm as a result of performing a dq conversion from the estimated magnetic pole position θ to a position at an electrical angle of 45 degrees from the estimated magnetic pole position θ, and a frequency superimposed by the high-frequency generator A high-frequency extractor that extracts the same frequency component from the d-axis current idm and q-axis current iqm, which are output currents of the arithmetic circuit, and an estimated magnetic pole axis based on the current extracted by the high-frequency extractor and the high-frequency voltage A high-frequency impedance estimator for measuring high-frequency impedance at two points, a point advanced by 45 degrees and a point delayed, and estimating an impedance deviation between the two points, and a deviation between the two high-frequency impedances It is characterized with the magnetic pole position estimator which estimates a magnetic pole position such that B, in that it comprises.
According to a second aspect of the present invention, in the synchronous motor control device according to the first aspect, the arithmetic circuit is represented by the following equation:
idm = (id−iq) / 2 1/2 , iqm = (id + iq) / 2 1/2
By calculating the d-axis current idm and the q-axis current iqm from the d-axis current id and the q-axis current iq.

上記の構成にすることにより、従来の演算では、cos関数計算1回、sin関数計算1回、乗算4回、加減算2回かかったのに対し、加減算2回と除算2回といった少ない演算量で等価な結果を得られるので、磁極推定に必要な演算量を低減することができる。   With the above configuration, in the conventional calculation, it takes one cos function calculation, one sin function calculation, four multiplications, and two additions / subtractions, but with a small amount of calculation such as two additions / subtractions and two divisions. Since an equivalent result can be obtained, the amount of calculation required for magnetic pole estimation can be reduced.

以下、まず、本発明の原理について説明する。
α軸電流をとβ軸電流とを推定磁極位相θを用いてd−q変換を行うと、d軸電流idとq軸電流iqは(1)式で示される

Figure 2007049782
ここで、図4はα-β座標のα軸電流とβ軸電流をd-q変換したd軸電流idとq軸電流iqとの関係を説明する図である。α-β座標から推定磁極位相θの遅れた座標をd-q座標電流とすると、α-β座標で図のような電流ベクトルiはd-q座標では、d軸電流idとq軸電流iqとで表される。
一方、α軸電流とβ軸電流とを推定磁極位置θから電機角度45度(π/4ラジアン)の位置にd−q変換を行うと、その結果のd軸電流idmとq軸電流iqmは(2)式で示される
Figure 2007049782
(2)式を展開すると、(3)式となる。
Figure 2007049782
従って(1)式と(3)式から、idmとiqmはidとiqを用いて(4)式で計算することができる。
Figure 2007049782
このように、(2)式で計算していたものと等価な機能を(4)式で実現できることがわかる。
演算量については、(2)式では、cos関数計算1回、sin関数計算1回、乗算4回、加減算2回かかるのに対し、(4)式では加減算2回と除算2回とより少ない演算量で等価な結果を得ることができる。
さらに、id,iqは実効値、idm,iqmは波高値で取り扱うようにすれば、(4)式は、
idm=id−iq 、 iqm=id+iq
となり、加減算2回で演算可能となる。
以上のようにして演算量を低減することができることとなる。 Hereinafter, first, the principle of the present invention will be described.
When the d-q conversion is performed using the α-axis current and the β-axis current by using the estimated magnetic pole phase θ, the d-axis current id and the q-axis current iq are expressed by Expression (1).
Figure 2007049782
Here, FIG. 4 is a diagram illustrating the relationship between the α-axis coordinate α-axis current and the d-axis current id obtained by dq conversion of the β-axis current and the q-axis current iq. Assuming that the coordinate delayed from the α-β coordinate by the estimated magnetic pole phase θ is the dq coordinate current, the current vector i as shown in the figure in the α-β coordinate is the d-axis current id and the q-axis current iq in the dq coordinate. It is expressed as
On the other hand, when the α-axis current and the β-axis current are subjected to dq conversion from the estimated magnetic pole position θ to the position of the electrical angle 45 degrees (π / 4 radians), the resulting d-axis current idm and q-axis current iqm are (2)
Figure 2007049782
When formula (2) is expanded, formula (3) is obtained.
Figure 2007049782
Therefore, from equation (1) and equation (3), idm and iqm can be calculated by equation (4) using id and iq.
Figure 2007049782
Thus, it can be seen that a function equivalent to that calculated by equation (2) can be realized by equation (4).
As for the amount of calculation, in equation (2), it takes one cos function calculation, one sin function calculation, four multiplications, and two additions / subtractions, whereas in equation (4), there are fewer additions / subtractions and two divisions. Equivalent results can be obtained with the amount of computation.
Furthermore, if id and iq are handled as effective values and idm and iqm are handled as peak values, equation (4) becomes
idm = id−iq, iqm = id + iq
Thus, calculation can be performed by adding and subtracting twice.
As described above, the amount of calculation can be reduced.

上記原理に基づいてなされた本発明の実施の形態について図1を参照して説明する。
図1は、本発明の同期電動機の制御装置のブロック線図である。図1において図2中の構成要素と同一の構成要素には同一の符号を付け、重複説明は省略するものとする。
本発明は、図2で示される従来の同期電動機の制御装置に対して、α軸電流i_alphaとβ軸電流i_betaとを推定磁極位相から電気角度45度の位置にd−q変換を行うd−q変換器7を除去し、代わりに等価な機能を持つ演算回路20を従来のd−q変換を行うd−q変換器10の出力側に設けて成るものである。そして、演算回路20は具体的には、加算器21qと減算器21dとゲイン22とで構成し、加算器21qと減算器21dの2入力にそれぞれ、d-q変換器10の出力であるd軸電流idとq軸電流iqとを用いている。
An embodiment of the present invention based on the above principle will be described with reference to FIG.
FIG. 1 is a block diagram of a control apparatus for a synchronous motor according to the present invention. In FIG. 1, the same components as those in FIG. 2 are denoted by the same reference numerals, and redundant description will be omitted.
The present invention performs a d-q conversion of the α axis current i_alpha and the β axis current i_beta from the estimated magnetic pole phase to an electrical angle of 45 degrees with respect to the conventional synchronous motor control device shown in FIG. The q converter 7 is removed, and instead an arithmetic circuit 20 having an equivalent function is provided on the output side of the conventional dq converter 10 for performing dq conversion. The arithmetic circuit 20 is specifically composed of an adder 21q, a subtractor 21d, and a gain 22. Two inputs of the adder 21q and the subtractor 21d are outputs of the dq converter 10 respectively. An axial current id and a q-axis current iq are used.

このように、d−q変換機10は従来の同期電動機と同じくα軸電流i_alphaとβ軸電流I_betaとを推定磁極位相theta_estを用いてd−q変換し、d軸電流idとq軸電流iqを出力する。
加算器21qはd−q変換機10から出力されたidとiqを加算し、減算器21dはd−q変換機10から出力されたidからiqを減算する。
加算器21qと減算器21dの出力にそれぞれゲイン22(今の場合は、1/√2)が掛けられidmとiqmが出力される。
このようにして、従来のものと等価な機能をより少ない演算数で求めることができ、磁極推定のための演算量を軽減することができる。
As described above, the dq converter 10 d-q converts the α-axis current i_alpha and the β-axis current I_beta using the estimated magnetic pole phase theta_est as in the conventional synchronous motor, and the d-axis current id and the q-axis current iq. Is output.
The adder 21q adds id and iq output from the dq converter 10, and the subtractor 21d subtracts iq from the id output from the dq converter 10.
The outputs of the adder 21q and the subtractor 21d are respectively multiplied by a gain 22 (in this case, 1 / √2), and idm and iqm are output.
In this way, a function equivalent to the conventional one can be obtained with a smaller number of computations, and the amount of computation for magnetic pole estimation can be reduced.

本発明を適用することによって磁極推定のための演算量の軽減が可能となり、安価なCPUを使用したセンサレスでのインバータ制御装置という用途にも適用できる。   By applying the present invention, it is possible to reduce the amount of calculation for magnetic pole estimation, and it can be applied to a sensorless inverter control device using an inexpensive CPU.

本発明に係る示す同期電動機の制御装置のブロック図である。It is a block diagram of the control apparatus of the synchronous motor shown based on this invention. 従来装置に係る同期電動機の制御装置のブロック図である。It is a block diagram of the control apparatus of the synchronous motor which concerns on the conventional apparatus. 図1および図2に共通の磁極推定器8の内部構成を示すブロック図である。FIG. 3 is a block diagram showing an internal configuration of a magnetic pole estimator 8 common to FIGS. 1 and 2. α-β座標とd-q座標との関係を表わす図である。It is a figure showing the relationship between (alpha) -beta coordinate and dq coordinate.

符号の説明Explanation of symbols

1 高周波発生器、
2 PWMインバータ回路、
3 同期電動機、
4 電流制御器、
5 座標変換器、
6 高周波インピーダンス推定器、
7 d-q変換器、
8 磁極位置推定器、
9 α-β変換器、
10 d-q変換器、
11 ローパスフィルタ(LPF)、
12 減算器、
13 減算器、
14 減算器、
15 加算器、
16 減算器、
17 乗算器、
18 積分器、
19 バンドパスフィルタ(BPF)、
20 演算回路、
21d 減算器、
21q 加算器、
22 ゲイン
1 high frequency generator,
2 PWM inverter circuit,
3 Synchronous motor,
4 Current controller,
5 coordinate converter,
6 high frequency impedance estimator,
7 dq converter,
8 Magnetic pole position estimator,
9 α-β converter,
10 dq converter,
11 Low-pass filter (LPF),
12 Subtractor,
13 Subtractor,
14 Subtractor,
15 adder,
16 subtractor,
17 multiplier,
18 integrator,
19 Band pass filter (BPF)
20 arithmetic circuit,
21d subtractor,
21q adder,
22 gain

Claims (2)

インバータ回路からの交流電力により電気的突極性を有する永久磁石形同期電動機を可変速制御する制御装置であって、同期電動機に供給される少なくとも2相分のステータ電流をα-β座標変換するα-β変換器と、前記α-β変換器から出力されたα軸電流とβ軸電流をd-q変換するd-q変換器と、前記d-q変換器から出力されたd軸電流idとq軸電流iqのそれぞれの電流指令値との偏差をゼロにするように電流制御を実施する電流制御器と、前記電流制御器から出力されたd軸電圧指令に高周波電圧を重畳する高周波発生器と、前記高周波発生器により高周波電圧を重畳されたd軸電圧指令とq軸電圧指令とを2−3相変換する座標変換器と、座標変換器からの出力指令に基づいて同期電動機の制御を行うPWMインバータ回路とを備えた同期電動機制御装置において、
前記d-q変換器から出力された前記d軸電流idと前記q軸電流iqとを用いて、前記α軸電流と前記β軸電流とを推定磁極位置θから電機角度45度の位置にd−q変換を行った結果のd軸電流idmとq軸電流iqmを求める演算回路と、
前記高周波発生器により重畳された周波数と同じ周波数成分を前記演算回路の出力電流であるd軸電流idmとq軸電流iqmから抽出する高周波抽出器と、
前記高周波抽出器により抽出された電流と前記高周波電圧に基づいて推定磁極軸から電気角45度進んだ点と遅れた点の二点でそれぞれ高周波インピーダンスを測定し、二点間でのインピーダンス偏差を推定する高周波インピーダンス推定器と、
前記二つの高周波インピーダンス間の偏差がゼロとなるような磁極位置を推定する磁極位置推定器と、
を備えることを特徴とする同期電動機の制御装置。
A control device for variable speed control of a permanent magnet synchronous motor having electrical saliency with AC power from an inverter circuit, wherein α is converted to α-β coordinates of stator current for at least two phases supplied to the synchronous motor -β converter, d-q converter for dq-converting α-axis current and β-axis current output from the α-β converter, and d-axis current id output from the dq converter And a current controller that performs current control so that the deviation between each current command value of the q-axis current iq is zero, and high-frequency generation that superimposes a high-frequency voltage on the d-axis voltage command output from the current controller , A coordinate converter for converting the d-axis voltage command and the q-axis voltage command on which the high-frequency voltage is superimposed by the high-frequency generator into a 2-3 phase, and the control of the synchronous motor based on the output command from the coordinate converter Synchronous motor with PWM inverter circuit In the control device,
Using the d-axis current id and the q-axis current iq output from the dq converter, the α-axis current and the β-axis current are d-positioned from the estimated magnetic pole position θ to an electrical angle of 45 degrees. An arithmetic circuit for obtaining a d-axis current idm and a q-axis current iqm as a result of performing the -q conversion;
A high-frequency extractor that extracts the same frequency component as the frequency superimposed by the high-frequency generator from the d-axis current idm and the q-axis current iqm that are output currents of the arithmetic circuit;
Based on the current extracted by the high-frequency extractor and the high-frequency voltage, the high-frequency impedance is measured at two points, a point advanced 45 degrees from the estimated magnetic pole axis and a point delayed, and the impedance deviation between the two points is measured. A high frequency impedance estimator to estimate;
A magnetic pole position estimator for estimating a magnetic pole position such that a deviation between the two high-frequency impedances is zero;
A control apparatus for a synchronous motor, comprising:
前記演算回路は、次式
idm=(id−iq)/21/2、 iqm=(id+iq)/21/2
を演算することにより、前記d軸電流idと前記q軸電流iqから前記d軸電流idmと前記q軸電流iqmを求めることを特徴とする請求項1記載の同期電動機の制御装置。
The arithmetic circuit has the following formula:
idm = (id−iq) / 2 1/2 , iqm = (id + iq) / 2 1/2
The synchronous motor control device according to claim 1, wherein the d-axis current idm and the q-axis current iqm are obtained from the d-axis current id and the q-axis current iq by calculating
JP2005229325A 2005-08-08 2005-08-08 Controller of synchronous motor Pending JP2007049782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005229325A JP2007049782A (en) 2005-08-08 2005-08-08 Controller of synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005229325A JP2007049782A (en) 2005-08-08 2005-08-08 Controller of synchronous motor

Publications (1)

Publication Number Publication Date
JP2007049782A true JP2007049782A (en) 2007-02-22

Family

ID=37852179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005229325A Pending JP2007049782A (en) 2005-08-08 2005-08-08 Controller of synchronous motor

Country Status (1)

Country Link
JP (1) JP2007049782A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010051078A (en) * 2008-08-20 2010-03-04 Sanyo Electric Co Ltd Motor control device
EP2784928A2 (en) 2013-03-29 2014-10-01 Kabushiki Kaisha Yaskawa Denki Motor control apparatus and magnetic-pole position estimating method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010051078A (en) * 2008-08-20 2010-03-04 Sanyo Electric Co Ltd Motor control device
EP2784928A2 (en) 2013-03-29 2014-10-01 Kabushiki Kaisha Yaskawa Denki Motor control apparatus and magnetic-pole position estimating method

Similar Documents

Publication Publication Date Title
JP4687846B2 (en) Magnetic pole position estimation method and control apparatus for synchronous motor
JP3627683B2 (en) Motor control device
JP3582505B2 (en) Motor control device
JP5351859B2 (en) Vector control device and motor control system
JP4416764B2 (en) Vector controller and inverter module for permanent magnet motor
US20170264227A1 (en) Inverter control device and motor drive system
JP2007252052A (en) Vector controller of permanent magnet motor
JP2007049843A (en) Vector control device for permanent-magnet synchronous motors
RU2577529C1 (en) Control unit for ac rotating machine
TW201820769A (en) Inverter control device and motor drive system
JP2015136237A (en) Dynamo-electric machine controller, dynamo-electric machine control method, and creation method of control map
JPH11299297A (en) Controller for permanent magnet synchronous motor
JP2018523462A (en) Motor controller and motor system
JP2009296788A (en) Rotational angle of rotating machine estimating device
JP5050387B2 (en) Motor control device
JP4639832B2 (en) AC motor drive device
JP2016096666A (en) Motor control apparatus
JP2009195049A (en) Motor control apparatus
JP7304891B2 (en) Rotating machine control device and electric vehicle control device
JP4596092B2 (en) Induction motor magnetic flux position estimation method and control apparatus
WO2020213178A1 (en) Electric motor control device
JP2007049782A (en) Controller of synchronous motor
JP2009044908A (en) Device for estimating rotation angle of rotating machine and system for driving rotating machine
JP2006109589A (en) Controller of synchronous motor
JP2011066974A (en) Controller for rotating machine

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071127