JP2007049770A - Power supply - Google Patents

Power supply Download PDF

Info

Publication number
JP2007049770A
JP2007049770A JP2005228547A JP2005228547A JP2007049770A JP 2007049770 A JP2007049770 A JP 2007049770A JP 2005228547 A JP2005228547 A JP 2005228547A JP 2005228547 A JP2005228547 A JP 2005228547A JP 2007049770 A JP2007049770 A JP 2007049770A
Authority
JP
Japan
Prior art keywords
inverter
switching
frequency
power supply
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2005228547A
Other languages
Japanese (ja)
Inventor
Koji Noda
浩二 野田
Naoyoshi Uesugi
通可 植杉
Takahisa Endo
隆久 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2005228547A priority Critical patent/JP2007049770A/en
Publication of JP2007049770A publication Critical patent/JP2007049770A/en
Abandoned legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power supply for quickly responding, stabilized in the entire apparatus, possibly reducing a switching loss and improving the efficiency. <P>SOLUTION: In a system linking operation, a switching operation is implemented in an inverter 10 at a higher frequency of 12 kHz, and a switching frequency of a voltage boosting chopper 4 is set to the same frequency of 12 kHz as the switching frequency of the inverter 10. In a self operation for eliminating a necessity of a linkage to a commercial power supply system, the switching operation is implemented in the inverter 10 at a lower frequency of 6 kHz, and the switching frequency of the voltage boosting chopper 4 is set to the same frequency of 6 kHz as the switching frequency of the inverter 10. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、太陽電池の出力をインバータにより交流に変換して負荷に供給する電源装置に関する。   The present invention relates to a power supply apparatus that converts an output of a solar cell into an alternating current by an inverter and supplies the alternating current to a load.

太陽電池の出力(直流電圧)をインバータにより交流に変換して負荷に供給する電源装置の例として、インバータを商用電源系統と連系して動作させる系統連系運転、およびインバータを商用電源系統と関わりなく動作させる自立運転を可能とするものがある(例えば、特許文献1,2)。   As an example of a power supply device that converts the output (DC voltage) of a solar cell into AC by an inverter and supplies it to a load, a grid-connected operation in which the inverter is operated in conjunction with a commercial power system, and the inverter as a commercial power system There are some that can be operated independently of each other (for example, Patent Documents 1 and 2).

系統連系運転では、太陽電池の出力が商用電源系統に供給される。自立運転では、太陽電池の出力により、家庭電化製品などの電気機器が直接的に運転される。   In the grid connection operation, the output of the solar cell is supplied to the commercial power supply system. In the self-sustained operation, electric devices such as home appliances are directly operated by the output of the solar cell.

このような電源装置では、系統連系運転時、商用電源系統との連系を確実にするため、商用電源の周波数よりも十分に高い周波数でインバータがスイッチングされる。スイッチング周波数が高いことにより、そのスイッチング周期に同期して行われる割り込み制御が頻繁となり、商用電源の状態変化などに十分に追従し得る応答性のよい制御が可能となる。自立運転では、商用電源系統との連系がそもそも不要であること、しかも図4に示すように、インバータのスイッチング周波数(fc)が低いほどスイッチング損失が減少して効率の向上が図れることから、低い周波数でインバータがスイッチングされる。
特開平8−317665号公報 特開平9−308263号公報
In such a power supply device, the inverter is switched at a frequency sufficiently higher than the frequency of the commercial power supply in order to ensure the interconnection with the commercial power supply system during the grid interconnection operation. Since the switching frequency is high, interrupt control performed in synchronization with the switching cycle becomes frequent, and control with good responsiveness that can sufficiently follow the change in the state of the commercial power supply and the like is possible. In the self-sustained operation, the connection with the commercial power supply system is unnecessary in the first place, and as shown in FIG. 4, the lower the switching frequency (fc) of the inverter, the lower the switching loss and the higher the efficiency. The inverter is switched at a low frequency.
JP-A-8-317665 JP-A-9-308263

上記の電源装置では、太陽電池の出力がスイッチングによって一旦昇圧されてからインバータに供給される。昇圧用のスイッチング周波数は、インバータのスイッチング周波数よりも低い。   In the power supply device described above, the output of the solar cell is once boosted by switching and then supplied to the inverter. The switching frequency for boosting is lower than the switching frequency of the inverter.

系統連系運転時に高い周波数でインバータがスイッチングされて、割り込み制御が頻繁になったとしても、それはインバータ側の制御についてだけのことであって、装置全体で見ると必ずしも応答性がよいとはいえない。   Even if the inverter is switched at a high frequency during grid-connected operation and interrupt control becomes frequent, it is only for the control on the inverter side, but it is not necessarily responsive to the entire device. Absent.

この発明は、上記事情を考慮したもので、装置全体にわたって応答性のよい安定した制御を可能とし、しかもスイッチング損失を極力減少できて効率の向上が図れる電源装置を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a power supply apparatus that enables stable control with good responsiveness over the entire apparatus and that can reduce switching loss as much as possible to improve efficiency.

請求項1に係る発明の電源装置は、太陽電池の出力を昇圧手段のスイッチングにより昇圧する昇圧手段と、この昇圧手段の出力をスイッチングにより交流に変換するインバータと、このインバータを商用電源系統に連系して動作させる系統連系運転および上記商用電源系統と関わりなく動作させる自立運転を選択的に実行する制御手段と、上記インバータのスイッチング周波数を上記系統連系運転時に高い値に設定して上記自立運転時に低い値に設定するとともに、そのスイッチング周波数と同じ値に上記昇圧手段のスイッチング周波数を設定する制御手段と、を備えている。   A power supply device according to a first aspect of the present invention includes a booster that boosts the output of a solar cell by switching of the booster, an inverter that converts the output of the booster to AC by switching, and the inverter connected to a commercial power system. Control means for selectively executing grid-connected operation to operate independently and independent operation to operate regardless of the commercial power supply system, and the switching frequency of the inverter is set to a high value during the grid-connected operation. And a control means for setting the switching frequency of the boosting means to the same value as the switching frequency while setting to a low value during the self-sustaining operation.

この発明の電源装置によれば、装置全体にわたって応答性のよい安定した制御が可能となる。しかも、スイッチング損失を極力減少できて、効率の向上が図れる。   According to the power supply apparatus of the present invention, stable control with good responsiveness can be achieved over the entire apparatus. In addition, the switching loss can be reduced as much as possible, and the efficiency can be improved.

以下、この発明の一実施形態について図面を参照して説明する。
図1において、1は太陽電池(PV)で、光を受けることにより、直流電圧を出力する。この出力が本発明の電源装置であるパワーコンディショナー2に供給される。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
In FIG. 1, reference numeral 1 denotes a solar cell (PV), which outputs a DC voltage by receiving light. This output is supplied to the power conditioner 2 which is the power supply device of the present invention.

パワーコンディショナー2は、太陽電池1の出力電圧が印加されるコンデンサ3、このコンデンサ3の電圧を昇圧する昇圧チョッパー4、この昇圧チョッパー4の出力を交流電圧に変換するインバータ10を備えている。   The power conditioner 2 includes a capacitor 3 to which the output voltage of the solar cell 1 is applied, a boost chopper 4 that boosts the voltage of the capacitor 3, and an inverter 10 that converts the output of the boost chopper 4 into an AC voltage.

昇圧チョッパー4は、直流リアクトル5、トランジスタたとえばIGBT6、逆流防止用ダイオード7、およびコンデンサ8を有するいわゆるDC−DCコンバータであり、主制御部であるMCU30から供給されるPWM信号に応じてIGBT6がオン,オフすることにより、入力電圧(直流電圧)を所定レベルの直流電圧に昇圧する。インバータ10は、4つのトランジスタたとえばIGBT11,12,13,14からなるフルブリッジ回路、およびIGBT11,12,13,14にそれぞれ逆並列接続された還流ダイオードDを有し、MCU30から供給されるPWM信号に応じたIGBT11,12,13,14のオン,オフにより、入力電圧(直流電圧)を所定周波数の交流電圧に変換する。   The step-up chopper 4 is a so-called DC-DC converter having a DC reactor 5, a transistor such as an IGBT 6, a backflow prevention diode 7, and a capacitor 8, and the IGBT 6 is turned on in response to a PWM signal supplied from the MCU 30 that is a main control unit. , The input voltage (DC voltage) is boosted to a predetermined level of DC voltage. The inverter 10 has a full bridge circuit composed of four transistors, for example, IGBTs 11, 12, 13, and 14, and a free wheel diode D connected in antiparallel to the IGBTs 11, 12, 13, and 14, respectively, and a PWM signal supplied from the MCU 30 The input voltage (DC voltage) is converted into an AC voltage having a predetermined frequency by turning on and off the IGBTs 11, 12, 13, and 14 according to the above.

このインバータ10の出力端に交流リアクトル14を介してコンデンサ15が接続され、そのコンデンサ15に第1スイッチ手段たとえばリレー接点16,17および出力用コンデンサ18,19を介して系統出力端子(100V/200V)20が接続されている。そして、系統出力端子20に商用電源系統が接続され、その商用電源系統に各種電気機器が接続されている。また、上記コンデンサ15に、第2スイッチ手段たとえばリレー接点21および出力用コンデンサ22を介して自立出力端子(100V)23が接続されている。この自立出力端子23に、上記各種電気機器が直接的に接続されている。   A capacitor 15 is connected to the output terminal of the inverter 10 via an AC reactor 14. A system output terminal (100V / 200V) is connected to the capacitor 15 via first switch means such as relay contacts 16 and 17 and output capacitors 18 and 19. ) 20 is connected. A commercial power supply system is connected to the system output terminal 20, and various electric devices are connected to the commercial power supply system. A self-supporting output terminal (100V) 23 is connected to the capacitor 15 via a second switch means such as a relay contact 21 and an output capacitor 22. The various electric devices are directly connected to the independent output terminal 23.

上記リレー接点16,17,18は、MCU30により制御される。そして、リレー接点16とリレー接点17との間の通電路における系統電圧(および周波数)、太陽電池1の出力電圧・電流、および昇圧チョッパー4の昇圧電圧が、それぞれMCU30により監視される。MCU30には、さらに、運転切替スウィッチ31および表示部32が接続されている。   The relay contacts 16, 17, 18 are controlled by the MCU 30. Then, the system voltage (and frequency) in the energization path between the relay contact 16 and the relay contact 17, the output voltage / current of the solar cell 1, and the boost voltage of the boost chopper 4 are monitored by the MCU 30. An operation switching switch 31 and a display unit 32 are further connected to the MCU 30.

MCU30は、主要な機能として、次の(1)(2)の手段を有している。
(1)運転切替スウィッチ31の操作に応じて、インバータ10を商用電源系統に連系して動作させる系統連系運転および商用電源系統と関わりなく動作させる自立運転を選択的に実行する制御手段。
(2)インバータ10のスイッチング周波数を系統連系運転時に高い値に設定して自立運転時に低い値に設定するとともに、そのスイッチング周波数と同じ値に昇圧チョッパー4のスイッチング周波数を設定する制御手段。
The MCU 30 has the following means (1) and (2) as main functions.
(1) Control means for selectively executing, in accordance with an operation of the operation switching switch 31, a grid interconnection operation that causes the inverter 10 to operate in conjunction with the commercial power system and a self-sustained operation that operates regardless of the commercial power system.
(2) Control means for setting the switching frequency of the step-up chopper 4 to the same value as the switching frequency while setting the switching frequency of the inverter 10 to a high value during the grid connection operation and to a low value during the independent operation.

つぎに、上記の構成の作用を図2の信号波形図および図3のフローチャートを参照しながら説明する。
図2に示すように、正弦波状電圧の指令信号と三角波状電圧のキャリア信号との電圧比較により、パルス波状電圧のPWM信号が生成される。このPWM信号は、周波数がキャリア信号の周波数と一致し、パルス幅(オン,オフデューティ)が指令信号の電圧レベルに応じて変化する。
Next, the operation of the above configuration will be described with reference to the signal waveform diagram of FIG. 2 and the flowchart of FIG.
As shown in FIG. 2, a pulse wave voltage PWM signal is generated by voltage comparison between a sinusoidal voltage command signal and a triangular wave voltage carrier signal. The frequency of the PWM signal matches the frequency of the carrier signal, and the pulse width (on / off duty) changes according to the voltage level of the command signal.

こうして、昇圧チョッパー4を駆動するためのPWM信号が生成されるとともに、インバータ10を駆動するためのPWM信号が生成される。   Thus, a PWM signal for driving the step-up chopper 4 is generated and a PWM signal for driving the inverter 10 is generated.

運転切替スウィッチ31で系統連系運転が設定されると、インバータ10用のPWM信号を生成するためのキャリア信号の周波数fが高めの12kHzに設定されるとともに、昇圧チョッパー4用のPWM信号を生成するためのキャリア信号の周波数fが同じ12kHzに設定される。こうして、昇圧チョッパー4およびインバータ10が共に12kHzの周波数でスイッチングされ、そのインバータ10の出力による系統連系運転が開始される。   When the grid connection operation is set by the operation switch 31, the carrier signal frequency f for generating the PWM signal for the inverter 10 is set to a higher 12 kHz, and the PWM signal for the boost chopper 4 is generated. The frequency f of the carrier signal for this is set to the same 12 kHz. In this way, the boost chopper 4 and the inverter 10 are both switched at a frequency of 12 kHz, and the grid interconnection operation by the output of the inverter 10 is started.

系統連系運転では、初めに、リレー接点16がオフの状態でリレー接点17がオンされ、リレー接点16とリレー接点17との間の通電路において商用電源系統の電圧および周波数がチェックされる。この系統電圧および系統周波数が規定の範囲内に収まったまま、一定の連系待機時間(例えば300秒)が経過すると、商用電源系統が正常であるとの判断の下に、リレー接点16がオンされる。これにより、インバータ10の出力が商用電源系統に供給される。   In the grid connection operation, first, the relay contact 17 is turned on while the relay contact 16 is turned off, and the voltage and frequency of the commercial power system are checked in the energization path between the relay contact 16 and the relay contact 17. When a certain grid standby time (for example, 300 seconds) elapses while the system voltage and system frequency are within the specified ranges, the relay contact 16 is turned on under the judgment that the commercial power system is normal. Is done. As a result, the output of the inverter 10 is supplied to the commercial power supply system.

この系統連系運転時、系統電圧が所定値以上上昇した場合には、インバータ10から商用電源系統に無効電力を注入する無効電力注入制御が実行され、これにより系統電圧の上昇が抑制される。   During the grid interconnection operation, when the system voltage increases by a predetermined value or more, reactive power injection control for injecting reactive power from the inverter 10 to the commercial power supply system is executed, thereby suppressing an increase in the system voltage.

また、系統連系運転時、昇圧チョッパー4の出力電圧が監視されており、負荷側の電力消費の増大などによって昇圧チョッパー4の出力電圧が下降すると、昇圧チョッパー4用のPWM信号のオン,オフデューティが増大されて、昇圧チョッパー4の出力電圧が上昇方向に調整される。   Further, during the grid connection operation, the output voltage of the boost chopper 4 is monitored. When the output voltage of the boost chopper 4 decreases due to an increase in power consumption on the load side, the PWM signal for the boost chopper 4 is turned on / off. The duty is increased, and the output voltage of the boost chopper 4 is adjusted in the increasing direction.

運転切替スウィッチ31で運転停止が指示されると、昇圧チョッパー4およびインバータ10の駆動が停止される。これにより、系統連系運転が終了する。   When operation stop is instructed by the operation switching switch 31, the drive of the boost chopper 4 and the inverter 10 is stopped. Thereby, the grid connection operation is completed.

一方、運転切替スウィッチ31で自立運転が設定されると、インバータ10用のPWM信号を生成するためのキャリア信号の周波数fが低めの6kHzに設定されるとともに、昇圧チョッパー4用のPWM信号を生成するためのキャリア信号の周波数fが同じ6kHzに設定される。こうして、昇圧チョッパー4およびインバータ10が共に6kHzの周波数でスイッチングされ、そのインバータ10の出力による自立運転が開始される。   On the other hand, when the independent operation is set by the operation switching switch 31, the frequency f of the carrier signal for generating the PWM signal for the inverter 10 is set to a lower 6 kHz, and the PWM signal for the boost chopper 4 is generated. The frequency f of the carrier signal for this is set to the same 6 kHz. In this way, the boost chopper 4 and the inverter 10 are both switched at a frequency of 6 kHz, and the self-sustained operation by the output of the inverter 10 is started.

自立運転では、リレー接点21がオンされ、インバータ10の出力が電気機器に直接的に供給される。   In the independent operation, the relay contact 21 is turned on, and the output of the inverter 10 is directly supplied to the electric device.

また、この自立運転時、昇圧チョッパー4の出力電圧が監視されており、負荷側の電力消費の増大などによって昇圧チョッパー4の出力電圧が下降すると、昇圧チョッパー4用のPWM信号のオン,オフデューティが増大されて、昇圧チョッパー4の出力電圧が上昇方向に調整される。   Further, during this self-sustained operation, the output voltage of the boost chopper 4 is monitored. When the output voltage of the boost chopper 4 decreases due to an increase in power consumption on the load side, the duty cycle of the PWM signal for the boost chopper 4 is turned on and off. Is increased, and the output voltage of the step-up chopper 4 is adjusted in the upward direction.

運転切替スウィッチ31で運転停止が指示されると、昇圧チョッパー4およびインバータ10の駆動が停止される。これにより、自立運転が終了する。   When operation stop is instructed by the operation switching switch 31, the drive of the boost chopper 4 and the inverter 10 is stopped. Thereby, self-sustained operation is completed.

以上のように、系統連系運転では、インバータ10が商用電源の周波数よりも十分に高い周波数12kHzでスイッチングされることにより、そのスイッチング周期に同期して行われる割り込み制御が頻繁となり、商用電源の状態変化などに十分に追従し得る応答性のよい制御が可能となる。しかも、昇圧チョッパー4のスイッチング周波数がインバータ10のスイッチング周波数と同じ12kHzに設定されるので、インバータ10の制御に昇圧チョッパー4の制御が応答性よく追従することになり(ちぐはぐな動作がなくなり)、パワーコンディショナー2の全体にわたって応答性のよい安定した制御が可能となる。   As described above, in the grid connection operation, the inverter 10 is switched at a frequency of 12 kHz sufficiently higher than the frequency of the commercial power supply, so that interrupt control performed in synchronization with the switching cycle becomes frequent, and the commercial power supply Control with good responsiveness that can sufficiently follow the state change or the like is possible. Moreover, since the switching frequency of the step-up chopper 4 is set to 12 kHz, which is the same as the switching frequency of the inverter 10, the control of the step-up chopper 4 follows the control of the inverter 10 with good responsiveness (there is no short operation), Stable control with good response is possible over the entire power conditioner 2.

商用電源系統との連系が不要な自立運転時は、インバータ10が低い周波数6kHzでスイッチングされることにより、スイッチング損失が減少して効率の向上が図れる。しかも、この場合、昇圧チョッパー4のスイッチング周波数がインバータ10のスイッチング周波数と同じ6kHzに設定されるので、インバータ10の制御に昇圧チョッパー4の制御が応答性よく追従することになり(ちぐはぐな動作がなくなり)、パワーコンディショナー2の全体にわたって応答性のよい安定した制御が可能となる。   At the time of self-sustained operation that does not require connection with a commercial power supply system, the inverter 10 is switched at a low frequency of 6 kHz, so that switching loss is reduced and efficiency can be improved. In addition, in this case, since the switching frequency of the boost chopper 4 is set to 6 kHz, which is the same as the switching frequency of the inverter 10, the control of the boost chopper 4 follows the control of the inverter 10 with good responsiveness. Therefore, stable control with good responsiveness is possible over the entire power conditioner 2.

なお、この発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment.

この発明の一実施形態の構成を示すブロック図。The block diagram which shows the structure of one Embodiment of this invention. 一実施形態におけるPWM信号の生成を説明するための信号波形図。The signal wave form diagram for demonstrating the production | generation of the PWM signal in one Embodiment. 一実施形態の作用を説明するためのフローチャート。The flowchart for demonstrating the effect | action of one Embodiment. 一実施形態におけるインバータのスイッチング周波数と効率の関係を示す図。The figure which shows the switching frequency and efficiency relationship of the inverter in one Embodiment.

符号の説明Explanation of symbols

1…太陽電池、2…パワーコンディショナー(電源装置)、4…昇圧チョッパー(昇圧手段)、10…インバータ、16,17,21…リレー接点、20…系統出力端子、23…自立出力端子、30…MCU   DESCRIPTION OF SYMBOLS 1 ... Solar cell, 2 ... Power conditioner (power supply device), 4 ... Boost chopper (boost means), 10 ... Inverter, 16, 17, 21 ... Relay contact, 20 ... System | strain output terminal, 23 ... Independent output terminal, 30 ... MCU

Claims (2)

太陽電池の出力をスイッチングにより昇圧する昇圧手段と、この昇圧手段の出力をスイッチングにより交流に変換するインバータと、このインバータを商用電源系統に連系して動作させる系統連系運転および前記商用電源系統と関わりなく動作させる自立運転を選択的に実行する制御手段と、前記インバータのスイッチング周波数を前記系統連系運転時に高い値に設定して前記自立運転時に低い値に設定するとともに、そのスイッチング周波数と同じ値に前記昇圧手段のスイッチング周波数を設定する制御手段と、を備えたことを特徴とする電源装置。 Boosting means for boosting the output of the solar cell by switching, an inverter for converting the output of the boosting means to alternating current by switching, a grid-connected operation for operating the inverter linked to a commercial power system, and the commercial power system A control means for selectively executing a self-sustained operation that is operated regardless of the switching frequency of the inverter, and a switching frequency of the inverter is set to a high value during the grid connection operation and set to a low value during the self-sustained operation. And a control means for setting the switching frequency of the boosting means to the same value. 前記インバータの出力を前記商用電源系統に出力するための系統出力端子と、前記インバータの出力を機器の運転用に出力するための自立出力端子と、前記インバータの出力端と前記系統出力端子との間に設けられた第1スイッチ手段と、前記インバータの出力端と前記自立出力端子との間に設けられた第2スイッチ手段とを備え、前記制御手段は、前記系統運転時に第1スイッチ手段を導通させ、前記自立運転時に第2スイッチ手段を導通させる、ことを特徴とする請求項1に記載の電源装置。 A system output terminal for outputting the output of the inverter to the commercial power supply system, a self-supporting output terminal for outputting the output of the inverter for operation of the device, an output terminal of the inverter, and the system output terminal A first switch means provided between the inverter and a second switch means provided between the output terminal of the inverter and the self-supporting output terminal, and the control means controls the first switch means during the system operation. The power supply device according to claim 1, wherein the power supply device is electrically connected and the second switch means is electrically connected during the independent operation.
JP2005228547A 2005-08-05 2005-08-05 Power supply Abandoned JP2007049770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005228547A JP2007049770A (en) 2005-08-05 2005-08-05 Power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005228547A JP2007049770A (en) 2005-08-05 2005-08-05 Power supply

Publications (1)

Publication Number Publication Date
JP2007049770A true JP2007049770A (en) 2007-02-22

Family

ID=37852168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005228547A Abandoned JP2007049770A (en) 2005-08-05 2005-08-05 Power supply

Country Status (1)

Country Link
JP (1) JP2007049770A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010028975A (en) * 2008-07-18 2010-02-04 Toshiba Carrier Corp Power supply unit
WO2013046638A1 (en) 2011-09-28 2013-04-04 京セラ株式会社 Power conditioner system and storage battery power conditioner
WO2014171154A1 (en) 2013-04-19 2014-10-23 京セラ株式会社 Power control system, power control device, and method for controlling power control system
WO2014171153A1 (en) 2013-04-19 2014-10-23 京セラ株式会社 Power control system, power control device, and method for controlling power control system
JP2015027197A (en) * 2013-07-26 2015-02-05 シャープ株式会社 Electric power conversion device
JP2015077061A (en) * 2013-10-11 2015-04-20 オムロン株式会社 Inverter device, power conditioner, power generation system, and control method of inverter device
WO2015083373A1 (en) 2013-12-02 2015-06-11 京セラ株式会社 Power control system, power control device, and method for controlling power control system
WO2015111410A1 (en) 2014-01-22 2015-07-30 京セラ株式会社 Power control system and method for controlling power control system
JP2015188299A (en) * 2014-03-11 2015-10-29 パナソニックIpマネジメント株式会社 power converter
JP2018081667A (en) * 2016-11-14 2018-05-24 エルエス産電株式会社Lsis Co., Ltd. Method for controlling interrupts in inverter
JP2018207786A (en) * 2014-07-29 2018-12-27 京セラ株式会社 Control method for power control system, power control system, and power controller
US10243367B2 (en) 2014-05-19 2019-03-26 Kyocera Corporation Power supply system, control method of power supply system, and power supply apparatus
US10418819B2 (en) 2014-07-29 2019-09-17 Kyocera Corporation Control method for power control system, power control system, and power control apparatus
US10749348B2 (en) 2015-10-28 2020-08-18 Kyocera Corporation Power control apparatus, control method for power control apparatus, power control system, and control method for power control system
US10910839B2 (en) 2015-10-28 2021-02-02 Kyocera Corporation Power control system and control method for power control system

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010028975A (en) * 2008-07-18 2010-02-04 Toshiba Carrier Corp Power supply unit
US9819218B2 (en) 2011-09-28 2017-11-14 Kyocera Corporation Power conditioner system and power-storage power conditioner
WO2013046638A1 (en) 2011-09-28 2013-04-04 京セラ株式会社 Power conditioner system and storage battery power conditioner
WO2014171154A1 (en) 2013-04-19 2014-10-23 京セラ株式会社 Power control system, power control device, and method for controlling power control system
WO2014171153A1 (en) 2013-04-19 2014-10-23 京セラ株式会社 Power control system, power control device, and method for controlling power control system
US10250041B2 (en) 2013-04-19 2019-04-02 Kyocera Corporation Power control system, power control device, and method for controlling power control system
US10008878B2 (en) 2013-04-19 2018-06-26 Kyocera Corporation Power control system, power control device, and method for controlling power control system
JP2015027197A (en) * 2013-07-26 2015-02-05 シャープ株式会社 Electric power conversion device
JP2015077061A (en) * 2013-10-11 2015-04-20 オムロン株式会社 Inverter device, power conditioner, power generation system, and control method of inverter device
WO2015083373A1 (en) 2013-12-02 2015-06-11 京セラ株式会社 Power control system, power control device, and method for controlling power control system
WO2015111410A1 (en) 2014-01-22 2015-07-30 京セラ株式会社 Power control system and method for controlling power control system
US10211635B2 (en) 2014-01-22 2019-02-19 Kyocera Corporation Power control system and control method of power control system
JP2015188299A (en) * 2014-03-11 2015-10-29 パナソニックIpマネジメント株式会社 power converter
US10243367B2 (en) 2014-05-19 2019-03-26 Kyocera Corporation Power supply system, control method of power supply system, and power supply apparatus
JP2018207786A (en) * 2014-07-29 2018-12-27 京セラ株式会社 Control method for power control system, power control system, and power controller
US10418819B2 (en) 2014-07-29 2019-09-17 Kyocera Corporation Control method for power control system, power control system, and power control apparatus
US10749348B2 (en) 2015-10-28 2020-08-18 Kyocera Corporation Power control apparatus, control method for power control apparatus, power control system, and control method for power control system
US10910839B2 (en) 2015-10-28 2021-02-02 Kyocera Corporation Power control system and control method for power control system
JP2018081667A (en) * 2016-11-14 2018-05-24 エルエス産電株式会社Lsis Co., Ltd. Method for controlling interrupts in inverter
US10275374B2 (en) 2016-11-14 2019-04-30 Lsis Co., Ltd. Method for controlling interrupt in inverter

Similar Documents

Publication Publication Date Title
JP2007049770A (en) Power supply
JP3744679B2 (en) Solar power plant
US9337689B2 (en) Power supply system and method for controlling the same
JP5842108B2 (en) Power conversion device, grid interconnection device, and grid interconnection system
JP2009142013A (en) Power supply system
JP2008054473A (en) Power conditioner having electric storage function
JP2010093978A (en) Power conversion apparatus
JP5349688B2 (en) Grid-connected inverter
WO2012167691A1 (en) Inverter device and solar grid-connected photovoltaic system using same
JP6185860B2 (en) Bidirectional converter
CN111934352A (en) Photovoltaic system, control method of turn-off device of photovoltaic system and switch control device
US20130279228A1 (en) System and method for improving low-load efficiency of high power converters
JPH118976A (en) Inverter device and starting thereof
WO2008029711A1 (en) Sequence-linked inverter device
JP5573154B2 (en) Power conditioner and power generation system equipped with the same
JP5906458B2 (en) Power conditioner and power generation system including the same
JP5586096B2 (en) Power converter
JP6718019B2 (en) Power supply
JP2001312319A (en) Photovoltaic power generation system and boosting unit to be used therefor
JPH10289025A (en) Power conditioner for solar power generation system
KR20220096958A (en) Switching operation method and an inverter device for grid connection considering transformer magnetization
JP2010028975A (en) Power supply unit
JP2002165369A (en) Power system interconnection inverter
JP5703524B2 (en) Power supply unit
JP2001145266A (en) System connection inverter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080220

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080528

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20090608