JP2007049390A - Wireless communication apparatus and method therefor - Google Patents

Wireless communication apparatus and method therefor Download PDF

Info

Publication number
JP2007049390A
JP2007049390A JP2005231197A JP2005231197A JP2007049390A JP 2007049390 A JP2007049390 A JP 2007049390A JP 2005231197 A JP2005231197 A JP 2005231197A JP 2005231197 A JP2005231197 A JP 2005231197A JP 2007049390 A JP2007049390 A JP 2007049390A
Authority
JP
Japan
Prior art keywords
spreading factor
time direction
dimensional
time
candidate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005231197A
Other languages
Japanese (ja)
Inventor
Daisuke Tomijima
大輔 富嶋
Takashi Izumi
貴志 泉
Masahiko Nanri
将彦 南里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005231197A priority Critical patent/JP2007049390A/en
Publication of JP2007049390A publication Critical patent/JP2007049390A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Radio Transmission System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wireless communication apparatus and method in which a time-direction diffusion rate can be accurately grasped by comparatively simple configuration even when the time-direction diffusion rate is not notified in performing two-dimensional diffusion OFDM-CDMA type communication, and two-dimensional reverse diffusion of a two-dimensionally diffused data can be performed by using an accurate time-direction diffusion rate and a frequency-direction diffusion rate. <P>SOLUTION: A time-direction diffusion rate selection part 115 selects a time-direction diffusion rate corresponding to the value of estimated receiving quality by comparing the estimated receiving quality with a prescribed threshold. When there are a plurality of time-direction diffusion rates selected by the time-direction diffusion rate selection part 115, a decision part 108 decides the diffusion rates as time-direction diffusion rates to which a time-direction diffusion rate corresponding to an individual control channel in which a correlation value obtained by reverse diffusion is maximum is applied by using frequency-direction diffusion rates corresponding to respective time-direction diffusion rates, and when only one time-direction diffusion rate is selected, decides the time-direction diffusion rate as a time-direction diffusion rate to which the selected time-direction diffusion rate is applied. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、無線通信装置および無線通信方法に関し、特に、2次元拡散OFDM−CDMA(Orthogonal Frequency Division Multiplex - Code Division Multiple Access)方式の通信を行う無線通信装置および無線通信方法に関する。   The present invention relates to a wireless communication device and a wireless communication method, and more particularly, to a wireless communication device and a wireless communication method for performing two-dimensional spread OFDM-CDMA (Orthogonal Frequency Division Multiplex-Code Division Multiple Access) communication.

近年、無線通信、特に移動体通信の分野において、音声だけでなく、映像やデータ等の様々な情報が無線通信の対象となっている。そのため、高速で信頼性の高い伝送が行える通信方式が要求されている。   In recent years, in the field of wireless communication, particularly mobile communication, not only voice but also various information such as video and data are the targets of wireless communication. Therefore, a communication method that can perform high-speed and highly reliable transmission is required.

一方、移動体通信において高速伝送を行う場合、マルチパスによる遅延波の影響が大きく、周波数選択性フェージングによって伝送特性が劣化することが知られている。この周波数選択性フェージングの対策の一つとして、OFDM等のマルチキャリア変調方式や、CDMA(符号分割多重)方式が提案されている。   On the other hand, when performing high-speed transmission in mobile communication, it is known that the influence of a delayed wave due to multipath is large, and transmission characteristics deteriorate due to frequency selective fading. As one countermeasure against this frequency selective fading, a multi-carrier modulation scheme such as OFDM and a CDMA (code division multiplexing) scheme have been proposed.

現在、移動体通信の分野において、これらOFDM変調方式とCDMA変調方式とを組み合わせたOFDM−CDMA方式が注目されている。OFDM−CDMA方式には、シンボルを周波数方向へ拡散する方式(周波数領域拡散方式)と時間方向へ拡散する方式(時間領域拡散方式)、周波数方向と時間方向の双方に2次元的に分散配置する方式(2次元拡散方式)が提案されている(例えば特許文献1、特許文献2、および特許文献3参照)。   Currently, in the field of mobile communications, an OFDM-CDMA system combining these OFDM modulation system and CDMA modulation system is drawing attention. In the OFDM-CDMA method, a symbol is spread in the frequency direction (frequency domain spreading method), a symbol is spread in the time direction (time domain spreading method), and two-dimensionally distributed in both the frequency direction and the time direction. A method (two-dimensional diffusion method) has been proposed (see, for example, Patent Document 1, Patent Document 2, and Patent Document 3).

特に、2次元拡散方式は、通信路状態に応じて周波数方向の拡散率および時間方向の拡散率を設定することにより、パスダイバーシチ利得や周波数ダイバーシチ利得が得られ、通信路状態の劣化の影響やシステム容量の低下を抑えることができる方法として注目されている。2次元拡散方式においては、さらに、変調多値数に応じて時間方向の拡散率を対応付けることで、受信性能が向上するという報告がされている。例えば、非特許文献1では、多値変調数がQPSKより大きい16QAMへ変更した場合には、時間方向の拡散率をより大きくすることで受信性能が向上することが開示されている。   In particular, in the two-dimensional spreading method, by setting the spreading factor in the frequency direction and the spreading factor in the time direction in accordance with the channel state, a path diversity gain and a frequency diversity gain can be obtained. It attracts attention as a method that can suppress a decrease in system capacity. In the two-dimensional spreading method, it has been reported that the reception performance is improved by associating the spreading factor in the time direction with the modulation multi-level number. For example, Non-Patent Document 1 discloses that when the multi-level modulation number is changed to 16 QAM larger than QPSK, the reception performance is improved by increasing the spreading factor in the time direction.

ただし、2次元拡散方式を用いて、送信装置で通信路状態や多値変調数に適した時間方向の拡散率を選択して拡散した場合、受信装置は時間方向の拡散率を認識できず、実際に用いられた時間方向の拡散率とは異なる時間方向の拡散率で逆拡散演算を行ってしまうという問題がある。そこで、この問題を解決するために、時間方向の拡散率を報知する方法が考えられる。
特開2002−190788号公報 特開2003−46474号公報 特開2003−101511号公報 時間領域の拡散を優先的に用いる2次元拡散を適用したVSF−OFCDMの特性、信学技報、RCS2002-85(2002-6)
However, using the two-dimensional spreading method, if the transmitting device selects and spreads the spreading factor in the time direction suitable for the channel state and the number of multi-level modulations, the receiving device cannot recognize the spreading factor in the time direction, There is a problem that the despreading operation is performed with a spreading factor in the time direction different from the spreading factor in the time direction actually used. Therefore, in order to solve this problem, a method of informing the spreading factor in the time direction can be considered.
JP 2002-190788 A JP 2003-46474 A JP 2003-101511 A Characteristics of VSF-OFCDM using two-dimensional diffusion with preferential use of time domain diffusion, IEICE Technical Report, RCS2002-85 (2002-6)

しかしながら、時間方向の拡散率を報知するためのチャネルを別途用いる場合には、チャネルが増える分だけ、システムの消費電力等の増大を招いたり、周波数利用効率が低減するという問題が生じる。   However, when a channel for reporting the spreading factor in the time direction is used separately, there is a problem that the power consumption of the system is increased or the frequency utilization efficiency is reduced as the number of channels increases.

本発明はかかる点に鑑みてなされたものであり、2次元拡散OFDM−CDMA方式の通信を行う場合に、時間方向の拡散率を報知しなくても、比較的簡易な構成で時間方向の拡散率を的確に把握し、2次元拡散されたデータを的確な時間方向拡散率および周波数方向拡散率を用いて2次元逆拡散することができる無線通信装置および無線通信方法を提供することを目的とする。   The present invention has been made in view of the above points, and when performing communication in the two-dimensional spread OFDM-CDMA system, the spread in the time direction can be achieved with a relatively simple configuration without reporting the spread rate in the time direction. An object of the present invention is to provide a wireless communication apparatus and a wireless communication method capable of accurately grasping the rate and two-dimensionally despreading the two-dimensionally spread data using the accurate time direction spreading factor and frequency direction spreading factor. To do.

かかる課題を解決するため、本発明に係る無線通信装置は、通信路状態に関する情報に基づいて、受信した2次元拡散OFDM−CDMA信号に含まれる個別制御チャネル信号の時間方向の拡散率の候補を選択する選択手段と、前記選択された時間方向の拡散率の候補と前記個別制御チャネル信号について予め定められた2次元拡散率とから定まる周波数方向の拡散率の候補と、前記時間方向の拡散率の候補とを用いて前記個別制御チャネル信号を2次元逆拡散するDPCCH2次元逆拡散手段と、前記DPCCH2次元逆拡散手段により得られる逆拡散結果に基づいて、前記時間方向の拡散率の候補の中から実際に使用された時間方向の拡散率を判定する判定手段と、前記個別制御チャネル信号によって通知された、前記個別データチャネル信号の2次元拡散率と、前記判定手段によって判定された前記時間方向の拡散率とを用いて、前記個別データチャネル信号の周波数方向の拡散率を算出するDPDCH周波数方向拡散率算出手段と、前記判定手段によって判定された時間方向の拡散率と、前記DPDCH周波数方向拡散率算出手段によって算出された周波数方向の拡散率とを用いて、受信した2次元拡散OFDM−CDMA信号に含まれる個別データチャネル信号を2次元逆拡散するDPDCH2次元逆拡散手段と、を有する構成を採る。   In order to solve this problem, the wireless communication apparatus according to the present invention determines a spreading factor candidate in the time direction of the dedicated control channel signal included in the received two-dimensional spread OFDM-CDMA signal based on information on the channel state. A selection means for selecting; a candidate for a spreading factor in the frequency direction determined from a candidate for the spreading factor in the selected time direction and a two-dimensional spreading factor predetermined for the dedicated control channel signal; and a spreading factor in the time direction Among the DPCCH two-dimensional despreading means for two-dimensionally despreading the dedicated control channel signal using the candidates, and the spreading factor candidates in the time direction based on the despreading result obtained by the DPCCH two-dimensional despreading means Determining means for determining a spreading factor in the time direction that is actually used, and the dedicated data channel notified by the dedicated control channel signal. DPDCH frequency direction spreading factor calculating means for calculating a spreading factor in the frequency direction of the dedicated data channel signal using a two-dimensional spreading factor of the signal and the spreading factor in the time direction determined by the determining unit; A dedicated data channel included in the received two-dimensional spread OFDM-CDMA signal using the spreading factor in the time direction determined by the determining unit and the spreading factor in the frequency direction calculated by the DPDCH frequency direction spreading factor calculating unit And a DPDCH two-dimensional despreading means for two-dimensionally despreading the signal.

この構成によれば、先ず、通信路状態に基づいて、2次元拡散率(時間方向拡散率×周波数方向拡散率)が一定である個別制御チャネル信号を用いて時間方向拡散率を求め、次に、その時間方向拡散率と、個別制御チャネル信号により通知された個別データチャネル信号の2次元拡散率とから個別データチャネル信号の周波数方向拡散率を求め、その時間方向拡散率と周波数方向拡散率とを用いて個別データチャネル信号を2次元逆拡散するので、時間方向の拡散率を報知しなくても、比較的簡易な構成で時間方向の拡散率を的確に把握し、2次元逆拡散されたデータを的確な時間方向拡散率および周波数方向拡散率を用いて2次元逆拡散することができる。   According to this configuration, first, based on the channel state, the time direction spreading factor is obtained using an individual control channel signal having a constant two-dimensional spreading factor (time spreading factor × frequency spreading factor), and then The frequency direction spreading factor of the individual data channel signal is obtained from the time direction spreading factor and the two-dimensional spreading factor of the individual data channel signal notified by the individual control channel signal, and the time direction spreading factor and the frequency direction spreading factor are obtained. Since the individual data channel signal is two-dimensionally despread using the, the time-direction spreading factor is accurately grasped with a relatively simple configuration without reporting the spreading factor in the time direction. Data can be two-dimensionally despread using an accurate time direction spreading factor and frequency direction spreading factor.

本発明によれば、OFDM−CDMA方式の2次元拡散方式において、時間方向の拡散率を報知しなくても、時間方向の拡散率を的確に把握し、2次元拡散されたデータを的確な時間方向拡散率および周波数方向拡散率を用いて2次元逆拡散することができる。   According to the present invention, in the two-dimensional spreading method of the OFDM-CDMA scheme, the spreading factor in the time direction can be accurately grasped without reporting the spreading factor in the time direction, and the two-dimensionally spread data can be accurately timed. Two-dimensional despreading can be performed using the direction spreading factor and the frequency direction spreading factor.

以下、本発明の実施の形態について図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(原理)
本発明の実施の形態に係る無線通信装置は、通信相手から送信される個別制御チャネル(DPCCH:Dedicated Physical Control Channel)および個別データチャネル(DPDCH:Dedicated Physical Data Channel)を受信する無線通信装置である。DPCCHとDPDCHとは、周波数利用効率を高めるため符号分割多重されている。また、DPCCHおよびDPDCHは、それぞれ周波数方向と時間方向の双方に2次元拡散されている。
(principle)
A radio communication apparatus according to an embodiment of the present invention is a radio communication apparatus that receives a dedicated control channel (DPCCH) and a dedicated data channel (DPDCH) transmitted from a communication partner. . The DPCCH and DPDCH are code division multiplexed in order to improve frequency utilization efficiency. Further, DPCCH and DPDCH are two-dimensionally spread in both the frequency direction and the time direction, respectively.

2次元拡散率(SF:Spread Factor)と、時間方向の拡散率(SFT:Spread Factor for Time)と、周波数方向の拡散率(SFF:Spread Factor for Frequency)との間には式(1)の関係がある。   Between the two-dimensional spreading factor (SF), the spreading factor for time (SFT), and the spreading factor for frequency (SFF), the formula (1) There is a relationship.

SF=SFT×SFF …(1)

本実施の形態では、DPCCHの2次元拡散率(SF)はシステムにおいて既知で常に一定とされている。これに対して、DPDCHの2次元逆拡散率(SF)は可変とされている。また時間方向の拡散率(SFT)は、DPCCH、DPDCH間で同一とされている。
SF = SFT × SFF (1)

In this embodiment, the two-dimensional spreading factor (SF) of the DPCCH is known and always constant in the system. On the other hand, the two-dimensional despreading rate (SF) of DPDCH is variable. Also, the spreading factor (SFT) in the time direction is the same between the DPCCH and DPDCH.

具体的に説明する。送信側では、通信相手の無線通信装置から通知される受信品質に基づいて時間方向の拡散率を選択し、既知で一定のDPCCHの2次元拡散率と選択した時間方向の拡散率とを上式(1)に代入して周波数方向の拡散率を決定する。そして、この時間方向拡散率と周波数方向拡散率を用いてDPCCH信号を2次元拡散して送信する。   This will be specifically described. On the transmission side, the spreading factor in the time direction is selected based on the reception quality notified from the wireless communication apparatus of the communication partner, and the two-dimensional spreading factor of the known constant DPCCH and the selected spreading factor in the time direction are Substituting into (1), the spreading factor in the frequency direction is determined. Then, the DPCCH signal is two-dimensionally spread using this time direction spreading factor and frequency direction spreading factor and transmitted.

これに対して、DPDCHについては、時間方向の拡散率はDPCCHの時間方向の拡散率と共通とする一方、周波数方向の拡散率は、DPCCHの周波数方向の拡散率と必ずしも共通ではなくデータレート等に伴い変動させる。つまり、送信側では、DPCCHと共通の時間方向拡散率と、変動する周波数方向の拡散率とを用いてDPDCH信号を2次元拡散して送信する。   On the other hand, for DPDCH, the spreading factor in the time direction is the same as the spreading factor in the time direction of DPCCH, while the spreading factor in the frequency direction is not necessarily the same as the spreading factor in the frequency direction of DPCCH. Vary with. That is, on the transmission side, the DPDCH signal is two-dimensionally spread and transmitted using the time direction spreading factor common to the DPCCH and the changing frequency direction spreading factor.

また、送信側では、上述したようにDPDCHの2次元拡散率を変動させているため、DPDCHの2次元拡散率(SF)についての情報をDPCCHのフレーム内に割り当てて通信相手の無線通信装置へ通知している。   Further, since the two-dimensional spreading factor of DPDCH is changed on the transmission side as described above, information on the two-dimensional spreading factor (SF) of DPDCH is allocated in the DPCCH frame to the wireless communication apparatus of the communication partner. Notify.

本発明の発明者らは、このようなDPCCHとDPDCHのチャネル構成を考慮し、先ず、2次元拡散率が一定である個別制御チャネル信号を用いて時間方向拡散率を求め、次に、その時間方向拡散率と、個別制御チャネル信号により通知された個別データチャネル信号の2次元拡散率とから個別データチャネル信号の周波数方向拡散率を求め、その時間方向拡散率と周波数方向拡散率を用いて個別データチャネル信号を2次元逆拡散すれば、時間方向の拡散率を報知しなくても、比較的簡易な構成で時間方向の拡散率を的確に把握し、2次元拡散されたデータを的確な時間方向拡散率および周波数方向拡散率を用いて2次元逆拡散することができると考え、本発明に至った。   The inventors of the present invention consider such a DPCCH and DPDCH channel configuration, first obtain a time direction spreading factor using an individual control channel signal having a constant two-dimensional spreading factor, and then calculate the time spreading factor. The frequency direction spreading factor of the individual data channel signal is obtained from the direction spreading factor and the two-dimensional spreading factor of the individual data channel signal notified by the individual control channel signal, and individually obtained using the time direction spreading factor and the frequency direction spreading factor. If the data channel signal is two-dimensionally despread, it is possible to accurately grasp the spreading factor in the time direction with a relatively simple configuration without informing the spreading factor in the time direction, and to accurately time the two-dimensionally spread data. It was considered that two-dimensional despreading can be performed using the directional spreading factor and the frequency directional spreading factor, leading to the present invention.

(構成)
図1に、本発明の一実施の形態に係る無線通信装置の構成を示す。無線通信装置100は、共用器101、RF(Radio Frequency)受信部102、FFT(Fast Fourier Transform)部103、受信品質推定部104、符号化部105、RF送信部106、DPCCH2次元逆拡散部107−1、107−2、判定部108、DPCCH復号部109、DPDCH周波数方向拡散率算出部110、DPDCH2次元逆拡散部111、DPDCH誤り訂正復号部112、誤り検出部113、受信品質変動量測定部114、および時間方向拡散率選択部115を有している。
(Constitution)
FIG. 1 shows a configuration of a wireless communication apparatus according to an embodiment of the present invention. The wireless communication apparatus 100 includes a duplexer 101, an RF (Radio Frequency) receiving unit 102, an FFT (Fast Fourier Transform) unit 103, a reception quality estimating unit 104, an encoding unit 105, an RF transmitting unit 106, and a DPCCH two-dimensional despreading unit 107. -1, 107-2, determination unit 108, DPCCH decoding unit 109, DPDCH frequency direction spreading factor calculation unit 110, DPDCH two-dimensional despreading unit 111, DPDCH error correction decoding unit 112, error detection unit 113, reception quality fluctuation amount measurement unit 114 and a time direction spreading factor selection unit 115.

共用器101は、送信系と受信系とでアンテナを共用させている。   The duplexer 101 shares an antenna between the transmission system and the reception system.

RF受信部102は、受信信号に対し無線受信処理(ダウンコンバート、A/D変換など)を施し、これにより得た信号をFFT部103へ出力する。   The RF receiving unit 102 performs wireless reception processing (down-conversion, A / D conversion, etc.) on the received signal and outputs a signal obtained thereby to the FFT unit 103.

FFT部103は、無線受信処理が施された信号に対し高速フーリエ変換を施すことで、時間領域の信号を周波数領域の信号へ変換し、これにより得た周波数領域の信号をDPCCH2次元逆拡散部107−1、107−2へ出力するとともに、DPDCH2次元逆拡散部111へ出力する。   The FFT unit 103 converts the time domain signal into a frequency domain signal by performing fast Fourier transform on the signal subjected to the radio reception processing, and converts the obtained frequency domain signal into a DPCCH two-dimensional despreading unit. While outputting to 107-1 and 107-2, it outputs to DPDCH two-dimensional despreading section 111.

受信品質推定部104は、周波数領域の信号からSIR(Signal to Interference Ratio)などの伝搬路の受信品質を推定し、推定した受信品質を符号化部105へ出力するとともに、受信品質変動量測定部114へ出力する。   Reception quality estimation section 104 estimates the reception quality of the propagation path such as SIR (Signal to Interference Ratio) from the signal in the frequency domain, outputs the estimated reception quality to encoding section 105, and also receives the reception quality variation measurement section. To 114.

符号化部105は、受信品質情報、再送要求情報(ACK/NACK)、および送信データを符号化し、これにより得た符号化データをRF送信部106へ出力する。   Encoding section 105 encodes reception quality information, retransmission request information (ACK / NACK), and transmission data, and outputs the encoded data obtained thereby to RF transmission section 106.

RF送信部106は、符号化データに対して所定の無線送信処理(D/A変換、アップコンバート等)を施して、共用部101を経由して通信相手へ送信する。   The RF transmission unit 106 performs predetermined wireless transmission processing (D / A conversion, up-conversion, etc.) on the encoded data, and transmits the encoded data to the communication partner via the shared unit 101.

DPCCH2次元逆拡散部107−1、107−2は、時間方向拡散率選択部115から出力される指示に応じて、高速フーリエ変換後の周波数領域の信号に対し2次元逆拡散を行う。具体的には、DPCCH2次元逆拡散部107−1、107−2は、2次元拡散率が互いに同じで、かつ、時間方向の拡散率および周波数方向の拡散率が互いに異なるように構成されている。つまり、上述したように、DPCCHの2次元拡散率は既知で一定であることから、DPCCH2次元逆拡散部107−1、107−2は、この既知の2次元拡散率で逆拡散する。但し、DPCCH2次元逆拡散部107−1、107−2は、時間方向拡散率選択部115からそれぞれ異なる時間方向拡散率が指定され、その時間方向拡散率と、その時間方向拡散率と既知の2次元拡散率とから一義的に決まる周波数方向拡散率とを用いて2次元逆拡散を行うようになっている。換言すると、DPCCH2次元逆拡散部107−1、107−2は、同一の2次元拡散率で2次元逆拡散を行うが、異なる時間方向拡散率と周波数方向拡散率を用いて2次元逆拡散を行うようになっている。DPCCH2次元逆拡散部107−1、107−2は、逆拡散信号を判定部108へ出力する。時間方向拡散率選択部115による時間方向拡散率の選択の仕方については、後に詳述する。   The DPCCH two-dimensional despreading sections 107-1 and 107-2 perform two-dimensional despreading on the frequency domain signal after the fast Fourier transform in accordance with the instruction output from the time direction spreading factor selection section 115. Specifically, the DPCCH two-dimensional despreading units 107-1 and 107-2 are configured such that the two-dimensional spreading factor is the same, and the spreading factor in the time direction and the spreading factor in the frequency direction are different from each other. . That is, as described above, since the two-dimensional spreading factor of DPCCH is known and constant, DPCCH two-dimensional despreading units 107-1 and 107-2 perform despreading with this known two-dimensional spreading factor. However, in the DPCCH two-dimensional despreading units 107-1 and 107-2, different time direction spreading factors are designated from the time direction spreading factor selection unit 115, and the time direction spreading factor, the time direction spreading factor, and the known 2 Two-dimensional despreading is performed using a frequency direction spreading factor that is uniquely determined from the dimensional spreading factor. In other words, the DPCCH two-dimensional despreading units 107-1 and 107-2 perform two-dimensional despreading with the same two-dimensional spreading factor, but perform two-dimensional despreading using different time direction spreading factors and frequency direction spreading factors. To do. DPCCH two-dimensional despreading sections 107-1 and 107-2 output despread signals to determination section 108. A method of selecting the time direction spreading factor by the time direction spreading factor selecting unit 115 will be described in detail later.

なお、本実施の形態においては、送信側において選択される時間方向の拡散率の候補が2つの場合(SFT1またはSFT16)を想定しているため、無線通信装置100は、2つのDPCCH2次元逆拡散部107−1、107−2を有している。したがって、通信路状態ごとの時間方向の拡散率の候補が3つ以上の場合には、3つ以上の2次元逆拡散部を設ければ良い。また、2次元逆拡散部を1つ用いて、時間方向の拡散率および周波数方向の拡散率を切り替えて2次元逆拡散を行っても良い。   In the present embodiment, since it is assumed that there are two candidates for the spreading factor in the time direction (SFT1 or SFT16) selected on the transmission side, radio communication apparatus 100 has two DPCCH two-dimensional despreading. Parts 107-1 and 107-2. Therefore, when there are three or more candidates for the spreading factor in the time direction for each channel state, it is sufficient to provide three or more two-dimensional despreading units. Alternatively, two-dimensional despreading may be performed by switching between the spreading factor in the time direction and the spreading factor in the frequency direction by using one two-dimensional despreading unit.

判定部108は、DPCCH2次元逆拡散部107−1、107−2からの逆拡散結果を比較し、逆拡散値の大きかった方のDPCCH2次元逆拡散部107−1又は107−2の用いた時間方向拡散率を実際に使用された時間方向の拡散率であると判定する。判定部108は、判定した時間方向の拡散率をDPDCH周波数方向拡散率算出部110へ出力するとともに、判定した時間方向の拡散率を用いて2次元逆拡散された逆拡散信号をDPCCH復号部109へ出力する。   The determination unit 108 compares the despreading results from the DPCCH two-dimensional despreading units 107-1 and 107-2, and the time used by the DPCCH two-dimensional despreading unit 107-1 or 107-2 having the larger despread value. It is determined that the directional spreading factor is the spreading factor in the time direction actually used. The determination unit 108 outputs the determined spreading factor in the time direction to the DPDCH frequency direction spreading factor calculation unit 110, and the DPCCH decoding unit 109 outputs the despread signal two-dimensionally despread using the determined spreading factor in the time direction. Output to.

DPCCH復号部109は、逆拡散信号を復号することでDPCCHにより送信された情報を得る。そして、DPCCH復号部109は、DPCCHの情報に含まれるDPDCHの2次元拡散率についての情報を抽出し、これをDPDCH周波数方向拡散率算出部110へ出力する。   The DPCCH decoding unit 109 obtains information transmitted through the DPCCH by decoding the despread signal. Then, DPCCH decoding section 109 extracts information about the two-dimensional spreading factor of DPDCH included in the DPCCH information, and outputs this to DPDCH frequency direction spreading factor calculating section 110.

DPDCH周波数方向拡散率算出部110は、判定部108によって判定された時間方向の拡散率と、DPCCH復号部109から抽出されたDPDCHの2次元拡散率とを上式(1)に代入することで、DPDCHの周波数方向の拡散率を算出する。DPDCH周波数方向拡散率算出部110は、算出したDPDCHの周波数方向の拡散率と、時間方向の拡散率とをDPDCH2次元逆拡散部111へ出力する。   The DPDCH frequency direction spreading factor calculation unit 110 substitutes the spreading factor in the time direction determined by the determination unit 108 and the two-dimensional DPDCH two-dimensional spreading factor extracted from the DPCCH decoding unit 109 into the above equation (1). The spreading factor in the frequency direction of DPDCH is calculated. The DPDCH frequency direction spreading factor calculation unit 110 outputs the calculated DPDCH spreading factor in the frequency direction and the spreading factor in the time direction to the DPDCH two-dimensional despreading unit 111.

DPDCH2次元逆拡散部111は、DPDCHの時間方向の拡散率および周波数方向の拡散率に対応した拡散符号を用いて周波数領域の信号に対し2次元逆拡散を行い、逆拡散信号をDPDCH誤り訂正復号部112へ出力する。   The DPDCH two-dimensional despreading unit 111 performs two-dimensional despreading on the frequency domain signal using a spreading code corresponding to the spreading factor in the time direction and the frequency direction of the DPDCH, and the despread signal is subjected to DPDCH error correction decoding. Output to the unit 112.

DPDCH誤り訂正復号部112は、逆拡散信号に対して復調処理および誤り訂正復号を行うことでDPDCHにより送信されたデータ(受信データ)を得る。また、DPDCH誤り訂正復号部112は、復号ビットに含まれる誤り検出用のCRC(Cyclic Redundancy Check)ビットを誤り検出部113へ出力する。   The DPDCH error correction decoding unit 112 obtains data (received data) transmitted through the DPDCH by performing demodulation processing and error correction decoding on the despread signal. Further, DPDCH error correction decoding section 112 outputs CRC (Cyclic Redundancy Check) bits for error detection included in the decoded bits to error detection section 113.

誤り検出部113は、CRCビットを用いて復号ビット列の誤り検出を行い、誤り検出の結果に基づいて誤りが検出されたビット列の再送を要求するか否か判定する。さらに、誤り検出部113は、誤りが検出されたビット列の再送を要求するか否かの再送要求情報(ACK/NACK)数からPER(Packet Error Rate)を算出し、このPERを時間方向拡散率選択部115へ出力するとともに、再送要求情報を符号化部105へ出力する。具体的には、誤り検出部113は、ACK数/(ACK数+NACK数)よりPERを算出する。   The error detection unit 113 performs error detection of the decoded bit string using the CRC bits, and determines whether or not to request retransmission of the bit string in which the error is detected based on the error detection result. Further, the error detection unit 113 calculates a PER (Packet Error Rate) from the number of retransmission request information (ACK / NACK) indicating whether or not to request retransmission of a bit string in which an error is detected, and uses the PER as a time direction spreading factor. While outputting to the selection part 115, resending request information is output to the encoding part 105. Specifically, the error detection unit 113 calculates the PER from the number of ACKs / (number of ACKs + number of NACKs).

受信品質変動量測定部114は、受信品質推定部104から出力されるSIRなどの受信品質の変動量を測定し、この変動量および受信品質を時間方向拡散率選択部115へ出力する。なお、受信品質としては、SIRに限らず、遅延スプレッド、ドップラー周波数、受信電力、干渉電力など通信状態を示す他のものであってもよい。   Reception quality fluctuation amount measuring section 114 measures a fluctuation amount of reception quality such as SIR output from reception quality estimation section 104 and outputs the fluctuation amount and reception quality to time direction spreading factor selection section 115. The reception quality is not limited to SIR, but may be other ones indicating communication states such as delay spread, Doppler frequency, reception power, interference power.

時間方向拡散率選択部115は、受信品質を所定の閾値と比較することにより、受信品質の値に対応する時間方向の拡散率の候補を選択する。一般に、2次元拡散方式を用いる場合、送信側では、通信路状態が良く受信品質が良い場合には、時間方向の拡散率を大きくし、通信路状態が悪く受信品質が悪い場合には、時間方向の拡散率を小さくする。これを考慮して、時間方向拡散率選択部115は、時間方向の拡散率の候補を選択する。以下、図を用いて具体的に説明する。   The time direction spreading factor selection unit 115 selects a candidate for the spreading factor in the time direction corresponding to the value of the reception quality by comparing the reception quality with a predetermined threshold value. In general, when the two-dimensional spreading method is used, on the transmission side, when the channel condition is good and the reception quality is good, the spreading factor in the time direction is increased, and when the channel condition is bad and the reception quality is bad, the time is Reduce the diffusivity in the direction. Considering this, the time direction spreading factor selecting unit 115 selects a candidate for the spreading factor in the time direction. This will be specifically described below with reference to the drawings.

図2は、時間方向拡散率選択部115が内部に保持する受信品質と時間方向拡散率のテーブルのマッピングの例である。図2に示すように、時間方向拡散率選択部115は、受信品質が良好なほど大きい時間方向の拡散率の候補を優先的に選択し、受信品質が劣悪なほど小さい時間方向の拡散率の候補を優先的に選択する。また、時間方向拡散率選択部115は、受信品質によっては、時間方向拡散率の候補を複数選択する。例えば、受信品質がβ以上のとき、時間方向拡散率選択部115はSFT16を候補として選択し、受信品質がα未満のとき、時間方向拡散率選択部115はSFT1を候補として選択する。また、受信品質がα以上β未満のとき、時間方向拡散率選択部115はSFT16およびSFT1を候補として選択する。図2は、時間方向拡散率の候補としてSFT16とSFT1の2つの場合を示したが、時間方向の拡散率の候補数はこれに限らず3以上であっても良い。   FIG. 2 is an example of mapping of reception quality and time direction spreading factor tables held in the time direction spreading factor selecting unit 115 inside. As shown in FIG. 2, the time direction spreading factor selection section 115 preferentially selects a larger time direction spreading factor candidate as the reception quality is better, and the smaller the time direction spreading factor is as the reception quality is worse. Select candidates preferentially. Moreover, the time direction spreading factor selecting section 115 selects a plurality of time direction spreading factor candidates depending on the reception quality. For example, when the reception quality is β or more, the time direction spreading factor selection unit 115 selects SFT 16 as a candidate, and when the reception quality is less than α, the time direction spreading factor selection unit 115 selects SFT 1 as a candidate. When the reception quality is not less than α and less than β, the time direction spreading factor selection unit 115 selects SFT16 and SFT1 as candidates. Although FIG. 2 shows two cases of SFT16 and SFT1 as candidates for the time direction spreading factor, the number of candidates for the spreading factor in the time direction is not limited to this and may be three or more.

さらに、時間方向拡散率選択部115は、SIRなどの受信品質の変動量やPERなどの誤り検出の結果に応じて、受信品質と時間方向拡散率との対応付けを補正する。図3に、受信品質の変動量に応じた受信品質と時間方向拡散率のテーブルのマッピング例を示す。図3(a)は、受信品質の変動量が所定の閾値より大きい場合の例で、図3(b)は、受信品質の変動量が所定の閾値より小さい場合の例である。時間方向拡散率選択部115は、受信品質の変動量が大きく、通信路の状態にばらつきがあり、送信側で使用された時間方向拡散率が時間ごとに異なる可能性が高い場合、候補を複数選択する受信品質の範囲を広くする。これにより、実際に使用された時間方向拡散率を誤って判定する割合が減り、時間方向拡散率の判定精度を上げることができる。   Further, the time direction spreading factor selection unit 115 corrects the correspondence between the reception quality and the time direction spreading factor according to the amount of variation in reception quality such as SIR and the result of error detection such as PER. FIG. 3 shows a mapping example of a table of reception quality and time direction spreading factor corresponding to the variation amount of reception quality. FIG. 3A shows an example where the amount of fluctuation in reception quality is larger than a predetermined threshold, and FIG. 3B shows an example where the amount of fluctuation in reception quality is smaller than a predetermined threshold. The time direction spreading factor selecting unit 115 selects a plurality of candidates when there is a large amount of variation in reception quality, there is a variation in the state of the communication channel, and the time direction spreading factor used on the transmission side is likely to vary from time to time. Increase the range of reception quality to be selected. Thereby, the rate of erroneously determining the time-direction spreading factor actually used is reduced, and the determination accuracy of the time-direction spreading factor can be increased.

一方、時間方向拡散率選択部115は、受信品質の変動量が小さく、通信路の状態にばらつきが小さい場合には、送信側で使用する時間方向拡散率が時間ごとに変更される可能性が低いため、候補を複数選択する受信品質の範囲を狭くする。これにより、2次元逆拡散が複数行われる割合が減って、消費電力を低減することができる。なお、候補を複数選択する受信品質の範囲は、受信品質の変動量に比例させて変更しても良く、変動量と所定の閾値とを比較して変更しても良い。   On the other hand, the time direction spreading factor selection unit 115 may change the time direction spreading factor used on the transmission side for each time when the variation amount of the reception quality is small and the state of the communication channel is small. Since it is low, the range of reception quality for selecting a plurality of candidates is narrowed. As a result, the rate at which multiple two-dimensional despreading is performed is reduced, and power consumption can be reduced. Note that the range of reception quality for selecting a plurality of candidates may be changed in proportion to the amount of change in reception quality, or may be changed by comparing the amount of change with a predetermined threshold.

図4に、PERに応じた受信品質と時間方向拡散率のテーブルのマッピング例を示す。図4(a)は、PERが所定の閾値より高く通信路の状態が悪い場合の例で、図4(b)はPERが所定の閾値より低く通信路の状態が良い場合の例である。図4に示すように、時間方向拡散率選択部115は、PERが所定の閾値より低く通信路の状態が長期的に良好なほど、時間方向拡散率の候補が複数選択される受信品質の範囲の中心値を高くし、PERが所定の閾値より高く通信路の状態が長期的に劣悪なほど、候補が複数選択される受信品質の範囲の中心値を低くする。   FIG. 4 shows a mapping example of a table of reception quality and time direction spreading factor according to PER. FIG. 4A shows an example in the case where PER is higher than a predetermined threshold and the communication path condition is bad. FIG. 4B shows an example in which PER is lower than the predetermined threshold and the communication path condition is good. As shown in FIG. 4, the time direction spreading factor selection section 115 is a reception quality range in which a plurality of time direction spreading factor candidates are selected as the PER is lower than a predetermined threshold and the channel condition is better in the long term. The center value of the reception quality range in which a plurality of candidates are selected is lowered as the PER is higher than the predetermined threshold and the channel condition is worse in the long term.

上述したように、適用変調方式を用いる場合、送信側では、通信路の状態が良好なほど多値変調数のより大きい変調方式を採用し、また、多値変調数が増えるほど時間方向拡散率を大きくした場合に受信性能が良くなることが知られている。したがって、PERに応じて時間方向拡散率の候補が複数選択される受信品質の範囲の中心値を補正することにより、時間方向拡散率選択部115は、適用変調方式を採用する場合、送信側で使用される時間方向拡散率の候補をより確実に選択することができる。   As described above, when the applied modulation scheme is used, the transmission side adopts a modulation scheme with a larger multi-level modulation number as the communication path state is better, and a time direction spreading factor as the multi-level modulation number increases. It is known that the reception performance is improved when the value is increased. Therefore, by correcting the center value of the reception quality range in which a plurality of time direction spreading factor candidates are selected according to PER, the time direction spreading factor selecting unit 115 can be used on the transmission side when adopting an applied modulation scheme. The candidate of the time direction spreading factor to be used can be selected more reliably.

時間方向拡散率選択部115は、上述した方法により、時間方向の拡散率の候補が複数選択される受信品質の範囲や、候補が複数選択される範囲の中心値を、受信品質の変動量やPERなどに応じて補正しながら時間方向の拡散率を選択し、選択した時間方向の拡散率に対応するDPCCH2次元逆拡散部107−1、107−2へ逆拡散を行う旨の指示を出力する。   The time direction spreading factor selecting unit 115 uses the above-described method to determine the reception quality range in which a plurality of time direction spreading factor candidates are selected, the center value of the range in which a plurality of candidates are selected, The spreading factor in the time direction is selected while correcting according to PER or the like, and an instruction to despread is output to the DPCCH two-dimensional despreading units 107-1 and 107-2 corresponding to the spreading factor in the selected time direction. .

(動作)
次いで、上記のように構成された無線通信装置の時間方向の拡散率の判定動作について、例を挙げながら具体的に説明する。
(Operation)
Next, the determination operation of the spreading factor in the time direction of the wireless communication apparatus configured as described above will be specifically described with an example.

まず、図示せぬ送信側では、無線通信装置100から通知される受信品質情報に応じて、時間方向拡散率の候補が選択される。そして、DPCCHおよびDPDCHそれぞれの2次元拡散率(SF)から、それぞれの周波数方向の拡散率が決定される。上述したように、DPCCHの2次元拡散率(SF)は既知で常に一定で、DPDCHの2次元拡散率(SF)はデータレート等に応じて可変とされている。また、時間方向の拡散率(SFT)は、DPCCH、DPDCH間で同一とされている。2次元拡散率(SF)と、時間方向拡散率(SFT)と、周波数方向拡散率(SFF)との間には上式(1)の関係がある。そのため、DPCCHのフレーム内にDPDCHの2次元拡散率についての情報が割り当てられて無線通信装置100へ送信されている。そして、それぞれの時間方向の拡散率と周波数方向の拡散率とを用いて2次元拡散されたDPCCHおよびDPDCHは符号化多重された後、所定の無線送信処理(D/A変換、アップコンバート)等が施されて無線通信装置100へ送信される。   First, on the transmission side (not shown), a time direction spreading factor candidate is selected according to reception quality information notified from the wireless communication apparatus 100. And the spreading factor of each frequency direction is determined from the two-dimensional spreading factor (SF) of each of DPCCH and DPDCH. As described above, the two-dimensional spreading factor (SF) of DPCCH is known and always constant, and the two-dimensional spreading factor (SF) of DPDCH is variable according to the data rate and the like. Further, the spreading factor (SFT) in the time direction is the same between the DPCCH and DPDCH. There is a relationship of the above equation (1) among the two-dimensional spreading factor (SF), the temporal spreading factor (SFT), and the frequency spreading factor (SFF). Therefore, information about the two-dimensional spreading factor of DPDCH is allocated in the DPCCH frame and transmitted to radio communication apparatus 100. The DPCCH and DPDCH that are two-dimensionally spread using the spreading factor in the time direction and the spreading factor in the frequency direction are encoded and multiplexed, and then predetermined radio transmission processing (D / A conversion, up-conversion), etc. Is transmitted to the wireless communication apparatus 100.

図示せぬ送信側から送信された2次元拡散信号は、アンテナおよび共用器101を介してRF受信部102によって受信され、所定の無線受信処理が施される。受信信号は、FFT部103によって高速フーリエ変換が行われ、受信品質推定部104へ出力されて受信品質が測定されるとともに、DPCCH2次元逆拡散部107−1、107−2へ出力される。   A two-dimensional spread signal transmitted from a transmission side (not shown) is received by the RF receiver 102 via the antenna and duplexer 101, and subjected to predetermined radio reception processing. The received signal is subjected to fast Fourier transform by the FFT unit 103 and output to the reception quality estimation unit 104 to measure the reception quality and output to the DPCCH two-dimensional despreading units 107-1 and 107-2.

受信品質推定部104によって推定された受信品質についての情報は、符号化部105によって送信データとともに符号化されて、RF送信部106を経由して図示せぬ送信側の通信相手へ送信されるとともに、受信品質変動量測定部114を経由して時間方向拡散率選択部115へ出力される。   Information about the reception quality estimated by the reception quality estimation unit 104 is encoded together with the transmission data by the encoding unit 105 and transmitted to a communication partner on the transmission side (not shown) via the RF transmission unit 106. Then, it is output to the time direction spreading factor selection unit 115 via the reception quality fluctuation amount measurement unit 114.

そして、時間方向拡散率選択部115によって、受信品質変動量測定部114から出力される受信品質に応じて内部に保持するテーブルから時間方向の拡散率の候補が選択される。例えば、図2に示すような受信品質と時間方向の拡散率のテーブルを時間方向拡散率選択部115が内部に保持している場合、受信品質推定部104によって推定されたSIRが、SFT16の下限閾値α以上かつSFT1の上限閾値β未満のとき、時間方向拡散率選択部115によって、SFT16およびSFT1の双方が時間方向の拡散率の候補として選択される。そして、DPCCH2次元逆拡散部107−1、107−2双方へ2次元逆拡散を行う旨の指示が出力される。   Then, the time direction spreading factor selection unit 115 selects a spreading factor in the time direction from a table held therein according to the reception quality output from the reception quality variation measuring unit 114. For example, when the time direction spreading factor selection unit 115 holds a table of reception quality and spreading factor in the time direction as shown in FIG. 2, the SIR estimated by the reception quality estimation unit 104 is the lower limit of the SFT 16. When the threshold value α is greater than or equal to the threshold value β and less than the upper threshold value β of SFT1, the time direction spreading factor selecting unit 115 selects both SFT16 and SFT1 as candidates for the spreading factor in the time direction. Then, an instruction to perform two-dimensional despreading is output to both DPCCH two-dimensional despreading units 107-1 and 107-2.

そして、それぞれのDPCCH2次元逆拡散部107−1、107−2によって、選択された時間方向の拡散率および周波数方向の拡散率に対応する拡散符号が用いられて2次元逆拡散が行われ、結果が判定部108へ出力される。そして、判定部108によって、DPCCH2次元逆拡散部107−1、107−2から出力される結果が比較されて、最も大きい結果に対応する時間方向の拡散率が送信側において実際に使用された時間方向の拡散率として判定される。   Then, each DPCCH two-dimensional despreading section 107-1, 107-2 performs two-dimensional despreading using the spreading code corresponding to the selected spreading factor in the time direction and spreading factor in the frequency direction. Is output to the determination unit 108. The determination unit 108 compares the results output from the DPCCH two-dimensional despreading units 107-1 and 107-2, and the time direction spreading factor corresponding to the largest result is actually used on the transmission side. It is determined as the directional spreading factor.

一方、推定されたSIRが、SFT16の下限閾値α未満またはSFT1の上限閾値β以上の場合には、それぞれSFT1またはSFT16の一方のみが時間方向の拡散率の候補として選択される。そして、選択された時間方向の拡散率の候補に対応するDPCCH2次元逆拡散部へのみ2次元逆拡散を行うよう指示が出力される。そして、2次元逆拡散の結果は、判定部108へ出力されて、選択された時間方向の拡散率が、送信側が用いた時間方向の拡散率として判定される。   On the other hand, when the estimated SIR is less than the lower threshold α of SFT16 or greater than the upper threshold β of SFT1, only one of SFT1 and SFT16 is selected as a candidate for the spreading factor in the time direction. Then, an instruction is output to perform two-dimensional despreading only to the DPCCH two-dimensional despreading unit corresponding to the selected spreading factor in the time direction. The result of the two-dimensional despreading is output to the determination unit 108, and the selected spreading factor in the time direction is determined as the spreading factor in the time direction used by the transmission side.

判定部108によって判定された時間方向の拡散率は、DPDCH周波数方向拡散率算出部110へ出力されるとともに、判定した時間方向の拡散率を用いて2次元逆拡散された逆拡散信号はDPCCH復号部109へ出力され復号される。そして、復号ビットからDPDCHの2次元拡散率(SF)についての情報が抽出され、2次元拡散率についての情報はDPDCH周波数方向拡散率算出部110へ出力される。   The spreading factor in the time direction determined by the determining unit 108 is output to the DPDCH frequency direction spreading factor calculating unit 110, and the despread signal two-dimensionally despread using the determined spreading factor in the time direction is subjected to DPCCH decoding. The data is output to the unit 109 and decoded. Then, information about the two-dimensional spreading factor (SF) of DPDCH is extracted from the decoded bits, and information about the two-dimensional spreading factor is output to DPDCH frequency direction spreading factor calculation section 110.

そして、DPDCH周波数方向拡散率算出部110によって、DPDCHの2次元拡散率と時間方向の拡散率とが上式(1)に代入され、DPDCHの周波数方向の拡散率が算出される。得られた周波数方向の拡散率および時間方向の拡散率についての情報は、DPDCH2次元逆拡散部111へ出力される。   Then, DPDCH frequency direction spreading factor calculation section 110 substitutes the two-dimensional spreading factor of DPDCH and the spreading factor in the time direction into the above equation (1), and calculates the spreading factor in the frequency direction of DPDCH. Information about the obtained spreading factor in the frequency direction and spreading factor in the time direction is output to DPDCH two-dimensional despreading section 111.

DPDCH2次元逆拡散部111によって、DPDCHの時間方向の拡散率と周波数方向の拡散率とが用いられて2次元逆拡散が行われ、得られた逆拡散信号はDPDCH誤り訂正復号部112へ出力される。   Two-dimensional despreading is performed by the DPDCH two-dimensional despreading unit 111 using the spreading factor in the time direction and the spreading factor in the frequency direction of the DPDCH, and the obtained despread signal is output to the DPDCH error correction decoding unit 112 The

そして、DPDCH誤り訂正復号部112によって、復調処理および誤り訂正復号が行われて、復号ビット列に含まれるCRCビットが誤り検出部113へ出力される。   Then, DPDCH error correction decoding section 112 performs demodulation processing and error correction decoding, and outputs CRC bits included in the decoded bit string to error detection section 113.

誤り検出部113ではCRCビットが用いられて、復号ビット列の誤り検出が行われ、復号ビット列の再送を要求するか否かの再送要求情報(ACK/NACK)数からPERが算出される。得られたPERは時間方向拡散率選択部115へ出力される。   The error detection unit 113 uses the CRC bits to detect errors in the decoded bit string, and calculates the PER from the number of retransmission request information (ACK / NACK) indicating whether or not to request retransmission of the decoded bit string. The obtained PER is output to the time direction spreading factor selection unit 115.

時間方向拡散率選択部115では、受信品質が所定の閾値と比較されることにより、時間方向の拡散率の候補が選択される。また、時間方向拡散率選択部115では、SIRの変動量およびPERに応じて、時間方向拡散率の候補が複数選択される受信品質の範囲や、候補が複数選択される範囲の中心値が補正される。   The time direction spreading factor selection unit 115 selects a candidate for the spreading factor in the time direction by comparing the reception quality with a predetermined threshold value. In addition, the time direction spreading factor selection unit 115 corrects the reception quality range in which a plurality of time direction spreading factor candidates are selected and the center value of the range in which the candidates are selected in accordance with the amount of SIR variation and PER. Is done.

具体的には、受信品質の変動量が大きく、通信路の状態にばらつきがあり、送信側で使用された時間方向拡散率が時間ごとに異なる可能性が高いとき、候補を複数選択する受信品質の範囲が広く設定される。これにより、実際に使用された時間方向拡散率を誤って判定する割合が減り、時間方向拡散率の判定精度を上げることができる。   Specifically, the reception quality for selecting multiple candidates when the amount of fluctuation in reception quality is large, the channel conditions vary, and the time-direction spreading factor used on the transmission side is likely to vary from time to time. The range of is set wide. Thereby, the rate of erroneously determining the time-direction spreading factor actually used is reduced, and the determination accuracy of the time-direction spreading factor can be increased.

一方、受信品質の変動量が小さく、通信路の状態にばらつきが小さい場合には、送信側で使用する時間方向拡散率が時間ごとに変わる可能性が低いため、候補を複数選択する受信品質の範囲が狭く設定される。これにより、2次元逆拡散が複数行われる割合が減って、消費電力を低減することができる。   On the other hand, when the amount of fluctuation in reception quality is small and the communication channel state is small, the time-direction spreading factor used on the transmission side is unlikely to change from time to time. The range is set narrow. As a result, the rate at which multiple two-dimensional despreading is performed is reduced, and power consumption can be reduced.

また、PERが所定の閾値より低く通信路の状態が長期的に良好なほど、時間方向拡散率が複数選択される受信品質の範囲の中心値γが高く設定され、PERが所定の閾値より高く通信路の状態が長期的に劣悪なほど、時間方向拡散率が複数選択される受信品質の範囲の中心値γが低く設定される。このように、PERに応じて時間方向拡散率が複数選択される受信品質の範囲の中心値が補正されることにより、送信側で使用される時間方向拡散率の候補がより確実に選択される。   Further, as the PER is lower than a predetermined threshold and the channel condition is better in the long term, the center value γ of the reception quality range in which a plurality of time direction spreading factors are selected is set higher, and the PER is higher than the predetermined threshold. As the channel condition becomes worse in the long term, the center value γ of the reception quality range in which a plurality of time direction spreading factors are selected is set lower. In this way, by correcting the center value of the reception quality range in which a plurality of time direction spreading factors are selected in accordance with the PER, candidates for the time direction spreading factor used on the transmission side are more reliably selected. .

なお、本実施の形態においては、PERを考慮して中心値γを変更したが、PERの代わりにBER(Bit Error Rate)を用いても良い。すなわち、誤り検出部113において復号ビットからPERを算出する代わりにBERを算出し、BERが所定の閾値より高い場合には、SFT16およびSFT1の双方が選択される受信品質の範囲の中心値γを高くし、BERが所定の閾値より低い場合には、SFT16およびSFT1の双方が選択される受信品質の範囲の中心値γを低くしても良い。   In the present embodiment, the center value γ is changed in consideration of PER, but BER (Bit Error Rate) may be used instead of PER. That is, instead of calculating the PER from the decoded bit in the error detection unit 113, if the BER is higher than a predetermined threshold, the center value γ of the reception quality range in which both SFT16 and SFT1 are selected is set. If the BER is higher and the BER is lower than the predetermined threshold, the center value γ of the reception quality range in which both the SFT 16 and the SFT 1 are selected may be lowered.

(効果)
以上のように、本実施の形態によれば、通信路状態に関する情報に基づいて、受信した2次元拡散OFDM−CDMA信号に含まれる個別制御チャネル信号の時間方向の拡散率の候補を選択し、時間方向の拡散率の候補と、予め定められた2次元拡散率と時間方向の拡散率の候補とから定まる周波数方向の拡散率の候補とを用いて個別制御チャネル信号を2次元逆拡散して、得られた2次元逆拡散逆結果に基づいて、時間方向の拡散率の候補の中から実際に使用された時間方向の拡散率を判定し、個別制御チャネル信号によって通知された個別データチャネル信号の2次元拡散率と、判定された時間方向の拡散率とを用いて、個別データチャネル信号の周波数方向の拡散率を算出し、判定された時間方向の拡散率と算出された周波数方向の拡散率とを用いて個別データチャネル信号を2次元逆拡散するため、時間方向の拡散率についての情報を報知せず、周波数利用効率の低減を防止して、時間方向の拡散率を的確に判定し、個別データチャネル信号を2次元逆拡散することができる。
(effect)
As described above, according to the present embodiment, based on the information on the channel state, a candidate for the spreading factor in the time direction of the dedicated control channel signal included in the received two-dimensional spread OFDM-CDMA signal is selected, The individual control channel signal is two-dimensionally despread using a time direction spreading factor candidate and a frequency direction spreading factor candidate determined from a predetermined two-dimensional spreading factor and a time spreading factor candidate. Based on the obtained two-dimensional despreading inverse result, the spreading factor in the time direction actually used is determined from the spreading factor candidates in the time direction, and the dedicated data channel signal notified by the dedicated control channel signal The spread factor in the frequency direction of the dedicated data channel signal is calculated using the two-dimensional spreading factor of the data and the determined spread factor in the time direction, and the determined spread factor in the time direction and the calculated spread in the frequency direction are calculated. Since the dedicated data channel signal is two-dimensionally despread using the rate, the information about the spreading factor in the time direction is not reported, the reduction in frequency utilization efficiency is prevented, and the spreading factor in the time direction is accurately determined. The individual data channel signal can be two-dimensionally despread.

また、本実施の形態によれば、受信品質の変動量を測定し、受信品質の変動量が大きく通信路の状態にばらつきがある場合には、時間方向の拡散率の候補が複数選択される受信品質の範囲を広く補正する。一方、受信品質の変動量が小さく通信路の状態にばらつきがない場合には、時間方向の拡散率の候補が複数選択される受信品質の範囲を狭くする。これにより、通信路の状態のばらつきが大きい場合には、候補の絞り込みによる時間方向の拡散率の判定精度の劣化を防いで、確実に時間方向の拡散率を判定し、通信路の状態のばらつきが小さい場合には、2次元逆拡散の処理を減らし消費電力を低減することができる。   Further, according to the present embodiment, the amount of variation in reception quality is measured, and when the amount of variation in reception quality is large and the state of the communication path varies, a plurality of candidates for spreading factors in the time direction are selected. Correct the reception quality range widely. On the other hand, when the fluctuation amount of the reception quality is small and there is no variation in the state of the communication channel, the reception quality range in which a plurality of candidates for the spreading factor in the time direction are selected is narrowed. As a result, when there is a large variation in the state of the communication channel, it prevents the deterioration of the accuracy of determination of the spreading factor in the time direction due to narrowing down of the candidates, reliably determines the spreading factor in the time direction, and the variation in the state of the communication channel When is small, two-dimensional despreading processing can be reduced and power consumption can be reduced.

また、本実施の形態によれば、誤り検出を行い、誤り検出の結果が悪く通信路の状態が劣悪と判断される場合には小さい時間方向の拡散率が選択される割合を増やし、誤り検出の結果が良く通信路の状態が良好と判断される場合には大きい時間方向の拡散率が選択される割合を増やすため、送信側で使用される時間方向拡散率をより確実に選択することができる。   In addition, according to the present embodiment, error detection is performed, and when the error detection result is bad and the state of the communication channel is determined to be inferior, the rate at which a small spreading factor in the time direction is selected is increased, and error detection is performed. If the result is good and the channel condition is determined to be good, the time direction spreading factor used on the transmission side can be selected more reliably in order to increase the rate at which a large spreading factor in the time direction is selected. it can.

本発明の第1の態様に係る無線通信装置は、通信路状態に関する情報に基づいて、受信した2次元拡散OFDM−CDMA信号に含まれる個別制御チャネル信号の時間方向の拡散率の候補を選択する選択手段と、前記選択された時間方向の拡散率の候補と前記個別制御チャネル信号について予め定められた2次元拡散率とから定まる周波数方向の拡散率の候補と、前記時間方向の拡散率の候補とを用いて前記個別制御チャネル信号を2次元逆拡散するDPCCH2次元逆拡散手段と、前記DPCCH2次元逆拡散手段により得られる逆拡散結果に基づいて、前記時間方向の拡散率の候補の中から実際に使用された時間方向の拡散率を判定する判定手段と、前記個別制御チャネル信号によって通知された、前記個別データチャネル信号の2次元拡散率と、前記判定手段によって判定された前記時間方向の拡散率とを用いて、前記個別データチャネル信号の周波数方向の拡散率を算出するDPDCH周波数方向拡散率算出手段と、前記判定手段によって判定された時間方向の拡散率と、前記DPDCH周波数方向拡散率算出手段によって算出された周波数方向の拡散率とを用いて、受信した2次元拡散OFDM−CDMA信号に含まれる個別データチャネル信号を2次元逆拡散するDPDCH2次元逆拡散手段と、を有する構成を採る。   The radio communication apparatus according to the first aspect of the present invention selects a spreading factor candidate in the time direction of the dedicated control channel signal included in the received two-dimensional spread OFDM-CDMA signal based on information on the channel state. A selection means; a candidate for a spreading factor in the frequency direction determined from a candidate for the spreading factor in the selected time direction and a two-dimensional spreading factor predetermined for the dedicated control channel signal; and a candidate for the spreading factor in the time direction And DPCCH two-dimensional despreading means for two-dimensionally despreading the dedicated control channel signal, and based on the result of despreading obtained by the DPCCH two-dimensional despreading means, from among the candidates for the spreading factor in the time direction Determination means for determining a spreading factor in the time direction used for the two-dimensional of the dedicated data channel signal notified by the dedicated control channel signal DPDCH frequency direction spreading factor calculating means for calculating a spreading factor in the frequency direction of the dedicated data channel signal using a spreading factor and the spreading factor in the time direction determined by the determining means; The received data channel signal included in the received two-dimensional spread OFDM-CDMA signal is two-dimensionally converted using the spread factor in the time direction and the spread factor in the frequency direction calculated by the DPDCH frequency-direction spread factor calculator. A configuration having DPDCH two-dimensional despreading means for despreading is adopted.

この構成によれば、先ず、通信路状態に基づいて、2次元拡散率(時間方向拡散率×周波数方向拡散率)が一定である個別制御チャネル信号を用いて時間方向拡散率を求め、次に、その時間方向拡散率と、個別制御チャネル信号により通知された個別データチャネル信号の2次元拡散率とから個別データチャネル信号の周波数方向拡散率を求め、その時間方向拡散率と周波数方向拡散率とを用いて個別データチャネル信号を2次元逆拡散するので、時間方向の拡散率を報知しなくても、比較的簡易な構成で時間方向の拡散率を的確に把握し、2次元逆拡散されたデータを的確な時間方向拡散率および周波数方向拡散率を用いて2次元逆拡散することができる。   According to this configuration, first, based on the channel state, the time direction spreading factor is obtained using an individual control channel signal having a constant two-dimensional spreading factor (time spreading factor × frequency spreading factor), and then The frequency direction spreading factor of the individual data channel signal is obtained from the time direction spreading factor and the two-dimensional spreading factor of the individual data channel signal notified by the individual control channel signal, and the time direction spreading factor and the frequency direction spreading factor are obtained. Since the individual data channel signal is two-dimensionally despread using the, the time-direction spreading factor is accurately grasped with a relatively simple configuration without reporting the spreading factor in the time direction. Data can be two-dimensionally despread using an accurate time direction spreading factor and frequency direction spreading factor.

本発明の第2の態様に係る無線通信装置は、上記第1の態様において、前記DPCCH2次元逆拡散手段は、2次元拡散率が互いに同じで、かつ、時間方向の拡散率および周波数方向の拡散率が互いに異なる複数のDPCCH2次元逆拡散器、を具備する構成を採る。   The wireless communication apparatus according to a second aspect of the present invention is the wireless communication apparatus according to the first aspect, wherein the DPCCH two-dimensional despreading means have the same two-dimensional spreading factor, a spreading factor in the time direction, and a spreading factor in the frequency direction. A configuration including a plurality of DPCCH two-dimensional despreaders having different rates is adopted.

この構成によれば、個別制御チャネル信号を異なる時間方向の拡散率で同時に2次元逆拡散することができるため、複数の時間方向の拡散率が選択された場合に処理速度を向上することが可能となる。   According to this configuration, since the dedicated control channel signal can be two-dimensionally despread simultaneously with different spreading factors in the time direction, the processing speed can be improved when a plurality of spreading factors in the time direction are selected. It becomes.

本発明の第3の態様に係る無線通信装置は、上記第1の態様において、前記判定手段は、前記選択手段により時間方向の拡散率の候補が複数選択された場合、前記DPCCH2次元逆拡散手段により得られる逆拡散結果が最大となる時間方向の拡散率の候補を実際に使用された時間方向の拡散率と判定し、選択された時間方向の拡散率の候補が1つの場合、選択された時間方向の拡散率の候補を実際に使用された時間方向の拡散率と判定する構成を採る。   The wireless communication apparatus according to a third aspect of the present invention is the wireless communication apparatus according to the first aspect, wherein when the selection unit selects a plurality of spread rate candidates in the time direction, the determination unit performs the DPCCH two-dimensional despreading unit. The candidate of the spreading factor in the time direction in which the despreading result obtained by the above is the maximum is determined as the actually used spreading factor in the time direction, and is selected when there is one selected spreading factor in the time direction. A configuration is adopted in which a candidate for the spreading factor in the time direction is determined as the spreading factor in the time direction actually used.

この構成によれば、選択された時間方向の拡散率の候補の数に応じて実際に使用された時間方向の拡散率の判定方法を変えるため、選択された候補が複数の場合は時間方向の拡散率の判定精度を上げ、選択された候補が1つの場合は2次元逆拡散の処理量を減らし消費電力を低減することができる。   According to this configuration, since the method of determining the spreading factor in the time direction actually used is changed according to the number of spreading factor candidates in the time direction selected, when there are a plurality of selected candidates, The accuracy of determining the spreading factor can be increased, and when the number of selected candidates is one, the processing amount of two-dimensional despreading can be reduced and the power consumption can be reduced.

本発明の第4の態様に係る無線通信装置は、上記第1の態様において、前記通信路状態の変動量を測定する変動量測定手段、をさらに具備し、前記選択手段は、前記変動量測定手段により測定された前記通信路状態の変動量に応じて、選択する候補の数を可変にする構成を採る。   The wireless communication apparatus according to a fourth aspect of the present invention further comprises a fluctuation amount measuring means for measuring the fluctuation amount of the communication path state in the first aspect, wherein the selection means measures the fluctuation amount. A configuration is adopted in which the number of candidates to be selected is variable according to the fluctuation amount of the communication channel state measured by the means.

この構成によれば、通信路状態の変動量に応じて選択する候補の数を可変にするため、変動量が大きい場合に選択する候補の数を多くすることができ、候補の絞り込み過ぎることによる時間方向の拡散率の判定精度の劣化を防ぐことができる。   According to this configuration, since the number of candidates to be selected is made variable according to the fluctuation amount of the communication path state, the number of candidates to be selected can be increased when the fluctuation amount is large, and the number of candidates is excessively narrowed down. It is possible to prevent deterioration in determination accuracy of the spreading factor in the time direction.

本発明の第5の態様に係る無線通信装置は、上記第4の態様において、前記選択手段は、前記変動量測定手段により測定された前記通信路状態の変動量に応じて時間方向の拡散率の候補を通信路状態に関連付けてマッピングし、マッピングした時間方向の拡散率ごとの通信路状態の閾値と実際の通信路状態とを閾値判定して、前記時間方向の拡散率の候補を選択する構成を採る。   The wireless communication apparatus according to a fifth aspect of the present invention is the wireless communication apparatus according to the fourth aspect, wherein the selecting means is a spreading factor in a time direction according to the fluctuation amount of the communication path state measured by the fluctuation amount measuring means. The candidate is mapped in association with the channel state, the threshold value of the channel state for each mapped spreading factor in the time direction and the actual channel state are determined as a threshold, and the spreading factor candidate in the time direction is selected. Take the configuration.

この構成によれば、選択手段は、通信路状態の変動量に応じて時間方向の拡散率の候補を通信路状態に関連付けてマッピングするため、通信路状態の変動量が大きく通信路の状態にばらつきがあると判断される場合には、時間方向の拡散率の候補が複数選択される通信路状態の範囲を広げ、候補の絞り込みによる時間方向の拡散率の判定精度の劣化を防いで、確実に時間方向の拡散率を判定することができ、通信路状態の変動量が小さく通信路の状態にばらつきがない場合には、時間方向の拡散率の候補が複数選択される通信路状態の範囲を狭め、2次元逆拡散の処理量を減らし消費電力を低減することができる。   According to this configuration, since the selection unit maps the spreading factor candidates in the time direction in association with the channel state according to the channel state variation amount, the channel state variation amount is large and the channel state is changed. If it is determined that there is variation, the range of channel conditions in which multiple candidates for the spreading factor in the time direction are selected is expanded, and deterioration of the accuracy of judging the spreading factor in the time direction due to narrowing down of the candidates is prevented. If the channel state fluctuation amount is small and there is no variation in the channel state, a range of channel state in which a plurality of time direction spreading factor candidates are selected. , And the power consumption can be reduced by reducing the processing amount of two-dimensional despreading.

本発明の第6の態様に係る無線通信装置は、上記第1の態様において、前記DPDCH2次元逆拡散手段から出力される個別データチャネル信号を復号して誤り検出を行う誤り検出手段、をさらに具備し、前記選択手段は、前記誤り検出手段によって検出された誤り検出の結果が悪い場合ほど、前記時間方向の拡散率の候補として時間方向の拡散率の小さい候補を優先的に選択し、前記誤り検出手段によって検出された誤り検出の結果が良い場合ほど、前記時間方向の拡散率の候補として時間方向の拡散率の大きい候補を優先的に選択する構成を採る。   The wireless communication apparatus according to a sixth aspect of the present invention further comprises error detection means for performing error detection by decoding the dedicated data channel signal output from the DPDCH two-dimensional despreading means in the first aspect. The selection means preferentially selects a candidate having a small time direction spreading factor as a candidate for the time direction spreading factor as the error detection result detected by the error detecting unit is worse, As the result of error detection detected by the detection means is better, a configuration is adopted in which a candidate having a larger spreading factor in the time direction is preferentially selected as a candidate for the spreading factor in the time direction.

この構成によれば、誤り検出の結果が悪く通信路の状態が劣悪と判断される場合には小さい時間方向の拡散率の候補が選択される割合が増え、誤り検出の結果が良く通信路の状態が良好と判断される場合には大きい時間方向の拡散率の候補が選択される割合が増え、送信側で使用される時間方向拡散率の候補がより確実に選択される。   According to this configuration, when the error detection result is poor and the channel condition is judged to be poor, the ratio of selecting a small spreading factor in the time direction is increased, and the error detection result is good and the communication channel condition is good. When the state is determined to be good, the ratio of selecting a large time direction spreading factor increases, and the time direction spreading factor candidate used on the transmission side is selected more reliably.

本発明の第7の態様に係る無線通信方法は、通信路状態に関する情報に基づいて、受信した2次元拡散OFDM−CDMA信号に含まれる個別制御チャネル信号の時間方向の拡散率の候補を選択する工程と、選択された時間方向の拡散率の候補と前記個別制御チャネル信号について予め定められた2次元拡散率とから定まる周波数方向の拡散率の候補と、前記時間方向の拡散率の候補とを用いて前記個別制御チャネル信号を2次元逆拡散する工程と、2次元逆拡散されて得られた逆拡散結果に基づいて、前記時間方向の拡散率の候補の中から実際に使用された時間方向の拡散率を判定する工程と、前記個別制御チャネル信号によって通知された、前記個別データチャネル信号の2次元拡散率と、前記判定手段によって判定された前記時間方向の拡散率とを用いて、前記個別データチャネル信号の周波数方向の拡散率を算出する工程と、判定された時間方向の拡散率と、算出された前記個別データチャネル信号の周波数方向の拡散率とを用いて、受信した2次元拡散OFDM−CDMA信号に含まれる個別データチャネル信号を2次元逆拡散する工程と、を有するようにした。   The wireless communication method according to the seventh aspect of the present invention selects a spreading factor candidate in the time direction of the dedicated control channel signal included in the received two-dimensional spread OFDM-CDMA signal based on information on the channel state. A candidate for a spreading factor in a frequency direction determined from a step, a candidate for a spreading factor in a time direction, and a two-dimensional spreading factor predetermined for the dedicated control channel signal, and a candidate for a spreading factor in the time direction A time direction actually used from among the candidates for the spreading factor in the time direction, based on a step of two-dimensionally despreading the dedicated control channel signal and a result of despreading obtained by two-dimensional despreading Determining the spreading factor, the two-dimensional spreading factor of the dedicated data channel signal notified by the dedicated control channel signal, and the time direction determined by the determining means Using the spreading factor, calculating the spreading factor in the frequency direction of the dedicated data channel signal, the determined spreading factor in the time direction, and the calculated spreading factor in the frequency direction of the dedicated data channel signal. And two-dimensional despreading of the individual data channel signal included in the received two-dimensional spread OFDM-CDMA signal.

この方法によれば、先ず、通信路状態に基づいて、2次元拡散率(時間方向拡散率×周波数方向拡散率)が一定である個別制御チャネル信号を用いて時間方向拡散率を求め、次に、その時間方向拡散率と、個別制御チャネル信号により通知された個別データチャネル信号の2次元拡散率とから個別データチャネル信号の周波数方向拡散率を求め、その時間方向拡散率と周波数方向拡散率とを用いて個別データチャネル信号を2次元逆拡散するので、時間方向の拡散率を報知しなくても、時間方向の拡散率を的確に把握し、2次元逆拡散されたデータを的確な時間方向拡散率および周波数方向拡散率を用いて2次元逆拡散することができる。   According to this method, first, based on the channel state, the time direction spreading factor is obtained using an individual control channel signal having a constant two-dimensional spreading factor (time spreading factor × frequency spreading factor), and then The frequency direction spreading factor of the individual data channel signal is obtained from the time direction spreading factor and the two-dimensional spreading factor of the individual data channel signal notified by the individual control channel signal, and the time direction spreading factor and the frequency direction spreading factor are obtained. Since the individual data channel signal is two-dimensionally despread using, so that the spreading factor in the time direction can be accurately grasped without reporting the spreading factor in the time direction, and the two-dimensional despread data can be accurately timed. Two-dimensional despreading can be performed using the spreading factor and the frequency direction spreading factor.

本発明の無線通信装置および無線通信方法は、OFDM−CDMA方式の2次元拡散方式において、時間方向の拡散率を報知しなくても、時間方向の拡散率を的確に把握し、2次元拡散されたデータを的確な時間方向拡散率および周波数方向拡散率を用いて2次元逆拡散することができ、例えば、OFDM−CDMA方式の2次元拡散方式が適用される無線通信装置および無線通信方法などに有用である。   The wireless communication apparatus and wireless communication method of the present invention can accurately grasp the spreading factor in the time direction and perform two-dimensional spreading in the OFDM-CDMA two-dimensional spreading method without reporting the spreading factor in the time direction. Data can be two-dimensionally despread using an accurate time-direction spreading factor and frequency-direction spreading factor, for example, in a radio communication apparatus and a radio communication method to which the OFDM-CDMA two-dimensional spreading method is applied. Useful.

本発明の一実施の形態に係る無線通信装置の構成を示すブロック図The block diagram which shows the structure of the radio | wireless communication apparatus which concerns on one embodiment of this invention 本発明の上記実施の形態に係る時間方向の拡散率を判定する方法の一例を説明する図The figure explaining an example of the method of determining the spreading factor of the time direction which concerns on the said embodiment of this invention (a)本発明の上記実施の形態に係る時間方向の拡散率を判定する方法の一例を説明する図(b)本発明の上記実施の形態に係る時間方向の拡散率を判定する方法の一例を説明する図(A) The figure explaining an example of the method of determining the spreading factor of the time direction which concerns on the said embodiment of this invention (b) An example of the method of judging the spreading factor of the time direction which concerns on the said embodiment of this invention Figure explaining (a)本発明の上記実施の形態に係る時間方向の拡散率を判定する方法の一例を説明する図(b)本発明の上記実施の形態に係る時間方向の拡散率を判定する方法の一例を説明する図(A) The figure explaining an example of the method of determining the spreading factor of the time direction which concerns on the said embodiment of this invention (b) An example of the method of judging the spreading factor of the time direction which concerns on the said embodiment of this invention Figure explaining

符号の説明Explanation of symbols

101 共用器
102 RF受信部
103 FFT部
104 受信品質推定部
105 符号化部
106 RF送信部
107−1、107−2 DPCCH2次元逆拡散部
108 判定部
109 DPCCH復号部
110 DPDCH周波数方向拡散率算出部
111 DPDCH2次元逆拡散部
112 DPDCH誤り訂正復号部
113 誤り検出部
114 受信品質変動量測定部
115 時間方向拡散率選択部
DESCRIPTION OF SYMBOLS 101 Duplexer 102 RF receiving part 103 FFT part 104 Reception quality estimation part 105 Coding part 106 RF transmission part 107-1, 107-2 DPCCH two-dimensional despreading part 108 Judgment part 109 DPCCH decoding part 110 DPDCH frequency direction spreading factor calculation part 111 DPDCH two-dimensional despreading unit 112 DPDCH error correction decoding unit 113 Error detection unit 114 Received quality variation measurement unit 115 Time direction spreading factor selection unit

Claims (7)

通信路状態に関する情報に基づいて、受信した2次元拡散OFDM−CDMA信号に含まれる個別制御チャネル信号の時間方向の拡散率の候補を選択する選択手段と、
前記選択された時間方向の拡散率の候補と前記個別制御チャネル信号について予め定められた2次元拡散率とから定まる周波数方向の拡散率の候補と、前記時間方向の拡散率の候補とを用いて前記個別制御チャネル信号を2次元逆拡散するDPCCH2次元逆拡散手段と、
前記DPCCH2次元逆拡散手段により得られる逆拡散結果に基づいて、前記時間方向の拡散率の候補の中から実際に使用された時間方向の拡散率を判定する判定手段と、
前記個別制御チャネル信号によって通知された、前記個別データチャネル信号の2次元拡散率と、前記判定手段によって判定された前記時間方向の拡散率とを用いて、前記個別データチャネル信号の周波数方向の拡散率を算出するDPDCH周波数方向拡散率算出手段と、
前記判定手段によって判定された時間方向の拡散率と、前記DPDCH周波数方向拡散率算出手段によって算出された周波数方向の拡散率とを用いて、受信した2次元拡散OFDM−CDMA信号に含まれる個別データチャネル信号を2次元逆拡散するDPDCH2次元逆拡散手段と、
を具備する無線通信装置。
Selecting means for selecting a spreading factor candidate in the time direction of the dedicated control channel signal included in the received two-dimensional spread OFDM-CDMA signal based on the information on the channel state;
A frequency direction spreading factor candidate determined from the selected time direction spreading factor candidate and a predetermined two-dimensional spreading factor for the dedicated control channel signal, and the time direction spreading factor candidate are used. DPCCH two-dimensional despreading means for two-dimensional despreading the dedicated control channel signal;
A determination unit that determines a spreading factor in the time direction actually used from the spreading factor candidates in the time direction based on a despreading result obtained by the DPCCH two-dimensional despreading unit;
Spreading in the frequency direction of the dedicated data channel signal using the two-dimensional spreading factor of the dedicated data channel signal notified by the dedicated control channel signal and the spreading factor in the time direction determined by the determining means DPDCH frequency direction spreading factor calculating means for calculating a rate;
Individual data included in the received two-dimensional spread OFDM-CDMA signal using the spreading factor in the time direction determined by the determining unit and the spreading factor in the frequency direction calculated by the DPDCH frequency direction spreading factor calculating unit DPDCH two-dimensional despreading means for two-dimensional despreading the channel signal;
A wireless communication apparatus comprising:
前記DPCCH2次元逆拡散手段は、
2次元拡散率が互いに同じで、かつ、時間方向の拡散率および周波数方向の拡散率が互いに異なる複数のDPCCH2次元逆拡散器、
を具備する請求項1記載の無線通信装置。
The DPCCH two-dimensional despreading means is:
A plurality of DPCCH two-dimensional despreaders having the same two-dimensional spreading factor and different spreading factors in the time direction and in the frequency direction;
The wireless communication apparatus according to claim 1, further comprising:
前記判定手段は、
前記選択手段により時間方向の拡散率の候補が複数選択された場合、前記DPCCH2次元逆拡散手段により得られる逆拡散結果が最大となる時間方向の拡散率の候補を実際に使用された時間方向の拡散率と判定し、選択された時間方向の拡散率の候補が1つの場合、選択された時間方向の拡散率の候補を実際に使用された時間方向の拡散率と判定する請求項1記載の無線通信装置。
The determination means includes
When a plurality of spreading factor candidates in the time direction are selected by the selecting unit, the spreading factor candidate in the time direction that maximizes the despreading result obtained by the DPCCH two-dimensional despreading unit The determination as a spreading factor, and when there is one selected candidate for the spreading factor in the time direction, the candidate for the spreading factor in the selected time direction is determined as the actually used spreading factor in the time direction. Wireless communication device.
前記通信路状態の変動量を測定する変動量測定手段、をさらに具備し、
前記選択手段は、
前記変動量測定手段により測定された前記通信路状態の変動量に応じて、選択する候補の数を可変にする請求項1記載の無線通信装置。
A fluctuation amount measuring means for measuring the fluctuation amount of the communication path state;
The selection means includes
The radio communication apparatus according to claim 1, wherein the number of candidates to be selected is made variable according to the fluctuation amount of the communication path state measured by the fluctuation amount measuring unit.
前記選択手段は、
前記変動量測定手段により測定された前記通信路状態の変動量に応じて、時間方向の拡散率の候補を通信路状態に関連付けてマッピングし、マッピングした時間方向の拡散率ごとの通信路状態の閾値と実際の通信路状態とを閾値判定して、前記時間方向の拡散率の候補を選択する請求項4記載の無線通信装置。
The selection means includes
In accordance with the fluctuation amount of the communication channel state measured by the fluctuation amount measuring means, the candidate for the spreading factor in the time direction is mapped in association with the communication channel state, and the channel state for each mapped spreading factor in the time direction is mapped. The wireless communication apparatus according to claim 4, wherein a threshold value and an actual communication path state are determined as a threshold value, and a candidate for the spreading factor in the time direction is selected.
前記DPDCH2次元逆拡散手段から出力される個別データチャネル信号を復号して誤り検出を行う誤り検出手段、をさらに具備し、
前記選択手段は、
前記誤り検出手段によって検出された誤り検出の結果が悪い場合ほど、前記時間方向の拡散率の候補として時間方向の拡散率の小さい候補を優先的に選択し、前記誤り検出手段によって検出された誤り検出の結果が良い場合ほど、前記時間方向の拡散率の候補として時間方向の拡散率の大きい候補を優先的に選択する請求項1記載の無線通信装置。
Error detecting means for detecting an error by decoding the dedicated data channel signal output from the DPDCH two-dimensional despreading means,
The selection means includes
When the error detection result detected by the error detection means is worse, a candidate having a smaller time direction spreading factor is preferentially selected as the time direction spreading factor candidate, and the error detected by the error detection means is selected. The radio communication apparatus according to claim 1, wherein a candidate having a larger spreading factor in the time direction is preferentially selected as the candidate for the spreading factor in the time direction as the detection result is better.
通信路状態に関する情報に基づいて、受信した2次元拡散OFDM−CDMA信号に含まれる個別制御チャネル信号の時間方向の拡散率の候補を選択する工程と、
選択された時間方向の拡散率の候補と前記個別制御チャネル信号について予め定められた2次元拡散率とから定まる周波数方向の拡散率の候補と、前記時間方向の拡散率の候補とを用いて前記個別制御チャネル信号を2次元逆拡散する工程と、
2次元逆拡散されて得られた逆拡散結果に基づいて、前記時間方向の拡散率の候補の中から実際に使用された時間方向の拡散率を判定する工程と、
前記個別制御チャネル信号によって通知された、前記個別データチャネル信号の2次元拡散率と、前記判定手段によって判定された前記時間方向の拡散率とを用いて、前記個別データチャネル信号の周波数方向の拡散率を算出する工程と、
判定された時間方向の拡散率と、算出された前記個別データチャネル信号の周波数方向の拡散率とを用いて、受信した2次元拡散OFDM−CDMA信号に含まれる個別データチャネル信号を2次元逆拡散する工程と、
を具備する無線通信方法。
Selecting a spreading factor candidate in the time direction of the dedicated control channel signal included in the received two-dimensional spread OFDM-CDMA signal based on information on the channel state;
The frequency direction spreading factor candidate determined from the selected time direction spreading factor candidate and a predetermined two-dimensional spreading factor for the dedicated control channel signal, and the time direction spreading factor candidate Two-dimensional despreading of the individual control channel signal;
Determining a spreading factor in the time direction actually used from the spreading factor candidates in the time direction based on a despreading result obtained by two-dimensional despreading;
Spreading in the frequency direction of the dedicated data channel signal using the two-dimensional spreading factor of the dedicated data channel signal notified by the dedicated control channel signal and the spreading factor in the time direction determined by the determining means Calculating a rate;
Using the determined spreading factor in the time direction and the calculated spreading factor in the frequency direction of the dedicated data channel signal, the dedicated data channel signal included in the received two-dimensional spread OFDM-CDMA signal is two-dimensionally despread. And a process of
A wireless communication method comprising:
JP2005231197A 2005-08-09 2005-08-09 Wireless communication apparatus and method therefor Pending JP2007049390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005231197A JP2007049390A (en) 2005-08-09 2005-08-09 Wireless communication apparatus and method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005231197A JP2007049390A (en) 2005-08-09 2005-08-09 Wireless communication apparatus and method therefor

Publications (1)

Publication Number Publication Date
JP2007049390A true JP2007049390A (en) 2007-02-22

Family

ID=37851862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005231197A Pending JP2007049390A (en) 2005-08-09 2005-08-09 Wireless communication apparatus and method therefor

Country Status (1)

Country Link
JP (1) JP2007049390A (en)

Similar Documents

Publication Publication Date Title
US8861499B1 (en) Data rate adaptation in multiple-in-multiple-out systems
US7385934B2 (en) Radio communication apparatus and transfer rate decision method
TWI510008B (en) Quality control scheme for multiple-input multiple-output (mimo) orthogonal frequency division multiplexing (ofdm) systems
JP4628150B2 (en) Communication apparatus and communication method
EP1589715B1 (en) Radio transmission apparatus and transmission rate determining method
JP3877713B2 (en) Adaptive transmission antenna diversity apparatus and method in mobile communication system
US8219042B2 (en) Wireless communication system, base station device, mobile station device, and macrodiversity selection method
JP4412005B2 (en) Adaptive modulation method and data rate control method
EP2258051B1 (en) Rank dependent CQI back-off
EP1519496A1 (en) Transmission power control method and base station device
KR101106692B1 (en) Apparatus and method for mode control in mimo communication system
KR100811843B1 (en) Apparatus and method for communicating high speed shared control channel in wideband code division multiple access communication system
CN101199145B (en) Shared control channel detection strategies
JP2004159284A (en) Radio communication device and reception system selection method
US7209764B2 (en) Apparatus and method for receiving channel signal using space time transmit diversity scheme in code division multiple access communication system
JP4361115B2 (en) Reception quality calculation method, reception quality calculation device, and communication device
JP5340344B2 (en) Communication apparatus and communication method
JP4918935B2 (en) Adaptive modulation method and data rate control method
JP2007049390A (en) Wireless communication apparatus and method therefor
JP3931125B2 (en) Radio apparatus and base station apparatus
JP5310603B2 (en) Mobile device and power control method
JP2007150862A (en) Radio communication equipment and transmission rate determination method in radio communication equipment
JP4776292B2 (en) Communication apparatus and communication method
CN117220730A (en) Multi-stream data demodulation method, device, electronic equipment and computer storage medium
JP2005260634A (en) Base station device and terminal device