JP2007048669A - Battery - Google Patents

Battery Download PDF

Info

Publication number
JP2007048669A
JP2007048669A JP2005233609A JP2005233609A JP2007048669A JP 2007048669 A JP2007048669 A JP 2007048669A JP 2005233609 A JP2005233609 A JP 2005233609A JP 2005233609 A JP2005233609 A JP 2005233609A JP 2007048669 A JP2007048669 A JP 2007048669A
Authority
JP
Japan
Prior art keywords
exterior member
battery
rigidity
exterior material
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005233609A
Other languages
Japanese (ja)
Inventor
Kenichi Sakai
健一 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005233609A priority Critical patent/JP2007048669A/en
Publication of JP2007048669A publication Critical patent/JP2007048669A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin-form battery having convex shape on both sides and furnished with an electrode terminal (tab) in the desired position accurately. <P>SOLUTION: The battery is structured so that the rigidity of the peripheral part of one exterior member is made higher than that of the peripheral part of the other exterior member. According to this constitution, deformation of the exterior member generated by a force acting on the inner wall of the battery when its inside is sealed by pinching the electrode terminal in the exterior members while evacuating inside the battery and putting the part in hot fusion attachment can be concentrated in the upper exterior member having a smaller rigidity. As a result, the lower exterior member 107 does not make deformation, and the position of the member 107 relative to a positive electrode terminal 104 and a positive electrode terminal 105 can be maintained in a constant relation. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、電極板や電解質を含む発電要素が外装部材に収容されて封止された例えばリチウム系の二次電池等の電池に関する。   The present invention relates to a battery such as a lithium secondary battery in which a power generation element including an electrode plate and an electrolyte is accommodated in an exterior member and sealed.

正極電極板(正極板)と負極電極板(負極板)とをセパレータを介して積層した積層体と電界液とを、ラミネートフィルム等のシート状外装部材で被覆し封止収容し、正極板及び負極板に接続された電極端子を外装部材の外周貼着部から導出させた積層型の扁平型(薄型)二次電池が知られている(例えば、特許文献1参照)。このような薄型電池の一般的な形態として、2枚のシート状外装部材の各々に凹部(カップ形状部、外部から見た場合は凸部)を形成し、この2つの外装部材を合わせて外周部を熱溶着することにより、積層体及び電解質を内部に封止収容する両方向凸型電池がある(例えば、特許文献2参照)。この際、外装部材としては、金属箔の表裏両面に樹脂層を形成したラミネートフィルムが広く用いられている。
特開平9−259859号公報 特開2004−31270号公報
A laminate obtained by laminating a positive electrode plate (positive electrode plate) and a negative electrode plate (negative electrode plate) via a separator and an electrolysis solution are covered with a sheet-like exterior member such as a laminate film and sealed and accommodated. A laminated flat (thin) secondary battery in which an electrode terminal connected to a negative electrode plate is led out from an outer peripheral sticking portion of an exterior member is known (for example, see Patent Document 1). As a general form of such a thin battery, a concave portion (a cup-shaped portion, or a convex portion when viewed from the outside) is formed in each of the two sheet-like exterior members, and the two exterior members are combined to form an outer periphery. There is a bidirectional convex battery in which a laminated body and an electrolyte are sealed and accommodated by thermally welding the parts (see, for example, Patent Document 2). At this time, as an exterior member, a laminate film having a resin layer formed on both front and back surfaces of a metal foil is widely used.
Japanese Patent Laid-Open No. 9-259859 JP 200431270 A

ところで、近年、前述したような薄型電池を複数積層して組電池とし、電気自動車、ハイブリッド車、燃料電池車等の走行用モータを駆動する駆動電力源として使用することが考えられている。このような組電池を構成するために薄型電池(セル)を積層するにあたり、両方向凸型の薄型電池を用いると、電極端子(タブ)を外装材に挟んで熱溶着し電池内部を封止する際に、外装材の変形及び外装材以外にタブが支持されていないこと等に起因して、タブの位置が安定せず、タブの位置がずれる場合がある。そのような状態となると、端子の位置がずれる、すなわち、タブの電池底面からの寸法にばらつきが生じることになる。その結果、組電池を構成する場合には、セルの端子同士を接続する場合に、位置合わせが困難になる、あるいは、位置合わせの精度が低下することになり、接続抵抗が増加したり、電極同士が剥離あるいは分離する可能性があるという問題が生じる。   By the way, in recent years, it has been considered that a plurality of thin batteries as described above are stacked to form an assembled battery and used as a driving power source for driving a traveling motor such as an electric vehicle, a hybrid vehicle, and a fuel cell vehicle. When laminating thin batteries (cells) to form such an assembled battery, if a bi-directionally convex thin battery is used, electrode terminals (tabs) are sandwiched between outer packaging materials and heat sealed to seal the inside of the battery. In some cases, the position of the tab is not stable and the position of the tab may be shifted due to the deformation of the exterior material or the absence of the tab other than the exterior material. In such a state, the position of the terminal shifts, that is, the dimension of the tab from the battery bottom surface varies. As a result, when configuring an assembled battery, when connecting the terminals of cells, it becomes difficult to align, or the accuracy of alignment decreases, the connection resistance increases, the electrode There is a problem that they may be separated or separated from each other.

本発明はこのような問題に鑑みてなされたものであって、両方向凸形状の薄型電池において、電極端子(タブ)が高精度に所望の位置に設置された薄型電池を提供することにある。   This invention is made | formed in view of such a problem, Comprising: It is providing the thin battery in which the electrode terminal (tab) was installed in the desired position with high precision in the thin battery of a bi-directional convex shape.

前記課題を解決するために、本発明に係る電池は、各々に凹部が形成された2枚の外装材を合わせ当該凹部により形成される内部空間に発電要素を収容し、当該外装材の周縁部より電極端子を外部に導出した薄型電池であって、一方の前記外装材の外周部の剛性を、他方の前記外装材の前記外周部の剛性よりも高くした電池である。   In order to solve the above-described problem, a battery according to the present invention combines two exterior members each having a recess, accommodates a power generation element in an internal space formed by the recess, and a peripheral portion of the exterior material. A thin battery in which electrode terminals are led out to the outside, wherein the rigidity of the outer peripheral portion of one of the outer packaging materials is higher than the rigidity of the outer peripheral portion of the other outer packaging material.

このような構成の電池においては、電池内部を真空吸引しながら電極端子を外装材に挟んで熱溶着することにより電池内部を密封する際に、電池内壁に電池内部方向に向かう力が作用する。本発明に係る電池においては2枚の外装材の剛性が異なるため、仮にその力により外装材に変形が生じる場合には「他方の外装材」に相当する剛性が低い方の外装材が変形することになり、変形しない「一方の外装材」と電極端子との位置関係は変形せず一定の関係に維持される。また、薄型電池全体の高さは電極板積層体の高さにより規定され、電池封止時の力によっては実質的に影響を受けない。従って、電極端子の位置は、例えば「一方の外装材」の低面でもある電池の最下面に対して一定の位置に維持されることになり、電池の幅方向における位置としてもその位置が維持される。   In the battery having such a configuration, when the inside of the battery is hermetically sealed by vacuum-sucking the inside of the battery and sandwiching the electrode terminal between the exterior materials and heat-sealing, a force directed toward the inside of the battery acts on the battery inner wall. In the battery according to the present invention, since the rigidity of the two exterior materials is different, if the exterior material is deformed by the force, the exterior material having the lower rigidity corresponding to the “other exterior material” is deformed. Thus, the positional relationship between the “one exterior material” that does not deform and the electrode terminal is not deformed and is maintained in a certain relationship. The height of the thin battery as a whole is defined by the height of the electrode plate laminate, and is not substantially affected by the force at the time of battery sealing. Therefore, for example, the position of the electrode terminal is maintained at a fixed position with respect to the lowermost surface of the battery, which is also the lower surface of “one exterior material”, and the position is maintained as the position in the width direction of the battery. Is done.

「一方の外装材」の剛性を高める好適な方法は、例えば外装材の厚みを厚くしたり、リブを形成したり、あるいは、電極端子を外装材に沿って成形することにより電極端子の剛性を利用する方法等が挙げられる。   Suitable methods for increasing the rigidity of “one exterior material” include, for example, increasing the thickness of the exterior material, forming ribs, or forming the electrode terminal along the exterior material to increase the rigidity of the electrode terminal. The method to utilize etc. are mentioned.

本発明によれば、両方向凸形状の薄型電池において、電極端子(タブ)が高精度に所望の位置に設置された薄型電池を提供することができる。   The present invention can provide a thin battery in which electrode terminals (tabs) are installed at desired positions with high accuracy in a thin battery having a convex shape in both directions.

第1実施形態
本発明の第1実施形態の薄型電池について、図1〜図3を参照して説明する。
図1は、その薄型電池の構成を示す平面方向断面図であり、図2は、その薄型電池の構成を示す鉛直方向断面図である。なお、図1は、図2のII−II線に沿った断面図であり、また、図2は、図1のI−I線に沿った断面図である。
この薄型電池10は、リチウム系の平板状積層タイプの薄型二次電池であり、この薄型電池10を単位電池としてこれを所望の数だけ複数積層することにより、所望の出力電圧で所望の容量の組電池が構成される。
First Embodiment A thin battery according to a first embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a plan sectional view showing the configuration of the thin battery, and FIG. 2 is a vertical sectional view showing the configuration of the thin battery. 1 is a cross-sectional view taken along line II-II in FIG. 2, and FIG. 2 is a cross-sectional view taken along line II in FIG.
The thin battery 10 is a lithium-based flat laminated type thin secondary battery, and a desired number of thin batteries 10 are stacked as a unit battery to obtain a desired capacity at a desired output voltage. An assembled battery is configured.

薄型電池10は、図2に示すように、3枚の正極板101、5枚のセパレータ102、3枚の負極板103、正極端子104、負極端子105、上部外装部材106、下部外装部材107及び図示しない電解質を有する。なお、以下の説明において、このうち正極板101、セパレータ102及び負極板103を積層したものを電極群109と称し、さらに、電極群109と電解質とを含めて発電要素108と称する。   As shown in FIG. 2, the thin battery 10 includes three positive plates 101, five separators 102, three negative plates 103, a positive terminal 104, a negative terminal 105, an upper exterior member 106, a lower exterior member 107, and It has an electrolyte (not shown). In the following description, a laminate of the positive electrode plate 101, the separator 102, and the negative electrode plate 103 is referred to as an electrode group 109, and the electrode group 109 and an electrolyte are also referred to as a power generation element 108.

正極板101は、正極端子104まで伸びている正極側集電体101aと、正極側集電体101aの一部の両主面にそれぞれ形成された正極層101b、101cとを有する。 正極板101の正極側集電体101aは、例えばアルミニウム箔、アルミニウム合金箔、銅箔又はニッケル箔等の電気化学的に安定した金属箔で形成される。また、正極板101の正極層101b、101cは、例えばニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)又はコバルト酸リチウム(LiCoO)等のリチウム複合酸化物や、カルコゲン(S、Se、Te)化物等の正極活物質と、カーボンブラック等の導電剤と、ポリ四フッ化エチレンの水性ディスパージョン等の接着剤とを混合したものを、正極側集電体101aの一部の両主面に塗布し、乾燥及び圧延することにより形成されている。 The positive electrode plate 101 includes a positive electrode side current collector 101a extending to the positive electrode terminal 104 and positive electrode layers 101b and 101c formed on both main surfaces of a part of the positive electrode side current collector 101a. The positive electrode side current collector 101a of the positive electrode plate 101 is formed of an electrochemically stable metal foil such as an aluminum foil, an aluminum alloy foil, a copper foil, or a nickel foil. Further, the positive electrode layers 101b and 101c of the positive electrode plate 101 are made of, for example, a lithium composite oxide such as lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 ), or lithium cobaltate (LiCoO 2 ), chalcogen (S, Se). , Te) A mixture of a positive electrode active material such as a compound, a conductive agent such as carbon black, and an adhesive such as an aqueous dispersion of polytetrafluoroethylene. It is formed by applying to the main surface, drying and rolling.

負極板103は、負極端子105まで伸びている負極側集電体103aと、当該負極側集電体103aの一部の両主面にそれぞれ形成された負極層103b、103cとを有する。
負極板103の負極側集電体103aは、例えばニッケル箔、銅箔、ステンレス箔又は鉄箔等の電気化学的に安定した金属箔で形成される。また、負極板103の負極層103b、103cは、例えば非晶質炭素、難黒鉛化炭素、易黒鉛化炭素又は黒鉛等のような正極活物質のリチウムイオンを吸蔵及び放出する負極活物質に、有機物焼成体の前駆体材料としてのスチレンブタジエンゴム樹脂粉末の水性ディスパージョンを混合し、乾燥し、粉砕し、炭素粒子表面に炭化したスチレンブタジエンゴムを担持させたものを主材料とする。負極板103b、103cは、これにアクリル樹脂エマルジョン等の結着剤をさらに混合し、この混合物を負極側集電体103aの一部の両主面に塗布し、乾燥及び圧延させることにより形成される。
負極活物質として非晶質炭素や難黒鉛化炭素を用いると、急激な出力低下が無いので、電気自動車の電源として用いると有利である。
The negative electrode plate 103 includes a negative electrode side current collector 103a extending to the negative electrode terminal 105, and negative electrode layers 103b and 103c formed on both main surfaces of a part of the negative electrode side current collector 103a, respectively.
The negative electrode side current collector 103a of the negative electrode plate 103 is formed of an electrochemically stable metal foil such as a nickel foil, a copper foil, a stainless steel foil, or an iron foil. Further, the negative electrode layers 103b and 103c of the negative electrode plate 103 are made of, for example, a negative electrode active material that absorbs and releases lithium ions of a positive electrode active material such as amorphous carbon, non-graphitizable carbon, graphitizable carbon, or graphite. An aqueous dispersion of a styrene butadiene rubber resin powder as a precursor material of an organic fired body is mixed, dried, pulverized, and carbonized surfaces carrying carbonized styrene butadiene rubber as a main material. The negative electrode plates 103b and 103c are formed by further mixing a binder such as an acrylic resin emulsion and applying the mixture to both main surfaces of a part of the negative electrode side current collector 103a, followed by drying and rolling. The
When amorphous carbon or non-graphitizable carbon is used as the negative electrode active material, there is no sudden decrease in output, so it is advantageous when used as a power source for electric vehicles.

発電要素108のセパレータ102は、正極板101と負極板103との短絡を防止するもので、電解質を保持する機能を備えている。このセパレータ102は、例えばポリエチレン(PE)やポリプロピレン(PP)等のポリオレフィン等から構成される微多孔性膜であり、過電流が流れると、その発熱によって層の空孔が閉塞され電流を遮断する機能も有する。
なお、セパレータ102は、ポリオレフィン等の単層膜に限られず、ポリプロピレン膜をポリエチレン膜で挟持して形成した3層構造の膜や、ポリオレフィン微多孔膜と有機不織布等を積層した膜等を用いることもできる。このようにセパレータ102を複層化することで、過電流の防止機能、電解質保持機能及びセパレータの形状維持(剛性向上)機能等の諸機能を付与することができる。
The separator 102 of the power generation element 108 prevents a short circuit between the positive electrode plate 101 and the negative electrode plate 103 and has a function of holding an electrolyte. The separator 102 is a microporous film made of polyolefin such as polyethylene (PE) or polypropylene (PP), for example. When an overcurrent flows, the pores of the layer are blocked by the heat generation, thereby blocking the current. It also has a function.
The separator 102 is not limited to a single-layer film such as polyolefin, but a film having a three-layer structure formed by sandwiching a polypropylene film with a polyethylene film or a film in which a polyolefin microporous film and an organic nonwoven fabric are laminated is used. You can also. Thus, by making the separator 102 into multiple layers, various functions such as an overcurrent prevention function, an electrolyte holding function, and a separator shape maintenance (stiffness improvement) function can be provided.

以上の発電要素108は、図2に示すように、セパレータ102を介して正極板101と負極板103とが交互に積層されている。そして、3枚の正極板101は、正極側集電体101aを介して、金属箔製の正極端子104にそれぞれ接続される。また、3枚の負極板103は、負極側集電体103aを介して、同様に金属箔製の負極端子105にそれぞれ接続される。   As shown in FIG. 2, the above power generation element 108 has positive plates 101 and negative plates 103 alternately stacked with separators 102 interposed therebetween. The three positive plates 101 are respectively connected to the positive terminal 104 made of metal foil through the positive current collector 101a. Similarly, the three negative plates 103 are respectively connected to the negative terminal 105 made of metal foil via the negative current collector 103a.

なお、発電要素108の正極板101、セパレータ102及び負極板103の枚数は、上記の枚数に限定されない。例えば、1枚の正極板101、3枚のセパレータ102及び1枚の負極板103でも発電要素108を構成することができ、必要に応じて正極板、セパレータ及び負極板の枚数を選択して構成することができる。   The number of the positive electrode plate 101, the separator 102, and the negative electrode plate 103 of the power generation element 108 is not limited to the above number. For example, the power generation element 108 can also be configured with one positive plate 101, three separators 102, and one negative plate 103, and the number of positive plates, separators, and negative plates can be selected as necessary. can do.

正極端子104も負極端子105も電気化学的に安定した金属材料であれば特に限定されないが、正極端子104としては、上述の正極側集電体101aと同様に、例えばアルミニウム箔、アルミニウム合金箔、銅箔又はニッケル箔等を挙げることができる。また、負極端子105としては、上述の負極側集電体103aと同様に、例えばニッケル箔、銅箔、ステンレス箔又は鉄箔等を挙げることができる。   The positive electrode terminal 104 and the negative electrode terminal 105 are not particularly limited as long as they are electrochemically stable metal materials. As the positive electrode terminal 104, for example, an aluminum foil, an aluminum alloy foil, A copper foil, nickel foil, etc. can be mentioned. Moreover, as the negative electrode terminal 105, nickel foil, copper foil, stainless steel foil, iron foil, etc. can be mentioned similarly to the above-mentioned negative electrode side collector 103a, for example.

また、本実施形態では、電極板101、103の集電体101a、103aを構成する金属箔自体を電極端子104、105まで延長することにより、電極板101、103を電極端子104、105に直接接続しているが、電極板101、103の集電体101a,103aと、電極端子104、105とを、集電体101a、103aを構成する金属箔とは別の材料や部品により接続してもよい。   In the present embodiment, the metal foils constituting the current collectors 101 a and 103 a of the electrode plates 101 and 103 are extended to the electrode terminals 104 and 105, so that the electrode plates 101 and 103 are directly connected to the electrode terminals 104 and 105. Although connected, the current collectors 101a and 103a of the electrode plates 101 and 103 and the electrode terminals 104 and 105 are connected by a material or component different from the metal foil constituting the current collectors 101a and 103a. Also good.

これら薄型電池10の発電要素108は、上部外装部材106及び下部外装部材107(外装部材)に被覆された状態で封止されている。換言すれば、発電要素108は、上部外装部材106及び下部外装部材107により形成される薄型電池10の内部空間111に封入される。
薄型電池10において、上部外装部材106及び下部外装部材107には、図2に示すように、各々凹部(カップ形状部、外から見ると凸部)106a及び107aが形成されている。そして、この凹部同士が対向するように上部外装部材106と下部外装部材107が合わせられることにより、上部外装部材106及び下部外装部材107に周囲を囲まれた内部空間111が形成される。
The power generation elements 108 of these thin batteries 10 are sealed in a state where they are covered with an upper exterior member 106 and a lower exterior member 107 (exterior member). In other words, the power generation element 108 is enclosed in the internal space 111 of the thin battery 10 formed by the upper exterior member 106 and the lower exterior member 107.
In the thin battery 10, as shown in FIG. 2, the upper exterior member 106 and the lower exterior member 107 are respectively formed with concave portions (cup-shaped portion, convex portion when viewed from the outside) 106a and 107a. Then, the upper exterior member 106 and the lower exterior member 107 are aligned so that the recesses face each other, thereby forming an internal space 111 surrounded by the upper exterior member 106 and the lower exterior member 107.

上部外装部材106及び下部外装部材107の構成について、図3を参照して説明する。
図3は、薄型電池10の外装部材の構成を説明するための図であり、図3(A)は上部外装部材106の構成を説明する図であり、図3(B)は下部外装部材107の構成を説明する図である。なお、図3においては、比較を容易にするために、同じ方向に凹部が形成された図により各部材を示している。
The configuration of the upper exterior member 106 and the lower exterior member 107 will be described with reference to FIG.
FIG. 3 is a diagram for explaining the configuration of the exterior member of the thin battery 10, FIG. 3A is a diagram for explaining the configuration of the upper exterior member 106, and FIG. 3B is the lower exterior member 107. FIG. In FIG. 3, each member is shown by a diagram in which a recess is formed in the same direction for easy comparison.

図3(A)に示すように、上部外装部材106は、金属箔106bと、耐電解質性に優れた樹脂により形成された内側樹脂シート106cと、電気絶縁性に優れた樹脂により形成された表面樹脂シート106dとの3層構造のラミネートフィルムである。また、下部外装部材107も、図3(B)に示すように、金属箔107bと、耐電解質性に優れた樹脂により形成された内側樹脂シート107cと、電気絶縁性に優れた樹脂により形成された表面樹脂シート107dとの3層構造のラミネートフィルムである。   As shown in FIG. 3A, the upper exterior member 106 includes a metal foil 106b, an inner resin sheet 106c formed of a resin excellent in electrolyte resistance, and a surface formed of a resin excellent in electrical insulation. It is a laminate film having a three-layer structure with a resin sheet 106d. Further, as shown in FIG. 3B, the lower exterior member 107 is also formed of a metal foil 107b, an inner resin sheet 107c formed of a resin excellent in electrolyte resistance, and a resin excellent in electrical insulation. The laminate film has a three-layer structure with the surface resin sheet 107d.

具体的には、内部金属箔としては、本実施形態においてはアルミニウム箔を使用する。また、外側層としての表面樹脂シートとしては、ナイロン等のポリアミド系樹脂又はポリエステル系樹脂等を、また、内側樹脂シートとしては、例えばポリエチレン、変性ポリエチレン、ポリプロピレン、変性ポリプロピレン又はアイオノマー等を使用する。これらの樹脂は、熱溶着性にも優れているため、上部外装部材106と下部外装部材107とを熱溶着する構成の場合には一層好適である。   Specifically, as the internal metal foil, an aluminum foil is used in the present embodiment. Further, as the surface resin sheet as the outer layer, a polyamide resin such as nylon or a polyester resin is used, and as the inner resin sheet, for example, polyethylene, modified polyethylene, polypropylene, modified polypropylene, or ionomer is used. Since these resins are excellent in heat weldability, they are more suitable in the case of a structure in which the upper exterior member 106 and the lower exterior member 107 are thermally welded.

このように、上部外装部材106と下部外装部材107とは、同じ材料を用いた同じ構成のシート状部材であるが、内層として使用されるアルミニウム箔層106b及び107bの厚さが、これらの間では異なる。すなわち、図3(A)及び図3(B)を比較して明らかなように、上部外装部材106の金属箔層106bの厚さに比べて、下部外装部材107の金属箔層107bの厚さの方が明らかに厚くなっている。金属箔層の厚さを厚くすることにより、下部外装部材107の方が、上部外装部材106に比べて、剛性が高い素材となる。
このように、薄型電池10は、上部外装部材106及び下部外装部材107により外側を被覆されているが、下部外装部材107の方が上部外装部材106よりも剛性が高められた構成となっている。
As described above, the upper exterior member 106 and the lower exterior member 107 are sheet-like members having the same configuration using the same material, but the thicknesses of the aluminum foil layers 106b and 107b used as the inner layers are between them. It is different. That is, as apparent from comparison between FIGS. 3A and 3B, the thickness of the metal foil layer 107b of the lower exterior member 107 is larger than the thickness of the metal foil layer 106b of the upper exterior member 106. Is clearly thicker. By increasing the thickness of the metal foil layer, the lower exterior member 107 becomes a material having higher rigidity than the upper exterior member 106.
As described above, the thin battery 10 is covered on the outside by the upper exterior member 106 and the lower exterior member 107, but the lower exterior member 107 has a configuration with higher rigidity than the upper exterior member 106. .

次に、このような構成の薄型電池10の全体の製造方法の概略について説明する。
まず、電解質を除く発電要素108、すなわち正極板101、セパレータ102及び負極板103を積層し、積層した電極群に正極端子104及び負極端子105を溶着する。
次に、凹形状に形成した上部外装部材106(又は下部外装部材107)に、正極端子104及び負極端子105を溶接した電極群109を収容し、これに下部外装部材107(又は上部外装部材106)を合わせることにより、発電要素108、正極端子104の一部及び負極端子105の一部を上部外装部材106及び下部外装部材107により形成される内部空間111に包み込む。
そして、外装部材106、107により形成される空間に有機液体溶媒に過塩素酸リチウム、ホウフッ化リチウムや六フッ化リン酸リチウム等のリチウム塩を溶質とした液体電解質を注入しながら、外装部材106、107により形成される空間を吸引して真空状態とし、外装部材106、107の外周縁を熱プレスにより熱溶着して封止する。
Next, the outline of the whole manufacturing method of the thin battery 10 having such a configuration will be described.
First, the power generation element 108 excluding the electrolyte, that is, the positive electrode plate 101, the separator 102, and the negative electrode plate 103 are laminated, and the positive electrode terminal 104 and the negative electrode terminal 105 are welded to the laminated electrode group.
Next, the electrode group 109 in which the positive terminal 104 and the negative terminal 105 are welded is accommodated in the upper exterior member 106 (or lower exterior member 107) formed in a concave shape, and the lower exterior member 107 (or upper exterior member 106) is accommodated in this. ), The power generation element 108, part of the positive electrode terminal 104 and part of the negative electrode terminal 105 are encased in the internal space 111 formed by the upper exterior member 106 and the lower exterior member 107.
Then, the exterior member 106 is injected into the space formed by the exterior members 106 and 107 while injecting a liquid electrolyte having a lithium salt such as lithium perchlorate, lithium borofluoride, or lithium hexafluorophosphate into the organic liquid solvent. , 107 is sucked into a vacuum state, and the outer peripheral edges of the exterior members 106 and 107 are thermally welded and sealed by hot pressing.

なお、封止された外装部材106、107の一方の端部から外部へ正極端子104を導出し、他方の端部から外部へ負極端子105を導出するため、電極端子104、105の厚さ分だけ上部外装部材106と下部外装部材107との溶着部に隙間が生じる。そこで、薄型電池10内部の封止性を維持するために、電極端子104、105と外装部材106、107とが接触する部分に、例えば、ポリエチレンやポリプロピレン等から構成されたシールフィルムを介在させるのも好適である。このシールフィルムは、正極端子104及び負極端子105のいずれにおいても、外装部材106、107を構成する樹脂と同系統の樹脂で構成することが熱溶着性の観点から好ましい。   Note that the positive electrode terminal 104 is led out from one end of the sealed exterior members 106 and 107 to the outside, and the negative electrode terminal 105 is led out from the other end to the thickness of the electrode terminals 104 and 105. Only a gap is formed in the welded portion between the upper exterior member 106 and the lower exterior member 107. Therefore, in order to maintain the sealing performance inside the thin battery 10, for example, a seal film made of polyethylene, polypropylene, or the like is interposed in a portion where the electrode terminals 104, 105 and the exterior members 106, 107 are in contact with each other. Is also suitable. It is preferable from the viewpoint of heat weldability that the seal film is made of a resin of the same type as the resin constituting the exterior members 106 and 107 in both the positive electrode terminal 104 and the negative electrode terminal 105.

また、有機液体溶媒としては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)やメチルエチルカーボネート等のエステル系溶媒を挙げることができるが、本発明の有機液体溶媒はこれに限定されること無く、エステル系溶媒に、γ−ブチラクトン(γ−BL)、ジエトシキエタン(DEE)等のエーテル系溶媒その他を混合、調合した有機液体溶媒を用いることもできる。   In addition, examples of the organic liquid solvent include ester solvents such as propylene carbonate (PC), ethylene carbonate (EC), dimethyl carbonate (DMC), and methyl ethyl carbonate. Without being limited thereto, an organic liquid solvent obtained by mixing and preparing an ether solvent such as γ-butylactone (γ-BL) or dietoxyethane (DEE) in an ester solvent may be used.

このように、本実施形態の薄型電池10においては、上部外装部材106よりも下部外装部材107の方を厚くし、剛性を持たせている。
そのため、セル製造時に上部外装部材106及び下部外装部材107で覆われた内部空間111を真空吸引する差に、その真空吸引力によりつぶれる(形状が変形する)外装部材は、例えば図2に符号X及び破線で示したように、上部外装部材106の側の電極群109により支持されていない(電極群109に接していない)面となる。この部分の外装材の形状が多少変形したとしても、通常基準面となる下部プレート10の底面(下部外装部材107の下面)と正極端子104及び負極端子105との位置関係には何ら影響が無い。従って、薄型電池10において、正極端子104及び負極端子105の位置は、そのような製造時の変形の影響を受けずに、所望の位置に精度よく配置されることになる。
Thus, in the thin battery 10 of this embodiment, the lower exterior member 107 is made thicker than the upper exterior member 106 to give rigidity.
Therefore, the exterior member that is crushed (the shape is deformed) by the vacuum suction force due to the vacuum suction of the internal space 111 covered with the upper exterior member 106 and the lower exterior member 107 at the time of manufacturing the cell is, for example, a symbol X in FIG. As indicated by the broken lines, the surface is not supported by the electrode group 109 on the upper exterior member 106 side (not in contact with the electrode group 109). Even if the shape of the exterior material of this portion is slightly deformed, there is no influence on the positional relationship between the bottom surface of the lower plate 10 (the lower surface of the lower exterior member 107), which is a normal reference surface, and the positive electrode terminal 104 and the negative electrode terminal 105. . Therefore, in the thin battery 10, the positions of the positive electrode terminal 104 and the negative electrode terminal 105 are accurately arranged at desired positions without being affected by such deformation during manufacturing.

また、従来のこの種の薄型電池においては、外装材は柔らかい素材で構成されているため、電池自体の剛性が弱く、車両の振動等により、電池の固定位置によっては振動でタブが大きく揺れ、電池に亀裂等が発生し、電池の寿命に影響する場合があった。しかしながら、本実施形態の薄型電池10においては、下部外装部材107の剛性を高めることにより薄型電池10本体の剛性も高めている。従って、車両等の振動の多い条件下で使用を続けることによるセル自体のたわみ量を低減させることができ、薄型電池10に亀裂などが入ることを防ぐことができる。その結果、車両等の環境下における薄型電池10の寿命を延ばすことができる。   In addition, in this type of conventional thin battery, since the exterior material is made of a soft material, the rigidity of the battery itself is weak, and depending on the vibration of the vehicle, the tab greatly shakes due to vibration depending on the fixed position of the battery, In some cases, cracks or the like occurred in the battery, affecting the life of the battery. However, in the thin battery 10 according to this embodiment, the rigidity of the main body of the thin battery 10 is increased by increasing the rigidity of the lower exterior member 107. Therefore, it is possible to reduce the amount of deflection of the cell itself due to continued use under conditions with a lot of vibration of the vehicle or the like, and to prevent the thin battery 10 from being cracked. As a result, the life of the thin battery 10 in an environment such as a vehicle can be extended.

また、このような薄型電池10を用いて組電池を構成した場合には、電極端子が精度よく所望の位置に配置されているので、それを順次接続する際にも、高精度かつ適切に接続することができる。従って、電極端子の接続抵抗の低下や、接続の不具合から生じる剥離等を防ぐことができ、高性能で耐久性の高い組電池を提供することができる。   Further, when an assembled battery is configured using such a thin battery 10, the electrode terminals are accurately arranged at desired positions, so that even when they are sequentially connected, they are connected with high accuracy and appropriateness. can do. Accordingly, it is possible to prevent a decrease in the connection resistance of the electrode terminals, peeling due to a connection failure, and the like, and to provide a high-performance and highly durable assembled battery.

第2実施形態
本発明の第2実施形態の薄型電池について、図4〜図6を参照して説明する。
図4は、その薄型電池の構成を説明するための図であって薄型電池を平面方向から見た模式的な図であり、図5は、その薄型電池の構成を示す鉛直方向断面図である。なお、図5は、図4のI−I線に沿った断面図である。
第2実施形態の薄型電池20の基本的な構成は、前述した第1実施形態の薄型電池10と同じである。以下、薄型電池10とほぼ同じ構成については同一の符号を付して説明を簡略化し、薄型電池10と異なる構成部についてのみ詳細に説明をする。
Second Embodiment A thin battery according to a second embodiment of the present invention will be described with reference to FIGS.
FIG. 4 is a diagram for explaining the configuration of the thin battery, and is a schematic view of the thin battery seen from the plane direction. FIG. 5 is a vertical sectional view showing the configuration of the thin battery. . 5 is a cross-sectional view taken along the line II of FIG.
The basic configuration of the thin battery 20 of the second embodiment is the same as the thin battery 10 of the first embodiment described above. Hereinafter, about the same structure as the thin battery 10, the same code | symbol is attached | subjected and description is simplified, and only a different structure part from the thin battery 10 is demonstrated in detail.

薄型電池20も、各々凹部が形成された上部外装部材106及び下部外装部材107が合わされて構成される内部空間111に、3枚の正極板101、5枚のセパレータ102及び3枚の負極板103を積層した電極群109及び図示しない電解質とを有する発電要素108が封止封入された構成である。また、上部外装部材106及び下部外装部材107が溶着部を介して、正極端子104及び負極端子105が薄型電池20の外部に導出されている。
正極板101、負極板103、セパレータ102、正極端子104、負極端子105、上部外装部材106、下部外装部材107等の構成は、前述した第1実施形態の薄型電池10とほぼ同じである。
The thin battery 20 also includes three positive plates 101, five separators 102, and three negative plates 103 in an internal space 111 formed by combining an upper exterior member 106 and a lower exterior member 107 each having a recess. The power generation element 108 having the electrode group 109 and the electrolyte (not shown) are stacked and sealed. In addition, the upper exterior member 106 and the lower exterior member 107 are led out to the outside of the thin battery 20 through the welded portion.
The configurations of the positive electrode plate 101, the negative electrode plate 103, the separator 102, the positive electrode terminal 104, the negative electrode terminal 105, the upper exterior member 106, the lower exterior member 107, and the like are substantially the same as those of the thin battery 10 of the first embodiment described above.

但し、第2実施形態の薄型電池20の下部外装部材107には、図3(A)に示した上部外装部材106と同じ厚さの部材が使用されている。すなわち、薄型電池20において、上部外装部材106及び下部外装部材107の剛性は同じであり、外装材として既にいずれかの部材の剛性が高められているわけではない。   However, a member having the same thickness as the upper exterior member 106 shown in FIG. 3A is used for the lower exterior member 107 of the thin battery 20 of the second embodiment. That is, in the thin battery 20, the rigidity of the upper exterior member 106 and the lower exterior member 107 is the same, and the rigidity of any member as the exterior material has not already been increased.

第2実施形態の薄型電池20においては、下部外装部材107の剛性を高めるために、その外周部であって、凹部を形成するために下部外装部材107が屈曲されている下部外装部材107の外周部に、リブ201が形成されている。
リブ201は、薄型電池20の上下方向の振動に対して下部外装部材107の弱い部分である外周部、すなわち、図4及び図5に示すように、下部外装部材107の正極端子104及び負極端子105を介在させて上部外装部材106と溶着されている領域から、凹部を形成するための屈曲部及び傾斜面部を通過して、下部外装部材107の底面に至るまでの範囲にまたがって形成するのが好適である。
また、平面的には、例えば図4に示すように、薄型電池20の外周付近の、正極端子104及び負極端子105が導出されている領域に形成するのが有効である。
In the thin battery 20 according to the second embodiment, in order to increase the rigidity of the lower exterior member 107, the outer periphery of the lower exterior member 107 is bent to form a recess. A rib 201 is formed in the part.
The rib 201 is an outer peripheral portion which is a weak portion of the lower exterior member 107 with respect to the vertical vibration of the thin battery 20, that is, as shown in FIGS. 4 and 5, the positive terminal 104 and the negative terminal of the lower exterior member 107. 105 is formed over a range from the region welded to the upper exterior member 106 through the bent portion and the inclined surface portion for forming the recess to the bottom surface of the lower exterior member 107. Is preferred.
Further, in plan view, for example, as shown in FIG. 4, it is effective to form in the region where the positive electrode terminal 104 and the negative electrode terminal 105 are led out near the outer periphery of the thin battery 20.

リブ201は、下部外装部材107の一部を筋状に起伏させて形成してもよいし、後から下部外装部材107の表面に何らかの棒状部材を付着させて形成してもよい。
また、下部外装部材107の一部を起伏させて形成させる場合、金属箔(例えばアルミニウム箔)、表面樹脂シート(例えばナイロン)、あるいは内側樹脂シート(例えばPP)のいずれの層においてリブを形成してもよい。
The rib 201 may be formed by undulating a part of the lower exterior member 107 in a line shape, or may be formed by adhering a certain bar-shaped member to the surface of the lower exterior member 107 later.
When a part of the lower exterior member 107 is undulated and formed, ribs are formed in any layer of a metal foil (for example, aluminum foil), a surface resin sheet (for example, nylon), or an inner resin sheet (for example, PP). May be.

本実施形態の薄型電池20においては、このような構成とすることにより、下部外装部材107の剛性を高めている。
その結果、前述した第1実施形態の薄型電池10と同様に、セル製造時に上部外装部材106及び下部外装部材107で覆われた内部空間111を真空吸引する差に、その真空吸引力によるつぶれを上部外装部材106の電極群109に接していない面に集中させることができる。その結果、正極端子104及び負極端子105の位置は、そのような変形の影響を受けずに、所望の位置に精度よく配置されることになる。
また、このような構成により薄型電池10自体の剛性を高めることにより、車両等の振動の多い条件下で使用を続けることによるセル自体のたわみ量を低減させることができ、薄型電池10に亀裂などが入ることを防ぐことができる。その結果、車両等の環境下における薄型電池10の寿命を延ばすことができる。
また、この場合も電極端子が精度よく所望の位置に配置されているので、組電池を形成する場合にそれを順次高精度かつ適切に接続することができる。従って、電極端子の接続抵抗の低下や、接続の不具合から生じる剥離等を防ぐことができ、高性能で耐久性の高い組電池を提供することができる。
In the thin battery 20 of the present embodiment, the rigidity of the lower exterior member 107 is increased by adopting such a configuration.
As a result, as with the thin battery 10 of the first embodiment described above, the collapse due to the vacuum suction force is caused by the difference in vacuum suction of the internal space 111 covered with the upper exterior member 106 and the lower exterior member 107 during cell manufacture. It is possible to concentrate on the surface of the upper exterior member 106 that is not in contact with the electrode group 109. As a result, the positions of the positive terminal 104 and the negative terminal 105 are accurately arranged at desired positions without being affected by such deformation.
In addition, by increasing the rigidity of the thin battery 10 itself with such a configuration, the amount of deflection of the cell itself due to continued use under conditions with a lot of vibration of the vehicle or the like can be reduced, and the thin battery 10 can be cracked. Can be prevented. As a result, the life of the thin battery 10 in an environment such as a vehicle can be extended.
Also in this case, since the electrode terminals are accurately arranged at desired positions, when forming an assembled battery, it can be sequentially and accurately connected. Accordingly, it is possible to prevent a decrease in the connection resistance of the electrode terminals, peeling due to a connection failure, and the like, and to provide a high-performance and highly durable assembled battery.

なお、平面方向においてリブ201を形成する領域は、図4に示したような正極端子104及び負極端子105を融着している領域に限られず、図6に示すように、薄型電池20の外周に沿って全域に形成するようにしてもよい。   In addition, the area | region which forms the rib 201 in a plane direction is not restricted to the area | region which fused the positive electrode terminal 104 and the negative electrode terminal 105 as shown in FIG. 4, but as shown in FIG. You may make it form in the whole area along.

第3実施形態
本発明の第3実施形態の薄型電池について、図7を参照して説明する。
図7は、その薄型電池の構成を示す鉛直方向断面図である。
第3実施形態の薄型電池30の基本的な構成も、前述した第1実施形態の薄型電池10と同じである。以下、薄型電池10とほぼ同じ構成については同一の符号を付して説明を簡略化し、薄型電池10と異なる構成部についてのみ詳細に説明をする。
Third Embodiment A thin battery according to a third embodiment of the present invention will be described with reference to FIG.
FIG. 7 is a vertical sectional view showing the configuration of the thin battery.
The basic configuration of the thin battery 30 of the third embodiment is also the same as that of the thin battery 10 of the first embodiment described above. Hereinafter, about the same structure as the thin battery 10, the same code | symbol is attached | subjected and description is simplified, and only a different structure part from the thin battery 10 is demonstrated in detail.

薄型電池30も、上部外装部材106及び下部外装部材107が合わされて構成される内部空間111に、正極板101、セパレータ102及び負極板103を積層した電極群109及び電解質を有する発電要素108が封止封入された構成であり、上部外装部材106及び下部外装部材107が溶着部を介して、正極端子204及び正極端子205が薄型電池20の外部に導出されている。
正極板101、負極板103、セパレータ102、上部外装部材106、下部外装部材107等の構成は、前述した第1実施形態の薄型電池10とほぼ同じであるが、第3実施形態の薄型電池30の下部外装部材107には、図3(A)に示した上部外装部材106と同じ厚さの部材が使用されている。すなわち、第2実施形態の薄型電池20と同様に、薄型電池30において、上部外装部材106及び下部外装部材107の剛性は同じであり、外装材として既にいずれかの部材の剛性が高められているわけではない。
The thin battery 30 also includes an electrode group 109 in which a positive electrode plate 101, a separator 102, and a negative electrode plate 103 are stacked in an internal space 111 formed by combining an upper exterior member 106 and a lower exterior member 107, and a power generation element 108 having an electrolyte. In this configuration, the upper exterior member 106 and the lower exterior member 107 are led out of the thin battery 20 through the welded portion.
The configurations of the positive electrode plate 101, the negative electrode plate 103, the separator 102, the upper exterior member 106, the lower exterior member 107, and the like are substantially the same as those of the thin battery 10 of the first embodiment described above, but the thin battery 30 of the third embodiment. For the lower exterior member 107, a member having the same thickness as that of the upper exterior member 106 shown in FIG. That is, like the thin battery 20 of the second embodiment, in the thin battery 30, the rigidity of the upper exterior member 106 and the lower exterior member 107 is the same, and the rigidity of any member has already been increased as the exterior material. Do not mean.

そして第3実施形態の薄型電池30においては、正極端子及び負極端子の構成が前述した第1実施形態及び第2実施形態の薄型電池とは異なる。すなわち、薄型電池30の正極端子204及び負極端子105は、下部外装部材107の剛性を高めるために、図7に示すように、正極端子204及び負極端子205が内部空間111においては、下部外装部材107に沿うように成形し、配置している。すなわち、正極端子204及び負極端子205は、各々、上部外装部材106と下部外装部材107の間の溶着部を経て薄型電池30の内部空間111に入った位置から下部外装部材107に沿って下方向(底面方向)に傾斜し、下部外装部材107の底面に接した時点で再度屈曲して、下部外装部材107の底面に沿って延伸するような形状に成形されている。
なお、正極板101及び負極板103からのリードは、図7に示すように、このような形状の正極端子204及び負極端子205に対して通常と同様に接続されている。
And in the thin battery 30 of 3rd Embodiment, the structure of a positive electrode terminal and a negative electrode terminal differs from the thin battery of 1st Embodiment and 2nd Embodiment which were mentioned above. That is, the positive electrode terminal 204 and the negative electrode terminal 105 of the thin battery 30 have a lower exterior member in the internal space 111 as shown in FIG. It is formed and arranged along 107. That is, the positive electrode terminal 204 and the negative electrode terminal 205 are respectively moved downward along the lower exterior member 107 from the position where they enter the internal space 111 of the thin battery 30 through the welded portion between the upper exterior member 106 and the lower exterior member 107. It is tilted in the direction of the bottom surface, and is bent again when it contacts the bottom surface of the lower exterior member 107, and is shaped so as to extend along the bottom surface of the lower exterior member 107.
As shown in FIG. 7, the leads from the positive electrode plate 101 and the negative electrode plate 103 are connected to the positive electrode terminal 204 and the negative electrode terminal 205 having such a shape as usual.

薄型電池30においては、正極端子204及び負極端子205がこのように下部外装部材107に沿って成形されているので、実質的に下部外装部材107の補強材として作用し、結果的に下部外装部材107の剛性を高めている。
その結果、前述した第1実施形態の薄型電池10と同様に、セル製造時に上部外装部材106及び下部外装部材107で覆われた内部空間111を真空吸引する差に、その真空吸引力によるつぶれを上部外装部材106の電極群109に接していない面に集中させることができる。その結果、正極端子204及び負極端子205の位置は、そのような変形の影響を受けずに、所望の位置に精度よく配置されることになる。
また、このような構成により薄型電池10自体の剛性を高めることにより、車両等の振動の多い条件下で使用を続けることによるセル自体のたわみ量を低減させることができ、薄型電池10に亀裂などが入ることを防ぐことができる。その結果、車両等の環境下における薄型電池10の寿命を延ばすことができる。
また、この場合も電極端子が精度よく所望の位置に配置されているので、組電池を形成する場合にそれを順次高精度かつ適切に接続することができる。従って、電極端子の接続抵抗の低下や、接続の不具合から生じる剥離等を防ぐことができ、高性能で耐久性の高い組電池を提供することができる。
In the thin battery 30, since the positive electrode terminal 204 and the negative electrode terminal 205 are formed along the lower exterior member 107 in this way, it substantially acts as a reinforcing material for the lower exterior member 107, and as a result, the lower exterior member The rigidity of 107 is increased.
As a result, as with the thin battery 10 of the first embodiment described above, the collapse due to the vacuum suction force is caused by the difference in vacuum suction of the internal space 111 covered with the upper exterior member 106 and the lower exterior member 107 during cell manufacture. It is possible to concentrate on the surface of the upper exterior member 106 that is not in contact with the electrode group 109. As a result, the positions of the positive terminal 204 and the negative terminal 205 are accurately arranged at desired positions without being affected by such deformation.
In addition, by increasing the rigidity of the thin battery 10 itself with such a configuration, the amount of deflection of the cell itself due to continued use under conditions with a lot of vibration of the vehicle or the like can be reduced, and the thin battery 10 can be cracked. Can be prevented. As a result, the life of the thin battery 10 in an environment such as a vehicle can be extended.
Also in this case, since the electrode terminals are accurately arranged at desired positions, when forming an assembled battery, it can be sequentially and accurately connected. Accordingly, it is possible to prevent a decrease in the connection resistance of the electrode terminals, peeling due to a connection failure, and the like, and to provide a high-performance and highly durable assembled battery.

なお、本実施の形態は、本発明の理解を容易にするために記載されたものであって本発明を何ら限定するものではない。本実施の形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含み、また任意好適な種々の改変が可能である。   In addition, this Embodiment was described in order to make an understanding of this invention easy, and does not limit this invention at all. Each element disclosed in the present embodiment includes all design changes and equivalents belonging to the technical scope of the present invention, and various suitable modifications are possible.

例えば、前述した実施形態は、いずれも、上部外装部材106及び下部外装部材107のうちの、下部外装部材107の剛性を高める構成であったが、上部外装部材106の剛性を高めるような構成であってもよい。その場合、正極端子104及び上部外装部材106の位置精度は、上部外装部材106に対して高精度に規定されることになる。薄型電池10の実装形態等により、薄型電池10の上面からの位置を基準に薄型電池10を設置したり組電池を構成した方が便利な場合も考えられ、例えばそのような場合には、上部外装部材106の剛性を高める構成であってよい。   For example, in the above-described embodiments, both the upper exterior member 106 and the lower exterior member 107 are configured to increase the rigidity of the lower exterior member 107, but the upper exterior member 106 is configured to increase the rigidity. There may be. In that case, the positional accuracy of the positive electrode terminal 104 and the upper exterior member 106 is defined with high accuracy with respect to the upper exterior member 106. Depending on the mounting form of the thin battery 10 or the like, it may be more convenient to install the thin battery 10 or configure the assembled battery based on the position from the upper surface of the thin battery 10. It may be configured to increase the rigidity of the exterior member 106.

また、外装部材の剛性を高める方法は、前述した実施形態以外の方法であってもよい。例えば、外装部材を構成する素材(金属箔や樹脂層等)自体を変更して、剛性を高めるようにしてもよい。また、前述した第1実施形態において外装部材の厚みを厚くした際には、外装部材の金属箔層の厚みを厚くするものとしたが、樹脂層の厚みを厚くするようにしてもよい。また、前述した各実施形態を組み合わせたような方法により、剛性を高めるようにしてもよい。   Further, the method for increasing the rigidity of the exterior member may be a method other than the embodiment described above. For example, the material (metal foil, resin layer, etc.) constituting the exterior member itself may be changed to increase the rigidity. In addition, when the thickness of the exterior member is increased in the first embodiment described above, the thickness of the metal foil layer of the exterior member is increased, but the thickness of the resin layer may be increased. Further, the rigidity may be increased by a method that combines the above-described embodiments.

図1は、本発明の第1実施形態の薄型電池の構成を示す水平方向断面図である。FIG. 1 is a horizontal sectional view showing the configuration of the thin battery according to the first embodiment of the present invention. 図2は、図1に示した薄型電池の構成を示す鉛直方向断面図である。FIG. 2 is a vertical cross-sectional view showing the configuration of the thin battery shown in FIG. 図3は、図1に示した薄型電池の上部外装部材及び下部外装部材を説明するための図である。FIG. 3 is a view for explaining an upper exterior member and a lower exterior member of the thin battery shown in FIG. 図4は、本発明の第2実施形態の薄型電池の構成を示す平面図である。FIG. 4 is a plan view showing the configuration of the thin battery according to the second embodiment of the present invention. 図5は、図4に示した薄型電池の構成を示す鉛直方向断面図である。FIG. 5 is a vertical sectional view showing the configuration of the thin battery shown in FIG. 図6は、図4に示した薄型電池の変形例を示す平面図である。6 is a plan view showing a modification of the thin battery shown in FIG. 図7は、本発明の第3実施形態の薄型電池の構成を示す鉛直方向断面図である。FIG. 7 is a vertical sectional view showing the configuration of the thin battery according to the third embodiment of the present invention.

符号の説明Explanation of symbols

10,20,30…薄型電池
101…正極板
102…セパレータ
103…負極板
104,204…正極端子
105,205…負極端子
106…上部外装部材
107…下部外装部材
108…発電要素
109…電極群
201…リブ
DESCRIPTION OF SYMBOLS 10, 20, 30 ... Thin battery 101 ... Positive electrode plate 102 ... Separator 103 ... Negative electrode plate 104, 204 ... Positive electrode terminal 105, 205 ... Negative electrode terminal 106 ... Upper exterior member 107 ... Lower exterior member 108 ... Power generation element 109 ... Electrode group 201 …rib

Claims (6)

各々に凹部が形成された2枚の外装材を合わせ当該凹部により形成される内部空間に発電要素を収容し、当該外装材の周縁部より電極端子を外部に導出した薄型電池であって、
一方の前記外装材の外周部の剛性を、他方の前記外装材の前記外周部の剛性よりも高くすることを特徴とする電池。
A thin battery in which two exterior members each having a recess formed therein are combined to house a power generation element in an internal space formed by the recess, and an electrode terminal is led out from the peripheral edge of the exterior member,
A battery characterized in that the rigidity of the outer peripheral portion of one of the outer packaging materials is higher than the rigidity of the outer peripheral portion of the other outer packaging material.
前記一方の外装材は、当該電池を実装した場合に鉛直方向下側に配置される外装材であることを特徴とする請求項1に記載の電池。   2. The battery according to claim 1, wherein the one exterior material is an exterior material disposed on a lower side in a vertical direction when the battery is mounted. 前記一方の外装材の少なくとも前記外周部の厚みを、前記他方の外装材の前記外周部の厚みよりも厚くすることにより、前記一方の外装材の前記外周部の剛性を前記他方の外装材の前記外周部の剛性よりも高くすることを特徴とする請求項1又は2に記載の電池。   By making the thickness of at least the outer peripheral portion of the one exterior material thicker than the thickness of the outer peripheral portion of the other exterior material, the rigidity of the outer peripheral portion of the one exterior material can be increased. The battery according to claim 1, wherein the battery has a higher rigidity than the outer peripheral portion. 前記外装材は、金属箔の表裏両面に樹脂層を形成して製造した外装材であって、前記一方の外装材は、少なくとも前記外周部の前記金属箔の厚さを、前記他方の外装材の前記金属箔の厚さよりも厚くすることにより、前記一方の外装材の前記外周部の剛性を前記他方の外装材の前記外周部の剛性よりも高くすることを特徴とする請求項3に記載の電池。   The exterior material is an exterior material manufactured by forming a resin layer on both front and back surfaces of a metal foil, and the one exterior material has at least the thickness of the metal foil in the outer peripheral portion, and the other exterior material. The rigidity of the said outer peripheral part of said one exterior material is made higher than the rigidity of the said outer peripheral part of said other exterior material by making it thicker than the thickness of the said metal foil of Claim 3. Battery. 前記一方の外装材の少なくとも前記外周部に、リブを形成することにより、前記一方の外装材の前記外周部の剛性を前記他方の外装材の前記外周部の剛性よりも高くすることを特徴とする請求項1又は2に記載の電池。   By forming a rib on at least the outer peripheral portion of the one exterior material, the rigidity of the outer peripheral portion of the one exterior material is made higher than the rigidity of the outer peripheral portion of the other exterior material. The battery according to claim 1 or 2. 前記内部空間内の前記電極端子を、前記一方の外装材の内壁に沿って形成することにより、当該一方の外装材の前記外周部の剛性を前記他方の外装材の前記外周部の剛性よりも高くすることを特徴とする請求項1又は2に記載の電池。   By forming the electrode terminal in the internal space along the inner wall of the one exterior material, the rigidity of the outer peripheral portion of the one exterior material is made to be greater than the rigidity of the outer peripheral portion of the other exterior material. The battery according to claim 1, wherein the battery is raised.
JP2005233609A 2005-08-11 2005-08-11 Battery Pending JP2007048669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005233609A JP2007048669A (en) 2005-08-11 2005-08-11 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005233609A JP2007048669A (en) 2005-08-11 2005-08-11 Battery

Publications (1)

Publication Number Publication Date
JP2007048669A true JP2007048669A (en) 2007-02-22

Family

ID=37851319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005233609A Pending JP2007048669A (en) 2005-08-11 2005-08-11 Battery

Country Status (1)

Country Link
JP (1) JP2007048669A (en)

Similar Documents

Publication Publication Date Title
JP5830953B2 (en) Secondary battery, battery unit and battery module
JP4892893B2 (en) Bipolar battery
US10818901B2 (en) Laminated cell and method for manufacturing same
JP2013004294A (en) Battery pack
JP4096664B2 (en) Laminated battery
JP2006324143A (en) Secondary battery
JP2005116482A (en) Thin battery, battery pack, composite battery pack and vehicle
JP5871067B2 (en) Battery structure
KR101821488B1 (en) Battery
JP2006324093A (en) Secondary battery and method for manufacturing the same
JP4182856B2 (en) Secondary battery, assembled battery, composite assembled battery, vehicle, and manufacturing method of secondary battery
JP4135474B2 (en) Laminated secondary battery, assembled battery module comprising a plurality of laminated secondary batteries, assembled battery comprising a plurality of assembled battery modules, and an electric vehicle equipped with any of these batteries
JP2005251617A (en) Secondary battery and battery pack
JP3687632B2 (en) Thin battery
JP2006318752A (en) Battery
JP2012069283A (en) Method for manufacturing stacked cell and stacked cell separator
JP5181422B2 (en) Bipolar secondary battery
JP3702868B2 (en) Thin battery
JP4273369B2 (en) Battery with frame
JP2006236775A (en) Secondary battery
JP2005129393A (en) Secondary battery
JP5526514B2 (en) Bipolar battery and battery pack using the same
JP4052127B2 (en) Thin battery support structure, assembled battery and vehicle
JP2005166353A (en) Secondary battery, battery pack, composite battery pack, vehicle, and manufacturing method of secondary battery
JP2007073437A (en) Secondary battery