JP2007047427A - Sound processor - Google Patents

Sound processor Download PDF

Info

Publication number
JP2007047427A
JP2007047427A JP2005231488A JP2005231488A JP2007047427A JP 2007047427 A JP2007047427 A JP 2007047427A JP 2005231488 A JP2005231488 A JP 2005231488A JP 2005231488 A JP2005231488 A JP 2005231488A JP 2007047427 A JP2007047427 A JP 2007047427A
Authority
JP
Japan
Prior art keywords
sound
unit
generation unit
band
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005231488A
Other languages
Japanese (ja)
Inventor
Masato Togami
真人 戸上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2005231488A priority Critical patent/JP2007047427A/en
Publication of JP2007047427A publication Critical patent/JP2007047427A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Obtaining Desirable Characteristics In Audible-Bandwidth Transducers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a disturbing sound suppressing filter which is applicable even to a target sound section and has small distortion of an output sound. <P>SOLUTION: A sound processor has a disturbing sound generation section which decides whether each band component of an input signal is a disturbing sound or target sound based upon sparse property of a sound, extracts only a band whose component is decided as a disturbing sound, and generates a disturbing sound signal. Further, the sound processor has an adaptive processing section characterized in updating a spatial correlation inverse matrix by using the generated disturbing sound signal. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば複数のマイクロホン素子で観測した音声や音楽や各種雑音が混合した信号から、目的とする音のみを復元する音源分離技術に属する。   The present invention belongs to a sound source separation technique for restoring only a target sound, for example, from a signal obtained by mixing voice, music, and various noises observed with a plurality of microphone elements.

従来より、マイクロホンを複数使い、妨害音方向に死角を作ることで妨害音を抑圧し、目的音方向にビームを作ることで目的音だけを強調して抽出する音源分離技術として、最小分散ビームフォーマ法が知られている。(例えば、非特許文献1参照)。最小分散ビームフォーマ法では、空間相関逆行列と呼ばれるマイク間の相関行列を、入力信号から更新し、空間相関逆行列を使って、妨害音方向に死角を作り目的音方向にビームを作る線形フィルタを生成する。最小分散ビームフォーマでは、目的音が存在する音声区間で空間相関逆行列の更新を行うと、妨害音と共に、目的音をも誤って抑圧してしまうため、空間相関逆行列の更新は、目的音が存在しない区間だけで行わなければならなかった。そのため、予め何らかの方法で、目的音が存在しない音声区間を抽出する必要があった。しかし予め何らかの方法で、目的音が存在しない音声区間を抽出することは、困難であり、また目的音が存在しない区間だけで空間相関逆行列を更新すると、目的音が存在する区間に突発的に発生する妨害音を抑圧できない。   Conventionally, a minimum dispersion beamformer has been used as a sound source separation technology that uses multiple microphones to suppress the interference sound by creating a blind spot in the direction of the interference sound and emphasize and extract only the target sound by creating a beam in the direction of the target sound. The law is known. (For example, refer nonpatent literature 1). In the minimum variance beamformer method, the correlation matrix between microphones, called the spatial correlation inverse matrix, is updated from the input signal, and a linear filter that creates a blind spot in the direction of the disturbing sound and a beam in the target sound direction using the spatial correlation inverse matrix. Is generated. In the minimum variance beamformer, if the spatial correlation inverse matrix is updated in the speech section in which the target sound exists, the target sound is erroneously suppressed along with the interference sound. Had to be done only in the section where there is no. For this reason, it is necessary to extract a speech section in which no target sound exists in advance by some method. However, it is difficult to extract a speech section where the target sound does not exist in some way in advance, and if the spatial correlation inverse matrix is updated only in a section where the target sound does not exist, it suddenly occurs in the section where the target sound exists. The generated interference sound cannot be suppressed.

また適応フィルタを用いるのではなく、帯域別チャネル間パラメータ値差にもとづき、その帯域の上記帯域分割された各出力チャネル信号の何れがいずれの音源から入力された信号であるかを判定する音源信号判定過程を有し、発音していない音源からの検出信号を抑圧する妨害音抑圧技術がある。(例えば、特許文献1)
この妨害音抑圧技術は、音声のスパース性という音声の性質に基づく技術である。音声のスパース性とは、音声が40ms程度の短い時間に存在する周波数成分は限られており、異なる音源が短い時間に同じ周波数成分を保持する確率は低いという性質である。そのため、時間・周波数ごとに周波数成分をどれか一つの音源に割り振ることで、音源分離が可能となる。しかしこの妨害音抑圧技術では、音源同士が短い時間に同じ周波数成分を保持する場合、妨害音抑圧性能が劣化し、音声が歪みやすい。
Also, instead of using an adaptive filter, a sound source signal for determining which sound source is input from which of the band-divided output channel signals of that band is based on the parameter value difference between channels for each band. There is a disturbing sound suppression technique that suppresses a detection signal from a sound source that has a determination process and does not sound. (For example, Patent Document 1)
This interference noise suppression technique is a technique based on the voice property of voice sparseness. The sparseness of speech is a property in which the frequency components that exist in a short time of about 40 ms are limited, and the probability that different sound sources hold the same frequency component in a short time is low. Therefore, sound source separation becomes possible by assigning frequency components to any one sound source for each time and frequency. However, in this interference noise suppression technique, when the sound sources hold the same frequency component in a short time, the interference noise suppression performance deteriorates and the sound is easily distorted.

特開平10−313497号公報Japanese Patent Laid-Open No. 10-313497

大賀寿郎, 山崎芳男, 金田豊, ”音響システムとディジタル処理,” 電子情報通信学会,1995.Toshiro Oga, Yoshio Yamazaki, Yutaka Kaneda, “Acoustic systems and digital processing,” IEICE, 1995. 戸上真人, 天野明雄, ”音源重複度判定に基づく音源定位を用いた音源分離手法,” 日本音響学会講演論文集Vol.1,pp.441-442,2005 年3 月Masato Togami, Akio Amano, "Sound source separation method using sound source localization based on sound source duplication determination," Proc. Of the Acoustical Society of Japan Vol.1, pp.441-442, March 2005

最小分散ビームフォーマ法では、目的音が存在する区間で空間相関逆行列を更新できず、目的音が存在する区間に突発的に発生する妨害音を抑圧できない。
さらに、上記特許文献1記載の技術では音源同士が短い時間に同じ周波数成分を保持する場合、妨害音抑圧性能が劣化し、音声が歪みやすいという課題がある。
In the minimum dispersion beamformer method, the spatial correlation inverse matrix cannot be updated in the section where the target sound exists, and the disturbing sound suddenly generated in the section where the target sound exists cannot be suppressed.
Furthermore, in the technique described in Patent Document 1, when the sound sources hold the same frequency component in a short time, there is a problem that the interference noise suppression performance is deteriorated and the sound is easily distorted.

本願で開示する代表的な発明は以下のとおりである。
入力信号の帯域成分毎に妨害音であるか目的音であるかを判定し、妨害音であると判定された帯域を抽出し、妨害音信号を生成する妨害音生成部を持つ。そして生成した妨害音信号を用いて空間相関逆行列を更新することを特徴とする適応処理部を有し、生成された空間相関逆行列を用いて性セ氏した妨害音抑圧フィルタをマイクロホンアレー出力信号に適応して音源分離を行う音声処理装置。
Representative inventions disclosed in the present application are as follows.
It has a disturbing sound generation unit that determines whether it is a disturbing sound or a target sound for each band component of the input signal, extracts a band determined to be the disturbing sound, and generates a disturbing sound signal. And an adaptive processing unit characterized in that the spatial correlation inverse matrix is updated using the generated interference sound signal, and the interference sound suppression filter generated by using the generated spatial correlation inverse matrix is connected to the microphone array output signal. A sound processing device that performs sound source separation adaptively.

本発明の構成によれば、目的音が存在する区間であっても、音声のスパース性に基づき妨害音であると判定された帯域だけで空間相関逆行列を更新することが可能となり、目的音が存在する区間を予め抽出することが必要となくなる。また本発明の構成では適応フィルタを使って出力信号を生成しており音声の歪みを防止することができる。   According to the configuration of the present invention, it is possible to update the spatial correlation inverse matrix only in the band determined to be the interference sound based on the sparseness of the sound even in the section where the target sound exists. It is no longer necessary to previously extract a section in which there exists. Further, in the configuration of the present invention, an output signal is generated using an adaptive filter, and distortion of speech can be prevented.

本発明の実施の形態について図面を用いて説明する。図1は、本発明の音声処理装置の基本構成図である。マイクロホンアレイ1で複数チャンネルの音信号を取得する。取得した複数チャンネルの音信号は、メモリ2に送られ、CPU3にて各種信号処理を施される。CPU3は、目的音方向からの音の伝達モデルなどを必要に応じて記憶媒体4から取り出し、利用する。   Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a basic configuration diagram of a speech processing apparatus according to the present invention. The microphone array 1 acquires sound signals of a plurality of channels. The acquired sound signals of a plurality of channels are sent to the memory 2 and subjected to various signal processing by the CPU 3. The CPU 3 extracts and uses a sound transmission model from the target sound direction from the storage medium 4 as necessary.

図2は、本発明の実施の形態についてのブロック図である。マイクロホンアレイ1で複数チャンネルの音信号を取得する。マイクロホンアレイ1で取得した複数チャンネルの音信号をA/D変換部2でデジタルデータに変換し、メモリ2上に取り込む。取り込んだデジタルデータに変換した音信号を、X(t)と表す。音信号は、帯域分割部6に送れ、短時間フーリエ変換を施され、周波数帯域毎に分割される。帯域分割された信号はXt(f)と表すことができる。帯域分割された信号はラベル生成部7に送られる。ラベル生成部7では、まず、各帯域毎に   FIG. 2 is a block diagram of the embodiment of the present invention. The microphone array 1 acquires sound signals of a plurality of channels. The sound signals of a plurality of channels acquired by the microphone array 1 are converted into digital data by the A / D converter 2 and are taken into the memory 2. The sound signal converted into the captured digital data is represented as X (t). The sound signal is sent to the band dividing unit 6, subjected to short-time Fourier transform, and divided for each frequency band. The band-divided signal can be expressed as Xt (f). The band-divided signal is sent to the label generator 7. In the label generation unit 7, first, for each band.

Figure 2007047427
で、音源方向jt(f)を決定する。ここで,Λは方向の推定範囲である。またaj(f)は位置ベクトルと呼ばれるベクトルで、マイクロホンアレイの配置より決定する音の伝達特性である(例えば、非特許文献1参照)。決定した各帯域毎の音源方向が予め定める目的音方向の範囲内にあれば、その帯域を目的音成分であると判定する。そうでなければ、その帯域を妨害音成分であると判定する。音声信号を40ms程度の短い時間で眺めた場合、その短い時間の中で、複数の音源が同じ周波数成分を持つことは確率的に低いという、スパース性という性質が成り立つ。そのため、ラベル生成部7で行う周波数振り分け処理を行うことで、妨害音が優位である信号と、目的音が優位である信号を精度良く分離することが可能となる。背景で述べたように、音声のスパース性に基づき、周波数成分を振り分ける妨害音抑圧技術では、音声が歪んでしまうという問題がある。複数の音源が同じ周波数成分を持つことは確率的に低いとは言っても、複数の音源が同じ周波数成分が持つことはあり得る。そして複数の音源が同じ周波数成分を持つ場合、その周波数成分が妨害音か目的音の一方にしか割り振られず、目的音に割り振られなかった場合、目的音のその周波数成分は失われてしまい、歪みの原因となってしまう。
Figure 2007047427
Then, the sound source direction jt (f) is determined. Where Λ is the direction estimation range. Further, aj (f) is a vector called a position vector, and is a sound transfer characteristic determined by the arrangement of the microphone array (for example, see Non-Patent Document 1). If the determined sound source direction for each band is within a predetermined target sound direction range, the band is determined to be the target sound component. Otherwise, it is determined that the band is a disturbing sound component. When an audio signal is viewed in a short time of about 40 ms, a sparsity property is realized that a plurality of sound sources have a low probability that they have the same frequency component in that short time. Therefore, by performing the frequency distribution process performed by the label generation unit 7, it is possible to accurately separate a signal having a dominant disturbance sound and a signal having a dominant target sound. As described in the background, the interfering sound suppression technique that distributes frequency components based on the sparseness of the sound has a problem that the sound is distorted. Although it is stochastically low that a plurality of sound sources have the same frequency component, it is possible that a plurality of sound sources have the same frequency component. And if multiple sound sources have the same frequency component, that frequency component can only be assigned to one of the disturbing sound or the target sound, and if it is not assigned to the target sound, that frequency component of the target sound will be lost and distorted It becomes the cause of.

本願では周波数振り分け処理の結果を適応処理部及び目的方向推定部だけに用いている。そして、出力結果は、目的音方向の信号を全て通過させる線形フィルタを用いて生成している。そのため、スパース性が成立しない場合であっても、適応後のフィルタの死角形成性能が若干する程度の影響で済み、音声が歪んでしまうという状況を回避することが可能となる。   In the present application, the result of the frequency distribution process is used only for the adaptive processing unit and the target direction estimation unit. And the output result is produced | generated using the linear filter which passes all the signals of the target sound direction. For this reason, even when sparsity is not established, it is possible to avoid a situation in which the sound is distorted because the effect of forming the blind spot of the filter after adaptation is slightly affected.

妨害音生成部8では、ラベル生成部7が妨害音成分であると判定した帯域成分を使い妨害音を出力する。妨害音生成部8が出力する妨害音は   The interfering sound generation unit 8 outputs the interfering sound using the band component determined by the label generating unit 7 as the interfering sound component. The interference sound output by the interference sound generator 8 is

Figure 2007047427
と表される。適応処理部9では、妨害音生成部8が出力する妨害音を用いて空間相関逆行列を
Figure 2007047427
It is expressed. The adaptive processing unit 9 uses the interference sound output from the interference sound generation unit 8 to calculate the spatial correlation inverse matrix.

Figure 2007047427
で更新する。ここで、βは、忘却係数と呼ばれ、0〜1までの範囲で設定する。βが小さいほど、現在の妨害音の重みを大きくし、空間相関逆行列を更新する。空間相関逆行列の計算は、
Figure 2007047427
Update with. Here, β is called a forgetting factor and is set in the range of 0 to 1. The smaller β is, the larger the weight of the current interference sound is, and the spatial correlation inverse matrix is updated. The calculation of the spatial correlation inverse matrix is

Figure 2007047427

の逆行列としても良い。
Figure 2007047427

It may be an inverse matrix of

ここで妨害音として出力される信号を用いて空間相関逆行列を更新するために、妨害音方向の情報を多く含むように空間相関逆行列が作られる。
目的音方向推定部10では、ラベル生成部7が計算した各帯域毎の音源方向の情報を使い、目的音方向の範囲内で、修正遅延和アレイ法(例えば、非特許文献2)に基づき、音源方向を推定し、推定された音源方向を目的音方向とする。
Here, in order to update the spatial correlation inverse matrix using the signal output as the interference sound, the spatial correlation inverse matrix is created so as to include a lot of information on the interference sound direction.
The target sound direction estimation unit 10 uses the information on the sound source direction for each band calculated by the label generation unit 7 and uses the corrected delay sum array method (for example, Non-Patent Document 2) within the range of the target sound direction. The sound source direction is estimated, and the estimated sound source direction is set as the target sound direction.

本願では、ラベル生成部7で目的音成分であると判定する目的音方向の範囲外の音源を妨害音と判定し、死角を形成し抑圧する。逆に目的音方向の範囲内に存在する音源であれば、死角を形成しないため、目的音方向の範囲内であれば、抑圧せずに取り出すことが可能となる。目的音方向を1方向に限定する場合、実際の目的音方向と設定する目的音方向とが、少しでもずれると、目的音成分を抑圧してしまう可能性がある。この点、目的音方向に幅を持たせることで、実際の目的音方向と設定する目的音方向とがずれる場合で、あっても目的音成分を抑圧することが無いという効果がある。   In the present application, a sound source outside the range of the target sound direction determined by the label generation unit 7 as the target sound component is determined as a disturbing sound, and a blind spot is formed and suppressed. Conversely, if the sound source exists within the range of the target sound direction, a dead angle is not formed. Therefore, if the sound source is within the range of the target sound direction, it can be extracted without being suppressed. When the target sound direction is limited to one direction, if the actual target sound direction and the target sound direction to be set are slightly deviated, the target sound component may be suppressed. In this respect, by providing a width in the target sound direction, there is an effect that the target sound component is not suppressed even if the actual target sound direction is different from the target sound direction to be set.

フィルタ生成部11では、適応処理部9で更新した空間相関逆行列と目的音方向推定部10で推定した目的音方向を使い、   The filter generation unit 11 uses the spatial correlation inverse matrix updated by the adaptive processing unit 9 and the target sound direction estimated by the target sound direction estimation unit 10,

Figure 2007047427
の妨害音抑圧フィルタを生成する。asub(f)は目的音方向の伝達特性である。生成されたフィルタは、目的音方向にビームを当て、空間相関逆行列から計算される妨害音方向に死角を向け、抑圧することで、目的音だけを抽出するための線形フィルタである。この線形フィルタは、入力信号そのものに適用する。
Figure 2007047427
The interference noise suppression filter is generated. asub (f) is the transfer characteristic in the target sound direction. The generated filter is a linear filter for extracting only the target sound by applying a beam in the direction of the target sound, directing the dead angle in the direction of the disturbing sound calculated from the spatial correlation inverse matrix, and suppressing it. This linear filter is applied to the input signal itself.

従来の最小分散ビームフォーマ法の適応法は、なるべく音の大きさが大きい音源を抑圧するように、適応するため、入力信号中に目的音が優位な周波数成分が含まれていて、かつ目的音の方向が想定する方向とずれた場合などに、目的音を抑圧するように適応しまう。   The conventional adaptive method of the minimum dispersion beamformer method is adapted so as to suppress a sound source with a loud sound as much as possible. Therefore, the input signal contains a frequency component in which the target sound is dominant and the target sound When the direction of the sound is deviated from the assumed direction, the target sound is adapted to be suppressed.

本願では、入力信号中に目的音が含まれていても、ラベル生成部7及び妨害音生成部8が入力信号中から、妨害音が優勢な信号(目的音がほとんど含まれていない)を抽出し、その抽出した妨害音が優勢な信号で適応した空間相関行列を使うため、目的音方向を抑圧せず、妨害音のみを抑圧するフィルタを生成することが可能となる。   In the present application, even if the target sound is included in the input signal, the label generation unit 7 and the interference sound generation unit 8 extract the signal in which the interference sound is dominant (the target sound is hardly included) from the input signal. In addition, since a spatial correlation matrix in which the extracted disturbing sound is preferentially used as a signal is used, a filter that suppresses only the disturbing sound without suppressing the target sound direction can be generated.

フィルタリング部12ではフィルタ生成部11が出力する線形フィルタを使い、帯域分割部6で得られた帯域分割信号を使い、   The filtering unit 12 uses the linear filter output from the filter generation unit 11, uses the band division signal obtained by the band division unit 6,

Figure 2007047427
でフィルタリング後の信号を生成し出力する。波形生成部13ではフィルタリング部12が出力したフィルタリング後の信号を逆短時間フーリエ変換し、時間領域の信号を生成し、出力する。
上記実施例は装置構成を説明したが、本願はプログラムとしてコンピュータに読み込むことで実行されるようにしても良い。
Figure 2007047427
To generate and output the filtered signal. The waveform generation unit 13 performs inverse short-time Fourier transform on the filtered signal output from the filtering unit 12 to generate and output a time-domain signal.
Although the above embodiment has described the device configuration, the present application may be executed by being read into a computer as a program.

本発明の音声処理装置の基本構成図。1 is a basic configuration diagram of a speech processing apparatus of the present invention. 本発明の実施の形態についてのブロック図。The block diagram about embodiment of this invention.

符号の説明Explanation of symbols

1・・・マイクロホンアレイ、2・・・メモリ、3・・・CPU、4・・・記憶媒体、5・・・A/D変換部、6・・・帯域分割部、7・・・ラベル生成部、8・・・妨害音生成部、9・・・適応処理部、10・・・目的音方向推定部、11・・・フィルタ生成部、12・・・フィルタリング部、13・・・波形生成部。
DESCRIPTION OF SYMBOLS 1 ... Microphone array, 2 ... Memory, 3 ... CPU, 4 ... Storage medium, 5 ... A / D conversion part, 6 ... Band division part, 7 ... Label production | generation , 8 ... Interfering sound generation unit, 9 ... Adaptive processing unit, 10 ... Target sound direction estimation unit, 11 ... Filter generation unit, 12 ... Filtering unit, 13 ... Waveform generation Department.

Claims (2)

少なくとも2つ以上のマイクロホン素子を保持するマイクロホンアレイと、
前記マイクロホンアレーが出力する信号をチャネル毎に複数の周波数帯域に分割した帯域分割信号を出力する帯域分割部と、
前記帯域分割部が出力する各帯域分割信号ごとに、音源方向を推定し、該音源方向から該帯域分割信号が妨害音であるか目的音であるかのラベルを出力するラベル生成部と、
前記ラベル生成部が出力するラベルから帯域分割された妨害音信号を出力する妨害音生成部と、前記妨害音生成部が出力する帯域分割された妨害音信号から、空間相関逆行列を計算する適応処理部と、
上記計算された空間相関逆行列を用いて妨害音抑圧フィルタを生成するフィルタ生成部と、
上記フィルタを上記マイクロホンアレーが出力する信号に適応して音源分離を行うフィルタリング部とを有することを特徴とする音声処理装置
A microphone array holding at least two microphone elements;
A band division unit for outputting a band division signal obtained by dividing the signal output from the microphone array into a plurality of frequency bands for each channel;
For each band division signal output by the band division unit, a label generation unit that estimates a sound source direction and outputs a label indicating whether the band division signal is an interference sound or a target sound from the sound source direction;
An interference sound generating unit that outputs a band-division interference sound signal from a label output from the label generation unit, and an adaptive calculation that calculates a spatial correlation inverse matrix from the band-divided interference sound signal output from the interference sound generation unit A processing unit;
A filter generation unit that generates a jamming noise suppression filter using the calculated spatial correlation inverse matrix;
And a filtering unit that performs sound source separation by adapting the filter to a signal output from the microphone array.
上記ラベル生成部が計算した上記音源方向の推定情報を使いて音源方向を推定する目的音方向推定部を更に有し、
上記フィルタ生成部は上記推定された音源方向の情報も用いることを特徴とする請求項1記載の音声処理装置。
A target sound direction estimating unit that estimates the sound source direction using the sound source direction estimation information calculated by the label generation unit;
The speech processing apparatus according to claim 1, wherein the filter generation unit also uses information on the estimated sound source direction.
JP2005231488A 2005-08-10 2005-08-10 Sound processor Pending JP2007047427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005231488A JP2007047427A (en) 2005-08-10 2005-08-10 Sound processor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005231488A JP2007047427A (en) 2005-08-10 2005-08-10 Sound processor

Publications (1)

Publication Number Publication Date
JP2007047427A true JP2007047427A (en) 2007-02-22

Family

ID=37850302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005231488A Pending JP2007047427A (en) 2005-08-10 2005-08-10 Sound processor

Country Status (1)

Country Link
JP (1) JP2007047427A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007233239A (en) * 2006-03-03 2007-09-13 National Institute Of Advanced Industrial & Technology Method, system, and program for utterance event separation
JP2011107602A (en) * 2009-11-20 2011-06-02 Sony Corp Signal processing device, signal processing method, and program
CN102915742A (en) * 2012-10-30 2013-02-06 中国人民解放军理工大学 Single-channel monitor-free voice and noise separating method based on low-rank and sparse matrix decomposition
CN111679248A (en) * 2020-05-15 2020-09-18 黑龙江工程学院 Target azimuth and distance combined sparse reconstruction positioning method based on seabed horizontal L-shaped array
JP2021505933A (en) * 2017-12-06 2021-02-18 シナプティクス インコーポレイテッド Voice enhancement of audio signals with modified generalized eigenvalue beamformer
US11694710B2 (en) 2018-12-06 2023-07-04 Synaptics Incorporated Multi-stream target-speech detection and channel fusion
US11823707B2 (en) 2022-01-10 2023-11-21 Synaptics Incorporated Sensitivity mode for an audio spotting system
US11937054B2 (en) 2020-01-10 2024-03-19 Synaptics Incorporated Multiple-source tracking and voice activity detections for planar microphone arrays

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007233239A (en) * 2006-03-03 2007-09-13 National Institute Of Advanced Industrial & Technology Method, system, and program for utterance event separation
JP4565162B2 (en) * 2006-03-03 2010-10-20 独立行政法人産業技術総合研究所 Speech event separation method, speech event separation system, and speech event separation program
JP2011107602A (en) * 2009-11-20 2011-06-02 Sony Corp Signal processing device, signal processing method, and program
CN102915742A (en) * 2012-10-30 2013-02-06 中国人民解放军理工大学 Single-channel monitor-free voice and noise separating method based on low-rank and sparse matrix decomposition
CN102915742B (en) * 2012-10-30 2014-07-30 中国人民解放军理工大学 Single-channel monitor-free voice and noise separating method based on low-rank and sparse matrix decomposition
JP2021505933A (en) * 2017-12-06 2021-02-18 シナプティクス インコーポレイテッド Voice enhancement of audio signals with modified generalized eigenvalue beamformer
JP7324753B2 (en) 2017-12-06 2023-08-10 シナプティクス インコーポレイテッド Voice Enhancement of Speech Signals Using a Modified Generalized Eigenvalue Beamformer
US11694710B2 (en) 2018-12-06 2023-07-04 Synaptics Incorporated Multi-stream target-speech detection and channel fusion
US11937054B2 (en) 2020-01-10 2024-03-19 Synaptics Incorporated Multiple-source tracking and voice activity detections for planar microphone arrays
CN111679248A (en) * 2020-05-15 2020-09-18 黑龙江工程学院 Target azimuth and distance combined sparse reconstruction positioning method based on seabed horizontal L-shaped array
CN111679248B (en) * 2020-05-15 2023-04-21 黑龙江工程学院 Target azimuth and distance combined sparse reconstruction positioning method based on seabed horizontal L-shaped array
US11823707B2 (en) 2022-01-10 2023-11-21 Synaptics Incorporated Sensitivity mode for an audio spotting system

Similar Documents

Publication Publication Date Title
US10891931B2 (en) Single-channel, binaural and multi-channel dereverberation
JP6644197B2 (en) Noise removal device and noise removal method
JP6196320B2 (en) Filter and method for infomed spatial filtering using multiple instantaneous arrival direction estimates
JP6584930B2 (en) Information processing apparatus, information processing method, and program
JP5007442B2 (en) System and method using level differences between microphones for speech improvement
JP6703525B2 (en) Method and device for enhancing sound source
JP2007047427A (en) Sound processor
US9552828B2 (en) Audio signal processing device
JP2008546012A (en) System and method for decomposition and modification of audio signals
JP6225245B2 (en) Signal processing apparatus, method and program
EP3797415B1 (en) Sound processing apparatus and method for sound enhancement
JP4448464B2 (en) Noise reduction method, apparatus, program, and recording medium
KR20220022286A (en) Method and apparatus for extracting reverberant environment embedding using dereverberation autoencoder
JP4462063B2 (en) Audio processing device
JP2005258158A (en) Noise removing device
JP2016163135A (en) Sound collection device, program and method
KR101658001B1 (en) Online target-speech extraction method for robust automatic speech recognition
KR102063824B1 (en) Apparatus and Method for Cancelling Acoustic Feedback in Hearing Aids
JP6361360B2 (en) Reverberation judgment device and program
Prasad et al. Two microphone technique to improve the speech intelligibility under noisy environment
Jan et al. Joint blind dereverberation and separation of speech mixtures
JP2010181467A (en) A plurality of signals emphasizing device and method and program therefor
Azarpour et al. Fast noise PSD estimation based on blind channel identification
Khan et al. Speech separation with dereverberation-based pre-processing incorporating visual cues
Abutaleb et al. An improved method for TDOA-based speech source localization