JP2007047132A - Radiation irradiation determining method and radiation irradiation determining system - Google Patents

Radiation irradiation determining method and radiation irradiation determining system Download PDF

Info

Publication number
JP2007047132A
JP2007047132A JP2005234849A JP2005234849A JP2007047132A JP 2007047132 A JP2007047132 A JP 2007047132A JP 2005234849 A JP2005234849 A JP 2005234849A JP 2005234849 A JP2005234849 A JP 2005234849A JP 2007047132 A JP2007047132 A JP 2007047132A
Authority
JP
Japan
Prior art keywords
light
radiation irradiation
irradiation
amount
light quantity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005234849A
Other languages
Japanese (ja)
Other versions
JP4599529B2 (en
Inventor
昌司 ▲萩▼原
Masashi Hagiwara
Setsuko Suzuki
節子 鈴木
Noriko Goto
典子 後藤
Masao Yamazaki
正夫 山▲崎▼
Shigeichi Suzuki
茂市 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON HOSHASEN ENGINEERING KK
National Agriculture and Food Research Organization
Tokyo Metropolitan Industrial Technology Research Instititute (TIRI)
Original Assignee
NIPPON HOSHASEN ENGINEERING KK
National Agriculture and Food Research Organization
Tokyo Metropolitan Industrial Technology Research Instititute (TIRI)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON HOSHASEN ENGINEERING KK, National Agriculture and Food Research Organization, Tokyo Metropolitan Industrial Technology Research Instititute (TIRI) filed Critical NIPPON HOSHASEN ENGINEERING KK
Priority to JP2005234849A priority Critical patent/JP4599529B2/en
Publication of JP2007047132A publication Critical patent/JP2007047132A/en
Application granted granted Critical
Publication of JP4599529B2 publication Critical patent/JP4599529B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a radiation irradiation determining method and a radiation irradiation determining system, which reduce work load on experimenter, and can objectively and precisely determine the presence or absence of radiation irradiation onto a sample, such as a food, a natural medicine or the like. <P>SOLUTION: In the radiation irradiation determining system 100, the food 101 is irradiated with an excitation light from an LED 102c controlled by a pulse-generating device 104; and the light emitted from the food 101 being irradiated with the excitation light is detected by a photomultiplier tube 102e via a filter 102d; the intensity of the emitted light that is detected is measured by a pulse counter 110 with time via a photon-counting unit 108, and the variation in the light intensity is calculated, based on the light intensity measured with time; and the presence or absence of the radiation irradiation onto the food 101 is determined, based on the calculated variation, by using an radiation irradiation determining device 112. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、試料(食品や生薬など)への放射線照射の有無を判別する放射線照射判別方法および放射線照射判別システムに関するものである。   The present invention relates to a radiation irradiation determination method and a radiation irradiation determination system for determining the presence or absence of radiation irradiation on a sample (food, crude drug, etc.).

日本では、食品への放射線照射は、馬鈴薯の発芽抑制(芽止め)を目的とする場合を除いて、食品衛生法で原則的に禁止されている。また、海外で放射線が照射された食品の国内への輸入も禁止されている。一方、海外では、食品への放射線照射が、香辛料や乾燥ハーブなどの食品を中心に実際に行われている。なお、この放射線照射は、食品の殺菌、殺虫、発芽抑制などの放射線照射に因る効果を利用して流通期間を延長させることを目的としている。   In Japan, irradiation of food is prohibited in principle under the Food Sanitation Law, except for the purpose of controlling the germination of potatoes. In addition, importing foods that have been irradiated overseas is prohibited. On the other hand, radiation irradiation to foods is actually performed mainly on foods such as spices and dried herbs. The purpose of this radiation irradiation is to extend the distribution period by utilizing the effects of radiation irradiation such as sterilization, insecticidal and germination control of food.

このような状況において、食品や生薬等への放射線照射の有無を判別する技術の確立は、食品流通を適正に管理するため、また放射線照射食品を示す表示を保証するために、不可欠である。   Under such circumstances, establishment of a technique for determining the presence or absence of irradiation of food or herbal medicine is indispensable in order to properly manage food distribution and to guarantee a display indicating irradiated food.

現在、食品への放射線照射の有無を判別する方法(特に、香辛料などに有効な方法)には、例えばCEN(ヨーロッパ標準分析委員会)の公定法として認知されている電子スピン共鳴(ESR)法や熱ルミネッセンス(TL)法や光刺激ルミネッセンス(PSL)法などがある。   At present, methods for determining the presence or absence of irradiation of food (especially effective for spices) include, for example, the electron spin resonance (ESR) method recognized as an official method of CEN (European Standard Analysis Committee) And thermoluminescence (TL) method and photostimulated luminescence (PSL) method.

ESR法は、食品を磁場中に置いて食品中のラジカルを測定し、当該測定結果に基づいて食品への放射線照射の有無を判別する方法である。   The ESR method is a method in which a food is placed in a magnetic field, radicals in the food are measured, and the presence or absence of radiation irradiation on the food is determined based on the measurement result.

TL法は、食品から採取した鉱物質の熱発光を計測することで、その発光量と発光パターン(曲線)から放射線照射の有無を判別する方法である。具体的には、TL法では、まず、食品中に含まれる微量の発光素体(鉱物質)を分離精製し、光電子増倍管を用いた装置で発光素体の熱発光を計測する。つぎに、熱発光を一度測定した発光素体に放射線(γ線)を照射し、再び光電子増倍管を用いた装置で熱発光を計測する。そして、計測した2つの熱発光の比を予め定められた閾値と比較して放射線照射の有無を判別する。   The TL method is a method of determining the presence or absence of radiation irradiation from the amount of luminescence and a luminescence pattern (curve) by measuring the thermoluminescence of minerals collected from food. Specifically, in the TL method, first, a small amount of a luminous element (mineral substance) contained in food is separated and purified, and thermoluminescence of the luminous element is measured with an apparatus using a photomultiplier tube. Next, radiation (γ-rays) is irradiated to the light emitting element once measured for thermoluminescence, and thermoluminescence is measured again with an apparatus using a photomultiplier tube. Then, the ratio of the two measured thermoluminescence is compared with a predetermined threshold value to determine the presence or absence of radiation irradiation.

PSL法は、赤外光の照射による励起で食品から発生する可視光領域の光(発光)と食品への放射線照射の履歴との間に関係があることを利用して、放射線照射の有無を判別する方法である(特許文献1、非特許文献1参照)。具体的には、PSL法では、まず、食品に赤外光を照射することで当該食品から放出された発光を、光電子増倍管を用いた装置で計測する。そして、計測した発光の光量の積算値を、測定対象とする食品の種類に応じて経験的に予め求めた閾値(外的標準値)と比較して放射線照射の有無を判別する。換言すると、PSL法では、赤外光照射装置と光電子増倍管とを組み合わせた測定装置を用いて、まず、1秒以上の時間間隔で一定時間内に複数回、発光量を測定し、測定した発光量の積算値を算出する。つぎに、算出した積算値を、測定対象とする食品の種類に応じて経験的に予め求めた判定基準値(外的標準値)と比較する。つぎに、積算値と判定基準値とを比較した結果、積算値が判定基準値より大きければ“照射”と判定し、積算値が判定基準値より小さければ“非照射”と判定する。なお、PSL法では、食品そのものを用いることができるためTL法のような前処理は不要である。   The PSL method utilizes the fact that there is a relationship between the light (luminescence) in the visible light region generated from food by the excitation by infrared light irradiation and the history of radiation irradiation to the food. This is a method of discrimination (see Patent Document 1 and Non-Patent Document 1). Specifically, in the PSL method, first, light emitted from a food by irradiating the food with infrared light is measured by an apparatus using a photomultiplier tube. Then, the integrated value of the measured light intensity of light emission is compared with a threshold value (external standard value) obtained empirically in advance according to the type of food to be measured to determine the presence or absence of radiation irradiation. In other words, in the PSL method, using a measuring device that combines an infrared light irradiation device and a photomultiplier tube, first, the amount of luminescence is measured several times within a certain time interval at a time interval of 1 second or more. The integrated value of the emitted light amount is calculated. Next, the calculated integrated value is compared with a determination reference value (external standard value) obtained empirically in advance according to the type of food to be measured. Next, as a result of comparing the integrated value with the determination reference value, if the integrated value is larger than the determination reference value, it is determined as “irradiation”, and if the integrated value is smaller than the determination reference value, it is determined as “non-irradiation”. In the PSL method, since the food itself can be used, pretreatment like the TL method is not necessary.

欧州特許出願公開第0699299号明細書European Patent Application No. 06929999 Sanderson D.C. W. et al, “Establishing Luminescence methods to detect irradiated food.”, Sci. Food Technol Today, 12(2), pp.97−102, 1998Sanderson D.C. C. W. et al, “Establishing Luminescence methods to detect irradiated food.”, Sci. Food Technology Today, 12 (2), pp. 97-102, 1998

しかしながら、PSL法では、計測した発光の光量の積算値を一定の外的基準値と比較することで食品への放射線照射の有無を判別しているので、具体的に以下のような虞があった。   However, in the PSL method, since the integrated value of the measured light emission quantity is compared with a certain external reference value, the presence or absence of radiation irradiation to the food is determined. It was.

PSL法で計測される光量は、放射線の照射量だけでなく、食品中の発光素体(鉱物)の含有量の影響も受ける。換言すると、食品中の発光素体の組成に因って、計測される光量が変化する。このことから、発光素体の含有量が少ない食品であって放射線を照射したものを対象とした場合に、当該食品を“非照射”と判別してしまう虞があった。また、計測した発光のバックグラウンド値が高い食品であって放射線を照射してないものを対象とした場合に、当該食品を“照射”と判別してしまう虞があった。   The amount of light measured by the PSL method is affected not only by the radiation dose but also by the content of the luminescent element (mineral) in the food. In other words, the amount of light to be measured varies depending on the composition of the luminous element in the food. For this reason, when a food with a low content of the luminous element and irradiated with radiation is targeted, the food may be determined as “non-irradiated”. In addition, when a food with a high measured luminescence background value that is not irradiated with radiation is targeted, the food may be identified as “irradiated”.

つまり、PSL法では、食品への放射線照射の有無の判別において、計測した発光の光量の積算値を一定の外的基準値と比較していたので、必ずしも精度よく判別することができない虞があり、判別結果の客観性に欠ける、という問題点があった。   That is, in the PSL method, in determining whether or not food is irradiated with radiation, the integrated value of the measured light emission amount is compared with a certain external reference value, so there is a possibility that it cannot always be accurately determined. There was a problem that the discrimination result lacked objectivity.

また、PSL法では、判別の精度を維持するために、同一種の食品に対して数多くの光量測定を実施して、外的基準値を予め決定する必要があるので、実験者に多くの作業負担をかけていた、という問題点があった。   In addition, in the PSL method, in order to maintain the accuracy of discrimination, it is necessary to perform a large amount of light quantity measurement on the same type of food and to determine an external reference value in advance. There was a problem that it was a burden.

本発明は、上記問題点に鑑みてなされたものであって、実験者への作業負担を軽減し、食品や生薬などの試料への放射線照射の有無を客観的に且つ精度よく判別することができる放射線照射判別方法および放射線照射判別システムを提供することを目的とする。   The present invention has been made in view of the above-described problems, and can reduce the work burden on the experimenter and can objectively and accurately determine the presence or absence of radiation irradiation on a sample such as food or herbal medicine. An object of the present invention is to provide a radiation irradiation discrimination method and a radiation irradiation discrimination system.

そこで、本発明者らは、鋭意検討の結果、一定計測時間内に、放射線を照射した食品中の発光素体が放射線照射で蓄積したエネルギーを放出し、計測した光量が計測時間の経過と共に漸次、減衰、消滅すること、また、放射線を照射してない食品では、計測した光量が計測時間の経過と共に減衰、消滅しないこと、を見出した(図4参照)。   Therefore, as a result of intensive studies, the present inventors have released the energy accumulated by radiation irradiation in the food irradiated with radiation within a certain measurement time, and the measured light quantity gradually increases as the measurement time elapses. It has been found that the amount of light measured does not attenuate or disappear with the passage of the measurement time in foods that have not been irradiated with radiation (see FIG. 4).

すなわち、上述した課題を解決し、目的を達成するために、本発明にかかる請求項1に記載の放射線照射判別方法は、試料への放射線照射の有無を判別する放射線照射判別方法において、励起光を照射した試料から放出された光の光量を経時的に計測し、計測した光量の変化量または変化率に基づいて試料への放射線照射の有無を判別することを特徴とする。   That is, in order to solve the above-described problems and achieve the object, the radiation irradiation determination method according to claim 1 of the present invention is a radiation irradiation determination method for determining the presence or absence of radiation irradiation on a sample. The amount of light emitted from the sample irradiated with is measured over time, and the presence or absence of radiation irradiation to the sample is determined based on the amount of change or rate of change of the measured amount of light.

また、本発明にかかる請求項2に記載の放射線照射判別方法は、食品への放射線照射の有無を判別する放射線照射判別方法において、試料に対して励起光を照射する励起光照射工程と、前記励起光照射工程で励起光を照射した試料から放出された光を、当該光を選択的に透過するフィルターを介して光電子増倍管で検出し、検出した光の光量を経時的に計測する光量計測工程と、前記光量計測工程で経時的に計測した光量に基づいて当該光量の変化量および/または変化率を算出し、算出した変化量および/または変化率に基づいて試料への放射線照射の有無を判別する放射線照射判別工程と、を含むことを特徴とする。   Further, the radiation irradiation determination method according to claim 2 according to the present invention is the radiation irradiation determination method for determining the presence or absence of radiation irradiation on food, the excitation light irradiation step for irradiating the sample with excitation light, Light emitted from the sample irradiated with excitation light in the excitation light irradiation process is detected by a photomultiplier tube through a filter that selectively transmits the light, and the amount of light detected is measured over time. The amount of change and / or rate of change of the amount of light is calculated based on the measurement step and the amount of light measured over time in the step of measuring the amount of light, and the radiation irradiation of the sample is calculated based on the calculated amount of change and / or rate of change. A radiation irradiation determining step of determining presence or absence.

また、本発明にかかる請求項3に記載の放射線照射判別方法は、請求項2に記載の放射線照射判別方法において、前記放射線照射判別工程は、前記光量計測工程で経時的に計測した光量から、第1の時間帯に計測した第1の光量および第2の時間帯に計測した第2の光量を取得する光量取得工程と、前記光量取得工程で取得した第1の光量および第2の光量に基づいて当該第1の光量の平均値と当該第2の光量の平均値との差を算出し、算出した平均値の差に基づいて試料への放射線照射の有無を判別する光量差基準判別工程と、をさらに含むことを特徴とする。   Further, the radiation irradiation determination method according to claim 3 according to the present invention is the radiation irradiation determination method according to claim 2, wherein the radiation irradiation determination step is based on the light amount measured over time in the light amount measurement step. A light quantity acquisition step of acquiring a first light quantity measured in the first time zone and a second light quantity measured in the second time zone, and a first light quantity and a second light quantity obtained in the light quantity acquisition step. Based on the difference between the average value of the first light quantity and the average value of the second light quantity based on the difference, the light quantity difference reference determination step of determining the presence or absence of radiation irradiation to the sample based on the calculated difference between the average values And further including.

また、本発明にかかる請求項4に記載の放射線照射判別方法は、請求項2に記載の放射線照射判別方法において、前記放射線照射判別工程は、前記光量計測工程で経時的に計測した光量に基づいて、光量と時間との関係を示す回帰式を作成する回帰式作成工程と、前記回帰式作成工程で作成した回帰式に基づいて当該回帰式の傾きの値を算出し、算出した傾きの値に基づいて試料への放射線照射の有無を判別する回帰式基準判別工程と、をさらに含むことを特徴とする。   According to a fourth aspect of the present invention, there is provided the radiation irradiation determination method according to the second aspect, wherein the radiation irradiation determination step is based on the light amount measured over time in the light amount measurement step. The regression formula creating step for creating a regression formula showing the relationship between the light quantity and the time, the slope value of the regression formula is calculated based on the regression formula created in the regression formula creating step, and the calculated slope value And a regression criterion discriminating step for discriminating whether or not the sample is irradiated with radiation based on the above.

また、本発明にかかる請求項5に記載の放射線照射判別方法は、請求項2から4のいずれか1つに記載の放射線照射判別方法において、前記励起光照射工程は、試料に対してLEDで励起光を照射することを特徴とする。   Moreover, the radiation irradiation determination method according to claim 5 of the present invention is the radiation irradiation determination method according to any one of claims 2 to 4, wherein the excitation light irradiation step is performed by using an LED with respect to the sample. It is characterized by irradiating excitation light.

また、本発明は放射線照射判別システムに関するものであり、本発明にかかる請求項6に記載の放射線照射判別システムは、試料への放射線照射の有無を判別する放射線照射判別システムにおいて、試料に対して励起光を照射する励起光照射手段と、前記励起光照射手段で励起光を照射した試料から放出された光を、当該光を選択的に透過するフィルターを介して光電子増倍管で検出し、検出した光の光量を経時的に計測する光量計測手段と、前記光量計測手段で経時的に計測した光量に基づいて当該光量の変化量および/または変化率を算出し、算出した変化量および/または変化率に基づいて試料への放射線照射の有無を判別する放射線照射判別手段と、を備えたことを特徴とする。   In addition, the present invention relates to a radiation irradiation determination system, and the radiation irradiation determination system according to claim 6 according to the present invention is a radiation irradiation determination system that determines the presence or absence of radiation irradiation on a sample. Excitation light irradiation means for irradiating excitation light, and light emitted from the sample irradiated with excitation light by the excitation light irradiation means is detected by a photomultiplier tube through a filter that selectively transmits the light, A light amount measuring means for measuring the light amount of the detected light with time, a change amount and / or a change rate of the light amount based on the light amount measured with the light amount measuring means with time, and the calculated change amount and / or Alternatively, radiation irradiation determining means for determining whether or not the sample is irradiated with radiation based on the rate of change is provided.

また、本発明にかかる請求項7に記載の放射線照射判別システムは、請求項6に記載の放射線照射判別システムにおいて、前記放射線照射判別手段は、前記光量計測手段で経時的に計測した光量から、第1の時間帯に計測した第1の光量および第2の時間帯に計測した第2の光量を取得する光量取得手段と、前記光量取得手段で取得した第1の光量および第2の光量に基づいて当該第1の光量の平均値と当該第2の光量の平均値との差を算出し、算出した平均値の差に基づいて試料への放射線照射の有無を判別する光量差基準判別手段と、をさらに備えたことを特徴とする。   Further, the radiation irradiation determination system according to claim 7 according to the present invention is the radiation irradiation determination system according to claim 6, wherein the radiation irradiation determination means is based on a light amount measured with time by the light amount measurement means. A light quantity acquisition unit that acquires the first light quantity measured in the first time zone and the second light quantity measured in the second time zone, and the first light quantity and the second light quantity obtained by the light quantity acquisition means. Based on the difference between the average value of the first light quantity and the average value of the second light quantity based on the difference, the light quantity difference reference determination means for determining the presence or absence of radiation irradiation to the sample based on the calculated difference between the average values And further comprising.

また、本発明にかかる請求項8に記載の放射線照射判別システムは、請求項6に記載の放射線照射判別システムにおいて、前記放射線照射判別手段は、前記光量計測手段で経時的に計測した光量に基づいて、光量と時間との関係を示す回帰式を作成する回帰式作成手段と、前記回帰式作成手段で作成した回帰式に基づいて当該回帰式の傾きの値を算出し、算出した傾きの値に基づいて試料への放射線照射の有無を判別する回帰式基準判別手段と、をさらに備えたことを特徴とする。   The radiation irradiation determination system according to claim 8 according to the present invention is the radiation irradiation determination system according to claim 6, wherein the radiation irradiation determination means is based on the light quantity measured with time by the light quantity measurement means. The regression formula creating means for creating a regression formula showing the relationship between the light quantity and the time, the slope value of the regression formula is calculated based on the regression formula created by the regression formula creating means, and the calculated slope value And a regression-based criterion discriminating means for discriminating whether or not the sample is irradiated with radiation based on the above.

また、本発明にかかる請求項9に記載の放射線照射判別システムは、請求項6から8のいずれか1つに記載の放射線照射判別システムにおいて、前記励起光照射手段は、試料に対してLEDで励起光を照射することを特徴とする。   Moreover, the radiation irradiation discrimination | determination system of Claim 9 concerning this invention is a radiation irradiation discrimination | determination system as described in any one of Claim 6 to 8. WHEREIN: The said excitation light irradiation means is LED with respect to a sample. It is characterized by irradiating excitation light.

本発明にかかる請求項1に記載の放射線照射判別方法は、励起光を照射した試料(食品や生薬など)から放出された光の光量を経時的に計測し、計測した光量の変化量および/または変化率に基づいて試料への放射線照射の有無を判別するので、実験者への作業負担を軽減し、食品や生薬などの試料への放射線照射の有無を客観的に且つ精度よく判別することができるという効果を奏する。ここで、TL法では、食品そのものを用いることができないため食品から発光素体を分離精製する前処理が必要であるが、当該前処理には最低1日の時間を要し、さらに前処理は同時に1から数検体しか行うことができないため、検査時間の観点では必ずしも満足できるものではなかった。ところが、本発明は、試料の前処理が不要であるので、光量の計測から放射線照射の有無の判別までの処理を迅速に行うことができ、その結果、検査時間を短縮することができる。また、TL法では、光電子増倍管を冷却する冷却装置や発光素体を加熱する加熱装置が必要であるため、実施に要する費用が高額になってしまう。ところが、本発明は、これら各装置が不要であるので、光量の計測から放射線照射の有無の判別までの処理を安価な装置構成で実現することができる。   In the radiation irradiation discrimination method according to claim 1 of the present invention, the amount of light emitted from a sample (food, herbal medicine, etc.) irradiated with excitation light is measured over time, and the amount of change in the measured amount of light and / or Or, because the presence or absence of irradiation of the sample is determined based on the rate of change, the burden on the experimenter is reduced, and the presence or absence of irradiation of the sample such as food or herbal medicine is objectively and accurately determined. There is an effect that can be. Here, in the TL method, since the food itself cannot be used, a pretreatment for separating and purifying the luminescent element from the food is necessary. However, the pretreatment requires a time of at least one day. Since only one to several samples can be performed at the same time, it was not always satisfactory from the viewpoint of examination time. However, since the present invention does not require sample pretreatment, the processing from the measurement of the amount of light to the determination of the presence or absence of radiation irradiation can be performed quickly, and as a result, the inspection time can be shortened. In addition, the TL method requires a cooling device that cools the photomultiplier tube and a heating device that heats the light-emitting element body, which increases the cost required for implementation. However, the present invention does not require each of these devices, so that the processing from the measurement of the light amount to the determination of the presence or absence of radiation irradiation can be realized with an inexpensive device configuration.

また、本発明にかかる請求項2に記載の放射線照射判別方法および請求項6に記載の放射線照射判別システムは、試料(食品や生薬など)に対して励起光を照射し、励起光を照射した試料から放出された光を、当該光を選択的に透過するフィルターを介して光電子増倍管で検出し、検出した光の光量を経時的に計測し、経時的に計測した光量に基づいて当該光量の変化量および/または変化率を算出し、算出した変化量および/または変化率に基づいて試料への放射線照射の有無を判別するので、実験者への作業負担を軽減し、食品や生薬などの試料への放射線照射の有無を客観的に且つ精度よく判別することができるという効果を奏する。ここで、TL法では、食品そのものを用いることができないため食品から発光素体を分離精製する前処理が必要であるが、当該前処理には最低1日の時間を要し、さらに前処理は同時に1から数検体しか行うことができないため、検査時間の観点では必ずしも満足できるものではなかった。ところが、本発明は、試料の前処理が不要であるので、光量の計測から放射線照射の有無の判別までの処理を迅速に行うことができ、その結果、検査時間を短縮することができる。また、TL法では、光電子増倍管を冷却する冷却装置や発光素体を加熱する加熱装置が必要であるため、実施に要する費用が高額になってしまう。ところが、本発明は、これら各装置が不要であるので、光量の計測から放射線照射の有無の判別までの処理を安価な装置構成で実現することができる。   Moreover, the radiation irradiation discrimination method according to claim 2 and the radiation irradiation discrimination system according to claim 6 according to the present invention irradiate a sample (food, herbal medicine, etc.) with excitation light and irradiate excitation light. The light emitted from the sample is detected by a photomultiplier tube through a filter that selectively transmits the light, and the amount of the detected light is measured over time, and the light is measured based on the amount of light measured over time. Calculates the amount and / or rate of change in the amount of light, and determines whether or not the sample has been irradiated based on the calculated amount and / or rate of change. There is an effect that it is possible to objectively and accurately discriminate whether or not the sample is irradiated with radiation. Here, in the TL method, since the food itself cannot be used, a pretreatment for separating and purifying the luminescent element from the food is necessary. However, the pretreatment requires a time of at least one day. Since only one to several samples can be performed at the same time, it was not always satisfactory from the viewpoint of examination time. However, since the present invention does not require sample pretreatment, the processing from the measurement of the amount of light to the determination of the presence or absence of radiation irradiation can be performed quickly, and as a result, the inspection time can be shortened. In addition, the TL method requires a cooling device that cools the photomultiplier tube and a heating device that heats the light-emitting element body, which increases the cost required for implementation. However, the present invention does not require each of these devices, so that the processing from the measurement of the light amount to the determination of the presence or absence of radiation irradiation can be realized with an inexpensive device configuration.

また、本発明にかかる請求項3に記載の放射線照射判別方法および請求項7に記載の放射線照射判別システムは、放射線照射の判別において、経時的に計測した光量から、第1の時間帯(例えば計測初期や計測開始直後の時間帯)に計測した第1の光量および第2の時間帯(例えば計測末期や計測終了間際の時間帯)に計測した第2の光量を取得し、取得した第1の光量および第2の光量に基づいて当該第1の光量の平均値と当該第2の光量の平均値との差を算出し、算出した平均値の差に基づいて試料への放射線照射の有無を判別するので、容易な計算で、試料への放射線照射の有無を客観的に且つ精度よく判別することができるという効果を奏する。   In addition, the radiation irradiation determination method according to claim 3 and the radiation irradiation determination system according to claim 7 according to the present invention provide a first time zone (e.g., from the amount of light measured over time in the irradiation irradiation determination). The first light quantity acquired in the first measurement time and the second light quantity measured in the second time period (for example, the last measurement period or the time period immediately before the end of measurement) is acquired and acquired. The difference between the average value of the first light amount and the average value of the second light amount is calculated based on the light amount and the second light amount, and the presence or absence of radiation irradiation to the sample based on the calculated difference between the average values Therefore, it is possible to objectively and accurately determine whether or not the sample is irradiated with radiation by simple calculation.

また、本発明にかかる請求項4に記載の放射線照射判別方法および請求項8に記載の放射線照射判別システムは、放射線照射の判別において、経時的に計測した光量に基づいて、光量と時間との関係を示す回帰式を作成し、作成した回帰式に基づいて、所定の時点における当該回帰式の傾きの値を算出し、算出した傾きの値に基づいて試料への放射線照射の有無を判別するので、放射線を照射した試料で確認された、光量が経時的に減衰するという現象を数学的に表すことで、試料への放射線照射の有無を客観的に且つ精度よく判別することができるという効果を奏する。   In addition, the radiation irradiation determination method according to claim 4 and the radiation irradiation determination system according to claim 8 according to the present invention include a light amount and a time based on a light amount measured over time in the determination of radiation irradiation. Create a regression equation that shows the relationship, calculate the slope value of the regression equation at a given point in time based on the created regression equation, and determine the presence or absence of radiation irradiation to the sample based on the calculated slope value Therefore, it is possible to objectively and accurately determine the presence or absence of radiation irradiation on the sample by mathematically expressing the phenomenon that the amount of light attenuated over time, which is confirmed in the sample irradiated with radiation. Play.

また、本発明にかかる請求項5に記載の放射線照射判別方法および請求項9に記載の放射線照射判別システムは、励起光の照射において、試料に対してLEDで励起光を照射するので、励起光を照射する際のパルス間隔(発光時間間隔)の調整が容易であるという効果を奏する。   Moreover, since the irradiation irradiation determination method according to claim 5 and the irradiation irradiation determination system according to claim 9 according to the present invention irradiates the excitation light with the LED to the sample in the irradiation of the excitation light, the excitation light There is an effect that it is easy to adjust the pulse interval (light emission time interval) when irradiating.

以下に、本発明にかかる放射線照射判別方法および放射線照射判別システムの実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Embodiments of a radiation irradiation determination method and a radiation irradiation determination system according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

まず、本実施の形態の放射線照射判別システム100の全体構成について、図1を参照して説明する。図1は、放射線照射判別システム100の全体構成の一例を示す図である。図1に示すように、放射線照射判別システム100は、光刺激ルミネッセンスの発光原理に基づいて作製したものであり、OSL(Optically Stimulated Luminescence)検出ユニット102とパルス発生装置104と高圧電源106とフォトンカウティングユニット108とパルスカウンタ110と放射線照射判別装置112とで構成されている。なお、これら各装置は、図示の如く、接続ケーブルで接続されている。   First, the whole structure of the radiation irradiation discrimination | determination system 100 of this Embodiment is demonstrated with reference to FIG. FIG. 1 is a diagram illustrating an example of the overall configuration of the radiation irradiation determination system 100. As shown in FIG. 1, the radiation irradiation discrimination system 100 is manufactured based on the light emission principle of photostimulated luminescence, and includes an OSL (Optically Stimulated Luminescence) detection unit 102, a pulse generator 104, a high voltage power source 106, a photon counter. And a radiation irradiation discrimination device 112. These devices are connected by a connection cable as shown in the figure.

OSL検出ユニット102は、検査対象(試料)となる食品101(乾燥食品や生薬など)に対して励起光を照射し、励起光を照射した食品101から放出された発光(具体的には、発光の光子)を検出する。図2は、OSL検出ユニット102の構成の一例を示す図である。図2に示すように、OSL検出ユニット102は、暗箱102aと試料皿102bとLED(発光ダイオード)102cとフィルター(ローパスフィルター、バンドパスフィルター)102dと光電子増倍管(PMT:PhotoMultiplier Tube)102eとで構成されている。暗箱102aは、外光を遮断するためのものであり、食品101から放出された発光の光量を検出するために用いる。試料皿102bは、図示の如く、暗箱102a内に設けられ、食品101を配置するためのものである。なお、試料皿102bとして、食品からの遅延発光の影響が少ないステンレス製の試料皿を用いてもよい。また、計測前の食品への露光に因る光ルミネッセンス量の減少が予想されるため、検査対象の食品は暗室内で、暗箱102a内の試料皿102bに置いてもよい。LED102cは、食品101に対して励起光を照射するためのものである。LED102cとして、例えば、イマック(会社名)のLED照明(品番“IDR−LA50/24IR−890−2−C01”:赤外)を用いてもよい。フィルター102dは、LED102cで励起光を照射したことに因り食品から反射した反射光を遮断して、食品から放出された発光を選択的に透過する。フィルター102dとして、例えば、朝日分光(会社名)のバンドパスフィルター(品番“SWPF670”)や光伸光学(会社名)のバンドパスフィルター(品番“IRC−65W”)を用いてもよい。なお、フィルター102dは、1枚のフィルターで構成してもよく、複数枚のフィルターで構成してもよい。また、フィルター102dは、図示の如く、光電子増倍管102eの近傍に設置する。光電子増倍管102eは、食品101から放出され、フィルター102dを透過した発光(具体的には、発光の光子)を検出し、検出した発光(具体的には、発光の光子)を増幅して電気信号(アナログ信号)に変換する。光電子増倍管102eとして、例えば、浜松ホトニクス(会社名)の光電子増倍管(品番“R329P”)を用いてもよい。   The OSL detection unit 102 irradiates the food 101 (dried food or herbal medicine) to be inspected (sample) with excitation light, and emits light (specifically, light emission) emitted from the food 101 irradiated with the excitation light. ). FIG. 2 is a diagram illustrating an example of the configuration of the OSL detection unit 102. As shown in FIG. 2, the OSL detection unit 102 includes a dark box 102a, a sample plate 102b, an LED (light emitting diode) 102c, a filter (low-pass filter, band-pass filter) 102d, a photomultiplier tube (PMT) 102e, It consists of The dark box 102a is for blocking external light, and is used for detecting the amount of light emitted from the food 101. As shown in the figure, the sample dish 102b is provided in the dark box 102a and is used for placing the food 101. Note that a stainless steel sample dish that is less affected by delayed light emission from food may be used as the sample dish 102b. Moreover, since the reduction | decrease of the photoluminescence amount resulting from the exposure to the foodstuff before a measurement is anticipated, you may put the foodstuff to be examined on the sample dish 102b in the dark box 102a in a dark room. The LED 102c is for irradiating the food 101 with excitation light. As the LED 102c, for example, LED lighting (product number “IDR-LA50 / 24IR-890-2-C01”: infrared) of IMAC (company name) may be used. The filter 102d blocks the reflected light reflected from the food due to the irradiation of the excitation light by the LED 102c, and selectively transmits the light emitted from the food. As the filter 102d, for example, a bandpass filter (product number “SWPF670”) of Asahi Spectroscopy (company name) or a bandpass filter (product number “IRC-65W”) of Mitsunobu Optical (company name) may be used. Note that the filter 102d may be composed of a single filter or a plurality of filters. The filter 102d is installed in the vicinity of the photomultiplier tube 102e as shown in the figure. The photomultiplier tube 102e detects emitted light (specifically, emitted photons) emitted from the food product 101 and transmitted through the filter 102d, and amplifies the detected emitted light (specifically emitted photons). Convert to electrical signal (analog signal). As the photomultiplier tube 102e, for example, a photomultiplier tube (product number “R329P”) manufactured by Hamamatsu Photonics (company name) may be used.

再び図1に戻り、パルス発生装置104は、LED102cを所定の時間間隔(パルス間隔)で発光させるためのものである。つまり、パルス発生装置104はLED102cを制御する。パルス発生装置104として、例えば、イマック(会社名)のパルス電源(品番“IDT−10S”)を用いてもよい。   Returning to FIG. 1 again, the pulse generator 104 is for causing the LED 102c to emit light at a predetermined time interval (pulse interval). That is, the pulse generator 104 controls the LED 102c. As the pulse generator 104, for example, a pulse power supply (product number “IDT-10S”) of IMAC (company name) may be used.

高圧電源106は、光電子増倍管102eの電極にかける電圧を制御して、光電子増倍管102eへ電源を供給する。   The high voltage power source 106 controls the voltage applied to the electrode of the photomultiplier tube 102e to supply power to the photomultiplier tube 102e.

フォトンカウンティングユニット108は、光電子増倍管102eから出力されたアナログ信号を所定の閾値を考慮してデジタル信号に変換する。なお、当該閾値は、食品101ごとに決定してもよく、放射線が照射されてない食品101に対して決定した値に基づいて決定してもよい。フォトンカウンティングユニット108として、例えば、浜松ホトニクス(会社名)のフォトンカウンティングユニット(品番“C3866”)を用いてもよい。   The photon counting unit 108 converts the analog signal output from the photomultiplier tube 102e into a digital signal in consideration of a predetermined threshold. In addition, the said threshold value may be determined for every food 101, and may be determined based on the value determined with respect to the food 101 which is not irradiated with the radiation. As the photon counting unit 108, for example, a photon counting unit (product number “C3866”) manufactured by Hamamatsu Photonics (company name) may be used.

パルスカウンタ110は、フォトンカウンティングユニット108から出力されたデジタル信号に基づいて光量(所定時間あたりのカウント数)を経時的に(例えば、0.1秒間隔で)計測する。パルスカウンタ110として、例えば、浜松ホトニクス(会社名)のパルスカウンタ(品番“C8747”)を用いてもよい。   The pulse counter 110 measures the amount of light (the number of counts per predetermined time) over time based on the digital signal output from the photon counting unit 108 (for example, at intervals of 0.1 second). As the pulse counter 110, for example, a Hamamatsu Photonics (company name) pulse counter (product number "C87747") may be used.

放射線照射判別装置112は、当該放射線照射判別装置112やパルス発生装置104を統括的に制御するCPU等の制御部112Aと、各種のデータベースやテーブルやファイルなどを格納する記憶部112Bと、を少なくとも備え、これら各部は任意の通信路を介して通信可能に接続されている。なお、放射線照射判別装置112は、一般に市販されるパーソナルコンピュータ等の情報処理装置およびその付属装置で構成することができる。   The radiation irradiation determination device 112 includes at least a control unit 112A such as a CPU that comprehensively controls the radiation irradiation determination device 112 and the pulse generation device 104, and a storage unit 112B that stores various databases, tables, files, and the like. These units are communicably connected via an arbitrary communication path. In addition, the radiation irradiation discrimination | determination apparatus 112 can be comprised with information processing apparatuses, such as a personal computer marketed generally, and its attachment apparatus.

制御部112Aは、OS(Operating System)等の制御プログラム、各種の処理手順等を規定したプログラムおよび所要データを格納するための内部メモリを有し、これらのプログラムに基づいて種々の処理を実行する。制御部112Aは、LED102cが照射する励起光の照射条件(LED102cを発光させる時間間隔やLED102cの照度など)を決定する照射条件決定部112A1と、パルスカウンタ110で経時的に計測した光量に基づいて当該光量の変化量および/または変化率を算出し、算出した変化量および/または変化率に基づいて食品101への放射線照射の有無を判別する放射線照射判別部112A2と、を備えている。   The control unit 112A has a control program such as an OS (Operating System), a program that defines various processing procedures, and an internal memory for storing necessary data, and executes various processes based on these programs. . The control unit 112A is based on the irradiation condition determination unit 112A1 that determines the irradiation condition of the excitation light irradiated by the LED 102c (such as the time interval at which the LED 102c emits light and the illuminance of the LED 102c), and the light amount measured with time by the pulse counter 110. A radiation irradiation determination unit 112A2 that calculates a change amount and / or a change rate of the light amount and determines whether or not the food 101 is irradiated with radiation based on the calculated change amount and / or change rate.

ここで、放射線照射判別部112A2は、パルスカウンタ110で経時的に計測した光量から、第1の時間帯(例えば計測初期や計測開始直後の時間帯)に計測した第1の光量および第2の時間帯(例えば計測末期や計測終了間際の時間帯)に計測した第2の光量を取得する光量取得部112A21と、光量取得部112A21で取得した第1の光量および第2の光量に基づいて当該第1の光量の平均値と当該第2の光量の平均値との差を算出し、算出した平均値の差に基づいて食品101への放射線照射の有無を判別する光量差基準判別部112A22と、パルスカウンタ110で経時的に計測した光量に基づいて、光量と時間との関係を示す回帰式を作成する回帰式作成部112A23と、回帰式作成部112A23で作成した回帰式に基づいて当該回帰式の傾きの値(回帰式の一次微分値)を算出し、算出した傾きの値に基づいて食品101への放射線照射の有無を判別する(具体的には、算出した傾きの値が負であれば“照射”と判別し、算出した傾きの値が0または正であれば“非照射”と判別する)回帰式基準判別部112A24と、をさらに備えている。なお、放射線照射判別部112A2は、光量差基準判別部112A22での判別結果および回帰式基準判別部112A24での判別結果に基づいて、食品101への放射線照射の有無を最終的に判別してもよい。また、回帰式基準判別部112A24は、回帰式作成部112A23で作成した回帰式に基づいて判別指標(判別インデックス)を算出し、算出した判別指標(判別インデックス)に基づいて食品101への放射線照射の有無を判別してもよい。   Here, the radiation irradiation determination unit 112A2 uses the first light amount and the second light amount measured in the first time period (for example, the initial period of measurement or the time period immediately after the start of measurement) from the light intensity measured with the pulse counter 110 over time. Based on the first light quantity and the second light quantity acquired by the light quantity acquisition unit 112A21 that acquires the second light quantity measured in the time zone (for example, at the end of measurement or just before the end of the measurement) and the light quantity acquisition unit 112A21 A light amount difference reference determination unit 112A22 that calculates a difference between the average value of the first light amount and the average value of the second light amount, and determines whether the food 101 is irradiated with radiation based on the calculated difference between the average values; Based on the amount of light measured over time by the pulse counter 110, a regression equation creation unit 112A23 that creates a regression equation indicating the relationship between the light amount and time, and a regression equation created by the regression equation creation unit 112A23 Then, the slope value of the regression equation (first derivative value of the regression equation) is calculated, and the presence or absence of radiation irradiation to the food 101 is determined based on the calculated slope value (specifically, the calculated slope value) And a regression equation criterion discriminating unit 112A24 that discriminates “irradiation” if the value is negative and discriminates “non-irradiation” if the calculated slope value is 0 or positive. The radiation irradiation determination unit 112A2 may finally determine whether or not the food 101 has been irradiated based on the determination result in the light quantity difference reference determination unit 112A22 and the determination result in the regression equation reference determination unit 112A24. Good. Further, the regression formula criterion discriminating unit 112A24 calculates a discrimination index (discrimination index) based on the regression formula created by the regression formula creation unit 112A23, and radiation irradiation of the food 101 based on the calculated discrimination index (discrimination index). The presence or absence of may be determined.

記憶部112Bは、ストレージ手段であり、例えば、RAM、ROM等のメモリ装置や、ハードディスクのような固定ディスク装置や、フレキシブルディスクや、光ディスク等を用いることができる。記憶部112Bは、パルスカウンタ110で経時的に計測した光量の値を、当該光量を計測した時刻(または、光量の計測を開始した時点から当該光量を計測した時点までの経過時間)と対応付けて記憶する。   The storage unit 112B is storage means, and for example, a memory device such as a RAM or a ROM, a fixed disk device such as a hard disk, a flexible disk, an optical disk, or the like can be used. The storage unit 112B associates the light amount value measured over time by the pulse counter 110 with the time when the light amount is measured (or the elapsed time from the time when the light amount measurement is started to the time when the light amount is measured). Remember.

ここで、放射線照射判別システム100は、食品101をアニーリングするための加熱装置をさらに備えてもよい。また、光量の計測精度を高めるために、暗箱102内の温度を制御する温度制御装置や、光電子増倍管102eを冷却する冷却装置(光電子増倍管102eの温度を制御する装置)をさらに備えてもよい。   Here, the radiation irradiation determination system 100 may further include a heating device for annealing the food 101. Further, in order to increase the measurement accuracy of the light amount, a temperature control device for controlling the temperature in the dark box 102 and a cooling device for cooling the photomultiplier tube 102e (device for controlling the temperature of the photomultiplier tube 102e) are further provided. May be.

なお、放射線照射判別システム100で光量の計測を行う際には、放射線を照射した食品から計測した光量が漸次、減衰するという現象を確認できるように、励起光の波長、強度および計測する光量を事前に調節する(最適化する)ことが望ましい。具体的には、予備実験を行うことで、適切な光源(LED)および適切なフィルター(食品から反射した励起光を遮断し且つ食品から放出された発光を選択的に透過するフィルター)を選択し、光源のパルス間隔(発光時間間隔)を事前に調整することが望ましい。   When measuring the amount of light by the radiation irradiation discrimination system 100, the wavelength and intensity of the excitation light and the amount of light to be measured are determined so that the phenomenon that the amount of light measured from the food irradiated with radiation gradually decreases can be confirmed. It is desirable to adjust (optimize) in advance. Specifically, by conducting a preliminary experiment, an appropriate light source (LED) and an appropriate filter (a filter that blocks excitation light reflected from food and selectively transmits light emitted from food) are selected. It is desirable to adjust the pulse interval (light emission time interval) of the light source in advance.

以上の構成において、本実施の形態における放射線照射判別システム100を用いて食品への放射線照射の有無を判別する工程を、図3を参照して説明する。図3は、放射線照射判別システム100を用いて食品101への放射線照射の有無を判別する工程の一例を示す図である。   In the above configuration, a process of determining the presence or absence of radiation irradiation on food using the radiation irradiation determination system 100 in the present embodiment will be described with reference to FIG. FIG. 3 is a diagram illustrating an example of a process of determining whether or not the food 101 is irradiated with radiation using the radiation irradiation determination system 100.

〔工程1:食品設置工程〕検査対象の食品101を、暗箱102a内の試料皿102bに置く。
〔工程2:高圧電源起動工程〕高圧電源106を起動する。
〔工程3:励起光照射工程〕放射線照射判別装置112は、照射条件決定部112A1で、励起光の照射条件を決定し、決定した励起光の照射条件をパルス発生装置104に伝送する。そして、パルス発生装置104は、放射線照射判別装置112から伝送された励起光の照射条件に基づいてLED102cを起動する。そして、LED102cは食品101に対して励起光を照射する。
[Step 1: Food Installation Step] The food 101 to be inspected is placed on the sample dish 102b in the dark box 102a.
[Step 2: High-voltage power source starting step] The high-voltage power source 106 is started.
[Step 3: Excitation Light Irradiation Step] In the irradiation condition determination unit 112, the irradiation condition determination unit 112A1 determines the irradiation condition of the excitation light, and transmits the determined irradiation condition of the excitation light to the pulse generator 104. Then, the pulse generator 104 activates the LED 102c based on the irradiation condition of the excitation light transmitted from the radiation irradiation determination device 112. The LED 102c irradiates the food 101 with excitation light.

〔工程4:光量計測工程〕フィルター102dは、励起光が照射された食品101から放出された発光を選択的に透過し、光電子増倍管102eは、フィルター102dが透過した発光の光子を検出する。
〔工程5:光量計測工程〕光電子増倍管102eは、検出した光子を増幅して電気信号(アナログ信号)に変換する。
〔工程6:光量計測工程〕フォトンカウンティングユニット108は、光電子増倍管102eから出力されたアナログ信号を所定の閾値を考慮してデジタル信号に変換する。そして、パルスカウンタ110は、フォトンカウンティングユニット108から出力されたデジタル信号に基づいて光量を経時的に(例えば0.1秒間隔で)計測し、計測した光量の値を、当該光量を計測した時刻(または、光量の計測を開始した時点から当該光量を計測した時点までの経過時間)と対応付けて放射線照射判別装置112へ伝送する。ここで、放射線が照射された食品とそうでない食品を対象として光量を経時的に計測した結果の一例を図4に示す。図4は、放射線が照射された食品とそうでない食品を対象として光量を経時的に計測した結果の一例を示す図である。図4に示すように、放射線が照射された食品の場合、計測した光量は、時間の経過と共に漸次、減衰している(図4の右のグラフ)。一方、放射線が照射されてない食品の場合、計測した光量は、時間が経過しても減衰せず、時間帯によっては僅かに増加する(図4の左のグラフ)。
[Step 4: Light quantity measurement step] The filter 102d selectively transmits the light emitted from the food 101 irradiated with the excitation light, and the photomultiplier tube 102e detects the photons of the light emitted through the filter 102d. .
[Step 5: Light quantity measurement step] The photomultiplier tube 102e amplifies the detected photons and converts them into electrical signals (analog signals).
[Step 6: Light quantity measurement step] The photon counting unit 108 converts the analog signal output from the photomultiplier tube 102e into a digital signal in consideration of a predetermined threshold. Then, the pulse counter 110 measures the amount of light over time based on the digital signal output from the photon counting unit 108 (for example, at intervals of 0.1 second), and the measured light amount value is the time when the amount of light is measured. (Or the elapsed time from the time when the measurement of the light quantity is started to the time when the quantity of light is measured) is transmitted to the radiation irradiation determination device 112 in association with it. Here, FIG. 4 shows an example of the result of measuring the light quantity over time for foods irradiated with radiation and foods that are not. FIG. 4 is a diagram illustrating an example of a result of measuring the light amount over time for foods irradiated with radiation and foods that are not. As shown in FIG. 4, in the case of food irradiated with radiation, the measured light quantity is gradually attenuated over time (the right graph in FIG. 4). On the other hand, in the case of foods that have not been irradiated with radiation, the measured light quantity does not attenuate over time, and increases slightly depending on the time zone (left graph in FIG. 4).

〔工程7:放射線照射判別工程〕放射線照射判別装置112は、制御部112Aで、パルスカウンタ110から伝送された光量の値および当該光量の計測時刻を相互に関連付けて記憶部112Bの所定の記憶領域に格納する。そして、放射線照射判別装置112は、放射線照射判別部112A2で、パルスカウンタ110から伝送された光量の値に基づいて当該光量の変化量および/または変化率を算出し、算出した変化量および/または変化率に基づいて食品101への放射線照射の有無を判別し、判別結果を記憶部112Bの所定の記憶領域に格納する。 [Step 7: Radiation Irradiation Discrimination Step] In the radiation irradiation discrimination device 112, the control unit 112A correlates the light quantity value transmitted from the pulse counter 110 and the measurement time of the light quantity with each other in a predetermined storage area of the storage unit 112B. To store. The radiation irradiation determination device 112 calculates a change amount and / or a change rate of the light amount based on the value of the light amount transmitted from the pulse counter 110 in the radiation irradiation determination unit 112A2, and calculates the calculated change amount and / or Based on the change rate, the presence or absence of radiation irradiation to the food 101 is determined, and the determination result is stored in a predetermined storage area of the storage unit 112B.

ここで、工程7において、放射線照射判別部112A2は、光量取得部112A21で、パルスカウンタ110から伝送された光量の値から、第1の時間帯(例えば計測初期や計測開始直後の時間帯)に計測した第1の光量(例えば5つの光量)および第2の時間帯(例えば計測末期や計測終了間際の時間帯)に計測した第2の光量(例えば5つの光量)を取得し、光量差基準判別部112A22で、光量取得部112A21で取得した第1の光量および第2の光量に基づいて当該第1の光量の平均値と当該第2の光量の平均値との差を算出し、算出した平均値の差に基づいて食品101への放射線照射の有無を判別してもよい。また、放射線照射判別部112A2は、回帰式作成部112A23で、パルスカウンタ110から伝送された光量の値に基づいて、光量と時間との関係を示す回帰式を作成し、回帰式基準判別部112A24で、回帰式作成部112A23で作成した回帰式に基づいて当該回帰式の傾きの値(回帰式の一次微分値)を算出し、算出した傾きの値に基づいて食品101への放射線照射の有無を判別してもよい。具体的には、算出した傾きの値が負であれば“照射”と判別し、算出した傾きの値が0または正であれば“非照射”と判別してもよい。   Here, in step 7, the radiation irradiation determination unit 112A2 uses the light amount acquisition unit 112A21 to calculate a first time zone (for example, at the beginning of measurement or immediately after the start of measurement) from the light amount value transmitted from the pulse counter 110. The measured first light amount (for example, five light amounts) and the second light amount (for example, five light amounts) measured in the second time zone (for example, the end of measurement or just before the end of measurement) are obtained, and the light amount difference reference The determination unit 112A22 calculates the difference between the average value of the first light amount and the average value of the second light amount based on the first light amount and the second light amount acquired by the light amount acquisition unit 112A21. The presence or absence of radiation irradiation on the food 101 may be determined based on the difference between the average values. Further, the radiation irradiation determination unit 112A2 generates a regression equation indicating the relationship between the light amount and the time based on the light amount value transmitted from the pulse counter 110 in the regression equation creation unit 112A23, and the regression equation reference determination unit 112A24. Then, based on the regression formula created by the regression formula creation unit 112A23, the value of the slope of the regression formula (first derivative value of the regression formula) is calculated, and the presence or absence of radiation irradiation to the food 101 based on the calculated slope value May be determined. Specifically, “irradiation” may be determined if the calculated slope value is negative, and “non-irradiation” may be determined if the calculated slope value is 0 or positive.

以上説明したように、放射線照射判別システム100は、励起光を照射した食品101から放出された発光の光量を経時的に計測し、計測した光量の変化量に基づいて食品101への放射線照射の有無を判別する。具体的には、放射線照射判別システム100は、食品101に対して励起光を照射し、励起光を照射した食品101から放出された発光を、フィルター102dを介して光電子増倍管102eで検出し、検出した発光の光量を経時的に計測し、経時的に計測した光量に基づいて当該光量の変化量および/または変化率を算出し、算出した変化量および/または変化率に基づいて食品101への放射線照射の有無を判別する。より具体的には、パルス発生装置104で制御されたLED102cから食品101に対して励起光を照射し、励起光を照射した食品101から放出された発光を、フィルター102dを介して光電子増倍管102eで検出し、検出した発光の光量を、フォトンカウンティングユニット108を介してパルスカウンタ110で経時的に計測し、放射線照射判別装置112で、経時的に計測した光量に基づいて当該光量の変化量および/または変化率を算出し、算出した変化量および/または変化率に基づいて食品101への放射線照射の有無を判別する。   As described above, the radiation irradiation determination system 100 measures the amount of light emitted from the food 101 that has been irradiated with the excitation light over time, and determines the amount of radiation irradiation to the food 101 based on the amount of change in the measured light amount. Determine presence or absence. Specifically, the radiation irradiation discrimination system 100 irradiates the food 101 with excitation light, and detects light emitted from the food 101 irradiated with the excitation light with a photomultiplier tube 102e via a filter 102d. The amount of detected light emission is measured over time, the amount of change and / or rate of change of the amount of light is calculated based on the amount of light measured over time, and the food 101 is calculated based on the calculated amount of change and / or rate of change. The presence or absence of radiation irradiation is determined. More specifically, the food product 101 is irradiated with excitation light from the LED 102c controlled by the pulse generator 104, and the light emitted from the food product 101 irradiated with the excitation light is emitted through a filter 102d to a photomultiplier tube. The amount of emitted light detected by 102e is measured over time by the pulse counter 110 via the photon counting unit 108, and the amount of change in the amount of light based on the amount of light measured over time by the radiation irradiation discrimination device 112. And / or change rate is calculated and the presence or absence of the radiation irradiation to the foodstuff 101 is discriminate | determined based on the calculated change amount and / or change rate.

これにより、実験者への作業負担を軽減し、食品101への放射線照射の有無を客観的に且つ精度よく判別することができる。具体的には、本システムでは、外的基準値を用いないので、食品101のバックグラウンド値や食品101の発光素体含有量に左右されずに、食品101への放射線照射の有無を客観的に且つ精度よく判別することができる。ここで、TL法では、食品そのものを用いることができないため食品から発光素体を分離精製する前処理が必要であるが、当該前処理には最低1日の時間を要し、さらに前処理は同時に1から数検体しか行うことができないため、検査時間の観点では必ずしも満足できるものではなかった。ところが、本システムは、食品101の前処理が不要であるので、光量の計測から放射線照射の有無の判別までの処理を迅速に行うことができ、その結果、検査時間を短縮することができる。また、TL法では、光電子増倍管を冷却する冷却装置や発光素体を加熱する加熱装置が必要であるため、実施に要する費用が高額になってしまう。ところが、本システムは、これら各装置が不要であるので、光量の計測から放射線照射の有無の判別までの処理を安価な装置構成で実現することができる。   As a result, the burden on the experimenter can be reduced, and the presence or absence of radiation irradiation on the food 101 can be objectively and accurately determined. Specifically, in this system, since no external reference value is used, the presence or absence of radiation irradiation to the food 101 is objectively determined regardless of the background value of the food 101 or the luminous element content of the food 101. And accurately discriminating. Here, in the TL method, since the food itself cannot be used, a pretreatment for separating and purifying the luminescent element from the food is necessary. However, the pretreatment requires a time of at least one day. Since only one to several samples can be performed at the same time, it was not always satisfactory from the viewpoint of examination time. However, since this system does not require pre-processing of the food product 101, the processing from the measurement of the amount of light to the determination of the presence or absence of radiation irradiation can be performed quickly, and as a result, the inspection time can be shortened. In addition, the TL method requires a cooling device that cools the photomultiplier tube and a heating device that heats the light-emitting element body, which increases the cost required for implementation. However, since each of these devices is unnecessary in this system, processing from the measurement of the light amount to the determination of the presence / absence of radiation irradiation can be realized with an inexpensive device configuration.

また、放射線照射の判別では、経時的に計測した光量から、第1の時間帯(例えば計測初期や計測開始直後の時間帯)に計測した第1の光量および第2の時間帯(例えば計測末期や計測終了間際の時間帯)に計測した第2の光量を取得し、取得した第1の光量および第2の光量に基づいて当該第1の光量の平均値と当該第2の光量の平均値との差を算出し、算出した平均値の差に基づいて食品101への放射線照射の有無を判別してもよい。これにより、容易な計算で、食品101への放射線照射の有無を客観的に且つ精度よく判別することができる。   In the determination of radiation irradiation, the first light amount and the second time zone (for example, the end of measurement) measured in the first time period (for example, the initial period of measurement or the time period immediately after the start of measurement) from the light amount measured over time. And the second light quantity measured at the time immediately before the measurement), and the average value of the first light quantity and the average value of the second light quantity based on the acquired first light quantity and second light quantity. And the presence or absence of radiation irradiation to the food 101 may be determined based on the calculated difference between the average values. Thereby, the presence or absence of radiation irradiation to the food 101 can be objectively and accurately determined with easy calculation.

また、放射線照射の判別では、経時的に計測した光量に基づいて、光量と時間との関係を示す回帰式を作成し、作成した回帰式に基づいて当該回帰式の傾きの値を算出し、算出した傾きの値に基づいて食品101への放射線照射の有無を判別してもよい。これにより、放射線を照射した食品で確認された、光量が経時的に減衰するという現象を数学的に表すことで、食品101への放射線照射の有無を客観的に且つ精度よく判別することができる。   In addition, in the discrimination of radiation irradiation, based on the light quantity measured over time, create a regression equation showing the relationship between the light quantity and time, calculate the slope value of the regression equation based on the created regression equation, The presence or absence of radiation irradiation to the food 101 may be determined based on the calculated value of the inclination. Thereby, the presence or absence of radiation irradiation to the food 101 can be objectively and accurately determined by mathematically expressing the phenomenon that the amount of light attenuated with time, which is confirmed in the food irradiated with radiation. .

また、励起光の照射において、食品101に対してLED102cで励起光を照射するので、励起光を照射する際のパルス間隔(発光時間間隔)の調整が容易である。   Further, in the excitation light irradiation, since the food 101 is irradiated with the excitation light by the LED 102c, adjustment of the pulse interval (light emission time interval) when irradiating the excitation light is easy.

粉末青汁を検査対象として、上述した放射線照射判別システム100で光量を経時的に計測した結果について、図5を参照して説明する。   With reference to FIG. 5, the results of measuring the amount of light over time with the above-described radiation irradiation discrimination system 100 using powdered green juice as an inspection target will be described.

まず、検査対象となる市販の粉末青汁に放射線が照射されてないことをTL法(EN 1788−2001)で確認した。そして、アルミホイルで遮光した状態で粉末青汁へ放射線を室温で照射した。なお、照射条件は、線源が都立産業技術研究所に在る185TBqコバルト60で、線量が0.49kGy〜30kGy、という条件である。照射してから1週間後の粉末青汁の光量を、上述した放射線照射判別システム100で経時的に計測した。計測結果を図5に示す。   First, it was confirmed by a TL method (EN 1788-2001) that a commercially available powdered green juice to be inspected was not irradiated with radiation. The powdered green juice was irradiated with radiation at room temperature while being shielded from light with aluminum foil. In addition, irradiation conditions are conditions that a radiation source is 185TBq cobalt 60 in Metropolitan Industrial Technology Research Institute, and a dose is 0.49 kGy-30 kGy. The amount of powdered green juice one week after the irradiation was measured over time by the radiation irradiation discrimination system 100 described above. The measurement results are shown in FIG.

図5は、照射してから1週間後の粉末青汁の光量を放射線照射判別システム100で経時的に計測した際の計測結果を示す図である。図5に示すように、0.49kGyから30kGyの線量の放射線を照射した全ての粉末青汁において、光量が時間の経過と共に減衰した。一方、放射線を照射してない粉末青汁においては、光量が時間の経過と共に減衰することは無く、僅かに増加した。照射する放射線の線量が増加するにつれて、計測初期における光量も増加する傾向が認められた。ただし、照射する放射線の線量が5kGy以上になると、計測初期における光量の増加は飽和する傾向が認められた。   FIG. 5 is a diagram showing a measurement result when the light quantity of powdered green juice one week after irradiation is measured with the radiation irradiation discrimination system 100 over time. As shown in FIG. 5, in all powdered green juices irradiated with radiation having a dose of 0.49 kGy to 30 kGy, the light intensity was attenuated with the passage of time. On the other hand, in the powdered green juice not irradiated with radiation, the light amount did not attenuate with the passage of time, but increased slightly. As the radiation dose increased, the amount of light at the beginning of the measurement tended to increase. However, when the dose of radiation to be irradiated was 5 kGy or more, the increase in the amount of light at the beginning of the measurement tended to be saturated.

以上、放射線照射判別システム100を用いて光量を経時的に計測した結果、0.49kGy以上の線量の放射線が照射された、照射してから1週間後の粉末青汁であれば、光量の変化量や変化率(具体的には減少量や減少率)に基づいて照射・非照射の判別が可能である。また、計測初期における光量は、照射する放射線の線量に依存する傾向が見られた。換言すると、計測初期における光量の線量依存性が確認された。ただし、照射する放射線の線量が5kGy以上になると、計測初期における光量は、照射する放射線の線量に依存しなくなる傾向が見られた。換言すると、照射する放射線の線量が5kGy以上になると、計測初期における光量の線量依存性が飽和傾向になる(弱まる)ことが確認された。   As described above, as a result of measuring the amount of light with time using the radiation irradiation discrimination system 100, if the powder green juice is one week after the irradiation, the dose of radiation of 0.49 kGy or more has been irradiated. Irradiation / non-irradiation can be determined based on the amount and rate of change (specifically, the amount of decrease or rate of decrease). In addition, the amount of light at the beginning of the measurement tended to depend on the radiation dose. In other words, the dose dependency of the light quantity in the initial measurement was confirmed. However, when the dose of radiation to be irradiated became 5 kGy or more, the light quantity at the initial stage of the measurement tended not to depend on the dose of radiation to be irradiated. In other words, it has been confirmed that when the dose of radiation to be irradiated is 5 kGy or more, the dose dependency of the light quantity in the initial measurement tends to be saturated (weakened).

粉末青汁の他、乾燥ネギ、唐辛子(トウガラシ)を検査対象として、上述した放射線照射判別システム100で光量を経時的に計測した結果について、図6および図7を参照して説明する。   In addition to powdered green juice, the results of measuring the amount of light over time using the above-described radiation irradiation discrimination system 100 with dry leek and chili pepper as inspection targets will be described with reference to FIGS. 6 and 7.

まず、検査対象となる2種類の市販の粉末青汁(粉末青汁A、粉末青汁B)、市販の乾燥ネギ、市販のトウガラシのそれぞれに放射線が照射されてないことをTL法(EN 1788−2001)で確認した。なお、TL測定時に分離できた鉱物量は、粉末青汁Aが23mg/g、粉末青汁Bが1.3mg/g、トウガラシが0.07mg/g、乾燥ネギが0.008mg/gであった。そして、アルミホイルで遮光した状態で各検査対象へ放射線を室温で照射した。なお、照射条件は、線源が都立産業技術研究所に在る185TBqコバルト60で、線量が4.6kGy、という条件である。照射後の各検査対象は25℃の恒温槽で7日間保存した。照射してから7日後の各検査対象の光量を、上述した放射線照射判別システム100で経時的に計測した。計測結果を図6に示す。また、非照射の各検査対象の光量も、上述した放射線照射判別システム100で経時的に計測した。計測結果を図7に示す。   First, the TL method (EN 1788) indicates that no radiation is irradiated to each of two types of commercially available powdered green juice (powdered green juice A, powdered green juice B), commercially available dried leek, and commercially available pepper. -2001). The amount of mineral that could be separated during TL measurement was 23 mg / g for powdered green juice A, 1.3 mg / g for powdered green juice B, 0.07 mg / g for pepper, and 0.008 mg / g for dried green onions. It was. And each radiation object was irradiated at room temperature in the state shielded with aluminum foil. In addition, irradiation conditions are conditions that a radiation source is 185TBq cobalt 60 in Metropolitan Industrial Technology Research Institute, and a dose is 4.6 kGy. Each inspection object after irradiation was stored for 7 days in a thermostatic bath at 25 ° C. The amount of light of each inspection object 7 days after irradiation was measured over time by the radiation irradiation discrimination system 100 described above. The measurement results are shown in FIG. Moreover, the light quantity of each non-irradiated inspection object was also measured over time by the radiation irradiation discrimination system 100 described above. The measurement results are shown in FIG.

図6は、照射してから7日後の各検査対象の光量を放射線照射判別システム100で経時的に計測した際の計測結果を示す図である。図7は、非照射の各検査対象の光量を放射線照射判別システム100で経時的に計測した際の計測結果を示す図である。図6に示すように、放射線を照射した全ての検査対象において、計測初期における光量はそれぞれ異なるものの、光量は時間の経過と共に減衰した。特に、粉末青汁Aにおいて、計測初期における光量が高かった。一方、図7に示すように、非照射の全ての検査対象においては、光量が時間の経過と共に減衰することは無く、僅かに増加した。非照射の検査対象においても、計測初期における光量はそれぞれ異なった。   FIG. 6 is a diagram illustrating a measurement result when the amount of light of each inspection object 7 days after irradiation is measured over time by the radiation irradiation determination system 100. FIG. 7 is a diagram illustrating a measurement result when the amount of light of each non-irradiated inspection target is measured over time by the radiation irradiation determination system 100. As shown in FIG. 6, in all the inspection objects irradiated with radiation, the light amount at the initial measurement was different, but the light amount was attenuated as time passed. In particular, in powdered green juice A, the amount of light in the initial measurement was high. On the other hand, as shown in FIG. 7, in all non-irradiated inspection objects, the light amount did not attenuate with the passage of time, but increased slightly. Even in the non-irradiated inspection object, the amount of light at the initial measurement was different.

以上、放射線照射判別システム100を用いて光量を経時的に計測した結果、4.6kGyの線量の放射線が照射された、照射してから7日後の粉末青汁、乾燥ネギ、トウガラシであれば、光量の変化量や変化率(具体的には減少量や減少率)に基づいて照射・非照射の判別が可能である。このことから、放射線照射判別システム100を用いれば、多種類の乾燥粉末食品に対して照射・非照射の判別が可能であることが示唆された。なお、図6に示すように、粉末青汁Aと粉末青汁Bとの間で、計測初期の光量が著しく異なっていた。これは、それぞれに含まれる鉱物量の違いに因るものと考えられる。つまり、粉末青汁Aにおいて計測初期における光量が高かったのは、鉱物量が多かったためと推定される。   As described above, as a result of measuring the amount of light over time using the radiation irradiation discrimination system 100, a powder of green juice, dried green onion, and chili pepper 7 days after irradiation, irradiated with a dose of 4.6 kGy, Irradiation / non-irradiation can be discriminated based on the change amount and change rate of the light amount (specifically, the decrease amount and the decrease rate). From this, it was suggested that if the radiation irradiation discrimination system 100 is used, it is possible to discriminate between irradiation and non-irradiation for many types of dry powder foods. In addition, as shown in FIG. 6, the light quantity at the initial stage of measurement was significantly different between powdered green juice A and powdered green juice B. This is thought to be due to the difference in the amount of minerals contained in each. That is, it is estimated that the amount of light in the initial stage of measurement in powdered green juice A was high because the amount of minerals was large.

トウガラシを検査対象として、上述した放射線照射判別システム100で光量を経時的に計測した結果について、図8を参照して説明する。   With reference to FIG. 8, the results of measuring the amount of light over time with the above-described radiation irradiation discrimination system 100 using pepper as an inspection object will be described.

まず、検査対象となる市販のトウガラシに放射線が照射されてないことをTL法(EN 1788−2001)で確認した。そして、アルミホイルで遮光した状態でトウガラシへ放射線を室温で照射した。なお、照射条件は、線源が都立産業技術研究所に在る185TBqコバルト60で、線量が10kGy、という条件である。照射後のトウガラシを2群に分け、1つの群を25℃の恒温槽で7日間保存し、残りの群を25℃の恒温槽で170日間保存した。照射してから7日後のトウガラシの光量および照射してから170日後のトウガラシの光量を、上述した放射線照射判別システム100で経時的に計測した。計測結果を図8に示す。   First, it was confirmed by a TL method (EN 1788-2001) that a commercially available pepper to be inspected was not irradiated with radiation. And the radiation was irradiated to the red pepper at room temperature in the state shielded with aluminum foil. In addition, irradiation conditions are conditions that a radiation source is 185TBq cobalt 60 in Metropolitan Industrial Technology Research Institute, and a dose is 10 kGy. After the irradiation, the pepper was divided into two groups, one group was stored in a thermostatic bath at 25 ° C. for 7 days, and the remaining group was stored in a thermostatic bath at 25 ° C. for 170 days. The amount of red pepper 7 days after the irradiation and the amount of red pepper 170 days after the irradiation were measured over time by the radiation irradiation discrimination system 100 described above. The measurement results are shown in FIG.

図8は、照射してから7日後のトウガラシおよび照射してから170日後のトウガラシの光量を放射線照射判別システム100で経時的に計測した際の計測結果を示す図である。図8に示すように、照射してから7日後のトウガラシおよび照射してから170日後のトウガラシにおいて、光量が時間の経過と共に減衰した。照射してから170日後のトウガラシの計測初期における光量は、照射してから7日後のトウガラシの計測初期における光量に比べて減少していた。   FIG. 8 is a diagram showing measurement results when the irradiation intensity of the red pepper 7 days after the irradiation and the amount of the red pepper 170 days after the irradiation are measured over time by the radiation irradiation discrimination system 100. As shown in FIG. 8, the amount of light attenuated with time in the red pepper 7 days after the irradiation and the red pepper 170 days after the irradiation. The amount of light in the initial measurement of red pepper 170 days after irradiation was reduced compared to the amount of light in the initial measurement of red pepper 7 days after irradiation.

以上、放射線照射判別システム100を用いて光量を経時的に計測した結果、10kGyの線量の放射線が照射された、照射してから170日後までのトウガラシであれば、光量の変化量や変化率(具体的には減少量や減少率)に基づいて照射・非照射の判別が可能である。また、図8に示すように、貯蔵期間の異なるトウガラシにおいて、計測初期の光量が異なっていた。これは、貯蔵期間(照射後の経過時間)の長さの違いに因るものであると考えられる。   As described above, as a result of measuring the amount of light over time using the radiation irradiation discrimination system 100, if the amount of radiation is 10 kGy and the amount of red pepper is 170 days after irradiation, the amount of change or rate of change ( Specifically, it is possible to determine irradiation / non-irradiation based on a reduction amount and a reduction rate. Moreover, as shown in FIG. 8, the amount of light at the initial measurement was different in the peppers with different storage periods. This is considered to be due to the difference in the length of the storage period (elapsed time after irradiation).

アサリを検査対象として、上述した放射線照射判別システム100で光量を経時的に計測した結果について、図9を参照して説明する。   The result of measuring the light quantity over time by the above-described radiation irradiation discrimination system 100 with the clam as the inspection object will be described with reference to FIG.

まず、検査対象となる市販のアサリをポリエチレン遠心チューブに入れ、放射線を室温で照射した。なお、照射条件は、線源が都立産業技術研究所に在る185TBqコバルト60で、線量が0〜5.0kGy、という条件である。照射後のアサリは−18℃の冷凍庫で10日間保存し、10日後に、アサリから身を取り出して貝殻のみの状態にした。照射してから10日間後のアサリの貝殻(3個)の外側を、励起光が当るように上に向けて試料皿102bに置き、当該アサリの貝殻(外側)の光量を、上述した放射線照射判別システム100で経時的に計測した。計測結果を図9に示す。なお、計測結果は省略するが、アサリの貝殻(内側)の光量およびアサリの消化管内容物の光量についても、同様に、上述した放射線照射判別システム100で経時的に計測した。   First, a commercially available clam to be inspected was placed in a polyethylene centrifuge tube and irradiated with radiation at room temperature. In addition, irradiation conditions are conditions that a radiation source is 185TBq cobalt 60 in Metropolitan Industrial Technology Research Institute, and a dose is 0-5.0 kGy. The clams after irradiation were stored in a freezer at −18 ° C. for 10 days, and after 10 days, the clams were taken out and made into shells only. 10 days after irradiation, the clams shells (3) are placed outside on the sample plate 102b so that the excitation light strikes them, and the amount of the clams shells (outside) Measurement was performed with the discrimination system 100 over time. The measurement results are shown in FIG. Although the measurement results are omitted, the light amount of the clam shell (inner side) and the light amount of the clam digestive tract contents were also measured over time by the radiation irradiation discrimination system 100 described above.

図9は、照射してから10日後のアサリの貝殻(外側)の光量を放射線照射判別システム100で経時的に計測した際の計測結果を示す図である。図9に示すように、0.49kGyから5.0kGyの線量の放射線を照射した全てのアサリの貝殻(外側)において、光量が時間の経過と共に減衰した。実施例1と同様に、照射する放射線の線量が増加するにつれて、計測初期における光量も増加する傾向が認められた。なお、アサリの貝殻(内側)およびアサリの消化管内容物を検査対象とした場合においても、アサリの貝殻(外側)を検査対象とした場合と同様の計測結果であった。一方、放射線を照射してないアサリの貝殻(外側)においては、光量が時間の経過と共に僅かに増加した。   FIG. 9 is a diagram showing a measurement result when the light amount of the clam shell (outside) 10 days after irradiation is measured with the radiation irradiation discrimination system 100 over time. As shown in FIG. 9, the amount of light attenuated over time in all clam shells (outside) irradiated with a dose of 0.49 kGy to 5.0 kGy. Similar to Example 1, it was observed that the amount of light in the initial measurement also increased as the dose of radiation applied increased. In addition, when the clam shell (inside) and the clam digestive tract contents were examined, the measurement results were the same as when the clam shell (outside) was examined. On the other hand, in the clam shell (outside) that had not been irradiated with radiation, the amount of light increased slightly over time.

以上、放射線照射判別システム100を用いて光量を経時的に計測した結果、0.49kGy以上の線量の放射線が照射された、照射してから10日後のアサリの貝殻やアサリの消化管内容物であれば、光量の変化量や変化率(具体的には減少量や減少率)に基づいて照射・非照射の判別が可能である。本実施例の検査対象であるアサリの貝殻は、TL法では光量を計測できずTL法の検査対象外であったので、本発明の有用性は非常に高い。   As described above, as a result of measuring the amount of light with time using the radiation irradiation discrimination system 100, the clam shell and clam digestive tract contents 10 days after the irradiation were irradiated with a dose of 0.49 kGy or more. If so, irradiation / non-irradiation can be discriminated based on the amount of light change and the rate of change (specifically, the amount of decrease and the rate of decrease). The clam shell which is the inspection target of the present example was not able to measure the amount of light by the TL method and was outside the inspection target of the TL method, so the usefulness of the present invention is very high.

馬鈴薯を検査対象として、上述した放射線照射判別システム100で光量を経時的に計測した結果について、図10を参照して説明する。   With reference to FIG. 10, the results of measuring the amount of light over time by the above-described radiation irradiation discrimination system 100 using potato as an inspection object will be described.

まず、検査対象の市販の馬鈴薯へ放射線を室温で照射した。なお、照射条件は、線源が(独)食品総合研究所に在る54TBqコバルト60で、線量が150Gy(線量率12.4Gy/分)、という条件である。照射後の馬鈴薯を計測可能な適当な大きさに切り出し、土壌が付着している側(皮側)を、励起光が当るように上に向けて試料皿102bに置き、当該切り出した馬鈴薯の皮側の光量を、上述した放射線照射判別システム100で経時的に計測した。計測結果を図10に示す。   First, a commercially available potato to be inspected was irradiated with radiation at room temperature. The irradiation condition is a condition that the radiation source is 54 TBq cobalt 60 located in the National Food Research Institute, and the dose is 150 Gy (dose rate 12.4 Gy / min). Cut the potato after irradiation into a suitable size that can be measured, place the soil-attached side (skin side) upward on the sample dish 102b so that it is exposed to excitation light, and cut the potato skin The amount of light on the side was measured over time by the radiation irradiation discrimination system 100 described above. The measurement results are shown in FIG.

図10は、照射後の馬鈴薯の皮側の光量を放射線照射判別システム100で経時的に計測した際の計測結果を示す図である。図10に示すように、150Gyの線量の放射線を照射した馬鈴薯の皮側において、光量が時間の経過と共に減衰した。一方、放射線を照射してない馬鈴薯の皮側においては、光量が時間の経過と共に減衰することは無く、僅かに増加した。   FIG. 10 is a diagram illustrating a measurement result when the amount of light on the skin side of the potato after irradiation is measured over time by the radiation irradiation determination system 100. As shown in FIG. 10, the amount of light attenuated with time on the skin side of the potato irradiated with 150 Gy of radiation. On the other hand, on the skin side of the potato that was not irradiated with radiation, the amount of light did not decay with time, but increased slightly.

以上、放射線照射判別システム100を用いて光量を経時的に計測した結果、150Gyの線量の放射線が照射された馬鈴薯の皮側(土壌が付着している側)であれば、光量の変化量や変化率(具体的には減少量や減少率)に基づいて照射・非照射の判別が可能である。このことから、土壌が付着した青果物であれば、照射する放射線の線量が少なくても、光量の変化量や変化率(具体的には減少量や減少率)に基づいて照射・非照射の判別が可能であると考えられる。   As described above, as a result of measuring the amount of light over time using the radiation irradiation discrimination system 100, if the skin side of potato irradiated with 150 Gy of radiation (the side to which the soil is attached), the amount of change in the amount of light, Irradiation / non-irradiation can be determined based on the rate of change (specifically, the amount of decrease or the rate of decrease). From this, for fruits and vegetables with soil attached, even if the radiation dose to irradiate is small, discrimination between irradiation and non-irradiation based on the amount of light change and rate of change (specifically, the amount of decrease and rate of decrease) Is considered possible.

つぎに、生薬であるウコン、乾燥野菜である乾燥ネギと乾燥エシャロットおよび香辛料である乾燥ジンジャーを検査対象として、以下の(1)〜(3)の方法で放射線照射の有無をそれぞれ判別した。   Next, the presence or absence of radiation irradiation was determined by the following methods (1) to (3), using turmeric as a crude drug, dried leeks and dried shallot as dried vegetables, and dried ginger as a spice as inspection targets.

(1)TL法(EN 1788−2001)に従って、検査対象から分離した鉱物について、熱ルミネッセンスの測定を行い、TL比を算出した。“EN 1788−2001”に基づいて、TL比が0.1未満であれば“非照射”と判定し、TL比が0.1以上であれば“照射”と判定した。
(2)PSL法に従って、TL法で行う前処理を施していない検査対象について、発光量の積算値を算出した。PSL測定装置(パルスドPSLスクリーニングシステム:PPSL SURRC社製)を用いてPSL測定を実施した。具体的には、PSL測定装置に付属された試料皿に検査対象を置き、当該試料皿をPSL測定装置に設置した。そして、PSL測定装置に付属された光源で検査対象を照射しながら、1秒間隔で60秒間、発光量を計測し、その積算値を算出した。Sandersonらが、香辛料、乾燥野菜を対象としたときに採用した、照射の有無を判別する際の閾値である“T1(700カウント/分)”および“T2(5000カウント/分)”(EN 13751−2002)を基準として、検査対象の1分あたりのカウント数(発光カウント数)がT1未満であれば“非照射”と判定し、検査対象の1分あたりのカウント数(発光カウント数)がT2以上であれば“照射”と判定した。さらに、検査対象の1分あたりのカウント数(発光カウント数)がT1以上T2未満であれば“中間(Intermediate:照射の可能性は排除できないが明確な判定ができない領域(“照射”、“非照射”の区別が明確につけられない領域))”と判定した。
(3)本発明にかかる放射線照射判別システム100を用いて、検査対象の光量を経時的に計測し、計測した光量に基づいて、対数回帰を用いた回帰式“y=a×Ln(x)+b”(x:計測開始からの経過時間(秒)、y:光量(発光カウント))を作成した。当該回帰式の係数“a”が0または正であれば“非照射”と判別し、当該回帰式の係数“a”が負であれば“照射”と判別した。
(1) According to the TL method (EN 1788-2001), thermoluminescence was measured for the mineral separated from the test object, and the TL ratio was calculated. Based on “EN 1788-2001”, “non-irradiation” was determined if the TL ratio was less than 0.1, and “irradiation” was determined if the TL ratio was 0.1 or more.
(2) In accordance with the PSL method, the integrated value of the light emission amount was calculated for the inspection object that was not subjected to the pretreatment performed by the TL method. PSL measurement was performed using a PSL measurement device (pulsed PSL screening system: manufactured by PPSL SURRC). Specifically, the inspection object was placed on a sample pan attached to the PSL measuring device, and the sample pan was placed on the PSL measuring device. And while irradiating a test object with the light source attached to the PSL measuring apparatus, the emitted light amount was measured for 60 second at 1 second intervals, and the integrated value was calculated. “T1 (700 counts / minute)” and “T2 (5000 counts / minute)” (EN 13751), which are thresholds used to determine the presence or absence of irradiation, adopted by Sanderson et al. For spices and dried vegetables. -2002) as a reference, if the count number (emission count number) per minute of the inspection object is less than T1, it is determined as “non-irradiation”, and the count number (emission count number) per minute of the inspection object is If T2 or more, it was determined as “irradiation”. Further, if the count number per minute (emission count number) of the inspection target is equal to or greater than T1 and less than T2, “Intermediate: an area that cannot be excluded but cannot be clearly determined (“ irradiation ”,“ non-irradiation ”) It was determined that the area of irradiation was not clearly distinguished))).
(3) Using the radiation irradiation discrimination system 100 according to the present invention, the amount of light to be inspected is measured over time, and a regression equation “y = a × Ln (x) using logarithmic regression based on the measured amount of light. + B ″ (x: elapsed time from the start of measurement (second), y: light intensity (emission count)) was created. When the coefficient “a” of the regression equation is 0 or positive, it is determined as “non-irradiation”, and when the coefficient “a” of the regression equation is negative, it is determined as “irradiation”.

3つの方法を実施した際の計測結果および判定(判別)結果について図11に示す。図11は、3つの方法を実施した際の計測結果および判定(判別)結果を示す図である。図11に示すように、TL法では全ての検査対象を“非照射”と判定した。また、本発明にかかる放射線照射判別システム100でも、判定精度が高いとされるTL法と同様、全ての検査対象を“非照射”と判定した。一方、PSL法を採用したPSL測定装置では、エシャロットとジンジャーを“中間(I)”と判定した。   FIG. 11 shows measurement results and determination (discrimination) results when the three methods are implemented. FIG. 11 is a diagram illustrating measurement results and determination (discrimination) results when the three methods are performed. As shown in FIG. 11, in the TL method, all inspection objects are determined as “non-irradiation”. Moreover, also in the radiation irradiation discrimination system 100 according to the present invention, all inspection objects are determined as “non-irradiation”, as in the TL method, which is considered to have high determination accuracy. On the other hand, in the PSL measuring apparatus employing the PSL method, the shallot and ginger were determined as “intermediate (I)”.

PSL測定装置を用いた場合、非照射の検査対象であっても、“中間(I)”と判定されることが示された。この原因は、その色の違いなどに起因する照射光の反射やノイズの影響に因り、発光カウントがかなり広い範囲となったこと、であると考えられる。なお、ノイズの影響とは、例えば、各測定ポイントの発光量を積算しているため、1つの測定ポイントで大きなノイズが入ると、積算カウントが大きくなってしまうことである。PSL測定装置における検査対象の種類を細分化し、細分化した検査対象ごとに閾値を最適化することで、判定精度が向上する可能性は考えられる。しかし、実際の現場での対応を考えると、多くの種類の検査対象ごとに閾値を最適化することは困難であると思われる。一方、本発明にかかる放射線照射判別システム100は、回帰式の係数“a”の符号に基づいて、閾値のような外的標準値を用いなくても、放射線照射の有無の判別を明確に行うことができた。   When the PSL measuring device was used, it was shown that it was determined as “intermediate (I)” even for non-irradiated inspection objects. The cause of this is considered to be that the emission count is in a considerably wide range due to the reflection of irradiation light and the influence of noise caused by the difference in color. Note that the influence of noise is, for example, that the amount of light emitted at each measurement point is integrated, and if a large noise enters at one measurement point, the integrated count increases. It is conceivable that the determination accuracy can be improved by subdividing the types of inspection objects in the PSL measuring apparatus and optimizing the threshold value for each of the subdivided inspection objects. However, considering the response at the actual site, it seems difficult to optimize the threshold value for each type of inspection object. On the other hand, the radiation irradiation determination system 100 according to the present invention clearly determines the presence or absence of radiation irradiation without using an external standard value such as a threshold based on the sign of the coefficient “a” of the regression equation. I was able to.

パプリカ、パセリを検査対象として、実施例6で用いたPSL測定装置および本発明にかかる放射線照射判別システム100で放射線照射の有無をそれぞれ判別した。   With paprika and parsley as inspection objects, the presence / absence of radiation irradiation was determined by the PSL measurement apparatus used in Example 6 and the radiation irradiation determination system 100 according to the present invention.

まず、2004年10月17日に、検査対象の市販のパプリカおよびパセリへ放射線を室温で照射した。なお、照射条件は、線源が(独)食品総合研究所に在る54TBqコバルト60で、線量が5.0kGyおよび10kGy(線量率12.4Gy/分)、という条件である。照射後のパプリカおよびパセリは6ヶ月間貯蔵した。照射してから6ヶ月後(2005年4月28日)に、実施例6で用いたPSL測定装置および本発明にかかる放射線照射判別システム100で、照射後のパプリカおよびパセリの光量の計測を行った。計測結果を図12および図13に示す。なお、PSL測定装置における判定基準および放射線照射判別システム100における判別方法は実施例6と同様である。   First, on October 17, 2004, commercially available paprika and parsley to be inspected were irradiated with radiation at room temperature. The irradiation condition is a condition that the radiation source is 54TBq cobalt 60 located in the National Food Research Institute, and the dose is 5.0 kGy and 10 kGy (dose rate 12.4 Gy / min). Irradiated paprika and parsley were stored for 6 months. After 6 months of irradiation (April 28, 2005), the PSL measuring apparatus used in Example 6 and the radiation irradiation discrimination system 100 according to the present invention measure the light quantity of the paprika and parsley after irradiation. It was. The measurement results are shown in FIGS. Note that the determination criteria in the PSL measurement apparatus and the determination method in the radiation irradiation determination system 100 are the same as those in the sixth embodiment.

図12は、照射してから6ヵ月後のパプリカの光量を放射線照射判別システム100で経時的に計測した際の計測結果を示す図である。図13は、照射してから6ヵ月後のパセリの光量を放射線照射判別システム100で経時的に計測した際の計測結果を示す図である。図12に示すように、5.0kGyの線量の放射線を照射したパプリカおよび10kGyの線量の放射線を照射したパプリカにおいて、光量が時間の経過と共に減衰した。一方、放射線を照射してないパプリカにおいては、光量の減衰は見られなかった。また、図13に示すように、5.0kGyの線量の放射線を照射したパセリおよび10kGyの線量の放射線を照射したパセリにおいて、光量が時間の経過と共に減衰した。一方、放射線を照射してないパセリにおいては、光量の減衰は見られなかった。   FIG. 12 is a diagram showing a measurement result when the amount of paprika 6 months after the irradiation is measured over time by the radiation irradiation discrimination system 100. FIG. 13 is a diagram illustrating a measurement result when the amount of parsley six months after irradiation is measured over time by the radiation irradiation determination system 100. As shown in FIG. 12, in the paprika irradiated with the radiation of 5.0 kGy and the paprika irradiated with the radiation of 10 kGy, the light amount was attenuated with the passage of time. On the other hand, no attenuation of the amount of light was observed in the paprika not irradiated with radiation. Further, as shown in FIG. 13, in the parsley irradiated with the radiation of 5.0 kGy and the parsley irradiated with the radiation of 10 kGy, the light amount was attenuated with the passage of time. On the other hand, no attenuation of the amount of light was observed in parsley that was not irradiated with radiation.

PSL測定装置および放射線照射判別システム100を実施した際の計測結果および判定(判別)結果について図14に示す。図14は、PSL測定装置および放射線照射判別システム100を実施した際の計測結果および判定(判別)結果を示す図である。図14に示すように、PSL測定装置では、10kGyの線量の放射線が照射されたパプリカおよびパセリを“中間(I)”と判定した。また、5kGyの線量の放射線が照射されたパセリも“中間(I)”と判定した。なお、この原因は、実施例6でも述べたように、採用している閾値にあると考えられる。一方、本発明にかかる放射線照射判別システム100では、放射線を照射した検査対象を“照射”と判別し、放射線を照射してない検査対象を“非照射”と判別した。本システムでは、積算値の大小を判定基準に用いてないので、検査対象への放射線照射の有無を精度よく判別することができた。   FIG. 14 shows measurement results and determination (discrimination) results when the PSL measurement device and the radiation irradiation discrimination system 100 are implemented. FIG. 14 is a diagram illustrating measurement results and determination (discrimination) results when the PSL measurement device and the radiation irradiation discrimination system 100 are implemented. As shown in FIG. 14, in the PSL measuring apparatus, the paprika and parsley irradiated with the radiation of 10 kGy were determined to be “intermediate (I)”. Parsley irradiated with a radiation dose of 5 kGy was also determined as “intermediate (I)”. This cause is considered to be due to the adopted threshold as described in the sixth embodiment. On the other hand, in the radiation irradiation determination system 100 according to the present invention, the inspection target irradiated with radiation is determined as “irradiation”, and the inspection target not irradiated with radiation is determined as “non-irradiation”. In this system, since the magnitude of the integrated value is not used as a criterion, it was possible to accurately determine the presence or absence of radiation irradiation on the inspection target.

以上のように、本発明にかかる放射線照射判別方法および放射線照射判別システムは、食品や生薬などへの放射線照射の有無を判別することができ、行政、監視当局、食品メーカー、流通業者などにおける食品の流通管理に有用である。   As described above, the radiation irradiation determination method and the radiation irradiation determination system according to the present invention can determine the presence or absence of radiation irradiation to foods or herbal medicines, and can be used for food in administrations, monitoring authorities, food manufacturers, distributors, etc. It is useful for distribution management.

放射線照射判別システム100の全体構成の一例を示す図である。It is a figure which shows an example of the whole structure of the radiation irradiation discrimination | determination system. OSL検出ユニット102の構成の一例を示す図である。2 is a diagram illustrating an example of a configuration of an OSL detection unit 102. FIG. 放射線照射判別システム100を用いて食品101への放射線照射の有無を判別する工程の一例を示す図である。It is a figure which shows an example of the process which discriminate | determines the presence or absence of radiation irradiation to the foodstuff 101 using the radiation irradiation discrimination | determination system. 放射線が照射された食品とそうでない食品を対象として光量を経時的に計測した結果の一例を示す図である。It is a figure which shows an example of the result of having measured the light quantity with time with respect to the foodstuff with which the radiation was irradiated, and the foodstuff which is not so. 照射してから1週間後の粉末青汁の光量を放射線照射判別システム100で経時的に計測した際の計測結果を示す図である。It is a figure which shows the measurement result at the time of measuring the light quantity of the powdered green juice one week after irradiation with the radiation irradiation discrimination | determination system 100 with time. 照射してから7日後の各検査対象の光量を放射線照射判別システム100で経時的に計測した際の計測結果を示す図である。It is a figure which shows the measurement result at the time of measuring the light quantity of each test object 7 days after irradiation with the radiation irradiation discrimination | determination system 100 with time. 非照射の各検査対象の光量を放射線照射判別システム100で経時的に計測した際の計測結果を示す図である。It is a figure which shows the measurement result at the time of measuring the light quantity of each non-irradiated test object with the radiation irradiation discrimination | determination system 100 with time. 照射してから7日後のトウガラシおよび照射してから170日後のトウガラシの光量を放射線照射判別システム100で経時的に計測した際の計測結果を示す図である。It is a figure which shows the measurement result at the time of measuring the light quantity of the hot pepper 7 days after irradiation and the amount of red pepper 170 days after irradiation with the radiation irradiation discrimination | determination system 100 with time. 照射してから10日後のアサリの貝殻(外側)の光量を放射線照射判別システム100で経時的に計測した際の計測結果を示す図である。It is a figure which shows the measurement result at the time of measuring the light quantity of the clam shell (outside) 10 days after irradiation with the radiation irradiation discrimination system 100. 照射後の馬鈴薯の皮側の光量を放射線照射判別システム100で経時的に計測した際の計測結果を示す図である。It is a figure which shows the measurement result at the time of measuring the light quantity of the skin side of the potato after irradiation with the radiation irradiation discrimination | determination system 100 with time. 3つの方法を実施した際の計測結果および判定(判別)結果を示す図である。It is a figure which shows the measurement result at the time of implementing three methods, and a determination (discrimination) result. 照射してから6ヵ月後のパプリカの光量を放射線照射判別システム100で経時的に計測した際の計測結果を示す図である。It is a figure which shows the measurement result at the time of measuring the light quantity of the paprika 6 months after irradiation with the radiation irradiation discrimination | determination system 100 with time. 照射してから6ヵ月後のパセリの光量を放射線照射判別システム100で経時的に計測した際の計測結果を示す図である。It is a figure which shows the measurement result at the time of measuring the light quantity of the parsley 6 months after irradiation with the radiation irradiation discrimination | determination system 100 with time. PSL測定装置および放射線照射判別システム100を実施した際の計測結果および判定(判別)結果を示す図である。It is a figure which shows the measurement result at the time of implementing a PSL measuring apparatus and the radiation irradiation discrimination | determination system 100, and a determination (discrimination) result.

符号の説明Explanation of symbols

100 放射線照射判別システム
101 食品
102 OSL検出ユニット
102a 暗箱
102b 試料皿
102c LED
102d フィルター
102e 光電子増倍管
104 パルス発生装置
106 高圧電源
108 フォトンカウンティングユニット
110 パルスカウンタ
112 放射線照射判別装置
112A 制御部
112A1 照射条件決定部
112A2 放射線照射判別部
112A21 光量取得部
112A22 光量差基準判別部
112A23 回帰式作成部
112A24 回帰式基準判別部
112B 記憶部
DESCRIPTION OF SYMBOLS 100 Radiation irradiation discrimination system 101 Food 102 OSL detection unit
102a dark box
102b Sample dish
102c LED
102d filter
102e Photomultiplier tube 104 Pulse generator 106 High voltage power supply 108 Photon counting unit 110 Pulse counter 112 Radiation irradiation discrimination device
112A control unit
112A1 irradiation condition determination unit
112A2 Radiation irradiation discrimination unit
112A21 Light quantity acquisition unit
112A22 Light quantity difference reference determination unit
112A23 regression equation generator
112A24 regression equation criterion discriminator
112B storage unit

Claims (9)

試料への放射線照射の有無を判別する放射線照射判別方法において、
励起光を照射した試料から放出された光の光量を経時的に計測し、計測した光量の変化量および/または変化率に基づいて試料への放射線照射の有無を判別すること
を特徴とする放射線照射判別方法。
In the radiation irradiation discrimination method for determining the presence or absence of radiation irradiation on the sample,
Radiation characterized by measuring the amount of light emitted from a sample irradiated with excitation light over time and determining whether or not the sample is irradiated based on the amount of change and / or rate of change in the measured amount of light. Irradiation discrimination method.
試料への放射線照射の有無を判別する放射線照射判別方法において、
試料に対して励起光を照射する励起光照射工程と、
前記励起光照射工程で励起光を照射した試料から放出された光を、当該光を選択的に透過するフィルターを介して光電子増倍管で検出し、検出した光の光量を経時的に計測する光量計測工程と、
前記光量計測工程で経時的に計測した光量に基づいて当該光量の変化量および/または変化率を算出し、算出した変化量および/または変化率に基づいて試料への放射線照射の有無を判別する放射線照射判別工程と、
を含むことを特徴とする放射線照射判別方法。
In the radiation irradiation discrimination method for determining the presence or absence of radiation irradiation on the sample,
An excitation light irradiation step of irradiating the sample with excitation light;
The light emitted from the sample irradiated with the excitation light in the excitation light irradiation step is detected by a photomultiplier tube through a filter that selectively transmits the light, and the amount of the detected light is measured over time. A light intensity measurement process;
A change amount and / or change rate of the light amount is calculated based on the light amount measured over time in the light amount measurement step, and the presence or absence of radiation irradiation to the sample is determined based on the calculated change amount and / or change rate. Radiation irradiation discrimination process;
The radiation irradiation discrimination method characterized by including.
前記放射線照射判別工程は、
前記光量計測工程で経時的に計測した光量から、第1の時間帯に計測した第1の光量および第2の時間帯に計測した第2の光量を取得する光量取得工程と、
前記光量取得工程で取得した第1の光量および第2の光量に基づいて当該第1の光量の平均値と当該第2の光量の平均値との差を算出し、算出した平均値の差に基づいて試料への放射線照射の有無を判別する光量差基準判別工程と、
をさらに含むことを特徴とする請求項2に記載の放射線照射判別方法。
The radiation irradiation discrimination step includes
A light quantity acquisition step of acquiring a first light quantity measured in a first time zone and a second light quantity measured in a second time zone from the light quantity measured over time in the light quantity measurement step;
The difference between the average value of the first light quantity and the average value of the second light quantity is calculated based on the first light quantity and the second light quantity acquired in the light quantity acquisition step, and the difference between the calculated average values is calculated. A light amount difference reference determining step for determining the presence or absence of radiation irradiation to the sample based on;
The radiation irradiation determination method according to claim 2, further comprising:
前記放射線照射判別工程は、
前記光量計測工程で経時的に計測した光量に基づいて、光量と時間との関係を示す回帰式を作成する回帰式作成工程と、
前記回帰式作成工程で作成した回帰式に基づいて当該回帰式の傾きの値を算出し、算出した傾きの値に基づいて試料への放射線照射の有無を判別する回帰式基準判別工程と、
をさらに含むことを特徴とする請求項2に記載の放射線照射判別方法。
The radiation irradiation discrimination step includes
Based on the light amount measured over time in the light amount measurement step, a regression equation creating step for creating a regression equation indicating the relationship between the light amount and time,
Based on the regression formula created in the regression formula creation step, the value of the slope of the regression formula is calculated, and based on the calculated slope value, the regression formula criteria discrimination step for discriminating the presence or absence of radiation irradiation to the sample,
The radiation irradiation determination method according to claim 2, further comprising:
前記励起光照射工程は、試料に対してLEDで励起光を照射すること
を特徴とする請求項2から4のいずれか1つに記載の放射線照射判別方法。
5. The radiation irradiation determination method according to claim 2, wherein the excitation light irradiation step irradiates the sample with excitation light using an LED.
試料への放射線照射の有無を判別する放射線照射判別システムにおいて、
試料に対して励起光を照射する励起光照射手段と、
前記励起光照射手段で励起光を照射した試料から放出された光を、当該光を選択的に透過するフィルターを介して光電子増倍管で検出し、検出した光の光量を経時的に計測する光量計測手段と、
前記光量計測手段で経時的に計測した光量に基づいて当該光量の変化量および/または変化率を算出し、算出した変化量および/または変化率に基づいて試料への放射線照射の有無を判別する放射線照射判別手段と、
を備えたことを特徴とする放射線照射判別システム。
In the radiation irradiation discrimination system that discriminates the presence or absence of radiation irradiation on the sample,
Excitation light irradiation means for irradiating the sample with excitation light;
The light emitted from the sample irradiated with the excitation light by the excitation light irradiation means is detected by a photomultiplier tube through a filter that selectively transmits the light, and the amount of the detected light is measured over time. Light quantity measuring means;
A change amount and / or rate of change of the light quantity is calculated based on the light quantity measured over time by the light quantity measuring means, and the presence or absence of radiation irradiation to the sample is determined based on the calculated change quantity and / or change rate. Radiation discrimination means;
A radiation irradiation discrimination system comprising:
前記放射線照射判別手段は、
前記光量計測手段で経時的に計測した光量から、第1の時間帯に計測した第1の光量および第2の時間帯に計測した第2の光量を取得する光量取得手段と、
前記光量取得手段で取得した第1の光量および第2の光量に基づいて当該第1の光量の平均値と当該第2の光量の平均値との差を算出し、算出した平均値の差に基づいて試料への放射線照射の有無を判別する光量差基準判別手段と、
をさらに備えたことを特徴とする請求項6に記載の放射線照射判別システム。
The radiation irradiation discrimination means is
A light quantity acquisition means for obtaining a first light quantity measured in a first time zone and a second light quantity measured in a second time zone from the light quantity measured over time by the light quantity measuring means;
The difference between the average value of the first light quantity and the average value of the second light quantity is calculated based on the first light quantity and the second light quantity acquired by the light quantity acquisition means, and the difference between the calculated average values is calculated. A light quantity difference reference determining means for determining the presence or absence of radiation irradiation on the sample,
The radiation irradiation discrimination system according to claim 6, further comprising:
前記放射線照射判別手段は、
前記光量計測手段で経時的に計測した光量に基づいて、光量と時間との関係を示す回帰式を作成する回帰式作成手段と、
前記回帰式作成手段で作成した回帰式に基づいて当該回帰式の傾きの値を算出し、算出した傾きの値に基づいて試料への放射線照射の有無を判別する回帰式基準判別手段と、
をさらに備えたことを特徴とする請求項6に記載の放射線照射判別システム。
The radiation irradiation discrimination means is
Based on the light quantity measured over time by the light quantity measuring means, a regression formula creating means for creating a regression formula indicating the relationship between the light quantity and time;
Based on the regression formula created by the regression formula creation means, calculates the value of the slope of the regression formula, and based on the calculated slope value, the regression formula criterion judgment means for judging the presence or absence of radiation irradiation to the sample,
The radiation irradiation discrimination system according to claim 6, further comprising:
前記励起光照射手段は、試料に対してLEDで励起光を照射すること
を特徴とする請求項6から8のいずれか1つに記載の放射線照射判別システム。
The radiation irradiation determination system according to claim 6, wherein the excitation light irradiation unit irradiates the sample with excitation light using an LED.
JP2005234849A 2005-08-12 2005-08-12 Radiation irradiation discrimination method and radiation irradiation discrimination system Expired - Fee Related JP4599529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005234849A JP4599529B2 (en) 2005-08-12 2005-08-12 Radiation irradiation discrimination method and radiation irradiation discrimination system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005234849A JP4599529B2 (en) 2005-08-12 2005-08-12 Radiation irradiation discrimination method and radiation irradiation discrimination system

Publications (2)

Publication Number Publication Date
JP2007047132A true JP2007047132A (en) 2007-02-22
JP4599529B2 JP4599529B2 (en) 2010-12-15

Family

ID=37850061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005234849A Expired - Fee Related JP4599529B2 (en) 2005-08-12 2005-08-12 Radiation irradiation discrimination method and radiation irradiation discrimination system

Country Status (1)

Country Link
JP (1) JP4599529B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008203137A (en) * 2007-02-21 2008-09-04 House Foods Corp Radiation irradiation tool and radiation irradiation detecting method
JP2010002269A (en) * 2008-06-19 2010-01-07 Radiation Application Development Association Container for detecting irradiated food
JP2015528102A (en) * 2012-06-22 2015-09-24 ランダウアー インコーポレイテッド Method and apparatus for rapid determination of unknown radiation dose
US9329277B2 (en) 2012-06-22 2016-05-03 Landauer, Inc. OSL sensor having a reflective backing
US9329276B2 (en) 2012-06-22 2016-05-03 Landauer, Inc. Optical system for portable OSL reader

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57161674A (en) * 1981-03-20 1982-10-05 Strahlen Umweltforsch Gmbh Quantitative detection method of and apparatus for radio photoluminescence of solid dosimeter
JPS59190681A (en) * 1983-04-14 1984-10-29 Toshiba Glass Co Ltd Method and apparatus for measuring glass dose
JP2000241351A (en) * 1999-02-25 2000-09-08 Densen Sogo Gijutsu Center Method for diagnosing deterioration of crosslinked polyethylene using fluorescent analyzer
JP2004161377A (en) * 2002-10-30 2004-06-10 Eastman Kodak Co Device and method for radiation inspection

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57161674A (en) * 1981-03-20 1982-10-05 Strahlen Umweltforsch Gmbh Quantitative detection method of and apparatus for radio photoluminescence of solid dosimeter
JPS59190681A (en) * 1983-04-14 1984-10-29 Toshiba Glass Co Ltd Method and apparatus for measuring glass dose
JP2000241351A (en) * 1999-02-25 2000-09-08 Densen Sogo Gijutsu Center Method for diagnosing deterioration of crosslinked polyethylene using fluorescent analyzer
JP2004161377A (en) * 2002-10-30 2004-06-10 Eastman Kodak Co Device and method for radiation inspection

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008203137A (en) * 2007-02-21 2008-09-04 House Foods Corp Radiation irradiation tool and radiation irradiation detecting method
JP2010002269A (en) * 2008-06-19 2010-01-07 Radiation Application Development Association Container for detecting irradiated food
JP2015528102A (en) * 2012-06-22 2015-09-24 ランダウアー インコーポレイテッド Method and apparatus for rapid determination of unknown radiation dose
US9329277B2 (en) 2012-06-22 2016-05-03 Landauer, Inc. OSL sensor having a reflective backing
US9329276B2 (en) 2012-06-22 2016-05-03 Landauer, Inc. Optical system for portable OSL reader
JP2016138889A (en) * 2012-06-22 2016-08-04 ランダウアー インコーポレイテッド Apparatus for rapidly determining unknown radiation dose

Also Published As

Publication number Publication date
JP4599529B2 (en) 2010-12-15

Similar Documents

Publication Publication Date Title
JP4599529B2 (en) Radiation irradiation discrimination method and radiation irradiation discrimination system
US9142112B2 (en) Smoke detector with external sampling volume using two different wavelengths and ambient light detection for measurement correction
Sanderson et al. Thermoluminescence of foods: origins and implications for detecting irradiation
CN105637352B (en) Fluorescent x-ray analysis method and fluorescent x-ray analyzer
Hashim et al. Changes of backscattering parameters during chilling injury in bananas
Ahn et al. Effect of storage conditions on photostimulated luminescence of irradiated garlic and potatoes
Mangiacotti et al. Official checks by an accredited laboratory on irradiated foods at an Italian market
Engin Thermoluminescence parameters and kinetics of irradiated inorganic dust collected from black peppers
Sandeva et al. Detection of irradiated components in mixtures of herbs and spices by thermoluminescence
Chung et al. Trials to identify irradiated chestnut (Castanea bungena) with different analytical techniques
Sanyal et al. An improved method to identify irradiated rice by EPR spectroscopy and thermoluminescence measurements
Jo et al. Calibrated photostimulated luminescence is an effective approach to identify irradiated orange during storage
EP0699299B1 (en) Detection of irradiated samples
JP2021081205A (en) Freshness evaluation method, processing device and freshness evaluation system
Ginovska et al. Procedure for detection and control of irradiated food
JP5904870B2 (en) Analytical instrument and method for assessing microbial contamination of a subject
Rodríguez-Lazcano et al. Gamma radiation-induced thermoluminescence emission of minerals adhered to Mexican sesame seeds
JP2016501360A5 (en)
Aygun et al. Detection of gamma irradiated spices with OSL method and its reliability
Sandeva et al. Effects of radiation doses on the photostimulated luminescence response of certain herbs and spices
Marchesani et al. Identifying irradiated oysters by luminescence techniques (TL & PSL)
RU2355483C2 (en) Method of separation of minerals by their luminescent properties
D'Oca et al. Detection of irradiated food and evaluation of the given dose by electron spin resonance, thermoluminescence, and gas chromatographic/mass spectrometric analysis
Jo et al. Thermoluminescence analysis and DNA comet assay to identify grapes irradiated as a quarantine treatment
RU2009129492A (en) METHOD OF DYNAMIC RADIATION CONTROL

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100831

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4599529

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees