JP2007047107A - Scanning probe microscope with probe cleaning mechanism and probe cleaning method - Google Patents

Scanning probe microscope with probe cleaning mechanism and probe cleaning method Download PDF

Info

Publication number
JP2007047107A
JP2007047107A JP2005234147A JP2005234147A JP2007047107A JP 2007047107 A JP2007047107 A JP 2007047107A JP 2005234147 A JP2005234147 A JP 2005234147A JP 2005234147 A JP2005234147 A JP 2005234147A JP 2007047107 A JP2007047107 A JP 2007047107A
Authority
JP
Japan
Prior art keywords
probe
sample
cantilever
cleaning
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005234147A
Other languages
Japanese (ja)
Inventor
Etsuko Tomita
恵津子 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2005234147A priority Critical patent/JP2007047107A/en
Publication of JP2007047107A publication Critical patent/JP2007047107A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To eliminate a contamination of a probe while preventing a sample surface from deteriorating, without removing any cantilever. <P>SOLUTION: A scanning probe microscope is provided, which comprises: a sample measuring chamber; a probe cleaning chamber; and a blocking mechanism for blocking off between the above two chambers, and in which the cantilever can be moved between the two chambers. The probe cleaning chamber is equipped with an ultraviolet light irradiation mechanism and an ozone supplying mechanism, and the sample measuring chamber and the probe cleaning chamber are blocked off from each other when operating above two mechanisms. The cantilever cleans the probe by using ultraviolet light and ozone in the probe cleaning chamber. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、走査型原子間力顕微鏡(AFM:Atomic Force Microscope)に代表される走査型プローブ顕微鏡に係り、特に詳細には、カンチレバー先端の探針洗浄機構および探針洗浄方法に関する。   The present invention relates to a scanning probe microscope represented by an AFM (Atomic Force Microscope), and more particularly to a probe cleaning mechanism and a probe cleaning method at the tip of a cantilever.

AFMに代表される走査型プローブ顕微鏡では、試料表面とプローブとの間の相互作用を利用して試料表面の微細な組織や構造を検出するために、片持ち梁の先端に探針を装着したカンチレバーが走査プローブとして使用される。
探針を試料表面で走査すると、試料表面と探針との間に原子間力に基づく引力あるいは斥力が発生してカンチレバーにひずみが生じる。このとき、カンチレバーに対してレーザ光を照射し、カンチレバーからの反射光の位置を光センサーで検知すると、ひずみ量に応じて反射光の位置が変化する。このひずみ量が一定、すなわち、試料表面と探針との間隙が一定となるように試料ステージをZ軸方向へ微動させれば、その際の微動信号、あるいは検出されたひずみ量そのものが試料表面の形状を反映したものとなり、最高で原子像レベルの高分解能画像を得ることができる。さらに、試料と探針間の相互間に働く力を利用すれば、ナノスケールの磁気力・表面電位・粘弾性力・摩擦力の分布を得ることができる。
In a scanning probe microscope typified by AFM, a probe is attached to the tip of a cantilever beam in order to detect the fine structure and structure of the sample surface using the interaction between the sample surface and the probe. A cantilever is used as a scanning probe.
When the probe is scanned on the sample surface, an attractive force or a repulsive force based on an atomic force is generated between the sample surface and the probe, and the cantilever is distorted. At this time, when the cantilever is irradiated with laser light and the position of the reflected light from the cantilever is detected by the optical sensor, the position of the reflected light changes according to the amount of strain. If the sample stage is finely moved in the Z-axis direction so that the strain amount is constant, that is, the gap between the sample surface and the probe is constant, the fine movement signal or the detected strain amount at that time is the sample surface. The high-resolution image at the atomic image level can be obtained at the maximum. Furthermore, if the force acting between the sample and the probe is used, a distribution of nanoscale magnetic force, surface potential, viscoelastic force, and frictional force can be obtained.

このため、走査型顕微鏡プローブによる表面形状評価は、マイクロデバイスの特性評価の一手段として現在広く用いられている。
特開平9−145726号公報 特開2000−81382号公報
For this reason, surface shape evaluation using a scanning microscope probe is currently widely used as a means for evaluating characteristics of microdevices.
JP-A-9-145726 JP 2000-81382 A

走査型プローブ顕微鏡では、カンチレバー先端の探針で試料表面を走査して形状を得る。このため、試料表面に汚染物がある場合、汚染物の移着により探針が汚染されるため測定が正しく行えない。また、試料測定前までに探針に汚染物が付着している場合も、測定を正しく行うことはできない。なお、この場合、探針に付着する汚染物は殆どが有機物起因である。
従来は、探針に汚染が付着した場合、当該探針を廃棄し新しい探針を取り付けるか、あるいは、カンチレバーをホルダから一旦外し、超音波洗浄装置や親水化処理装置などの洗浄装置で汚染物を除去したのちに、再びカンチレバーをホルダに取り付けていた。
しかしながら、探針の汚染が確認されるごとにカンチレバーを交換する場合、測定時間や工程が増加することが明らかである。また、洗浄装置を用いて探針の汚染を除去する場合、超音波洗浄などの湿式洗浄方式では付着した水分あるいは酸や有機物の洗浄成分が再測定時に試料側に移着し試料表面の変質をもたらす可能性がある。
In a scanning probe microscope, a sample surface is scanned with a probe at the tip of a cantilever to obtain a shape. For this reason, when there is a contaminant on the sample surface, the probe is contaminated by the transfer of the contaminant, so that the measurement cannot be performed correctly. In addition, even when contaminants are attached to the probe before the sample measurement, the measurement cannot be performed correctly. In this case, most of the contaminants adhering to the probe are caused by organic matter.
Conventionally, when contamination is attached to the probe, the probe is discarded and a new probe is attached, or the cantilever is once removed from the holder, and the contaminant is removed by a cleaning device such as an ultrasonic cleaning device or a hydrophilic treatment device. After removing, the cantilever was attached to the holder again.
However, it is clear that if the cantilever is replaced each time the probe is contaminated, the measurement time and process increase. In addition, when removing contamination of the probe using a cleaning device, wet cleaning methods such as ultrasonic cleaning transfer the adhering moisture, acid or organic cleaning components to the sample side during remeasurement, and alter the sample surface. There is a possibility to bring.

さらに、カンチレバーはホルダからピンセットにて一旦外して再び装着しなければならないため、カンチレバーの脱着時間がかかり測定ランタイムが増加する。また、カンチレバーの取り付けは手で行うので、洗浄前後における測定位置の再現性が保障できない。
このような問題を受け、走査型プローブ顕微鏡に探針洗浄機構を備える方法が提案され、探針の超音波洗浄、探針の酸洗浄、探針への高圧ガス吹き付け、探針の高電流による振とう、減圧下における探針のArプラズマ照射により汚染物を除去する方法が提案されている(例えば、特許文献1参照。)。しかしながら、上記に指摘したとおり、超音波洗浄などの湿式洗浄方式を採用した場合、付着した水分、酸、有機物の洗浄成分が再測定時に試料側に移着し試料表面の変質をもたらす可能性がある。また、当該発明によると、試料とカンチレバーが同じ雰囲気中で高圧ガス処理あるいはプラズマ処理されるため、試料が高圧ガスやプラズマにさらされてしまい試料表面が変質する恐れがある。さらに、高電流の振とうでは、粘着性の高い有機汚染物を除去することは困難である。
Furthermore, since the cantilever must be once removed from the holder with tweezers and mounted again, it takes time to detach the cantilever and increases the measurement runtime. In addition, since the cantilever is attached by hand, the reproducibility of the measurement position before and after cleaning cannot be guaranteed.
In response to these problems, a method of providing a probe cleaning mechanism in a scanning probe microscope has been proposed, and ultrasonic cleaning of the probe, acid cleaning of the probe, high-pressure gas spraying on the probe, and high probe current A method of removing contaminants by shaking and Ar plasma irradiation of the probe under reduced pressure has been proposed (see, for example, Patent Document 1). However, as pointed out above, when a wet cleaning method such as ultrasonic cleaning is employed, the adhering moisture, acid, and organic cleaning components may migrate to the sample side during re-measurement and cause alteration of the sample surface. is there. Further, according to the present invention, since the sample and the cantilever are subjected to high-pressure gas treatment or plasma treatment in the same atmosphere, the sample may be exposed to the high-pressure gas or plasma, and the sample surface may be altered. Furthermore, it is difficult to remove highly sticky organic contaminants with high current shaking.

また、特許文献2では、走査型顕微鏡用プローブに光触媒の膜を形成し、紫外線を照射して洗浄することを特徴とした洗浄方法が提案されている。これは、光触媒(二酸化チタン)表面に紫外線が照射されたとき、二酸化チタン表面に形成された正孔(ホール)が空気中の水酸化物イオンから電子を奪うことで形成されたOHラジカルにより有機物を分解する手法である。しかしながら、当該提案の手法は、光触媒膜を探針にあらかじめ形成する必要があり、一般的な走査型顕微鏡用プローブと比較した場合、光触媒膜を製膜するためのコストが増加することとなり、測定コストを増加させることとなる。
本発明は、上記の問題点に鑑みてなされたもので、紫外光ならびにオゾンを用いた洗浄装置を走査型プローブ顕微鏡に導入し、カンチレバーを取り外すことなく探針の汚染を除去し、かつ試料周辺に遮蔽機構を備えつけることにより洗浄中の試料の表面変質を防止することで、測定ランタイムと測定コストを低減し、測定能率と測定位置再現性の向上に寄与するものである。以下、その手段を述べる。
Patent Document 2 proposes a cleaning method characterized by forming a photocatalytic film on a scanning microscope probe and irradiating it with ultraviolet rays for cleaning. This is because when the surface of the photocatalyst (titanium dioxide) is irradiated with ultraviolet rays, the holes formed on the surface of the titanium dioxide take electrons from hydroxide ions in the air, resulting in organic substances. It is a technique to decompose. However, the proposed method requires the photocatalyst film to be formed on the probe in advance, which increases the cost for forming the photocatalyst film when compared with a general scanning microscope probe. This will increase the cost.
The present invention has been made in view of the above-mentioned problems. A cleaning device using ultraviolet light and ozone is introduced into a scanning probe microscope, and contamination of the probe is removed without removing the cantilever. By providing a shielding mechanism to the surface, it is possible to reduce the measurement runtime and measurement cost by preventing the surface deterioration of the sample during cleaning, and to contribute to the improvement of measurement efficiency and measurement position reproducibility. The means will be described below.

本発明の走査型プローブ顕微鏡は、試料測定室、探針洗浄室および該両室の間の遮断機構を備え、該両室の間でカンチレバーを移動可能とし、前記探針洗浄室は紫外光照射機構ならびにオゾン供給機構を備え、該紫外光照射機構ならびに該オゾン供給機構が動作中は前記遮断機構により前記試料測定室と前記探針洗浄室を遮断することを特徴とする。
本発明の走査型プローブ顕微鏡の探針洗浄方法は、試料測定室、探針洗浄室および該両室の間の遮断機構を備え、該両室の間でカンチレバーを移動可能とし、前記探針洗浄室に紫外光照射機構ならびにオゾン供給機構を配置し、前記カンチレバーを前記探針洗浄室に移動して紫外光およびオゾンを用いて探針洗浄を行い、前記紫外光照射機構ならびに前記オゾン供給機構が動作中は前記遮断機構により前記試料測定室と前記探針洗浄室を遮断することを特徴とする。
The scanning probe microscope of the present invention includes a sample measurement chamber, a probe cleaning chamber, and a blocking mechanism between the two chambers, the cantilever can be moved between the chambers, and the probe cleaning chamber is irradiated with ultraviolet light. A mechanism and an ozone supply mechanism. The sample measurement chamber and the probe cleaning chamber are blocked by the blocking mechanism while the ultraviolet light irradiation mechanism and the ozone supply mechanism are in operation.
The probe cleaning method for a scanning probe microscope according to the present invention includes a sample measurement chamber, a probe cleaning chamber, and a blocking mechanism between the chambers, the cantilever being movable between the chambers, and the probe cleaning. An ultraviolet light irradiation mechanism and an ozone supply mechanism are disposed in the chamber, the cantilever is moved to the probe cleaning chamber, and probe cleaning is performed using ultraviolet light and ozone. The ultraviolet light irradiation mechanism and the ozone supply mechanism are During operation, the sample measuring chamber and the probe cleaning chamber are blocked by the blocking mechanism.

本発明に関わる請求項記載の走査型プローブ顕微鏡に依れば、紫外光とオゾンを併用することにより、探針に付着した残渣を効果的に分解除去可能である。また、探針を洗浄中の雰囲気から試料を遮蔽することにより、試料にダメージを与えることなく探針の汚染物が除去できる。また、探針を取り外して装置外に運ぶ必要がなく、探針の汚染残渣を簡便かつ短時間に除去できるため、探針の再利用が容易であり、さらに測定ランタイムを短縮することが可能であり、測定コストを削減することができる。また、作業者の熟練度に依存することなく、探針の測定位置の再現性向上と測定ランタイム短縮を両立することができる。   According to the scanning probe microscope described in the claims relating to the present invention, the residue attached to the probe can be effectively decomposed and removed by using ultraviolet light and ozone in combination. Further, by shielding the sample from the atmosphere in which the probe is being cleaned, contaminants on the probe can be removed without damaging the sample. In addition, it is not necessary to remove the probe and carry it outside the device, and the contamination residue of the probe can be removed easily and in a short time, so the probe can be easily reused and the measurement runtime can be shortened. Yes, the measurement cost can be reduced. In addition, the reproducibility of the measurement position of the probe can be improved and the measurement runtime can be shortened without depending on the skill level of the operator.

以下、図面を参照して本発明の実施の形態について詳細に説明する。
図1、図2は、本発明の実施形態の一例を説明するための断面模式図で、図1は試料測定時の状態、図2は探針洗浄時の状態を示している。
本発明の走査型プローブ顕微鏡は、遮蔽板7により、試料測定室8と探針洗浄室9とを遮断可能としており、全体は防音遮蔽カバー6により外部と遮蔽されている。
測定時は、カンチレバーホルダ2が試料台と相対する位置に配置されている。測定中の画像の乱れから探針の汚染が確認された場合に洗浄を行う。洗浄時には、カンチレバーホルダ2をガイドレール5に沿って試料測定室8から探針洗浄室9に移動し、両室の中間に遮蔽板7を挿入して試料測定室8への紫外光ならびにオゾンの進入を遮断した状態で洗浄を行う。洗浄後は、再びガイドレール5に沿ってカンチレバーホルダ2を試料測定室8に移動する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
1 and 2 are schematic cross-sectional views for explaining an example of an embodiment of the present invention. FIG. 1 shows a state during sample measurement, and FIG. 2 shows a state during probe cleaning.
In the scanning probe microscope of the present invention, the sample measurement chamber 8 and the probe cleaning chamber 9 can be blocked by the shielding plate 7, and the whole is shielded from the outside by the soundproof shielding cover 6.
At the time of measurement, the cantilever holder 2 is arranged at a position facing the sample stage. Washing is performed when the contamination of the probe is confirmed due to image disturbance during measurement. At the time of cleaning, the cantilever holder 2 is moved along the guide rail 5 from the sample measuring chamber 8 to the probe cleaning chamber 9, and a shielding plate 7 is inserted between the two chambers so that ultraviolet light and ozone are introduced into the sample measuring chamber 8. Wash with the entry blocked. After cleaning, the cantilever holder 2 is moved to the sample measurement chamber 8 along the guide rail 5 again.

試料測定室8は、試料走査機構1、レーザ光照射ユニット4を備えている。試料走査機構1には試料台11が配置され、試料台11上に試料12を載置する。カンチレバーホルダ2には先端に探針22を有するカンチレバー21が取り付けられている。カンチレバーホルダ2はガイドレール5により試料台11および試料12に相対する位置に保持されている。また、試料台11および試料12に相対する位置に、カンチレバー21へのレーザ照射機構およびカンチレバー21からのレーザ反射光受光機能を備えたレーザ照射ユニット4が配置されている。
測定時においては、探針22が試料12表面を走査すると同時にレーザ照射ユニット4からレーザをカンチレバー21に照射し、カンチレバー21のたわみ、あるいはねじれをレーザ反射光を用いて検出する。
The sample measurement chamber 8 includes a sample scanning mechanism 1 and a laser light irradiation unit 4. A sample stage 11 is disposed in the sample scanning mechanism 1, and a sample 12 is placed on the sample stage 11. A cantilever 21 having a probe 22 at the tip is attached to the cantilever holder 2. The cantilever holder 2 is held at a position facing the sample table 11 and the sample 12 by the guide rail 5. A laser irradiation unit 4 having a laser irradiation mechanism for the cantilever 21 and a function of receiving a laser reflected light from the cantilever 21 is disposed at a position opposite to the sample stage 11 and the sample 12.
At the time of measurement, the probe 22 scans the surface of the sample 12 and simultaneously irradiates the cantilever 21 with a laser from the laser irradiation unit 4 to detect the deflection or twist of the cantilever 21 using the laser reflected light.

測定中の画像データ異常等により探針が汚染されたと判定された場合は、洗浄を行う。
まず探針22を試料12より上部方向に離した後、カンチレバーホルダ2をガイドレール5にそって探針洗浄室9にスライドさせた後、遮蔽板7を挿入して試料測定室と探針洗浄室9を遮断する。遮蔽板7は、試料12が紫外線ならびにオゾン雰囲気に暴露されないものであれば、その設置方法および制御機構は特に限定されない。
その後、紫外光ランプ31を点灯し、オゾン供給機構33を稼動して洗浄を開始する。オゾン供給方法としては一般的なオゾナイザの機構を用いる。すなわち、オゾン供給機構33内部に装着された放電管に、原料となる乾燥した空気または酸素を流し、高電圧をかけることでオゾンを発生させ、オゾン気体として供給する。なお、オゾン濃度は数十〜数百ppm程度で、探針の汚染度合いにより可変としてよい。
紫外光によりオゾン生成が充分に行われる場合は、オゾン供給機構33を省略することも可能である。発生したオゾンは排気口32を介して速やかに排出される。
If it is determined that the probe is contaminated due to abnormal image data during measurement, etc., cleaning is performed.
First, the probe 22 is separated from the sample 12 in the upper direction, the cantilever holder 2 is slid along the guide rail 5 into the probe cleaning chamber 9, and the shielding plate 7 is inserted to clean the sample measurement chamber and the probe. The chamber 9 is shut off. The shielding plate 7 is not particularly limited in its installation method and control mechanism as long as the sample 12 is not exposed to ultraviolet rays and ozone atmosphere.
Thereafter, the ultraviolet lamp 31 is turned on, and the ozone supply mechanism 33 is operated to start cleaning. A general ozonizer mechanism is used as an ozone supply method. That is, dry air or oxygen as a raw material is passed through a discharge tube mounted inside the ozone supply mechanism 33, and ozone is generated by applying a high voltage and supplied as ozone gas. The ozone concentration is about several tens to several hundred ppm, and may be variable depending on the degree of contamination of the probe.
If ozone generation is sufficiently performed by ultraviolet light, the ozone supply mechanism 33 can be omitted. The generated ozone is quickly discharged through the exhaust port 32.

このとき、紫外光照射ならびに供給されたオゾンにより、探針表面の汚染物が除去される。オゾンは排気口32から速やかに排気されるため、オゾン滞留による装置や試料12への影響は極めて少ない。また防音遮蔽カバー6を設置した状態で洗浄を行うため、紫外光が外部に漏れることはない。
なお、市販されている探針の多くはSi化合物あるいは金属コーティングを施したSi化合物により形成されている。したがって、紫外光、オゾンによる洗浄を行っても探針表面が破壊される可能性は極めて小さく、試料の凹凸等で物理的に探針先端が磨耗しない限り、探針の繰り返し使用が可能である。
また、本発明の洗浄手法は紫外線とオゾンでプローブ表面に付着した有機物を分解し洗浄する手法であり、紫外線とオゾンが直接有機物に作用して分解する。このため、光触媒膜を形成する必要もなく、探針の材料に依存せずに有機物を除去することが可能である。このため、窒化シリコン等で作成されている市販の走査型顕微鏡用プローブにも適用可能であり、市販品を利用することで測定コストを低減することが可能となる。
At this time, contaminants on the probe surface are removed by ultraviolet light irradiation and supplied ozone. Since ozone is quickly exhausted from the exhaust port 32, the influence of the ozone retention on the device and the sample 12 is extremely small. Further, since the cleaning is performed with the soundproof shielding cover 6 installed, the ultraviolet light does not leak outside.
Most of the commercially available probes are made of Si compounds or Si compounds coated with metal. Therefore, the possibility of destroying the probe surface is extremely small even after cleaning with ultraviolet light or ozone, and the probe can be used repeatedly as long as the tip of the probe is not physically worn by unevenness of the sample. .
The cleaning method of the present invention is a method of decomposing and cleaning organic substances adhering to the probe surface with ultraviolet rays and ozone, and the ultraviolet rays and ozone directly act on the organic substances and decompose. For this reason, it is not necessary to form a photocatalyst film, and organic substances can be removed without depending on the probe material. Therefore, the present invention can be applied to a commercially available scanning microscope probe made of silicon nitride or the like, and the measurement cost can be reduced by using a commercially available product.

探針22の洗浄終了後は、遮蔽版7を取り除き、カンチレバーホルダ2をガイドレール5に沿って再び試料測定室8に戻して測定を再開する。   After the cleaning of the probe 22 is completed, the shielding plate 7 is removed, the cantilever holder 2 is returned to the sample measurement chamber 8 along the guide rail 5 and measurement is resumed.

以下、実施例を用いてさらに詳細に説明する。
市販のSiN製探針(セイコーインスツルメンツナノテクノロジー社製型番SI−DF20)を、長期間(約3ヶ月)実験室雰囲気中に暴露し、故意に探針を汚染させた。この探針を用いて、試料表面を測定し、測定中に画像の乱れが発生してから、探針の洗浄を行い再び測定を開始するまでの時間を「探針洗浄時間」として計測した。
まず、従来の走査型プローブ顕微鏡で測定を行い、測定中に画像に乱れが発生したのを確認した後、従来の方法で探針汚染除去を行った。カンチレバーをカンチレバーホルダから取り外した後、親水化処理装置(日本電子製HDW−400)にカンチレバーを据え付けて真空引きを行い、所定の真空度に達した後、60秒間親水化処理を行った。その後、再びカンチレバーをカンチレバーホルダに取り付け、試料走査機構に据え付けた。その後再び測定を行い画像の乱れがないことを確認した。
Hereinafter, it demonstrates in detail using an Example.
A commercially available SiN probe (model number SI-DF20 manufactured by Seiko Instruments Nanotechnology Co., Ltd.) was exposed to the laboratory atmosphere for a long period (about 3 months), and the probe was intentionally contaminated. Using this probe, the surface of the sample was measured, and the time from when image disturbance occurred during measurement until the probe was cleaned and measurement was started again was measured as the “probe cleaning time”.
First, measurement was performed with a conventional scanning probe microscope, and after confirming that the image was disturbed during measurement, probe contamination was removed by a conventional method. After removing the cantilever from the cantilever holder, the cantilever was installed in a hydrophilic treatment apparatus (HDW-400 manufactured by JEOL Ltd.) and evacuated, and after reaching a predetermined degree of vacuum, the hydrophilic treatment was performed for 60 seconds. Thereafter, the cantilever was again attached to the cantilever holder and installed on the sample scanning mechanism. Thereafter, the measurement was performed again to confirm that there was no image disturbance.

上記従来の手法の場合、探針洗浄時間は約5分であった。さらに、作業者が探針取り外し作業に熟知していない場合、上記の探針洗浄時間が約1分増加することがわかった。
次に、本発明による走査型プローブ顕微鏡で測定を行った。測定中に画像に乱れが発生したのを確認した後、カンチレバーホルダ2を探針洗浄室9にスライドさせ、遮蔽板7を設置した。その後、探針22に紫外光ならびにオゾンを約60秒照射した。このときの紫外光のエネルギーは約2.1mW/cmとし、オゾン濃度は90ppmとした。その後、遮蔽板7を取り外し、再びカンチレバーホルダ2を試料測定室8に戻した。引き続き、再び測定を行い画像の乱れがないことを確認した。
本発明による手法の場合、探針洗浄時間は約1分20秒であった。また、作業者が探針取り外し作業に熟知していない場合でも、探針洗浄時間は上記と同一であった。
In the case of the conventional method, the probe cleaning time is about 5 minutes. Further, it has been found that when the operator is not familiar with the probe removal operation, the probe cleaning time is increased by about 1 minute.
Next, it measured with the scanning probe microscope by this invention. After confirming that the image was disturbed during the measurement, the cantilever holder 2 was slid into the probe cleaning chamber 9 and the shielding plate 7 was installed. Thereafter, the probe 22 was irradiated with ultraviolet light and ozone for about 60 seconds. The energy of the ultraviolet light at this time was about 2.1 mW / cm 2 and the ozone concentration was 90 ppm. Thereafter, the shielding plate 7 was removed, and the cantilever holder 2 was returned to the sample measurement chamber 8 again. Subsequently, measurement was performed again to confirm that there was no image distortion.
In the case of the method according to the present invention, the probe cleaning time was about 1 minute 20 seconds. Even when the operator is not familiar with the probe removal operation, the probe cleaning time is the same as described above.

よって、本発明による走査型プローブ顕微鏡によれば、探針洗浄時間を従来の1/4近くまで短縮可能であることがわかった。   Therefore, according to the scanning probe microscope of the present invention, it has been found that the probe cleaning time can be shortened to nearly 1/4 of the conventional one.

本発明の走査型プローブ顕微鏡の構成例を説明するための断面模式図で、試料測定時の状態を示している。FIG. 2 is a schematic cross-sectional view for explaining a configuration example of a scanning probe microscope according to the present invention, and shows a state during sample measurement. 本発明の走査型プローブ顕微鏡の構成例を説明するための断面模式図で、探針洗浄時の状態を示している。FIG. 2 is a schematic cross-sectional view for explaining a configuration example of a scanning probe microscope according to the present invention, and shows a state during probe cleaning.

符号の説明Explanation of symbols

1 試料走査機構
11 試料台
12 試料
2 カンチレバーホルダ
21 カンチレバー
22 探針
31 紫外光ランプ
32 オゾン排気口
33 オゾン供給機構
4 レーザ光照射ユニット
5 ガイドレール
6 防音遮蔽カバー
7 遮蔽板
8 試料測定室
9 探針洗浄室
DESCRIPTION OF SYMBOLS 1 Sample scanning mechanism 11 Sample stand 12 Sample 2 Cantilever holder 21 Cantilever 22 Probe 31 Ultraviolet lamp 32 Ozone exhaust port 33 Ozone supply mechanism 4 Laser beam irradiation unit 5 Guide rail 6 Soundproof shielding cover 7 Shielding plate 8 Sample measurement chamber 9 Probe Needle washing room

Claims (2)

試料測定室、探針洗浄室および該両室の間の遮断機構を備え、該両室の間でカンチレバーを移動可能とし、
前記探針洗浄室は紫外光照射機構ならびにオゾン供給機構を備え、該紫外光照射機構ならびに該オゾン供給機構が動作中は前記遮断機構により前記試料測定室と前記探針洗浄室を遮断することを特徴とする走査型プローブ顕微鏡。
A sample measurement chamber, a probe cleaning chamber, and a shut-off mechanism between the two chambers, and the cantilever being movable between the two chambers,
The probe cleaning chamber includes an ultraviolet light irradiation mechanism and an ozone supply mechanism, and the sample measurement chamber and the probe cleaning chamber are blocked by the blocking mechanism while the ultraviolet light irradiation mechanism and the ozone supply mechanism are in operation. A scanning probe microscope.
走査型プローブ顕微鏡の探針洗浄方法であって、
試料測定室、探針洗浄室および該両室の間の遮断機構を備え、該両室の間でカンチレバーを移動可能とし、
前記探針洗浄室に紫外光照射機構ならびにオゾン供給機構を配置し、前記カンチレバーを前記探針洗浄室に移動して紫外光およびオゾンを用いて探針洗浄を行い、
前記紫外光照射機構ならびに前記オゾン供給機構が動作中は前記遮断機構により前記試料測定室と前記探針洗浄室を遮断することを特徴とする走査型プローブ顕微鏡の探針洗浄方法。
A probe cleaning method for a scanning probe microscope,
A sample measurement chamber, a probe cleaning chamber, and a shut-off mechanism between the two chambers, and the cantilever being movable between the two chambers,
An ultraviolet light irradiation mechanism and an ozone supply mechanism are arranged in the probe cleaning chamber, the cantilever is moved to the probe cleaning chamber, and probe cleaning is performed using ultraviolet light and ozone.
A probe cleaning method for a scanning probe microscope, wherein the sample measurement chamber and the probe cleaning chamber are blocked by the blocking mechanism while the ultraviolet light irradiation mechanism and the ozone supply mechanism are in operation.
JP2005234147A 2005-08-12 2005-08-12 Scanning probe microscope with probe cleaning mechanism and probe cleaning method Pending JP2007047107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005234147A JP2007047107A (en) 2005-08-12 2005-08-12 Scanning probe microscope with probe cleaning mechanism and probe cleaning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005234147A JP2007047107A (en) 2005-08-12 2005-08-12 Scanning probe microscope with probe cleaning mechanism and probe cleaning method

Publications (1)

Publication Number Publication Date
JP2007047107A true JP2007047107A (en) 2007-02-22

Family

ID=37850038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005234147A Pending JP2007047107A (en) 2005-08-12 2005-08-12 Scanning probe microscope with probe cleaning mechanism and probe cleaning method

Country Status (1)

Country Link
JP (1) JP2007047107A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012149449A2 (en) * 2011-04-29 2012-11-01 Bruker Nano, Inc. Cleaning station for atomic force microscope

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012149449A2 (en) * 2011-04-29 2012-11-01 Bruker Nano, Inc. Cleaning station for atomic force microscope
WO2012149449A3 (en) * 2011-04-29 2012-12-27 Bruker Nano, Inc. Cleaning station for atomic force microscope
US8782811B2 (en) 2011-04-29 2014-07-15 Bruker Nano, Inc. Cleaning station for atomic force microscope

Similar Documents

Publication Publication Date Title
KR101485632B1 (en) Euv lithography device and method for processing an optical element
US6407385B1 (en) Methods and apparatus for removing particulate foreign matter from the surface of a sample
JP2000515641A (en) Method and apparatus for monitoring surface laser cleaning
JP2007180403A5 (en)
JP6496210B2 (en) Charged particle beam equipment
US20070284541A1 (en) Oxidative cleaning method and apparatus for electron microscopes using UV excitation in a oxygen radical source
EP0237220A2 (en) Method and apparatus for forming a film
JP2007047107A (en) Scanning probe microscope with probe cleaning mechanism and probe cleaning method
JP4681291B2 (en) Charged particle beam apparatus and its contamination removal method
JP2011141199A (en) Sample surface contaminant removal method and device using charged droplet etching
JPH10335399A (en) Device and method for processing sample
JPH10154478A (en) Sample contaminant removing device
JP2007059176A (en) Scanning electron microscope
JP3317880B2 (en) Particle monitor device
JP2664025B2 (en) Cleaning method for electron beam device
JP4309711B2 (en) Processing observation apparatus and processing observation method
US20230400424A1 (en) Component Analysis Apparatus and Component Analysis Method
JPH06343938A (en) Adhering substance cleaning method and apparatus therefor
JP4580982B2 (en) Charged particle beam apparatus, contamination removal method, and sample observation method
JP2000202384A (en) Foreign matter removal and foreign matter removal apparatus
JP2001236914A (en) Decontamination method in charged particle beam instrument and charged particle beam instrument
JPH09134861A (en) Method and device for charged particle beam exposure
JPH05242848A (en) Method and device for inspecting surface
KR101007289B1 (en) Sample cleaning and contamination apparatus using low power plasma
JP4365438B2 (en) Processing observation apparatus and processing observation method