JP2007046734A - Linear actuator - Google Patents

Linear actuator Download PDF

Info

Publication number
JP2007046734A
JP2007046734A JP2005233166A JP2005233166A JP2007046734A JP 2007046734 A JP2007046734 A JP 2007046734A JP 2005233166 A JP2005233166 A JP 2005233166A JP 2005233166 A JP2005233166 A JP 2005233166A JP 2007046734 A JP2007046734 A JP 2007046734A
Authority
JP
Japan
Prior art keywords
moving
shaft
transmission means
moving shaft
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005233166A
Other languages
Japanese (ja)
Other versions
JP3887689B2 (en
Inventor
Ichiro Shimizu
一郎 清水
Masanori Seki
正憲 關
Naoya Tada
直哉 多田
彰 ▲吉▼田
Akira Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okayama University NUC
Original Assignee
Okayama University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okayama University NUC filed Critical Okayama University NUC
Priority to JP2005233166A priority Critical patent/JP3887689B2/en
Publication of JP2007046734A publication Critical patent/JP2007046734A/en
Application granted granted Critical
Publication of JP3887689B2 publication Critical patent/JP3887689B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transmission Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a linear actuator generating high linear motion output from small input torque by conversion into linear motion through a differential mechanism, in particular, without using a specific (expensive) machine element, and performing precise positioning by proportionally converting rotational quantity into linear motion. <P>SOLUTION: In this linear actuator, two supporting members 2, 3 are provided with two rotating shafts 4 and one moving shaft 5 in parallel with each other, the rotating shafts 4 have first gears 12 and second male screw portions 13, and the moving shaft 5 has a second gear 14, a first male screw portion 15, and a head portion 28, and is provided with a moving member 6 relatively movable to the supporting members 2. The axial moving quantity of the moving shaft 5 is equal to the difference between a moving distance of the moving member 6 and the moving shaft 5 in one axial direction x in accompany with the rotation of the rotating shafts 4, and a moving distance in the axial direction y opposite to the axial direction x, of the moving shaft 5 to the moving member 6 by rotation of the moving shaft 5 when the rotation of the rotating shafts 4 is transmitted to the moving shaft 5 through first and third transmitting means 12, 14. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、リニア・アクチュエータに関し、特に電動モータなどの回転力を動力源とし、特殊(高価)な機械要素を用いることなく、差動機構を介した直線運動に変換することにより、小さな入力トルクから大きな直線運動出力を発生させるとともに、回転量を比例的に直線運動へ変換することによって精密に位置決めし、かつ完全に静止することが必要な材料試験機や精密扛重機、切削加工機における工作物移動装置など、さらには小型化が可能である利点を活かし、構成要素寸法と比較して大きな直線方向力が必要とされるマニピュレータ装置などに用いることができる、直動機構に関するものである。   The present invention relates to a linear actuator, and in particular, uses a rotational force of an electric motor or the like as a power source and converts it into a linear motion via a differential mechanism without using special (expensive) mechanical elements, thereby reducing a small input torque. A large linear motion output is generated, and the amount of rotation is proportionally converted to linear motion to accurately position the machine, and it is necessary to completely stand still. The present invention relates to a linear motion mechanism that can be used for a manipulator device that requires a linear force greater than that of a component, taking advantage of the ability to reduce the size of an object moving device and the like.

従来、材料試験機や扛重機などにおける直線運動力発生機構としては、必要とされる力が非常に大きい場合には、油圧シリンダを用い、一方、必要とされる力が比較的小さくてもよい場合には、回転運動を直線運動に変換する機構として、ねじとナット、歯車、リンクなどの組合せを用いるのが一般的である。特に、後者に関しては、さらに次のように大別される。
(1)ねじとナットを直接組み合わせたもの
(2)差動ねじ機構を用いたもの
(3)ラックピニオン機構を用いたもの
(4)ウォーム機構を用いたもの
(5)クランク機構を用いたもの
(6)パンタグラフ機構を用いたもの
Conventionally, as a linear motion force generating mechanism in a material testing machine or a heavy machine, when a required force is very large, a hydraulic cylinder is used, while a required force may be relatively small. In some cases, a combination of a screw and nut, a gear, a link, etc. is generally used as a mechanism for converting the rotational motion into a linear motion. In particular, the latter is further classified as follows.
(1) A combination of screws and nuts directly (2) A differential screw mechanism (3) A rack and pinion mechanism (4) A worm mechanism (5) A crank mechanism (6) Using a pantograph mechanism

まず、油圧シリンダにおいては、シリンダ径を大きくすることにより、数百kN以上の大荷重を発生することが可能であるため、大型の材料試験機や扛重機などに広く用いられている。しかしながら、油圧シリンダは、変位を制御することが極めて困難であるという欠点を有する。また、変位を停止させると、油圧シリンダの機構上、シリンダのパッキンからの油漏れを完全に防ぐことができないために、徐々に荷重が低下する。さらに、材料試験において、変位停止時にクリープ現象などで試験材料内の応力が低下すると、停止位置もそれに応じて変化してしまう。   First, hydraulic cylinders are widely used in large-scale material testing machines and heavy equipments because a large load of several hundred kN or more can be generated by increasing the cylinder diameter. However, the hydraulic cylinder has the disadvantage that it is very difficult to control the displacement. Further, when the displacement is stopped, the oil leakage from the cylinder packing cannot be completely prevented due to the mechanism of the hydraulic cylinder, so the load gradually decreases. Further, in the material test, when the stress in the test material is reduced due to a creep phenomenon or the like when the displacement is stopped, the stop position is changed accordingly.

このため、正確な変位制御が必要な材料試験などにおいては、前項(1)で述べたように、モータなどの動力によってねじを回転させ、そのねじと螺合されているナットを取り付けたクロスヘッドを移動させ、直線運動に変換する機構を用いることが多い(図1)。しかしながら、前項(1)のねじとナットを用いた装置では、小さな回転トルクを大きな直線運動力へ変換するために、容積の大きいギヤボックスを用いて減速させる必要がある。また、大きな直線運動力を得るためには、太いねじを用いる必要があるが、ねじが太くなるほどピッチも大きくなるため、精密な変位制御が困難となる。すなわち、前項(1)の装置では、大きな直線運動力と精密な変位制御を両立させることが難しい。   For this reason, in material tests that require precise displacement control, as described in the previous section (1), a screw is rotated by the power of a motor or the like, and a crosshead with a nut screwed to the screw is attached. In many cases, a mechanism is used that moves the head and converts it into linear motion (FIG. 1). However, in the apparatus using the screw and nut of the preceding item (1), it is necessary to decelerate using a gear box having a large volume in order to convert a small rotational torque into a large linear motion force. Further, in order to obtain a large linear motion force, it is necessary to use a thick screw. However, since the pitch increases as the screw becomes thicker, precise displacement control becomes difficult. That is, it is difficult for the device of the above item (1) to achieve both a large linear motion force and precise displacement control.

同様に、ねじ、歯車などを用いた前項(2)〜(6)で述べた機構について、それぞれの長所および短所を挙げる。   Similarly, the advantages and disadvantages of the mechanisms described in the preceding items (2) to (6) using screws, gears, etc. will be described.

前項(2)の差動ねじ機構を用いた装置は、図2に示すように、2つのねじ部のピッチを異ならせることにより、これらのねじ部を同時に回転させた際に、各ねじ部にそれぞれ取り付けた針間の距離を精密に変化させることができ、結果的に回転を微少な直線運動へ変換することができる。しかしながら、この方法では、相対的な直線方向移動量の差を取り出すために、回転させるねじ軸に対していずれの針も移動することになり、装置への組み込みが難しい。また、ピッチの異なるねじを組み合わせるために、製造上複雑な工程が必要となる。さらに、最大直線運動力は、ピッチの小さい方のねじに依存し、ピッチが小さい分だけねじ山の実用強度も低くなるという問題がある。   As shown in FIG. 2, the apparatus using the differential screw mechanism of the previous item (2) has different pitches of the two screw portions, so that when these screw portions are simultaneously rotated, The distance between the attached needles can be precisely changed, and as a result, the rotation can be converted into a minute linear motion. However, in this method, in order to take out the difference of the relative linear amount of movement, all the needles move with respect to the screw shaft to be rotated, and it is difficult to incorporate them into the apparatus. In addition, in order to combine screws having different pitches, a complicated process in manufacturing is required. Furthermore, the maximum linear motion force depends on the screw having the smaller pitch, and there is a problem that the practical strength of the screw thread is lowered by the smaller pitch.

前項(3)のラックピニオン機構を用いた装置は、図3に示すように、比較的軽いものを粗動させる際に広く用いられている。回転運動を直線運動に変換する機構としては一般的であるが、歯車の噛み合っている領域が小さく限られているので、大きな力を伝達する用途には適していない。   The apparatus using the rack and pinion mechanism of the preceding item (3) is widely used when roughly moving a relatively light object as shown in FIG. Although it is common as a mechanism for converting rotational motion into linear motion, the gear meshing region is limited to a small size, and therefore is not suitable for use in transmitting a large force.

前項(4)のウォームギヤとねじを組み合わせた機構を用いた装置は、図4に示すように、回転運動を直線運動に変換する機構が実際に用いられている。ウォームギヤの長所は、平歯車と比べて大きな減速比が得られる点と、停止時の保持力が大きい点である。しかしながら、ウォームギヤは、すべり接触であり、熱を発生しやすいために摩耗が進行しやすく、バックラッシが大きくなる。また、機械効率が低いために平歯車と比べて負荷容量が小さいという欠点を有する。さらに、装置を小型化しようとすると、ウォームギヤの噛み合いが少なくなるため、強度や耐久性が低下する。   As shown in FIG. 4, the device using the mechanism combining the worm gear and the screw of the preceding item (4) actually uses a mechanism for converting rotational motion into linear motion. The advantages of the worm gear are that a large reduction ratio can be obtained compared to a spur gear and that the holding force at the time of stopping is large. However, since the worm gear is in sliding contact and easily generates heat, the wear easily progresses and the backlash increases. Moreover, since mechanical efficiency is low, it has the fault that load capacity is small compared with a spur gear. Furthermore, when trying to downsize the device, the meshing of the worm gear is reduced, so that the strength and durability are lowered.

前項(5)のクランク機構を用いた装置は、回転運動を往復直線運動に変換する機構として古くから用いられており、プレス機械の圧縮力伝達機構としては最も広く使われている(図5)。しかしながら、前項(5)の装置は、その機構上、発生しうる力はストローク位置によって変化し、ストローク中央では加圧力が最も小さくなる。すなわち、ストロークの途中で停止させたり、変速させる用途には適してなく、変位制御は困難である。   The device using the crank mechanism of the previous section (5) has been used for a long time as a mechanism for converting rotational motion into reciprocating linear motion, and is most widely used as a compression force transmission mechanism of a press machine (FIG. 5). . However, in the device of the preceding item (5), the force that can be generated varies depending on the stroke position due to its mechanism, and the applied pressure becomes the smallest at the center of the stroke. That is, it is not suitable for the purpose of stopping or shifting in the middle of a stroke, and displacement control is difficult.

前項(6)のパンタグラフ機構を用いた装置は、図6に示すように、部品点数が少なく、特殊な減速機構を用いることなく大きな直線運動力が得られるという長所を有する。しかしながら、前項(6)の装置は、回転量と直線変位が比例しないため、精密な変位制御を行うことは難しい。   As shown in FIG. 6, the apparatus using the pantograph mechanism of the preceding item (6) has the advantages that the number of parts is small and a large linear motion force can be obtained without using a special speed reduction mechanism. However, in the device of the above item (6), since the rotation amount and the linear displacement are not proportional, it is difficult to perform precise displacement control.

このため、本発明者らは、差動的なねじ機構を用いて、大きな直線運動力と精密な変位制御を両立させるための検討を行った。   For this reason, the present inventors have studied to achieve both a large linear motion force and precise displacement control using a differential screw mechanism.

例えば特許文献1には、入力軸と、2つのねじ部を有する中間軸と、該中間軸と軸平行に配置され、軸の一部にねじ部を有する出力軸と、中間軸の一のねじ部に螺合するナット及び出力軸のねじ部に螺合するナットを連結するコラムとからなり、2つのねじ部の差動作用を利用して変位制御することが記載されている。   For example, Patent Document 1 discloses an input shaft, an intermediate shaft having two screw portions, an output shaft that is arranged in parallel with the intermediate shaft and has a screw portion at a part of the shaft, and one screw of the intermediate shaft. It is described that a displacement is controlled using a differential action of two screw portions, which includes a nut that is screwed to a screw portion and a column that connects a nut screwed to a screw portion of an output shaft.

特許文献1記載の変位制御方法は、同一回転軸(中間軸)に設けられた2つのねじ部のリード差により差動作用を生じさせるものであるが、最終的には回転出力を得るための機構であって、回転トルクを直線運動力に変換する機構ではない。   The displacement control method described in Patent Document 1 generates a differential action due to a difference in lead between two screw portions provided on the same rotation shaft (intermediate shaft). It is a mechanism, and is not a mechanism that converts rotational torque into linear motion force.

また、特許文献2には、差動レバーを利用して直線的な微変位を行い高精度に位置決めするためのサブマイクロマニプレータが記載されているが、精密な直線運動を達成するためには、半径の大きな歯車を有する直動レバーやピッチの小さなウォームが必要になり、構成が複雑になるという問題がある。   In addition, Patent Document 2 describes a sub-micromanipulator for performing linear fine displacement using a differential lever and positioning with high accuracy. In order to achieve precise linear motion, A linear motion lever having a gear with a large radius and a worm with a small pitch are required, resulting in a complicated configuration.

さらに、特許文献3には、ハウジングと駆動スリーブの間に中間アクチュエータ部材を装着した構成を有し、ねじ機構により回転を直線運動に変換し、また、回転量に対して直線運動量を比例的に変化させることができる差動式リニア・アクチュエータが記載されているが、この中間アクチュエータ部材は、複雑な構成を有しており、加工が難しいという問題がある。   Further, Patent Document 3 has a configuration in which an intermediate actuator member is mounted between the housing and the drive sleeve, and the rotation is converted into linear motion by a screw mechanism, and the linear momentum is proportional to the rotation amount. Although a differential linear actuator that can be changed is described, the intermediate actuator member has a complicated configuration and has a problem that it is difficult to process.

さらにまた、特許文献4には、遊星歯車伝動装置の回転駆動運動を直線運動に変換する構成を有し、歯車の歯数やねじのピッチを変えることにより、入力直線運動の移動出力比を変えることが可能であり、回転量に対し直線移動量を比例的に変化させることができるブレーキ操作装置が記載されているが、このブレーキ装置は、2つの電動モータが必要であるため、装置の小型化や軽量化を図ることは難しいという問題点がある。   Furthermore, Patent Document 4 has a configuration in which the rotational drive motion of the planetary gear transmission is converted into a linear motion, and the movement output ratio of the input linear motion is changed by changing the number of gear teeth and the screw pitch. The brake operation device is described in which the linear movement amount can be changed proportionally with respect to the rotation amount. However, since this brake device requires two electric motors, the size of the device can be reduced. There is a problem that it is difficult to reduce the weight and weight.

加えて、特許文献5には、ベースと支持板と可動体と主軸モータとねじ軸と、第一のねじをもつ差動円筒と第二のねじと差動円筒を支持板およびねじ軸とに対して回転させるモータとを有し、そのモータの回転によって差動円筒をねじ軸とともに支持板に対して上下移動させる差動機構を備えたプレス装置が記載されているが、この装置は、2個のモータが必要であり、装置の小型化や軽量化の点で不利である。
特開昭59−77162号公報 特開昭61−131882号公報 特開平6−323394号公報 特表2000−507332号公報 特開2005−66652号公報
In addition, Patent Document 5 includes a base, a support plate, a movable body, a main shaft motor, a screw shaft, a differential cylinder having a first screw, a second screw, and a differential cylinder as a support plate and a screw shaft. And a press device provided with a differential mechanism that moves the differential cylinder up and down relative to the support plate together with the screw shaft by rotation of the motor. One motor is required, which is disadvantageous in terms of downsizing and weight reduction of the apparatus.
JP 59-77162 A JP 61-131882 A JP-A-6-323394 JP 2000-507332 A JP 2005-66652 A

この発明の目的は、特に電動モータなどの回転力を動力源とし、特殊(高価)な機械要素を用いることなく、差動機構を介した直線運動に変換することにより、小さな入力トルクから大きな直線運動出力を発生させるとともに、回転量を比例的に直線運動へ変換することによって精密に位置決めし、かつ完全に静止することが必要な材料試験機や精密扛重機、切削加工機における工作物移動装置など、さらには小型化が可能であるリニア・アクチュエータを提供することにある。   An object of the present invention is to convert a small input torque to a large linear force by converting a linear motion through a differential mechanism without using special (expensive) mechanical elements, particularly using a rotational force of an electric motor or the like as a power source. Workpiece moving device in material testing machines, precision hoisting machines, and cutting machines that need to be positioned precisely by generating motion output and converting the amount of rotation to linear motion proportionally and completely stationary Further, it is to provide a linear actuator that can be miniaturized.

上記目的を達成するため、この発明の要旨は以下のとおりである。
(I)少なくとも1つの支持部材に、回転可能に担持される少なくとも1本の回転軸と、軸方向への移動可能に担持される少なくとも1本の移動軸とを設け、
回転軸は、その少なくとも片側に第1伝動手段を有し、回転軸の所定部分に、第1伝動手段とともに同一方向に回転する第2伝動手段をもち、
移動軸は、その少なくとも片側に、回転軸に設けた第1伝動手段と係合する第3伝動手段を有し、移動軸の所定部分に、第3伝動手段とともに同一方向に回転する第1雄ねじ部をもち、先端に軸方向への位置決め制御を行うヘッド部を有し、
少なくとも移動軸の第1雄ねじ部が螺合する第1雌ねじ孔と、回転軸の第2伝動手段との連係動作する第4伝動手段をもち、第1雄ねじ部に沿って、支持部材に対する相対移動が可能な少なくとも1つの移動部材を設け、
移動軸の軸方向移動量は、回転軸の回転に伴う移動部材および移動軸の一の軸方向へ移動する距離と、回転軸の回転が第1および第3伝動手段を通じて移動軸に伝達されて移動軸が回転することにより、移動部材に対して移動軸が一の軸方向とは逆向きの軸方向に移動する距離との差であることを特徴とするリニア・アクチュエータ。
In order to achieve the above object, the gist of the present invention is as follows.
(I) The at least one support member is provided with at least one rotating shaft that is rotatably supported and at least one moving shaft that is rotatably supported in the axial direction,
The rotation shaft has first transmission means on at least one side thereof, and has a second transmission means that rotates in the same direction together with the first transmission means at a predetermined portion of the rotation shaft,
The moving shaft has, on at least one side thereof, third transmitting means that engages with the first transmitting means provided on the rotating shaft, and a first male screw that rotates in the same direction together with the third transmitting means on a predetermined portion of the moving shaft Having a head part that performs positioning control in the axial direction at the tip,
At least a first female screw hole into which the first male screw portion of the moving shaft is screwed and a fourth transmission means for linking operation with the second transmission means of the rotating shaft, and relative movement with respect to the support member along the first male screw portion Providing at least one moving member capable of
The amount of movement of the moving shaft in the axial direction is determined by the distance traveled in one axial direction of the moving member and the moving shaft accompanying the rotation of the rotating shaft, and the rotation of the rotating shaft transmitted to the moving shaft through the first and third transmission means. A linear actuator characterized in that a difference between a moving axis and a distance that the moving axis moves in an axial direction opposite to the one axial direction with respect to the moving member by rotating the moving axis.

(II)第1及び第3伝動手段はいずれも歯車である上記(I)記載のリニア・アクチュエータ。 (II) The linear actuator according to (I), wherein the first and third transmission means are both gears.

(III)前記回転軸と前記移動軸は平行に配置され、第2伝動手段は第2雄ねじ部であり、第4伝動手段は第2雌ねじ孔である上記(I)または(II)記載のリニア・アクチュエータ。 (III) The rotating shaft and the moving shaft are arranged in parallel, the second transmission means is a second male screw portion, and the fourth transmission means is a second female screw hole.・ Actuator.

(IV)移動軸のヘッド部の軸方向移動量は、第1および第2雄ねじ部のピッチ比と、第1及び第3伝動手段の歯数比とで決定される上記(III)記載のリニア・アクチュエータ。 (IV) The amount of axial movement of the head portion of the moving shaft is determined by the pitch ratio of the first and second male screw portions and the tooth number ratio of the first and third transmission means.・ Actuator.

(V)回転軸の第2雄ねじ部が、右ねじまたは左ねじで形成され、移動軸の第1雄ねじ部が、第2雄ねじ部とは逆向きのねじで形成され、第1伝動手段を一方向に回転させると、回転軸が第1伝動手段とともに共回転して移動部材を前進させ、移動部材が回転軸の第2雄ねじ部に沿って移動軸を前進させる方向に移動させると同時に、第1伝動手段との係合動作で第1伝動手段とは逆向きに第3伝動手段が回転して、移動軸を、移動部材の移動方向とは逆向きの方向に移動させるように構成する上記(III)または(IV)記載のリニア・アクチュエータ。 (V) The second male screw portion of the rotating shaft is formed of a right screw or a left screw, the first male screw portion of the moving shaft is formed of a screw opposite to the second male screw portion, and the first transmission means is integrated. When rotating in the direction, the rotating shaft co-rotates with the first transmission means to advance the moving member, and the moving member moves in the direction of moving the moving shaft forward along the second male screw portion of the rotating shaft. The third transmission means rotates in the direction opposite to the first transmission means in the engaging operation with the first transmission means, and the moving shaft is configured to move in the direction opposite to the moving direction of the moving member. Linear actuator as described in (III) or (IV).

(VI)回転軸の第2雄ねじ部と移動軸の第1雄ねじ部が、ともに右ねじで形成され、第1伝動手段と第3伝動手段の間に、これらと係合動作する第5伝動手段を設け、第1伝動手段を一方向に回転させると、回転軸が第1伝動手段とともに共回転して移動部材を前進させ、移動部材が回転軸の第2雄ねじ部に沿って移動軸を前進させる方向に移動させると同時に、第5伝動手段を介した第1伝動手段との係合動作で第1伝動手段と同じ向きに第3伝動手段が回転して、移動軸を、移動部材の移動方向とは逆向きの方向に移動させるように構成する上記(III)または(IV)記載のリニア・アクチュエータ。 (VI) Fifth transmission means in which the second male screw portion of the rotating shaft and the first male screw portion of the moving shaft are both formed by right-hand threads, and engage with and operate between the first transmission means and the third transmission means. When the first transmission means is rotated in one direction, the rotation shaft co-rotates with the first transmission means to advance the moving member, and the moving member advances the movement shaft along the second male screw portion of the rotation shaft. At the same time, the third transmission means rotates in the same direction as the first transmission means by the engaging operation with the first transmission means via the fifth transmission means, and the moving shaft moves the moving member. The linear actuator according to (III) or (IV), wherein the linear actuator is configured to move in a direction opposite to the direction.

(VII)移動軸を1本とし、回転軸を2本とする上記(I)〜(VI)のいずれか1項記載のリニア・アクチュエータ。 (VII) The linear actuator according to any one of the above (I) to (VI), wherein the number of moving axes is one and the number of rotating axes is two.

(VIII)平行配置した2本の回転軸の第1伝動手段を挟んで移動軸の第3伝動手段とは反対側に、両回転軸の第1伝動手段と係合動作する第6伝達手段を設け、該第6伝動手段は、駆動軸を介して駆動手段に連結される上記(VII)記載のリニア・アクチュエータ。 (VIII) Sixth transmission means engaged with the first transmission means of both rotary shafts on the opposite side of the third transmission means of the moving shaft across the first transmission means of the two rotary shafts arranged in parallel. The linear actuator according to (VII) above, wherein the sixth transmission means is connected to the drive means via a drive shaft.

(IX)前記回転軸と前記移動軸は直交して配置され、第2伝動手段はピニオンであり、第4伝動手段はラックである上記(I)または(II)記載のリニア・アクチュエータ。 (IX) The linear actuator according to (I) or (II), wherein the rotating shaft and the moving shaft are arranged orthogonally, the second transmission means is a pinion, and the fourth transmission means is a rack.

この発明によれば、特殊(または高価)な機械要素を用いることなく、回転運動を差動機構を介した直線運動に変換することにより、小さな入力トルクから大きな直線運動出力を発生させるとともに、回転量を比例的に直線運動へ変換することによって精密に位置決め制御することができる。   According to the present invention, a rotational motion is converted into a linear motion via a differential mechanism without using a special (or expensive) mechanical element, thereby generating a large linear motion output from a small input torque and rotating. The position can be precisely controlled by converting the quantity into a linear motion proportionally.

また、回転軸と移動軸とを平行に配置する構造にすれば、アクチュエータ全体をコンパクトにすることができる。   Further, if the structure is such that the rotation axis and the movement axis are arranged in parallel, the entire actuator can be made compact.

さらに、この発明は、移動軸の軸方向移動量が、移動部材および移動軸の一の軸方向へ移動する距離と、移動部材に対して移動軸が一の軸方向とは逆向きの軸方向に移動する距離との差によって定められるため、回転軸の第2雄ねじ部や移動軸の第1雄ねじ部のピッチを大きく設定することができる結果、大荷重を負荷することができる。   Further, according to the present invention, the moving amount of the moving shaft in the axial direction is a distance that the moving member and the moving shaft move in one axial direction, and the axial direction in which the moving shaft is opposite to the one axial direction with respect to the moving member. Since the pitch of the second male screw portion of the rotating shaft and the first male screw portion of the moving shaft can be set large, a large load can be applied.

さらにまた、この発明のアクチュエータは、例えば歯車のような伝動手段と、回転軸や移動軸のようなねじとの組み合わせで主として構成すれば、構成が単純になり、しかも、これらの部材は安価に入手することができる。   Furthermore, if the actuator according to the present invention is mainly composed of a combination of a transmission means such as a gear and a screw such as a rotating shaft or a moving shaft, the structure becomes simple, and these members are inexpensive. It can be obtained.

従来でも、高精度かつ高出力なリニア・アクチュエータの製造は、高価な材料で構成するとともに、高精度に研削仕上げされたねじを用いれば可能であったが、そのように高価なねじを用いることができる用途は限られており、しかも、通常のボールねじは高精度であるものの高出力が難しく、広く用いられている安価な台形ねじでは高出力であるがリード角が大きいために精度が悪くなり、結果として、高精度に研削仕上げされたねじを用いたとしても、高出力と高精度の双方を満足させることは困難であった。これに対し、この発明では、安価な台形ねじを用いても比較的精度良く変位を制御することができるという効果がある。   Previously, it was possible to manufacture high-precision and high-power linear actuators by using screws made of expensive materials and finished with high precision, but using such expensive screws However, the normal ball screw has high accuracy but high output is difficult, and the widely used inexpensive trapezoidal screw has high output, but the lead angle is large, so the accuracy is poor. As a result, it was difficult to satisfy both high output and high accuracy even when a screw that was ground with high accuracy was used. In contrast, the present invention has an effect that the displacement can be controlled with relatively high accuracy even if an inexpensive trapezoidal screw is used.

また、台形ねじを用いて小さい変位を得ようとすれば、台形ねじの回転を極めて遅くする必要があるために、静摩擦と動摩擦の切り替わりによる摩擦力変動や、モータの回転速度を低下させることによる発生トルクの低下などを引き起こしていたが、この発明では、差動機構の採用により、変位が小さい場合にも、移動軸の軸方向移動量と比較して、ねじ面上の移動速度は比較的速くできるので、摩擦力の変動が抑制され、かつモータの回転速度を速い状態で維持することができ、その結果、精密な位置決め制御が可能になる。   In addition, if a small displacement is to be obtained using a trapezoidal screw, the trapezoidal screw must be rotated very slowly, so the frictional force fluctuations caused by switching between static friction and dynamic friction and the motor rotation speed are reduced. In the present invention, due to the adoption of the differential mechanism, even when the displacement is small, the moving speed on the screw surface is relatively small compared to the axial movement amount of the moving shaft. Since the speed can be increased, the fluctuation of the frictional force is suppressed, and the rotational speed of the motor can be maintained at a high speed, and as a result, precise positioning control is possible.

この発明に従う実施形態について図面を参照しながら以下に説明する。
図7は、この発明に従うリニア・アクチュエータの要部構成を示したものであり、図8(a)〜(c)はそれぞれ図7のA−A断面、B−B断面およびC−C断面を示したものである。
Embodiments according to the present invention will be described below with reference to the drawings.
FIG. 7 shows the configuration of the main part of the linear actuator according to the present invention. FIGS. 8 (a) to 8 (c) show the AA, BB and CC sections of FIG. 7, respectively. It is shown.

この発明のリニア・アクチュエータ1は、少なくとも1つの支持部材、図7では、4つの支持部材2,3、7,8、回転軸4、移動軸5および移動部材6とで主に構成されている。   The linear actuator 1 of the present invention is mainly composed of at least one support member, in FIG. 7, four support members 2, 3, 7, and 8, a rotating shaft 4, a moving shaft 5, and a moving member 6. .

図7では、2つの支持部材2,3は、所定の間隔をおいて互いに平行に配置されているとともに、さらに、支持部材2,3の強度を高める上で、支持部材2,3の両端をそれぞれ連結するさらに別の2つの支持部材7,8を設け、合計4つの支持部材2,3,7,8で、全体として矩形の平面形状を形成した場合を示している。なお、これらの支持部材の個数や形状等については、必要に応じて適宜変更することができる。   In FIG. 7, the two support members 2 and 3 are arranged in parallel with each other at a predetermined interval. Further, in order to increase the strength of the support members 2 and 3, both ends of the support members 2 and 3 are connected. In this example, two additional support members 7 and 8 that are connected to each other are provided, and a total of four support members 2, 3, 7, and 8 form a rectangular planar shape as a whole. In addition, about the number, shape, etc. of these support members, it can change suitably as needed.

また、これらの支持部材2,3に、軸方向に移動させることなく回転可能に担持される少なくとも1本(図7では2本)の回転軸4と、軸方向への直線移動可能に担持される少なくとも1本(図7では1本)の移動軸5とが平行に設けられている。   Further, at least one rotating shaft 4 (two in FIG. 7) that is rotatably supported without being moved in the axial direction and these linear support members 2 and 3 are supported so as to be linearly movable in the axial direction. At least one (one in FIG. 7) moving shaft 5 is provided in parallel.

回転軸4を軸方向に移動させることなく回転可能に担持する手段としては、例えば、図7および図8(a)に示すように、前記支持部材2,3のそれぞれに貫通孔9を形成し、これらの貫通孔9の内周面に複数個の剛球からなる軸受10を配設することにより、回転軸4を回転可能に担持するとともに、支持部材2、3に隣接する回転軸4の両側部分に、ストッパーとして、外径を拡大したフランジ部11を設けることが好ましい。   As means for rotatably supporting the rotating shaft 4 without moving it in the axial direction, for example, as shown in FIGS. 7 and 8 (a), through-holes 9 are formed in the support members 2 and 3, respectively. The bearing 10 made of a plurality of hard spheres is disposed on the inner peripheral surface of these through-holes 9 so that the rotary shaft 4 is rotatably supported and both sides of the rotary shaft 4 adjacent to the support members 2 and 3 are provided. It is preferable to provide the flange part 11 which expanded the outer diameter as a stopper in a part.

また、移動軸5を軸方向に直線移動可能に担持する手段としては、フランジ部を設けないこと以外は回転軸4を担持する手段と同様に構成しさえすればよい。   The means for supporting the moving shaft 5 so as to be linearly movable in the axial direction may be configured similarly to the means for supporting the rotating shaft 4 except that the flange portion is not provided.

回転軸4は、その少なくとも片側に第1伝動手段12、好適には歯車を有し、回転軸の所定部分、図7では支持部材2,3間に位置する部分に、第1伝動手段12とともに同一方向に回転する第2伝動手段、図7では第2雄ねじ部13を有する。第2雄ねじ部13は、軸回りに特定方向、例えば図7では、図の右側から眺めて、右ねじになるような方向にねじ切りして形成したものである。   The rotary shaft 4 has the first transmission means 12 on at least one side thereof, preferably a gear, and the first transmission means 12 is provided at a predetermined portion of the rotary shaft, that is, between the support members 2 and 3 in FIG. The second transmission means, which rotates in the same direction, has a second male screw portion 13 in FIG. The second male screw portion 13 is formed by threading in a specific direction around the axis, for example, in a direction that becomes a right screw when viewed from the right side of the drawing in FIG.

移動軸5は、その少なくとも片側に、回転軸4に設けた第1伝動手段12と係合する第3伝動手段14、好適には歯車を有し、移動軸の所定部分、図7では支持部材2,3間に位置する部分に、第3伝動手段14とともに同一方向に回転する第1雄ねじ部15をもち、先端に、軸方向への位置決め制御を行うヘッド部28を有する。第1ねじ部15、軸回りに特定方向、例えば図7では、図の右側から眺めて、左ねじになるような方向にねじ切りして形成したものである。   The moving shaft 5 has, on at least one side thereof, third transmitting means 14 that engages with the first transmitting means 12 provided on the rotating shaft 4, preferably a gear, and a predetermined portion of the moving shaft, which is a support member in FIG. The first male screw portion 15 that rotates in the same direction together with the third transmission means 14 is provided at a portion located between the two and the third, and a head portion 28 that performs positioning control in the axial direction is provided at the tip. The first screw portion 15 is formed by threading in a specific direction around the axis, for example, in a direction that becomes a left-hand thread when viewed from the right side of the drawing in FIG.

移動部材6は、回転軸4の第2伝動手段である第2雄ねじ部13と、移動軸5の第1雄ねじ部15とが、それぞれ螺合する第4伝動手段である第2雌ねじ孔16と、第1雌ねじ孔17をもち、第2および第1雄ねじ部13、15に沿って、支持部材2に対し相対移動可能に構成される。   The moving member 6 has a second female screw hole 16 as a fourth transmission means, and a second male screw part 13 as a second transmission means of the rotating shaft 4 and a first male screw part 15 of the movement shaft 5 are engaged with each other. The first female screw hole 17 is configured to be movable relative to the support member 2 along the second and first male screw portions 13 and 15.

そして、この発明では、移動軸5(、より厳密にはヘッド部28)の軸方向移動量が、回転軸4の回転に伴う移動部材6および移動軸5の一の軸方向xへ移動する距離と、回転軸の回転が第1伝動手段12および第3伝動手段14を通じて移動軸5に伝達されて移動軸5が回転することにより、移動部材6に対して移動軸5が一の軸方向xとは逆向きの軸方向yに移動する距離との差によるものであり、この構成を採用することにより、特殊(高価)な機械要素を用いることなく、差動機構を介した直線運動に変換することにより、小さな入力トルクから大きな直線運動出力を発生させるとともに、回転量を比例的に直線運動へ変換することによって精密に位置決め制御することができる。   In the present invention, the distance by which the movement amount of the moving shaft 5 (and more precisely, the head portion 28) moves in the axial direction x of the moving member 6 and the moving shaft 5 accompanying the rotation of the rotating shaft 4 is as follows. Then, the rotation of the rotary shaft is transmitted to the moving shaft 5 through the first transmission means 12 and the third transmission means 14 and the moving shaft 5 rotates, so that the moving shaft 5 is in one axial direction x with respect to the moving member 6. Is due to the difference in the distance of movement in the opposite axial direction y. By adopting this configuration, it is converted into linear motion via a differential mechanism without using special (expensive) mechanical elements. By doing so, a large linear motion output can be generated from a small input torque, and the rotation amount can be proportionally converted into a linear motion, thereby precisely controlling the positioning.

次に、図7に示すリニア・アクチュエータの動作機構を以下で詳細に説明する。
図7のリニア・アクチュエータは、例えば電動モータのような駆動手段(図示せず)が第1伝動手段12(図7では第1歯車)に連結され、駆動手段を作動させることによって、第1歯車12を、図7の右側から眺めて、反時計回りに回転させる。なお、図7では、移動部材6を回転軸4に沿って円滑に移動させるため、移動軸5を挟んで2本の回転軸4,4を平行に配設した場合を示してあるが、このように回転軸4の配設本数は必要に応じて適宜変更することができる。また、この発明では、第1歯車12を複数個配設することも可能であり、この場合には、これらの第1歯車12を同じ回転速度で同時入力するように構成すれば、歯車の1歯あたりの負荷容量を減らすことができるため、さらに大きな動力を伝達することができる。
Next, the operation mechanism of the linear actuator shown in FIG. 7 will be described in detail below.
The linear actuator shown in FIG. 7 includes a first gear by operating a driving means (not shown) such as an electric motor connected to the first transmission means 12 (first gear in FIG. 7). 12 is rotated counterclockwise as viewed from the right side of FIG. FIG. 7 shows a case where the two rotating shafts 4 and 4 are arranged in parallel with the moving shaft 5 interposed therebetween in order to smoothly move the moving member 6 along the rotating shaft 4. As described above, the number of the rotary shafts 4 can be appropriately changed as necessary. In the present invention, a plurality of first gears 12 can be arranged. In this case, if the first gears 12 are simultaneously input at the same rotational speed, the first gear 12 can be provided. Since the load capacity per tooth can be reduced, larger power can be transmitted.

次いで、第1歯車12が反時計回りに回転すると、これとともに共回転する回転軸4もまた、反時計回りに回転する。このとき、回転軸4は、軸受10を介して両支持部材2,3によって回転可能に担持されている。   Next, when the first gear 12 rotates counterclockwise, the rotating shaft 4 that rotates together with the first gear 12 also rotates counterclockwise. At this time, the rotating shaft 4 is rotatably supported by the support members 2 and 3 via the bearing 10.

回転軸4は、その第2雄ねじ部13が、移動部材6の第2雌ねじ部16に螺合されており、第2雄ねじ部13が、図1の右側から眺めて、右ねじであって、回転軸4が反時計回りに回転することに伴って、支持部材2に対し、移動部材6が回転軸4に沿って、図1の軸方向x(左方向)に移動する。この移動部材6には、移動軸5の第1雄ねじ部15が、移動部材6の第1雌ねじ部17に螺合されているため、移動部材6の軸方向xへの移動距離と同じだけ移動軸5も軸方向xに移動することになる。なお、この発明では、回転軸4は1本でも動作可能であるが、図1に示すように、複数本配設することが移動部材6に作用する余分なモーメントを防止できる点で好ましい。また、移動部材6は、1個でもよいが、高い直線運動力に耐え得るようにするためには、回転軸4および移動軸5の雄ねじ部13,15と螺合する雌ねじの歯数が多くなるようにするため、複数個にするか、あるいは板厚を厚くすることが好ましい。   The rotary shaft 4 has a second male threaded portion 13 screwed into the second female threaded portion 16 of the moving member 6, and the second male threaded portion 13 is a right-hand thread when viewed from the right side of FIG. As the rotating shaft 4 rotates counterclockwise, the moving member 6 moves along the rotating shaft 4 in the axial direction x (left direction) in FIG. Since the first male screw portion 15 of the moving shaft 5 is screwed to the moving member 6 with the first female screw portion 17 of the moving member 6, the moving member 6 moves as much as the moving distance in the axial direction x of the moving member 6. The shaft 5 also moves in the axial direction x. In the present invention, even one rotating shaft 4 can be operated. However, as shown in FIG. 1, it is preferable to dispose a plurality of rotating shafts 4 in terms of preventing an extra moment acting on the moving member 6. The number of the moving members 6 may be one, but in order to withstand a high linear motion force, the number of teeth of the female screw to be screwed with the male screw portions 13 and 15 of the rotating shaft 4 and the moving shaft 5 is large. In order to achieve this, it is preferable to use a plurality of plates or to increase the plate thickness.

一方、図7に示す移動軸5は、軸受10を介して両支持部材2,3によって回転および直動(直線移動)可能に担持されており、第1歯車12の回転力は、第1歯車12と係合する第3伝動手段14(図1では第2歯車)に伝達され、第2歯車14は、第1歯車12の回転力によって、時計回りに回転し、第2歯車14が時計回りに回転すると、これとともに共回転する移動軸5もまた、時計回りに回転する。移動軸5は、その第1雄ねじ部15が、移動部材6の第1雌ねじ部17に螺合されており、第1雄ねじ部15が、図1の右側から眺めて、左ねじであって、移動軸5が時計回りに回転することに伴って、移動部材6に対し移動軸5が、図1の軸方向xとは逆向きの軸方向y(右方向)に移動することになる。   On the other hand, the moving shaft 5 shown in FIG. 7 is supported by both support members 2 and 3 via a bearing 10 so as to be rotatable and linearly movable (linear movement). The rotational force of the first gear 12 is the first gear. 1 is transmitted to the third transmission means 14 (second gear in FIG. 1), which is rotated clockwise by the rotational force of the first gear 12, and the second gear 14 is rotated clockwise. When the rotary shaft rotates, the moving shaft 5 that rotates together therewith also rotates clockwise. The moving shaft 5 has a first male threaded portion 15 screwed into a first female threaded portion 17 of the moving member 6, and the first male threaded portion 15 is a left-hand thread as viewed from the right side of FIG. As the moving shaft 5 rotates clockwise, the moving shaft 5 moves in the axial direction y (right direction) opposite to the axial direction x in FIG.

この結果、移動軸5は、回転軸4の回転に伴う移動部材6および移動軸5の一の軸方向xへ移動する距離と、回転軸4の回転が第1歯車12および第2歯車14を通じて移動軸に伝達されて移動軸が回転することにより、移動部材6に対して移動軸5が一の軸方向xとは逆向きの軸方向yに移動する距離との差の分だけ軸方向に移動することになり、移動軸のヘッド部28は、この機構において直線運動力を出力する部位であり、結果として移動軸5においては、前述した移動部材6による軸方向xへの移動量から、回転による移動部材6に対する軸方向yへの移動量を差し引いた分だけ、軸方向xへ直線移動する、いわゆる差動的な出力を得ることができる。   As a result, the moving shaft 5 moves in the axial direction x of the moving member 6 and the moving shaft 5 along with the rotation of the rotating shaft 4, and the rotation of the rotating shaft 4 passes through the first gear 12 and the second gear 14. When the moving shaft is transmitted to the moving shaft and rotated, the moving shaft 5 moves in the axial direction by the difference between the moving shaft 5 and the moving distance in the axial direction y opposite to the one axial direction x. The head portion 28 of the moving shaft is a part that outputs a linear kinetic force in this mechanism, and as a result, the moving shaft 5 has a moving amount in the axial direction x by the moving member 6 described above. A so-called differential output that linearly moves in the axial direction x can be obtained by subtracting the amount of movement in the axial direction y relative to the moving member 6 due to rotation.

このような軸方向xへの差動を達成するには、第1歯車12および第2歯車14の歯数比と、回転軸4の第2雄ねじ部13と移動軸5の第1雄ねじ部15のピッチ比を適切に組み合わせることが必要になる。例えば、第1歯車12と第2歯車14の歯数が等しい場合には、移動軸5のピッチを回転軸4のピッチよりも小さくすれば、結果的に移動軸5を軸方向xに移動させることができる。また、回転軸4のピッチと移動軸5のピッチが等しい場合には、第2歯車14の歯数を第1歯車12の歯数よりも多くすれば、結果的に移動軸5を軸方向xに移動させることができる。   In order to achieve such differential in the axial direction x, the gear ratio between the first gear 12 and the second gear 14, the second male screw portion 13 of the rotating shaft 4, and the first male screw portion 15 of the moving shaft 5. It is necessary to combine the pitch ratios appropriately. For example, when the first gear 12 and the second gear 14 have the same number of teeth, if the pitch of the moving shaft 5 is made smaller than the pitch of the rotating shaft 4, the moving shaft 5 is moved in the axial direction x as a result. be able to. Further, when the pitch of the rotary shaft 4 and the pitch of the moving shaft 5 are equal, if the number of teeth of the second gear 14 is made larger than the number of teeth of the first gear 12, the moving shaft 5 is consequently moved in the axial direction x. Can be moved to.

その他の場合においても、各歯車12,14の歯数比と、回転軸4および移動軸5のねじ部13、15のピッチ比を適切に決定することにより、移動軸5の軸方向xへの差動を達成することが可能になる。   In other cases, the gear ratio of each of the gears 12 and 14 and the pitch ratio of the screw portions 13 and 15 of the rotary shaft 4 and the moving shaft 5 are appropriately determined, so that the moving shaft 5 in the axial direction x is determined. It becomes possible to achieve differential.

なお、この実施形態では、第2歯車14は、移動軸5とともに直動(軸方向への移動)するので、その際にも、第2歯車14と第1歯車12の係合状態が維持できるように、第2歯車14には軸方向に長い形状のものを用いた場合を示しているが、上記係合状態を維持できる構成であればよく、上記構成だけには限定されない。   In this embodiment, since the second gear 14 moves linearly (moves in the axial direction) together with the moving shaft 5, the engagement state of the second gear 14 and the first gear 12 can be maintained at that time as well. Thus, although the case where the thing of the shape long in an axial direction is used for the 2nd gearwheel 14 is shown, the structure which can maintain the said engagement state should just be maintained, and it is not limited only to the said structure.

また、図9は、図8(c)に示す2本の回転軸4と1本の移動軸5の配置構成の変形例を示したものである。   FIG. 9 shows a modification of the arrangement of the two rotating shafts 4 and one moving shaft 5 shown in FIG.

この実施例では、1個の電動モータなどによる回転入力が、入力軸18の片側に連結されている第6伝達手段である入力歯車19を、図9では時計回りに回転させる。この入力歯車19は、歯数が等しい2個の第1歯車12と直接的に噛み合っており、これらを同時に反時計回りに回転させる。さらに、これらの第1歯車12は、第2歯車14と直接的に噛み合っており、第2歯車14を時計回りに回転させる。モータのトルクが大きい場合、あるいは入力歯車19と第1歯車12の減速比を充分に大きくできる場合には、この実施例のように配置することによって、2個の第1歯車12に対して等しい回転を与えることができるので効率的であり、加えて、図8(c)の装置構成のように、回転軸4と移動軸5を一列に配置した場合と比較して、装置構成を小型化することができる。   In this embodiment, the rotation input by one electric motor or the like causes the input gear 19 as the sixth transmission means connected to one side of the input shaft 18 to rotate clockwise in FIG. The input gear 19 is directly meshed with two first gears 12 having the same number of teeth, and simultaneously rotates them counterclockwise. Further, these first gears 12 are directly meshed with the second gears 14 and rotate the second gears 14 clockwise. When the torque of the motor is large, or when the reduction ratio between the input gear 19 and the first gear 12 can be made sufficiently large, the two gears are equal to each other by arranging as in this embodiment. Since the rotation can be given, it is efficient. In addition, the device configuration is reduced in size compared with the case where the rotation shaft 4 and the moving shaft 5 are arranged in a line as in the device configuration of FIG. 8 (c). can do.

また、この発明のアクチュエータを構成する各部材については、次のように変更することも可能である。   Further, each member constituting the actuator of the present invention can be modified as follows.

直線運動を出力する移動軸5の配設本数は複数本にすることも可能である。この際、複数本の移動軸5は、同時に直動することから、その先端にスラストベアリングなどを介して昇降板を取り付ければ、高い可搬力を有する昇降装置として用いることができる。   A plurality of moving shafts 5 for outputting linear motion can be provided. At this time, since the plurality of moving shafts 5 move linearly at the same time, if a lifting plate is attached to the tip of the plurality of moving shafts 5 via a thrust bearing or the like, it can be used as a lifting device having a high portable force.

第2歯車14は、移動軸5に回転を伝達するだけであれば、例えば、移動軸5と第2歯車14との間にボールスプラインなどを設けて、第2歯車14が移動軸5に対してスライド移動可能に構成すれば、第2歯車14として軸方向に長いものを用いなくても、第1歯車12との係合状態を維持でき、加えて、軽量化も図れる点で好ましい。また、この構成を採用する場合には、第1及び第2歯車12,14として、平歯車よりも伝達容量が大きい「はすば歯車」を用いることも可能になる。   If the second gear 14 only transmits rotation to the moving shaft 5, for example, a ball spline or the like is provided between the moving shaft 5 and the second gear 14, and the second gear 14 moves relative to the moving shaft 5. If the second gear 14 is configured to be slidable, the engagement with the first gear 12 can be maintained without using a second gear 14 that is long in the axial direction, and in addition, the weight can be reduced. When this configuration is adopted, it is possible to use “helical gears” having a larger transmission capacity than the spur gears as the first and second gears 12 and 14.

また、上記実施例では、第1及び第2伝動手段12,14として歯車を用いた場合を示してあるが、直動と回転の双方を許容するのであれば、無端ベルトなどの他の伝動手段を用いてもよい。   In the above embodiment, gears are used as the first and second transmission means 12 and 14, but other transmission means such as an endless belt can be used as long as both linear movement and rotation are allowed. May be used.

さらに、図7では、移動軸5のヘッド部28での出力が、外向き方向(図の軸方向x)への直線運動力を発生させる場合を示しているが、各歯車12,14の歯数比と、回転軸4および移動軸5のねじ部13、15のピッチ比の関係を、図7の場合とは反対になるように設定することにより、移動軸5のヘッド部28での出力が、内向き方向(図の軸方向y)への直線運動力を発生させるように変更することも可能である。例えば、移動軸5の第1雄ねじ部15と回転軸4の第2雄ねじ部13のピッチ比を等しくし、第2歯車14の歯数を第1歯車12の歯数よりも少なくすることで達成できる。   Further, FIG. 7 shows a case where the output of the moving shaft 5 at the head portion 28 generates a linear motion force in the outward direction (the axial direction x in the figure). By setting the relationship between the number ratio and the pitch ratio of the screw portions 13 and 15 of the rotary shaft 4 and the moving shaft 5 to be opposite to that in the case of FIG. 7, the output at the head portion 28 of the moving shaft 5 is achieved. However, it is also possible to change so as to generate a linear motion force in the inward direction (the axial direction y in the figure). For example, the pitch ratio of the first male screw portion 15 of the moving shaft 5 and the second male screw portion 13 of the rotating shaft 4 is made equal, and the number of teeth of the second gear 14 is made smaller than the number of teeth of the first gear 12. it can.

また、図7では、両支持部材2,3を固定し、移動部材6を軸方向へ移動可能にした場合を示しているが、反対に、移動部材6を固定し、両支持部材2,3を移動可能に構成することもできる。   7 shows a case where both the supporting members 2 and 3 are fixed and the moving member 6 is movable in the axial direction, but on the contrary, the moving member 6 is fixed and both the supporting members 2 and 3 are fixed. Can be configured to be movable.

さらに、図7では、駆動手段による回転力を、第1歯車12に入力する場合を示しているが、第2歯車14に入力するように構成してもよい。   Further, FIG. 7 shows a case where the rotational force by the driving means is input to the first gear 12, but it may be configured to be input to the second gear 14.

また、図10は、他の実施形態を示したものである。
ところで、図7では、回転軸4の第2雄ねじ部13が右ねじ、移動軸5の第1雄ねじ部15が左ねじのものを用いた場合を示したが、左ねじのものは汎用的ではなく入手しにくい場合も多い。
FIG. 10 shows another embodiment.
FIG. 7 shows a case where the second male screw portion 13 of the rotating shaft 4 is a right-hand screw and the first male screw portion 15 of the moving shaft 5 is a left-hand screw. It is often difficult to obtain.

このような場合には、図10および図11(a)〜(d)に示すように、回転軸4の第2雄ねじ部13と移動軸5の第1雄ねじ部15が、ともに右ねじで形成され、支持部材2と別の支持部材27とで回転可能に担持した回転軸26に連結された第5伝動手段である第3歯車20を第1歯車12と第2歯車14の間に設け、第1歯車12を一方向(図10では反時計方向)に回転させると、回転軸4が第1歯車12とともに共回転して、移動部材6が回転軸4の第2雄ねじ部13に沿って移動軸5を前進させる方向(軸方向x)に移動させると同時に、第3歯車20を介した第1歯車12との係合動作で第1歯車12と同じ向き(図10では反時計方向)に第2歯車14が回転して、移動軸5を、移動部材6の移動方向(軸方向x)とは逆向きの方向(軸方向y)に移動させるように構成すればよい。なお、本発明では、回転軸4の第2雄ねじ部13と移動軸5の第1雄ねじ部15のいずれもが左ねじで形成した場合を除外しているわけではなく、かかる場合も含まれることは言うまでもない。   In such a case, as shown in FIG. 10 and FIGS. 11A to 11D, the second male screw portion 13 of the rotating shaft 4 and the first male screw portion 15 of the moving shaft 5 are both formed by right-hand screws. A third gear 20 is provided between the first gear 12 and the second gear 14 and is a fifth transmission means connected to a rotary shaft 26 rotatably supported by the support member 2 and another support member 27; When the first gear 12 is rotated in one direction (counterclockwise in FIG. 10), the rotating shaft 4 rotates together with the first gear 12, and the moving member 6 moves along the second male screw portion 13 of the rotating shaft 4. At the same time as moving the moving shaft 5 in the forward direction (axial direction x), the same direction as the first gear 12 is engaged with the first gear 12 via the third gear 20 (counterclockwise in FIG. 10). When the second gear 14 rotates, the moving shaft 5 moves in the direction opposite to the moving direction (axial direction x) of the moving member 6 (axial direction). It may be configured to move in). In the present invention, the case where both the second male screw portion 13 of the rotating shaft 4 and the first male screw portion 15 of the moving shaft 5 are formed by left-hand screws is not excluded, and such a case is also included. Needless to say.

なお、上記構成において、アクチュエータ全体を小型化する必要がある場合には、第3歯車20の外径寸法をできるだけ小さくすることが望ましい。その場合、歯数の等しい複数個の第3歯車20を配設することが、伝達トルクの減少を防止する上で好適である。また、第3歯車20として軸方向に長いものを用いれば、大きな外径をもつ第2歯車14を軸方向に長くしなくても、これらの歯車12と歯車20間および歯車14と歯車20間の係合状態を維持することができ、この結果、全体重量が低減される。   In the above configuration, when it is necessary to downsize the entire actuator, it is desirable to make the outer diameter dimension of the third gear 20 as small as possible. In that case, it is preferable to arrange a plurality of third gears 20 having the same number of teeth in order to prevent a decrease in transmission torque. Further, if the third gear 20 is long in the axial direction, the second gear 14 having a large outer diameter is not lengthened in the axial direction, and between the gear 12 and the gear 20 and between the gear 14 and the gear 20. Can be maintained, and as a result, the overall weight is reduced.

上記実施例ではいずれも、移動軸5は直線運動すると同時に回転もする。このような回転は、移動軸5と作用対象との間をスラストベアリング介して接続することによって、作用対象の回転を防止できるが、移動軸5自体を回転させないようにしたい場合には、例えば、図12および図13(a)〜(d)に示すように、1対の支持部材2,3を固設し、これら両支持部材2,3で、一対の第4伝動手段である第4歯車21a,21bを連結した回転入力軸22と移動軸5とを担持し、移動軸5と回転軸4とで担持される2対の回転部材23aと23b、24aと24bを配設し、回転入力軸22の第4歯車21a,21bと、3本の回転軸4の第1歯車12a,12bとの間に、リング状の第5歯車25a,25bを回転可能に配置し、回転入力軸22に入力された回転力は、第4歯車21a,21bを介して第5歯車25a,25bに伝達されて、図13(c)に示す矢印方向に回転し、これら第5歯車25a,25bの回転により、3個の第1歯車12a,12bが回転しながら第2歯車14a,14bの回りを転動することにより、回転部材23a、23b、24a、24bと移動部材6とが移動軸5の回りに回転し、回転軸4の回転による移動部材6の一の軸方向(軸方向x)への移動量と、移動軸5の回りの回転による移動部材6に対する移動軸5の逆向きの軸方向(軸方向y)への移動量との差によって、移動軸5の軸方向xへの差動を達成することができる。   In any of the above embodiments, the moving shaft 5 rotates linearly and simultaneously. Such rotation can prevent the rotation of the action target by connecting the movement axis 5 and the action target via a thrust bearing, but when it is desired not to rotate the movement axis 5 itself, for example, As shown in FIGS. 12 and 13 (a) to 13 (d), a pair of support members 2 and 3 are fixed, and these support members 2 and 3 constitute a fourth gear serving as a pair of fourth transmission means. The rotary input shaft 22 and the moving shaft 5 connected to 21a and 21b are carried, and two pairs of rotating members 23a and 23b and 24a and 24b carried by the moving shaft 5 and the rotating shaft 4 are arranged for rotational input. Ring-shaped fifth gears 25a and 25b are rotatably disposed between the fourth gears 21a and 21b of the shaft 22 and the first gears 12a and 12b of the three rotary shafts 4 so that the rotary input shaft 22 The input rotational force is transmitted to the fifth gears 25a and 25b via the fourth gears 21a and 21b, and rotates in the direction of the arrow shown in FIG. 13 (c), and the rotation of the fifth gears 25a and 25b. As a result, the three first gears 12a and 12b rotate and roll around the second gears 14a and 14b, so that the rotating members 23a, 23b, 24a and 24b and the moving member 6 rotate around the moving shaft 5. The amount of movement of the moving member 6 in one axial direction (axial direction x) due to rotation of the rotating shaft 4 and the axial direction of the moving shaft 5 opposite to the moving member 6 due to rotation around the moving shaft 5 A differential in the axial direction x of the moving shaft 5 can be achieved by the difference from the amount of movement in the (axial direction y).

また、移動部材6と支持部材2,3の位置関係について、本発明では、図7に示すように、移動部材6が支持部材2,3間にある場合だけには限定されず、図14(a)〜(d)に示すように、支持部材2,3の外側に配置することもできる。
さらに、その他の実施形態として、回転軸4と移動軸5とを、図15(a)〜(d)に示すように、1つの支持部材33のみで担持するように構成することは可能である。
Further, the positional relationship between the moving member 6 and the supporting members 2 and 3 is not limited to the case where the moving member 6 is between the supporting members 2 and 3 as shown in FIG. As shown to a)-(d), it can also arrange | position outside the supporting members 2 and 3. FIG.
Furthermore, as another embodiment, the rotating shaft 4 and the moving shaft 5 can be configured to be supported by only one support member 33 as shown in FIGS. 15 (a) to (d). .

ここまでは、前記回転軸と前記移動軸が平行に配置した場合について説明してきたが、本発明では、図16(a)〜(d)に示すように、前記回転軸を前記移動軸に対し直交して配置することもできる。この場合、第2伝動手段を、第2雄ねじ部13とする代わりに、ピニオン29とするとともに、第4伝動手段を、第2雌ねじ孔16とする代わりに、ラックとして構成することが好ましい。   Up to this point, the case where the rotation axis and the movement axis are arranged in parallel has been described, but in the present invention, as shown in FIGS. 16 (a) to (d), the rotation axis is set with respect to the movement axis. They can also be arranged orthogonally. In this case, it is preferable that the second transmission means is a pinion 29 instead of the second male screw portion 13 and the fourth transmission means is configured as a rack instead of the second female screw hole 16.

なお、上述したところは、この発明の実施形態の一例を示したにすぎず、請求の範囲において種々の変更を加えることができる。   The above description is merely an example of the embodiment of the present invention, and various modifications can be made within the scope of the claims.

この発明によれば、特殊(または高価)な機械要素を用いることなく、差動機構を介した直線運動に変換することにより、小さな入力トルクから大きな直線運動出力を発生させるとともに、回転量を比例的に直線運動へ変換することによって精密に位置決め制御することができる。   According to the present invention, a large linear motion output is generated from a small input torque and a rotation amount is proportional by converting to a linear motion via a differential mechanism without using a special (or expensive) mechanical element. Therefore, the position can be precisely controlled by converting it into linear motion.

また、回転軸と移動軸とを平行に配置する構造にすることにより、アクチュエータ全体をコンパクトにすることができる。   Further, the entire actuator can be made compact by adopting a structure in which the rotation axis and the movement axis are arranged in parallel.

さらに、この発明は、移動軸の軸方向移動量が、移動部材および移動軸の一の軸方向へ移動する距離と、移動部材に対する移動軸の一の軸方向とは逆向きの軸方向へ移動する距離との差によって定められるため、回転軸の第2雄ねじ部や移動軸の第1雄ねじ部のピッチを大きく設定することができる結果、大荷重を負荷することができる。   Further, according to the present invention, the moving amount of the moving shaft in the axial direction is moved in the axial direction opposite to the moving direction of the moving member and the moving shaft in the one axial direction and the moving shaft relative to the moving member. Therefore, the pitch of the second male screw portion of the rotating shaft and the first male screw portion of the moving shaft can be set large, so that a large load can be applied.

さらにまた、この発明のアクチュエータは、例えば歯車のような伝動手段と、回転軸や移動軸のようなねじとの組み合わせで主として構成されているため、構成が単純であり、しかも、これらの部材は安価で入手することができる。   Furthermore, since the actuator of the present invention is mainly composed of a combination of a transmission means such as a gear and a screw such as a rotating shaft or a moving shaft, the structure is simple, and these members are It can be obtained at low cost.

従来でも、高精度かつ高出力なリニア・アクチュエータの製造は、高価な材料で構成するとともに、高精度に研削仕上げされたねじを用いれば可能であったが、そのようなねじを用いることができる用途は限られており、しかも、通常のボールねじは高精度であるものの高出力が困難であり、広く用いられている安価な台形ねじでは高出力であるが精度が悪くなり、結果として、高精度に研削仕上げされたねじを用いたとしても、高出力と高精度の双方を満足させることはできなかった。これに対し、この発明では、安価な台形ねじを用いても比較的精度良く変位を制御することができるという効果がある。   In the past, high-precision and high-power linear actuators could be manufactured using expensive materials and high-precision ground screws, but such screws can be used. Applications are limited, and normal ball screws have high accuracy but high output is difficult, and widely used inexpensive trapezoidal screws have high output but poor accuracy. Even using screws that have been ground precisely, both high output and high accuracy could not be satisfied. In contrast, the present invention has an effect that the displacement can be controlled with relatively high accuracy even if an inexpensive trapezoidal screw is used.

また、台形ねじを用いて小さい変位を得ようとすれば、台形ねじの回転を極めて遅くする必要があるために、静摩擦と動摩擦の切り替わりによる摩擦力変動や、モータの回転速度を低下させることによる発生トルクの低下などを引き起こしていたが、この発明では、差動機構の採用により、変位が小さい場合にも、移動軸の軸方向移動量と比較して、ねじ面上の移動速度は比較的速くできるので、摩擦力の変動が抑制され、かつモータの回転速度を速い状態で維持することができ、その結果、精密な位置決め制御が可能になる。   In addition, if a small displacement is to be obtained using a trapezoidal screw, the trapezoidal screw must be rotated very slowly, so the frictional force fluctuations caused by switching between static friction and dynamic friction and the motor rotation speed are reduced. In the present invention, due to the adoption of the differential mechanism, even when the displacement is small, the moving speed on the screw surface is relatively small compared to the axial movement amount of the moving shaft. Since the speed can be increased, the fluctuation of the frictional force is suppressed, and the rotational speed of the motor can be maintained at a high speed, and as a result, precise positioning control is possible.

ねじとナットを直接組み合わせた従来装置を示した図である。It is the figure which showed the conventional apparatus which combined the screw and the nut directly. 差動ねじ機構を用いた従来装置を示した図である。It is the figure which showed the conventional apparatus using a differential screw mechanism. ラックピニオン機構を用いた従来装置を示した図である。It is the figure which showed the conventional apparatus using the rack and pinion mechanism. ウォーム機構を用いた従来装置を示した図である。It is the figure which showed the conventional apparatus using a worm mechanism. クランク機構を用いた従来装置を示した図である。It is the figure which showed the conventional apparatus using a crank mechanism. パンタグラフ機構を用い従来装置を示した図である。It is the figure which showed the conventional apparatus using the pantograph mechanism. この発明に従う代表的なリニア・アクチュエータを示す正面図である。It is a front view which shows the typical linear actuator according to this invention. (a)は、図7のA−A断面図、(b)は図7のB−B断面図、そして(c)は図7のC−C断面図である。(a) is AA sectional drawing of FIG. 7, (b) is BB sectional drawing of FIG. 7, (c) is CC sectional drawing of FIG. 図8(c)の変形例である。FIG. 8C is a modification example of FIG. 他の実施形態を示す図である。It is a figure which shows other embodiment. (a)は、図10のA−A断面図、(b)は図10のB−B断面図、(c)は図10のC−C断面図、(d)は図10のD−D断面図である。10A is a sectional view taken along line AA in FIG. 10, FIG. 10B is a sectional view taken along line BB in FIG. 10, FIG. 10C is a sectional view taken along line CC in FIG. It is sectional drawing. 他の実施形態を示す図である。It is a figure which shows other embodiment. (a)は、図12のA−A断面図、(b)は図12のB−B断面図、(c)は図12のC−C断面図、(d)は図12のD−D断面図である。12A is a sectional view taken along line AA in FIG. 12, FIG. 12B is a sectional view taken along line BB in FIG. 12, FIG. 12C is a sectional view taken along line CC in FIG. It is sectional drawing. (a)は、他の実施形態を示す正面図であり、(b)は、(a)のA−A断面図、(b)は(a)のB−B断面図、そして(c)は(a)のC−C断面図である。(a) is the front view which shows other embodiment, (b) is AA sectional drawing of (a), (b) is BB sectional drawing of (a), and (c) is It is CC sectional drawing of (a). (a)は、他の実施形態を示す正面図であり、(b)は、(a)のA−A断面図、(c)は(a)のB−B断面図、そして(d)は(a)のC−C断面図である。(a) is a front view showing another embodiment, (b) is a sectional view taken along the line AA of (a), (c) is a sectional view taken along the line BB of (a), and (d) is a sectional view taken along the line BB. It is CC sectional drawing of (a). (a)は、他の実施形態を示す正面図であり、(b)は、(a)の矢印A方向から眺めたときの平面図、(c)は(a)のB−B断面図、そして(d)は(a)のC−C断面図である。(a) is a front view showing another embodiment, (b) is a plan view when viewed from the direction of arrow A in (a), (c) is a cross-sectional view along BB in (a), And (d) is CC sectional drawing of (a).

符号の説明Explanation of symbols

1 リニア・アクチュエータ
2,3,27 支持部材
4 回転軸
5 移動軸
6 移動部材
7,8 支持部材
9 貫通孔
10 軸受
11 フランジ部
12,12a,12b 第1伝動手段または第1歯車
13 第2雄ねじ部
14,14a,14b 第3伝動手段または第2歯車
15 第1雄ねじ部
16 第2雌ねじ孔
17 第1雌ねじ孔
18 入力軸
19 入力歯車
20 第3歯車
21a,21b 第4歯車
22 回転入力軸
23a,23b,24a,24b 回転部材
25a,25b 第5歯車
26 回転軸
28 移動軸のヘッド部
29 ピニオン
30 ラック
31 直動案内部
32 回転直動案内部
33 支持部材
DESCRIPTION OF SYMBOLS 1 Linear actuator 2, 3, 27 Support member 4 Rotating shaft 5 Moving shaft 6 Moving member 7, 8 Support member 9 Through-hole
10 Bearing
11 Flange
12, 12a, 12b First transmission means or first gear
13 2nd male thread
14, 14a, 14b Third transmission means or second gear
15 1st male thread
16 2nd female screw hole
17 1st female screw hole
18 Input shaft
19 Input gear
20 3rd gear
21a, 21b 4th gear
22 Rotation input shaft
23a, 23b, 24a, 24b Rotating member
25a, 25b 5th gear
26 Rotation axis
28 Moving axis head
29 Pinion
30 racks
31 Linear motion guide
32 Rotary linear motion guide
33 Support member

Claims (9)

少なくとも1つの支持部材に、回転可能に担持される少なくとも1本の回転軸と、軸方向への移動可能に担持される少なくとも1本の移動軸とを設け、
回転軸は、その少なくとも片側に第1伝動手段を有し、回転軸の所定部分に、第1伝動手段とともに同一方向に回転する第2伝動手段をもち、
移動軸は、その少なくとも片側に、回転軸に設けた第1伝動手段と係合する第3伝動手段を有し、移動軸の所定部分に、第3伝動手段とともに同一方向に回転する第1雄ねじ部をもち、先端に軸方向への位置決め制御を行うヘッド部を有し、
少なくとも移動軸の第1雄ねじ部が螺合する第1雌ねじ孔と、回転軸の第2伝動手段と連係動作する第4伝動手段をもち、第1雄ねじ部に沿って、支持部材に対する相対移動が可能な少なくとも1つの移動部材を設け、
移動軸の軸方向移動量は、回転軸の回転に伴う移動部材および移動軸の一の軸方向へ移動する距離と、回転軸の回転が第1および第3伝動手段を通じて移動軸に伝達されて移動軸が回転することにより、移動部材に対して移動軸が一の軸方向とは逆向きの軸方向に移動する距離との差であることを特徴とするリニア・アクチュエータ。
The at least one support member is provided with at least one rotating shaft that is rotatably supported and at least one moving shaft that is supported so as to be movable in the axial direction,
The rotation shaft has first transmission means on at least one side thereof, and has a second transmission means that rotates in the same direction together with the first transmission means at a predetermined portion of the rotation shaft,
The moving shaft has, on at least one side thereof, third transmitting means that engages with the first transmitting means provided on the rotating shaft, and a first male screw that rotates in the same direction together with the third transmitting means on a predetermined portion of the moving shaft Having a head part that performs positioning control in the axial direction at the tip,
It has at least a first female screw hole into which the first male screw part of the moving shaft is screwed and a fourth transmission means that operates in linkage with the second transmission means of the rotary shaft. Providing at least one possible moving member;
The amount of movement of the moving shaft in the axial direction is determined by the distance traveled in one axial direction of the moving member and the moving shaft along with the rotation of the rotating shaft, and the rotation of the rotating shaft being transmitted to the moving shaft through the first and third transmission means. A linear actuator characterized in that a difference between a moving axis and a distance by which the moving axis moves in an axial direction opposite to one axial direction with respect to the moving member by rotating the moving axis.
第1及び第3伝動手段はいずれも歯車である請求項1記載のリニア・アクチュエータ。 The linear actuator according to claim 1, wherein each of the first and third transmission means is a gear. 前記回転軸と前記移動軸は平行に配置され、第2伝動手段は第2雄ねじ部であり、第4伝動手段は第2雌ねじ孔である請求項1または2記載のリニア・アクチュエータ。 3. The linear actuator according to claim 1, wherein the rotating shaft and the moving shaft are arranged in parallel, the second transmission means is a second male screw portion, and the fourth transmission means is a second female screw hole. 移動軸のヘッド部の軸方向移動量は、第1および第2雄ねじ部のピッチ比と、第1及び第3伝動手段の歯数比とで決定される請求項3記載のリニア・アクチュエータ。 4. The linear actuator according to claim 3, wherein the amount of axial movement of the head portion of the moving shaft is determined by the pitch ratio of the first and second male screw portions and the tooth number ratio of the first and third transmission means. 回転軸の第2雄ねじ部が、右ねじまたは左ねじで形成され、移動軸の第1雄ねじ部が、第2雄ねじ部とは逆向きのねじで形成され、第1伝動手段を一方向に回転させると、回転軸が第1伝動手段とともに共回転して移動部材を前進させ、移動部材が回転軸の第2雄ねじ部に沿って移動軸を前進させる方向に移動させると同時に、第1伝動手段との係合動作で第1伝動手段とは逆向きに第3伝動手段が回転して、移動軸を、移動部材の移動方向とは逆向きの方向に移動させるように構成する請求項3または4記載のリニア・アクチュエータ。 The second male screw portion of the rotating shaft is formed by a right screw or a left screw, the first male screw portion of the moving shaft is formed by a screw opposite to the second male screw portion, and rotates the first transmission means in one direction. Then, the rotating shaft co-rotates with the first transmission means to move the moving member forward, and the moving member moves along the second male screw portion of the rotating shaft in the direction of moving the moving shaft forward. The third transmission means is rotated in the opposite direction to the first transmission means by the engaging operation with the movement member, and the moving shaft is configured to move in the direction opposite to the moving direction of the moving member. 4. The linear actuator according to 4. 回転軸の第2雄ねじ部と移動軸の第1雄ねじ部が、ともに右ねじで形成され、第1伝動手段と第3伝動手段の間に、これらと係合動作する第5伝動手段を設け、第1伝動手段を一方向に回転させると、回転軸が第1伝動手段とともに共回転して移動部材を前進させ、移動部材が回転軸の第2雄ねじ部に沿って移動軸を前進させる方向に移動させると同時に、第5伝動手段を介した第1伝動手段との係合動作で第1伝動手段と同じ向きに第3伝動手段が回転して、移動軸を、移動部材の移動方向とは逆向きの方向に移動させるように構成する請求項3または4記載のリニア・アクチュエータ。 The second male threaded portion of the rotating shaft and the first male threaded portion of the moving shaft are both formed by right-hand threads, and a fifth power transmitting means for engaging with these is provided between the first power transmitting means and the third power transmitting means, When the first transmission means is rotated in one direction, the rotation shaft rotates together with the first transmission means to advance the moving member, and the moving member advances the movement shaft along the second male screw portion of the rotation shaft. Simultaneously with the movement, the third transmission means is rotated in the same direction as the first transmission means by the engaging operation with the first transmission means via the fifth transmission means, and the moving shaft is the moving direction of the moving member. 5. The linear actuator according to claim 3, wherein the linear actuator is configured to move in a reverse direction. 移動軸を1本とし、回転軸を2本とする請求項1〜6のいずれか1項記載のリニア・アクチュエータ。 The linear actuator according to claim 1, wherein one moving axis is provided and two rotating axes are provided. 平行配置した2本の回転軸の第1伝動手段を挟んで移動軸の第3伝動手段とは反対側に、両回転軸の第1伝動手段と係合動作する第6伝達手段を設け、該第6伝動手段は、駆動軸を介して駆動手段に連結される請求項7記載のリニア・アクチュエータ。 Sixth transmission means that engages with the first transmission means of both rotary shafts is provided on the opposite side of the first transmission means of the two rotary shafts arranged in parallel to the third transmission means of the moving shaft, The linear actuator according to claim 7, wherein the sixth transmission means is coupled to the drive means via a drive shaft. 前記回転軸と前記移動軸は直交して配置され、第2伝動手段はピニオンであり、第4伝動手段はラックである請求項1または2記載のリニア・アクチュエータ。 3. The linear actuator according to claim 1, wherein the rotating shaft and the moving shaft are arranged orthogonally, the second transmission means is a pinion, and the fourth transmission means is a rack.
JP2005233166A 2005-08-11 2005-08-11 Linear actuator Active JP3887689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005233166A JP3887689B2 (en) 2005-08-11 2005-08-11 Linear actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005233166A JP3887689B2 (en) 2005-08-11 2005-08-11 Linear actuator

Publications (2)

Publication Number Publication Date
JP2007046734A true JP2007046734A (en) 2007-02-22
JP3887689B2 JP3887689B2 (en) 2007-02-28

Family

ID=37849713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005233166A Active JP3887689B2 (en) 2005-08-11 2005-08-11 Linear actuator

Country Status (1)

Country Link
JP (1) JP3887689B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101212876B1 (en) * 2009-09-02 2012-12-14 아즈빌주식회사 Rotational-linear motion converting mechanism and actuator
US11085513B2 (en) 2017-09-25 2021-08-10 Ratier-Figeac Sas Actuator position sensor mechanism
CN113551557A (en) * 2021-04-21 2021-10-26 深圳市鑫保泰技术有限公司 Vena digitalis gun box

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102640853B1 (en) * 2021-11-15 2024-02-27 주식회사 드림로봇 Actuator with dual ball screw

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101212876B1 (en) * 2009-09-02 2012-12-14 아즈빌주식회사 Rotational-linear motion converting mechanism and actuator
US11085513B2 (en) 2017-09-25 2021-08-10 Ratier-Figeac Sas Actuator position sensor mechanism
CN113551557A (en) * 2021-04-21 2021-10-26 深圳市鑫保泰技术有限公司 Vena digitalis gun box

Also Published As

Publication number Publication date
JP3887689B2 (en) 2007-02-28

Similar Documents

Publication Publication Date Title
JP4814351B2 (en) Rolling ball type two-stage low speed transmission
JP4695723B2 (en) Cylinder device
CN101907149B (en) Double cycloid single-stage reducer of industrial robot
CN102829145A (en) Planetary roller screw pair capable of being self-locked
KR101120881B1 (en) The hi-speed separate control index with efficiency rotary-drive
JP3887689B2 (en) Linear actuator
JPH06506873A (en) Two-speed linear actuator with high thrust and high travel speed for machines, especially for bending presses
WO2015056375A1 (en) R-θ TABLE DEVICE, INTERNAL-THREAD PROCESSING DEVICE, AND VARIABLE CRANK DEVICE
KR101508741B1 (en) Active type two-step speed reducer
EP4023907A1 (en) Transmission
CN202203345U (en) Compound precision cycloid decelerator
US20220299090A1 (en) Gearwheel transmission with high transmission ratio and with improved efficiency and/or increased capacity for transmitting torque
US11473653B2 (en) Fixed ratio traction or friction drive
Kapelevich et al. Self-locking gears: Design and potential applications
CN110043625A (en) A kind of rolling friction trapezoidal screw
JPH0348054A (en) Actuator
CN202182153U (en) Cantilever drive type double-motor anti-backlash rotary mechanism
CN105889418B (en) Zero return difference worm gear speed reducer of industrial robot hollow type
CN208870988U (en) Movement conversion mechanism
IT201900018308A1 (en) LINEAR SCREW MECHANICAL TRANSMISSION
JP2009014025A (en) Device with screw rod slid and moved
JP2012154417A (en) Backlash adjustment system
RU2341707C2 (en) Planetary screw-nut gearing with long threaded rollers
CN203585219U (en) Anti-backlash gear transmission reducing mechanism
TWM545851U (en) A differential speed-reduction mechanism

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061031

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150