JP2007046373A - Double-skin structure and control method for its external wall openings in that double-skin structure - Google Patents

Double-skin structure and control method for its external wall openings in that double-skin structure Download PDF

Info

Publication number
JP2007046373A
JP2007046373A JP2005233145A JP2005233145A JP2007046373A JP 2007046373 A JP2007046373 A JP 2007046373A JP 2005233145 A JP2005233145 A JP 2005233145A JP 2005233145 A JP2005233145 A JP 2005233145A JP 2007046373 A JP2007046373 A JP 2007046373A
Authority
JP
Japan
Prior art keywords
wall
opening
double skin
skin structure
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005233145A
Other languages
Japanese (ja)
Inventor
Makoto Hayakawa
眞 早川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon University
Original Assignee
Nihon University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University filed Critical Nihon University
Priority to JP2005233145A priority Critical patent/JP2007046373A/en
Publication of JP2007046373A publication Critical patent/JP2007046373A/en
Pending legal-status Critical Current

Links

Landscapes

  • Load-Bearing And Curtain Walls (AREA)
  • Ventilation (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To be able to reduce wind pressures all around inner wall surfaces in a structure like a high-storied building, etc. subjected to wind pressures. <P>SOLUTION: Among external circumferential walls around a structure on a plane, at least the wall sections having their opposite walls have a double-skin structure consisting of inner and outer walls 1 and 2, and openings that can open are formed at an interval along the circumference of outer walls 2 with the double-skin structure. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は高層建物等のような風圧力の影響を受ける構造物において、内壁面に生ずる風圧を周方向に亘って均等に軽減させることを可能にするダブルスキン構造物及びダブルスキン構造物における外壁開口部の制御方法に関するものである。   The present invention relates to a double skin structure and an outer wall in a double skin structure that can uniformly reduce the wind pressure generated on the inner wall surface in the circumferential direction in a structure affected by wind pressure such as a high-rise building. The present invention relates to a method for controlling an opening.

高層建物において外気を導入する自然換気システムを計画しようとする際には、外壁面が受ける強風圧をどのように処理すべきかの問題に直面する。建物が1方向からの風圧を受けるとき、風上側は正圧、風下側は負圧になるが、建物が高層化すれば、屋外風速が増すことで、風圧が正、負共、極端に大きくなることから、例えば窓(開口部)の開閉により通風・換気をしようとしても、安定した通風・換気が望めなくなるため、通常は窓を閉鎖したままにされることが多い。強風下で窓を開放させれば、突風による内部扉の急激な開閉により什器を破損させ、居住者に怪我を負わせる危険性があるからである。   When planning a natural ventilation system that introduces outside air in a high-rise building, we face the problem of how to handle the strong wind pressure experienced by the outer wall. When the building receives wind pressure from one direction, the windward side is positive and the leeward side is negative. However, if the building becomes taller, the wind speed increases both outdoors, positive and negative due to the increase in outdoor wind speed. Therefore, for example, even if ventilation / ventilation is attempted by opening / closing a window (opening), stable ventilation / ventilation cannot be expected. Therefore, the window is usually usually kept closed. If the window is opened under strong wind, there is a risk of damaging the resident by damaging the fixture due to sudden opening and closing of the internal door due to a gust of wind.

外周壁の一部が内壁と外壁から構成されるダブルスキン構造の外壁は外気を内壁との間に導入するために部分的に開閉可能とされ、内壁も外気を屋内に取り入れるために部分的に開閉可能とされるが(特許文献1〜3参照)、風下側となる外周壁の開口部を開放させれば、その開口部は必ず空気の流出側となるため、風上側では外気が急激に流入することになり、上記危険性の問題は解消されない。   The outer wall of the double skin structure, in which a part of the outer peripheral wall is composed of the inner wall and the outer wall, can be partially opened and closed to introduce the outside air between the inner wall and the inner wall is also partially to take the outside air indoors Although it can be opened and closed (see Patent Documents 1 to 3), if the opening of the outer peripheral wall that is on the leeward side is opened, the opening always becomes the outflow side of the air. The above-mentioned danger problem is not solved.

正圧となる風上側における風圧の問題に対しては、ダブルスキン構造の外壁となる屋外側のガラスと、内壁となる屋内側のガラスとの間に両ガラスに直交するガラスを設置し、屋外側のガラスが受ける風圧力を屋内側のガラスに流すことで、風圧力を両ガラスに分担させる方法がある(特許文献4参照)。   For the problem of wind pressure on the windward side that is positive pressure, install a glass that is orthogonal to both glass between the outdoor side glass that is the outer wall of the double skin structure and the indoor side glass that is the inner wall. There is a method of sharing wind pressure between the two glasses by flowing the wind pressure received by the outer glass to the indoor glass (see Patent Document 4).

特開2002−256637号公報(請求項1、段落0013〜0014、図1、図3)JP 2002-256737 A (Claim 1, paragraphs 0013 to 0014, FIGS. 1 and 3) 特開2003−253794号公報(請求項1、段落0023〜0030、図2〜図4)JP 2003-253794 A (Claim 1, paragraphs 0023 to 0030, FIGS. 2 to 4) 特開2005−105732号公報(請求項1、段落0047〜0050、図9〜図12)JP-A-2005-105732 (Claim 1, paragraphs 0047 to 0050, FIGS. 9 to 12) 特開2004−232360号公報(請求項1、段落0011、0021〜0023、0026〜0028、0035〜0039、図1、図2)JP-A-2004-232360 (Claim 1, paragraphs 0011, 0021 to 0023, 0026 to 0028, 0035 to 0039, FIGS. 1 and 2)

特許文献4の方法によれば、屋外側のガラスと屋内側のガラスが両者間に配置されるガラスで連結されることで、屋外側のガラスが受ける風圧力を屋内側のガラスに伝達し、両ガラスに風圧力を分担させることができる。しかしながら、この方法は風上側において屋外側のガラスの負担を軽減する効果を得るに留まり、屋内側のガラス面に作用する風圧自体を軽減させることにはならない。   According to the method of Patent Document 4, the glass on the outdoor side and the glass on the indoor side are connected with the glass disposed between them, so that the wind pressure received by the glass on the outdoor side is transmitted to the glass on the indoor side, Wind pressure can be shared between the two glasses. However, this method only has an effect of reducing the burden on the glass on the outdoor side on the windward side, and does not reduce the wind pressure itself acting on the glass surface on the indoor side.

特許文献1〜3では屋外側のガラスと屋内側のガラスに開閉自在な開口部を形成しているが、風上側の開口部と風下側の開口部との関連性がないため、風下側での開口部の開放により風上側での外気の急激な流入を防止することはできない。   In patent documents 1-3, although the opening part which can be opened and closed freely is formed in the glass on the outdoor side and the glass on the indoor side, since there is no relationship between the opening part on the leeward side and the opening part on the leeward side, The sudden opening of outside air on the windward side cannot be prevented by opening the opening.

例えば図17に示すようにダブルスキンが平面上の周囲を周回する外周壁の内、風下側にのみある場合には、風下側である限り、ダブルスキンには常に負圧が作用するため、ダブルスキンから外気を導入することはできない。ダブルスキンが風上側にのみある場合にも、風下側からの空気の流出がなければ、ダブルスキンからは外気が十分に導入されないため、ダブルスキンが風上側と風下側のいずれか一方に存在するのみでは外気の導入と排気が行われないことになる。   For example, as shown in FIG. 17, when the double skin is only on the leeward side of the outer peripheral wall that circulates around the plane, negative pressure always acts on the double skin as long as it is on the leeward side. Outside air cannot be introduced from the skin. Even when the double skin is only on the leeward side, if there is no outflow of air from the leeward side, the double skin will not be sufficiently introduced from the double skin, so the double skin exists on either the leeward side or the leeward side. Only air will not be introduced and exhausted.

本発明は上記背景より、内壁面に生ずる風圧を周方向に亘って均等に軽減させることを可能にするダブルスキン構造物及び外壁開口部の制御方法を提案するものである。   In view of the above background, the present invention proposes a double skin structure and a method for controlling the opening of the outer wall that can uniformly reduce the wind pressure generated on the inner wall surface in the circumferential direction.

請求項1に記載の発明のダブルスキン構造物は、平面上の周囲を周回する外周壁の内、少なくとも互いに対向する区間が内壁と外壁からなるダブルスキンを構成し、前記外壁が周方向に間隔を隔て、開閉自在な開口部を有していることを構成要件とする。内壁面の風圧を周方向に均等に軽減させる上では、外壁は開口部を周方向に均等に有することが望ましい。   The double skin structure according to the first aspect of the present invention is the double skin structure in which at least the sections facing each other of the outer peripheral walls that circulate around the plane constitute a double skin having an inner wall and an outer wall, and the outer walls are spaced apart in the circumferential direction. It is a constituent requirement to have an opening that can be freely opened and closed. In order to uniformly reduce the wind pressure on the inner wall surface in the circumferential direction, it is desirable that the outer wall has openings uniformly in the circumferential direction.

外周壁の内、対向する区間がダブルスキン構造で、外壁が周方向に間隔を隔てて開閉自在な開口部を有する構造物における、開口部の存在とその開閉状態による内壁面風圧の分布状況はダブルスキン構造物をモデル化した模型での内壁面風圧の分布を見ることで把握することができ、その模型から実証されることは実物の構造物にも妥当すると言える。外周壁の内の互いに対向する区間とは、平面上の中心を挟んで対向する外周壁であり、構造物の平面形状が方形状等、直線で構成される場合には1方向に対向する外周壁を指す。外周壁は必ずしも平面とは限らず、曲面の場合もある。   The distribution of the inner wall wind pressure due to the existence of the opening and its open / closed state in the structure where the outer wall has a double skin structure in the opposing section and the outer wall has an opening that can be opened and closed with a spacing in the circumferential direction. It can be grasped by looking at the distribution of wind pressure on the inner wall surface of a model that models a double skin structure, and it can be said that what is demonstrated from the model is also valid for the actual structure. The sections of the outer peripheral wall facing each other are the outer peripheral walls facing each other across the center on the plane, and the outer periphery facing in one direction when the planar shape of the structure is a straight line or the like. Point to the wall. The outer peripheral wall is not necessarily a flat surface but may be a curved surface.

そこで、ダブルスキン構造物と対比されるシングルスキンの模型イと、外周壁の全周がダブルスキン構造で、外壁の全周に開閉自在な開口部を有するダブルスキン構造物の模型ロに対して風洞実験をし、シングルスキン構造物での内壁面風圧の分布と、ダブルスキン構造物の外壁開口部の開閉状態の相違による内壁面風圧の変化を調べた。   Therefore, against the model of a single skin compared with a double skin structure, and a model of a double skin structure with an opening that can be opened and closed on the entire circumference of the outer wall with a double skin structure. A wind tunnel experiment was conducted to investigate the change in the inner wall wind pressure due to the difference in the inner wall wind pressure distribution in the single skin structure and the opening and closing state of the outer wall opening of the double skin structure.

図1にシングルスキンの模型イを、図2にダブルスキンの構造物の模型ロを示す。模型イと模型ロは共に実物の1/200の縮尺で、シングルスキンの模型イは底面から一定の高さ(150mm)に、周方向に一定の間隔を隔てて風圧検出孔を有する円筒形の内筒であり、ダブルスキンの模型ロはシングルスキンの模型イである内筒と、それより僅かに径の大きい円筒形の外筒を組み合わせた形である。内筒の直径は80mm、高さは210mmであり、外筒の直径は100mm、高さは210mmである。模型ロの内筒はダブルスキン構造物の内壁に、外筒は外壁にそれぞれ相当し、模型ロの開口は実物の構造物の開口部に相当する。   FIG. 1 shows a single skin model A, and FIG. 2 shows a double skin structure model B. Model A and Model B are both 1/200 scale of the actual model, and the single skin model A is a cylindrical shape having wind pressure detection holes at a constant height (150 mm) from the bottom surface and spaced apart in the circumferential direction. The double-skin model B is a combination of an inner cylinder that is a single-skin model A and a cylindrical outer cylinder that has a slightly larger diameter. The inner cylinder has a diameter of 80 mm and a height of 210 mm, and the outer cylinder has a diameter of 100 mm and a height of 210 mm. The inner cylinder of the model B corresponds to the inner wall of the double skin structure, the outer cylinder corresponds to the outer wall, and the opening of the model B corresponds to the opening of the actual structure.

前記の通り、模型イ、ロ共、内筒には図1−(b)に示すように底面から150mmの高さに平面上、円周方向に等間隔で16個の、番号を付した風圧検出孔が形成され、模型ロの外筒には図2−(b)に示すように内筒の平面上の中心(17)に対し、内筒の風圧検出孔から周方向に11.25度ずれた位置に、内筒の風圧検出孔と同一の高さに、平面上、円周方向に等間隔で16個の直径3mmの、開口としての孔A〜Pが形成されている。内筒の風圧検出孔と外筒の孔が同一高さにあることで、外筒への孔の形成位置が構造物におけるダブルスキンの層に相当する。このダブルスキンの層は内筒の内部を含め、開口が形成されていない上下の層とは分離している。   As described above, the model A, B, and the inner cylinder, as shown in FIG. 1- (b), 16 numbered wind pressures on the plane at a height of 150 mm from the bottom surface at equal intervals in the circumferential direction. A detection hole is formed, and the outer cylinder of the model B is 11.25 degrees in the circumferential direction from the wind pressure detection hole of the inner cylinder with respect to the center (17) on the plane of the inner cylinder as shown in FIG. 16 holes 3 to 3 mm in diameter are formed at the shifted positions at the same height as the wind pressure detection hole of the inner cylinder on the plane at equal intervals in the circumferential direction. Since the wind pressure detection hole of the inner cylinder and the hole of the outer cylinder are at the same height, the formation position of the hole in the outer cylinder corresponds to the double skin layer in the structure. This double skin layer is separated from the upper and lower layers where the opening is not formed, including the inside of the inner cylinder.

図2−(a)に示すように外筒の開口と内筒の風圧検出孔は、外壁と内壁に挟まれたダブルスキンの空間を模した圧力チャンバを介して連通し、内筒の風圧検出孔はビニールチューブを通じて圧力計に接続され、そのまま風下側に移動し、風下側の内筒の壁面風圧を高め、均等化する。内部の圧力チャンバ内に流入した外気はやはり外筒の開口の一部から外筒の外部へ流出する。外筒の開口は開閉自在であり、各開口が開放状態であるか否か、等による内壁面風圧の分布は表1に示すように各開口の開放位置を変えることにより求められる。   As shown in FIG. 2- (a), the opening of the outer cylinder and the wind pressure detection hole of the inner cylinder communicate with each other via a pressure chamber simulating a double skin sandwiched between the outer wall and the inner wall to detect the wind pressure of the inner cylinder. The hole is connected to a pressure gauge through a vinyl tube, and moves to the leeward side as it is to increase and equalize the wall pressure of the inner cylinder on the leeward side. The outside air that has flowed into the internal pressure chamber also flows out from a part of the opening of the outer cylinder to the outside of the outer cylinder. The opening of the outer cylinder can be freely opened and closed, and the distribution of the wind pressure on the inner wall surface depending on whether or not each opening is in an open state can be obtained by changing the opening position of each opening as shown in Table 1.

模型イ、ロに与えられる風圧の測定には図3に示す風洞を用い、その横300mm×縦600mmの測定部に模型イ、ロを横向きに設置し、一様流れ、乱れが0.1%の風速10m/sの風を与えた。模型の直径を代表寸法としたときのRe数は5.3〜6.7×104である。その結果を図4〜図10に示す。図4は模型イによる実験結果を、図5〜図10は模型ロによる実験結果を示す。実験ケースを表1に示す。
The wind pressure shown in Fig. 3 is used to measure the wind pressure applied to Models A and B. Models A and B are installed sideways in the measuring section of 300mm x 600mm and the uniform flow and turbulence are 0.1%. The wind speed of 10 m / s was given. The Re number when the diameter of the model is a representative dimension is 5.3 to 6.7 × 104. The results are shown in FIGS. FIG. 4 shows the experimental results of model i, and FIGS. 5 to 10 show the experimental results of model b. Table 1 shows experimental cases.

模型イに対しては風速を変えて3通り(ケース1〜3)の実験をし、模型ロに対しては全開口を開放させた状態で、ケース1〜3と同様に風速を変えて3通り(ケース4〜6)の実験と、風速を一定にしたまま、開放させる開口の位置を変えて5通り(ケース7〜11)の実験を行った。   For model A, three experiments (cases 1 to 3) were carried out by changing the wind speed, and for model B, the wind speed was changed in the same manner as in cases 1 to 3, with all openings open. Experiments (cases 4 to 6) and five experiments (cases 7 to 11) were performed by changing the position of the opening to be opened while keeping the wind speed constant.

図4にケース1の結果を示すが、この場合、風向に対し、±35度の位置を境界に内壁面風圧が正圧から負圧に変わり、±68度の位置で負の最大値を取ることが分かる。ケース2、3もケース1と同様で、内壁面風圧の分布は図4と完全に重なり、既存の実験結果とも一致し、この実験が正しいことを証明している。またケース4〜6でもそれぞれの内壁面風圧分布がほぼ完全に重なる結果を得た。このことから、内壁面風圧分布に風速は大きく影響しないと考えられるため、ケース7〜11では風速を10m/sで一定にしている。   FIG. 4 shows the result of case 1. In this case, the inner wall wind pressure changes from positive pressure to negative pressure at the position of ± 35 degrees with respect to the wind direction, and takes the maximum negative value at the position of ± 68 degrees. I understand that. Cases 2 and 3 are the same as Case 1, and the distribution of the wind pressure on the inner wall surface completely overlaps with FIG. 4, which is consistent with the existing experimental results and proves that this experiment is correct. In cases 4 to 6, the inner wall surface wind pressure distributions almost completely overlapped. From this, it is considered that the wind speed does not greatly affect the wind pressure distribution on the inner wall surface. Therefore, in cases 7 to 11, the wind speed is kept constant at 10 m / s.

ケース4〜6の結果を図5−(a)に示す。ケース5、6はケース4とは風速が異なるのみで、内壁面風圧分布は図5−(a)と完全に一致している。図5−(b)は開口の開閉状態を示し、白丸が開放状態を、図6−(b)以降の黒丸が閉鎖状態を示している。図5の結果から、外筒の全開口が開放しているときに風圧分布が周方向に均一になって表れていることから、実験で用いた開口の開放面積が適切であったと言える。全開口が開放状態でありながら、開放面積が適切でなければ、風上側での外気の流入と、風下側での空気の流出が円滑に行われず、内筒の風圧分布が均一になって表れないと考えられるからである。ケース7〜11の結果を示す図6〜図10でも各図の(a)は内筒の内周面における風圧分布を示している。   The results of cases 4 to 6 are shown in FIG. Cases 5 and 6 differ from case 4 only in the wind speed, and the inner wall surface wind pressure distribution completely coincides with FIG. FIG. 5- (b) shows the open / closed state of the opening, the white circles indicate the open state, and the black circles after FIG. 6 (b) indicate the closed state. From the result of FIG. 5, it can be said that the open area of the opening used in the experiment was appropriate since the wind pressure distribution appeared uniform in the circumferential direction when the entire opening of the outer cylinder was open. If all the openings are open but the open area is not appropriate, the inflow of outside air on the windward side and the outflow of air on the leeward side are not smoothly performed, and the wind pressure distribution in the inner cylinder appears to be uniform. It is because it is thought that there is not. 6 to 10 showing the results of cases 7 to 11, (a) in each figure shows the wind pressure distribution on the inner peripheral surface of the inner cylinder.

図6−(a)はケース7の結果を示すが、図5−(a)との対比から、風上側の半分の開口を開放させたまま、風下側の半分の開口を塞ぐことで、全開口を開放させた場合より負圧の程度(絶対値)が半減していることが分かる。   FIG. 6- (a) shows the result of Case 7. From the comparison with FIG. 5- (a), all the openings on the leeward side are closed while the half openings on the leeward side are kept open. It can be seen that the degree of negative pressure (absolute value) is halved compared to when the opening is opened.

図7−(a)はケース8の結果を示す。ここに示すように風下側の半分の開口と共に、風上側の両側の一部の開口を塞いだ場合には、図5、図6の場合とは逆に、内壁面風圧が正圧となって表れることが分かる。   FIG. 7- (a) shows the result of Case 8. As shown here, when the opening on the leeward side and a part of the opening on both sides of the leeward side are closed, the inner wall wind pressure becomes positive, contrary to the case of FIGS. You can see that it appears.

図8−(a)は(b)に示すように図7の場合より風上側の両側の開口を各1箇所多く開放させた場合の結果を、図9−(a)は図7の場合より風上側の両側の内の一方の開口を多く開放させた場合の結果を示す。共に図7の場合と同様に内壁面風圧が正圧となって表れるものの、図7の場合より圧力の絶対値が小さくなっていることが分かる。   FIG. 8- (a) shows the result when one more opening on both sides of the windward side is opened as compared with the case of FIG. 7 as shown in FIG. 7 (b), and FIG. 9- (a) shows the result of FIG. The result when one of the openings on both sides of the windward side is opened is shown. In both cases, the inner wall wind pressure appears as a positive pressure as in the case of FIG. 7, but the absolute value of the pressure is smaller than in the case of FIG.

図8、図9の、図7との違いは図4において最大負圧を示す風(気流)の剥離点となる位置での開口が開放状態にあるか閉鎖状態にあるか、であるから、図7〜図9の結果から、風上側から風の剥離点となる位置、またはその近傍までの開口を開放させると共に、それ以外の開口を閉鎖させることにより図8に示すように内筒の内壁面風圧を0に近付けること、あるいは0となるような最適な開閉状態を選択することが可能であることが分かる。建物の平面形状が方形状の場合で、そのいずれかの出角部が風上側となるとき、風の剥離点は風上側と風下側の間の出隅部に表れる。   The difference between FIG. 8 and FIG. 9 from FIG. 7 is whether the opening at the position that becomes the separation point of the wind (airflow) showing the maximum negative pressure in FIG. 4 is in an open state or a closed state. From the results shown in FIGS. 7 to 9, the opening from the windward side to the position where the wind is separated or the vicinity thereof is opened, and the other openings are closed to close the inner cylinder as shown in FIG. It can be seen that the wall surface wind pressure can be brought close to 0, or an optimal open / closed state can be selected. When the planar shape of the building is a square shape and one of the exit corners is on the windward side, the wind separation point appears at the exit corner between the windward and leeward sides.

図10−(a)は(b)に示すように図6とは逆に、風上側の開口を閉鎖させ、風下側の開口を開放させた場合の結果を示す。ここに示すように風上側の開口を閉鎖させると、内筒の全周に負圧が発生する上、外筒がない場合より負圧の絶対値が大きくなり、外筒による風圧減少の利益が得られないことが分かる。   FIG. 10- (a) shows the result when the opening on the leeward side is closed and the opening on the leeward side is opened contrary to FIG. 6 as shown in (b). When the windward side opening is closed as shown here, negative pressure is generated all around the inner cylinder, and the absolute value of the negative pressure becomes larger than when there is no outer cylinder, and the benefit of wind pressure reduction by the outer cylinder is obtained. It turns out that it cannot be obtained.

図5〜図9は外周壁の全周が内壁と外壁から構成されるダブルスキンで、筒形の建物を想定した模型から得られた結果を示すが、図7〜図9の結果から、構造物の外周面を周回して配置された全開口の内、風上側に位置する開口を風の剥離点位置まで開放させると共に、風下側の開口を閉鎖させることにより内筒に発生する内壁面風圧を全周に亘って低減させ、0に近付けることが可能である、と言える。   FIGS. 5 to 9 show results obtained from a model assuming a cylindrical building with a double skin composed of an inner wall and an outer wall on the entire circumference of the outer peripheral wall. From the results of FIGS. Of all the openings arranged around the outer peripheral surface of the object, the opening located on the windward side is opened to the position of the wind separation point, and the opening on the leeward side is closed, and the inner wall wind pressure generated in the inner cylinder Can be reduced over the entire circumference to approach 0.

また図7〜図9の結果から、風上側の外壁と風下側の外壁が開閉自在な開口部を有していれば、それぞれの開口部の開閉状態を自由に設定することができ、図7〜図9の場合の開口と同じ状態を得ることができるため、構造物は必ずしも外周壁の全周がダブルスキンである必要はなく、少なくとも風上側と風下側がダブルスキンであればよい、と言える。   Further, from the results of FIGS. 7 to 9, if the leeward outer wall and the leeward outer wall have opening portions that can be freely opened and closed, the opening / closing states of the respective opening portions can be freely set. Since the same state as the opening in the case of FIG. 9 can be obtained, it can be said that the entire structure of the structure does not necessarily have a double skin, and at least the windward side and the leeward side may have a double skin. .

従って請求項1に記載のように外周壁の、少なくとも互いに対向する区間が内壁と外壁から構成されるダブルスキンであり、このダブルスキンを構成する外壁が周方向に間隔を隔て、開閉自在な開口部を有していれば、ダブルスキンの内壁に生ずる内壁面風圧を低減させることが可能である。外壁が開閉可能な開口部を有していれば、請求項2に記載のようにダブルスキンを構成する外壁の全開口部の内、風上側に位置する開口部を、風上側から風の剥離点となる位置、またはその近傍まで開放させ、その他の開口部を閉鎖させた、図8、図9の状態にすることが可能だからである。   Therefore, as described in claim 1, at least a section of the outer peripheral wall that is opposed to each other is a double skin composed of an inner wall and an outer wall, and the outer wall that constitutes the double skin is spaced apart in the circumferential direction and can be opened and closed freely. If it has a part, it is possible to reduce the inner wall wind pressure generated on the inner wall of the double skin. If the outer wall has an openable and closable opening, the opening located on the windward side of all the openings of the outer wall constituting the double skin as described in claim 2 is separated from the windward side. This is because it is possible to achieve the state shown in FIGS. 8 and 9 in which the point is opened up to the point or the vicinity thereof and the other openings are closed.

請求項2によれば、ダブルスキンを構成する外壁が周方向に間隔を隔て、開閉自在な開口部を有し、外壁の全開口部の内、風上側の開口部が、風上側から風の剥離点となる位置、またはその近傍まで開放し、その他の開口部が閉鎖することで、図8、図9と同等の状態になるため、図8、図9の結果と同様の結果が得られることになる。特に請求項8に記載のように外周壁の全周がダブルスキン構造であれば、図8、図9の(a)に近い結果が得られることになる。請求項1、請求項2ではまた、内壁面風圧を全周に亘って低減できることで、風による内部扉の急激な開閉により什器を破損させ、居住者に怪我を負わせる危険性を回避することが可能になる。   According to claim 2, the outer wall constituting the double skin has an opening that can be opened and closed with an interval in the circumferential direction, and among the entire opening of the outer wall, the opening on the windward side Since it is in the same state as FIG. 8 and FIG. 9 by opening to the position where it becomes the peeling point or its vicinity and closing the other openings, the result similar to the result of FIG. 8 and FIG. 9 is obtained. It will be. In particular, if the entire circumference of the outer peripheral wall is a double skin structure as described in claim 8, a result close to (a) of FIGS. 8 and 9 is obtained. Further, in the first and second aspects, the wind pressure on the inner wall surface can be reduced over the entire circumference, thereby avoiding the danger of damaging the resident due to the sudden opening and closing of the internal door caused by the wind. Is possible.

また例えばダブルスキン構造物の立地条件や地理的条件等から、ダブルスキン構造物に作用する風の向きがほとんど1方向に特定される、または1方向の風が卓越するような場合には、その風上側にのみ開口部を形成し、その開口部を開放させておくことにより図8、図9と同じ結果を得、内壁に生ずる風圧を低減することが可能である。その場合、平面上の周囲の内、風上側以外の区間の開口部は閉鎖していることと同等であるため、風上側以外の区間には必ずしも開口部が形成される必要はない。   Also, for example, when the direction of wind acting on the double skin structure is specified in almost one direction from the location conditions or geographical conditions of the double skin structure, or when the wind in one direction is dominant, By forming an opening only on the windward side and opening the opening, the same result as in FIGS. 8 and 9 can be obtained, and the wind pressure generated on the inner wall can be reduced. In this case, since the opening in the section other than the windward side in the periphery on the plane is equivalent to being closed, the opening need not necessarily be formed in the section other than the windward side.

よって請求項4に記載のように平面上の周囲を周回する外周壁の内、少なくとも互いに対向する区間が内壁と外壁をからなるダブルスキンを構成し、このダブルスキンを構成する外壁の風上側に、風上側から風の剥離点となる位置、またはその近傍まで周方向に間隔を隔て、開放可能な開口部を有していれば、風の向きがほとんど1方向に特定される条件下では風上側がほぼ一定であるため、内壁に生ずる風圧を低減させることができることになる。この場合も内壁面の風圧を周方向に均等に軽減させる上では、外壁は開口部を周方向に均等に有することが適切である。   Therefore, as described in claim 4, at least a section facing each other of the outer peripheral wall that circulates around the plane constitutes a double skin composed of the inner wall and the outer wall, and on the windward side of the outer wall constituting the double skin. If there is an opening that can be opened in a circumferential direction from the windward side to the position where the wind peels off or in the vicinity thereof, the wind direction can be determined under the condition that the wind direction is specified in almost one direction. Since the upper side is substantially constant, the wind pressure generated on the inner wall can be reduced. Also in this case, in order to reduce the wind pressure on the inner wall surface evenly in the circumferential direction, it is appropriate that the outer wall has openings uniformly in the circumferential direction.

図8、図9の結果を得た模型ロは内壁が周方向に間隔を隔て、ダブルスキン内に取り入れた外気を建物内に導く開口部(風圧検出孔)を有しているから、請求項3に記載のように請求項1、もしくは請求項2において、ダブルスキンを構成する内壁が周方向に間隔を隔て、開閉自在な開口部を有していれば、請求項1、もしくは請求項2による効果を引き継ぐことが可能である。同様に請求項5に記載のように請求項4において、ダブルスキンを構成する内壁が周方向に間隔を隔て、開閉自在な開口部を有していれば、請求項4による効果を引き継ぐことが可能である。請求項3、請求項5の場合も、開口部は周方向に均等に有することが適切である。請求項3、請求項5では内壁の開口部を通じ、内壁内に取り込まれた外気の屋外への排気が可能になるため、風上側での外気の導入が促され、自然換気の効率が向上する。   The model B obtained from the results of FIGS. 8 and 9 has an opening (wind pressure detection hole) for guiding the outside air taken into the double skin into the building with the inner wall spaced apart in the circumferential direction. If the inner wall which comprises a double skin has a space | interval in the circumferential direction and has the opening part which can be opened and closed like Claim 3 or Claim 2, Claim 1 or Claim 2 It is possible to take over the effect of. Similarly, in claim 4, as in claim 5, if the inner wall constituting the double skin has a circumferentially spaced opening and opening that can be opened and closed, the effect of claim 4 can be inherited. Is possible. In the cases of Claims 3 and 5, it is appropriate that the openings are equally provided in the circumferential direction. In the third and fifth aspects, since the outside air taken into the inner wall can be exhausted to the outside through the opening of the inner wall, introduction of the outside air on the windward side is promoted, and the efficiency of natural ventilation is improved. .

また請求項6に記載のように請求項1乃至請求項5のいずれかに記載のダブルスキン構造物において、外壁の開口部の、開放状態での開放面積が自由に調整自在であれば、風上側の風圧力の大きさに応じて開口部の開放面積を変えることで、最適な内壁面風圧を得ることが可能である。   In addition, in the double skin structure according to any one of claims 1 to 5, as long as the open area of the opening of the outer wall in the open state is freely adjustable, By changing the open area of the opening according to the magnitude of the upper wind pressure, it is possible to obtain the optimum inner wall surface wind pressure.

更に請求項7に記載のように内壁の内周側に、前記外壁の開口部から取り入れた外気を屋外へ導く排気筒を有すれば、内壁の開口から屋内に導入された空気の屋外への排気が円滑に行われ、同時に外筒の開口からの外気の導入も円滑に行われることになるため、自然換気性能が向上し、上記した内壁面風圧の均等化の効果が確実に得られることになる。請求項7では屋内に導入された外気の屋外への排気が円滑に行われることで、高層建物での自然換気システムを構築することが可能になる。   Furthermore, if there is an exhaust pipe for guiding outside air taken in from the opening of the outer wall to the outside on the inner peripheral side of the inner wall as described in claim 7, air introduced indoors from the opening of the inner wall to the outside Since the exhaust is performed smoothly and at the same time, the outside air is smoothly introduced from the opening of the outer cylinder, the natural ventilation performance is improved, and the effect of equalizing the inner wall surface wind pressure is surely obtained. become. According to the seventh aspect of the present invention, it is possible to construct a natural ventilation system in a high-rise building by smoothly exhausting outside air introduced indoors to the outside.

実験に用いた模型イ、ロは筒形の建物を想定しているが、実験結果より、本発明は高層建物を含め、アスペクト比の大きい塔状建物、柱状構造物のような風圧力の影響を強く受ける構造物全般において有効である、と言える。   The models I and B used in the experiment are assumed to be cylindrical buildings. However, from the experimental results, the present invention has the effect of wind pressure such as tower buildings and columnar structures with large aspect ratios, including high-rise buildings. It can be said that it is effective for all structures that are strongly subject to.

内壁面風圧を積極的に均等化させることは、例えば請求項9に記載のように開口部を有する内壁を構成要件とする請求項3、または請求項5〜請求項8のいずれかに記載のダブルスキン構造物において、ダブルスキンを構成する内壁における圧力が周方向に均等化されるように、外壁における開口部の開閉を制御し、例えば圧力が大きい外壁における開口部を閉鎖することにより実現される。   The positive equalization of the inner wall surface wind pressure includes, for example, an inner wall having an opening as described in claim 9 as a constituent feature, or according to any one of claims 5 to 8. In a double skin structure, it is realized by controlling the opening and closing of the opening in the outer wall so that the pressure in the inner wall constituting the double skin is equalized in the circumferential direction, for example, by closing the opening in the outer wall where the pressure is high. The

図5、図10に示すように外筒の風下側の開口が開放している状態では、内筒の風下側の圧力が大きく、負圧となるのに対し、図6〜図9に示すように外筒の風下側の開口部を閉鎖させることで、内筒の風下側の圧力を低減できることから、圧力が大きくなる風上側の外壁における開口部の開閉を制御することで、内壁面における圧力を周方向に均等化させることが可能になる。   As shown in FIGS. 5 and 10, in the state where the leeward opening of the outer cylinder is open, the pressure on the leeward side of the inner cylinder is large and becomes negative, as shown in FIGS. 6 to 9. Since the pressure on the leeward side of the inner cylinder can be reduced by closing the leeward side opening of the outer cylinder, the pressure on the inner wall surface can be controlled by controlling the opening and closing of the opening on the leeward outer wall where the pressure increases. Can be equalized in the circumferential direction.

請求項9の制御を行う際に、内壁面における圧力が風上側であるか風下側であるか等、部位毎に相違するために、内壁面における圧力と外壁面における圧力との差が顕著に表れず、相対的に外壁面における圧力が大きくならないような場合には、請求項10に記載のようにほぼ一定に保たれ得る屋内の圧力を基準として利用し、内壁における圧力と、基準となる屋内の圧力との差が周方向に均等化されるように、外壁における圧力と屋内の圧力との差が大きい外壁における開口部の開閉を制御することにすれば、内壁面風圧を均等化させることの精度を向上させることが可能になる。   When performing the control of claim 9, the difference between the pressure on the inner wall surface and the pressure on the outer wall surface is notable because the pressure on the inner wall surface is different for each part, such as whether it is the leeward side or the leeward side. If it does not appear and the pressure on the outer wall surface does not increase relatively, the indoor pressure that can be kept almost constant as described in claim 10 is used as a reference, and the pressure on the inner wall becomes the reference. If the opening / closing of the opening in the outer wall where the difference between the pressure on the outer wall and the indoor pressure is large is controlled so that the difference from the indoor pressure is equalized in the circumferential direction, the inner wall wind pressure is equalized. It becomes possible to improve the accuracy of this.

上記の通り、本発明では平面上の周囲を周回する外周壁の内、少なくとも互いに対向する区間が内壁と外壁からなるダブルスキンを構成し、その外壁が周方向に間隔を隔てて開閉自在な開口部を有するため、模型での実験結果から、風上側に位置する開口部を風上側から風の剥離点となる位置、またはその近傍まで開放させると共に、その他の開口部を閉鎖させることで、内壁面風圧を全周に亘って低減させることができる。   As described above, in the present invention, of the outer peripheral wall that circulates around the plane, at least the sections facing each other constitute a double skin composed of the inner wall and the outer wall, and the outer wall can be opened and closed with an interval in the circumferential direction. Therefore, from the experimental results of the model, the opening located on the windward side is opened from the windward side to the position where it becomes the separation point of the wind or its vicinity, and the other openings are closed, The wall surface wind pressure can be reduced over the entire circumference.

以下、図面を用いて本発明を実施するための最良の形態を説明する。   Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.

図11〜図13はダブルスキン構造物の平面形状が方形状の場合の、内壁1と外壁2からなるダブルスキンを通じての外気の導入と排気の流れを示す。   FIGS. 11 to 13 show the introduction of the outside air and the flow of the exhaust gas through the double skin composed of the inner wall 1 and the outer wall 2 when the planar shape of the double skin structure is a square shape.

図11−(a)は外周壁の全周がダブルスキンである場合の水平方向の通風での外気の流れを示す。ここでは平面上、いずれかの出隅部の方角が風上側となる場合を想定し、風上側となる2方向の外壁2における開口部を全開させ、風下側となる2方向の外壁2における開口部の内、風の剥離点となる位置、またはその近傍から風下側の一部の区間の開口部を閉鎖させ、風上側から最も遠い出隅部寄りの一部の開口部のみを開放させている。この場合、外気は風上側の外壁2の開口部からダブルスキンの空間に取り込まれた後、内壁1の内周側の屋内空間を通り、風下側のダブルスキンの空間を経て外壁2の開口部から屋外へ排気される。   FIG. 11- (a) shows the flow of the outside air in the horizontal direction when the entire circumference of the outer peripheral wall is a double skin. Here, assuming that the direction of one of the projecting corners on the plane is the windward side, the opening in the outer wall 2 in the two directions on the windward side is fully opened, and the opening in the outer wall 2 in the two directions on the leeward side is opened. Close the openings in some sections on the leeward side from or near the position where the wind peels, and open only some of the openings near the exit corner farthest from the windward side. Yes. In this case, outside air is taken into the double skin space from the opening of the outer wall 2 on the leeward side, then passes through the indoor space on the inner peripheral side of the inner wall 1, passes through the space of the double skin on the leeward side, and the opening of the outer wall 2. Exhausted to the outdoors.

なお、ダブルスキンを構成する外壁2には外気導入のための開口部とは別に、ダブルスキンの内部で温度が上昇した空気を排気し、ダブルスキン内部の温度上昇を抑制するための開口部が形成される。   In addition to the opening for introducing the outside air, the outer wall 2 constituting the double skin has an opening for exhausting the air whose temperature has increased inside the double skin and suppressing the temperature increase inside the double skin. It is formed.

図11−(b)は全周の内、1方向に対向する区間がダブルスキンである場合の外気の流れを示す。ここでも平面上、いずれかの出隅部の方角が風上側となる場合を想定しているが、風上側に位置する外壁2の全開口部を開放させると共に、風下側の外壁2の、風上側から最も遠い出隅部寄りの一部の開口部を閉鎖させ、その他の開口部を開放させている。外気は風上側のダブルスキンの空間と屋内空間を通り、風下側のダブルスキンの空間を経て屋外へ排気される。   FIG. 11- (b) shows the flow of outside air when a section facing in one direction of the entire circumference is a double skin. Here, it is assumed that the direction of one of the projecting corners on the plane is the windward side, but all the openings of the outer wall 2 located on the windward side are opened, and the wind of the outer wall 2 on the leeward side is opened. A part of the opening near the protruding corner farthest from the upper side is closed, and the other opening is opened. Outside air passes through the double-skin space and the indoor space on the leeward side, and is exhausted to the outside through the double-skin space on the leeward side.

図12−(a)、(b)は垂直方向の通風で、外周壁の全周がダブルスキンである場合に、内壁1の内周側、すなわち屋内空間に、外壁2の開口部から取り入れた外気を屋外へ導く排気筒3を有する場合の外気の流れを示す。排気筒3は少なくともダブルスキンの層から屋上等、屋外まで連続するが、必ずしも筒状である必要はなく、吹抜けのような空間でもよい。構造物におけるダブルスキンの層の形成位置は問われず、ある層のみ、またはある層より上の層に形成される他、全層に形成される。構造物が排気筒3を有する場合には、屋内に取り入れられた外気は排気筒3から屋外へ排出されるため、風下側の外壁2における開口部を開放させる必要がない。排気筒3の屋外に通ずる部分では屋外を通過する風の負圧による吸引力によって排気が行われる。   FIGS. 12- (a) and (b) show vertical ventilation. When the entire circumference of the outer peripheral wall is a double skin, it is taken from the opening of the outer wall 2 into the inner peripheral side of the inner wall 1, that is, the indoor space. The flow of outside air in the case of having the exhaust pipe 3 for guiding outside air to the outside is shown. The exhaust tube 3 is continuous from at least a double skin layer to the outside such as a rooftop, but is not necessarily cylindrical, and may be a space like an atrium. The formation position of the double skin layer in the structure is not limited, and the double skin layer is formed only on a certain layer or on a layer above a certain layer, or on all layers. When the structure has the exhaust pipe 3, the outside air taken indoors is discharged from the exhaust pipe 3 to the outside, and therefore it is not necessary to open the opening in the outer wall 2 on the leeward side. In the portion of the exhaust tube 3 that communicates with the outside, exhaust is performed by the suction force due to the negative pressure of the wind passing through the outside.

図13は全周の内、1方向に対向する区間がダブルスキンである場合に、内壁1の内周側に、外壁2の開口部から取り入れた外気を屋外へ導く排気筒3を有する場合の外気の流れを示す。この場合も図12−(a)と同様に必ずしも風下側の外壁2の開口部を開放させる必要はないが、開口部を開放させたときに、例えば排気筒3から排出されるときの外気の吸引力が大きくなる場合には、図示するように排気側となるべき風下側の開口部から外気が取り込まれる可能性がある。   FIG. 13 shows a case where the exhaust pipe 3 for guiding the outside air taken from the opening of the outer wall 2 to the outside is provided on the inner peripheral side of the inner wall 1 when a section facing in one direction of the entire circumference is a double skin. Shows the flow of outside air. In this case as well, it is not always necessary to open the opening of the leeward outer wall 2 as in FIG. 12- (a), but when the opening is opened, for example, the outside air when discharged from the exhaust tube 3 is used. When the suction force increases, there is a possibility that outside air may be taken in from an opening on the leeward side that should be on the exhaust side as illustrated.

図14はダブルスキンを有効に利用した通気換気システムの具体例を示す。安定した通気換気システムを成立させるには内壁面風圧の絶対値を小さくし、内壁面風圧が風速の急激な変化の影響を受けないようにすることが適切である。それには内壁1の開口部を居住者の手により自由に開閉できるようにした上で、風向き、風速等に応じ、外壁2の開口部の開閉を自動的に制御できるようにすることが望ましい。   FIG. 14 shows a specific example of a ventilating system that effectively uses a double skin. In order to establish a stable ventilation system, it is appropriate to reduce the absolute value of the inner wall surface wind pressure so that the inner wall surface wind pressure is not affected by a sudden change in the wind speed. For this purpose, it is desirable that the opening of the inner wall 1 can be freely opened and closed by a resident's hand, and the opening and closing of the opening of the outer wall 2 can be automatically controlled according to the wind direction, wind speed, and the like.

外壁2の開口部を自動的に開閉するための最も有効なシステムは図14に示すようにダブルスキンで建物の全周を包囲し、屋上の風速・風向計により風向き、風速を計測すると共に、代表階(複数階に亘ることもある)の外壁2及び内壁1の風圧力を圧力センサ等の圧力計4で検出し、これらの計測・検出値に基づいて外壁2の開口部の開閉を制御することである。図示するように建物の平面上の出隅部が風上となるとき、外壁2における、風(気流)の剥離点となる風下側との境界より風下側の開口部は大きな負圧となる点であるから(図4)、この開口部を閉鎖するように制御することが必要になる。   As shown in FIG. 14, the most effective system for automatically opening and closing the opening of the outer wall 2 surrounds the entire circumference of the building with a double skin, and measures the wind direction and wind speed with a rooftop wind speed and wind direction meter, The pressure on the outer wall 2 and the inner wall 1 of the representative floor (which may extend over several floors) is detected by a pressure gauge 4 such as a pressure sensor, and the opening and closing of the opening of the outer wall 2 is controlled based on these measured and detected values. It is to be. As shown in the figure, when the projecting corner on the plane of the building is on the windward side, the opening on the leeward side of the outer wall 2 has a larger negative pressure than the boundary with the leeward side that becomes the separation point of the wind (airflow). Therefore (FIG. 4), it is necessary to control the opening to be closed.

図15は図14に示す箱形の建物を円筒形に置き換えたときの、外壁2と内壁1の圧力計4の配置例を示す。図中、Oは外壁2における圧力計4の位置を、Iは内壁1における圧力計4の位置を示す。ここで、建物内の気圧を基準として、外壁2の圧力計4の測定値から外壁2面と建物内の圧力差(ΔPOi)が算出され、内壁1の圧力計4の測定値から内壁1面と建物内の圧力差(ΔPIi)が算出される。この算出値から、ΔPIiが周方向に均等化されるように全ΔPOiの算出値の内、負の値が大きい箇所の開口部を閉鎖するように外壁2の開口部の開閉が制御される。外壁2の開口部の開閉はアクチュエータ等の駆動手段により行われる。 FIG. 15 shows an arrangement example of the pressure gauges 4 on the outer wall 2 and the inner wall 1 when the box-shaped building shown in FIG. 14 is replaced with a cylindrical shape. In the figure, O i indicates the position of the pressure gauge 4 on the outer wall 2, and I i indicates the position of the pressure gauge 4 on the inner wall 1. Here, the pressure difference (ΔP Oi ) between the outer wall 2 surface and the building is calculated from the measured value of the pressure gauge 4 on the outer wall 2 on the basis of the atmospheric pressure in the building, and the inner wall 1 is calculated from the measured value of the pressure gauge 4 on the inner wall 1. A pressure difference (ΔP Ii ) between the surface and the building is calculated. From this calculated value, the opening / closing of the opening of the outer wall 2 is controlled so as to close the opening of the portion having a large negative value among the calculated values of all ΔP Oi so that ΔP Ii is equalized in the circumferential direction. The The opening of the outer wall 2 is opened and closed by a driving means such as an actuator.

ΔPOiの内、負の値が大きい箇所の開口部を閉鎖するのは、風下側の開口部が開放しているときに、風下側の内壁における圧力が負圧で、その絶対値が大きくなるのに対し(図5、図10)、風下側の内壁における開口部を閉鎖させることで、風下側の内壁の圧力の絶対値を低減できるからである(図6〜図9)。 The reason why the opening of the portion having a large negative value among ΔP Oi is closed is that when the opening on the leeward side is open, the pressure on the inner wall on the leeward side is negative, and the absolute value thereof increases. (FIGS. 5 and 10), the absolute value of the pressure on the inner wall on the leeward side can be reduced by closing the opening on the inner wall on the leeward side (FIGS. 6 to 9).

図15では外壁2の各部での圧力値のばらつきによる誤差を減らし、その圧力値の精度を高めるために、内壁1の圧力及び外壁2の圧力と建物内の気圧との差を算出しているが、必ずしも建物内の気圧を基準にする必要はなく、別に基準圧力を用意しても良い。   In FIG. 15, in order to reduce errors due to variations in pressure values at each part of the outer wall 2 and increase the accuracy of the pressure values, the pressures of the inner wall 1 and the outer wall 2 and the pressure in the building are calculated. However, it is not always necessary to use the atmospheric pressure in the building as a reference, and another reference pressure may be prepared.

図15の制御例を示したブロック図を図16に示す。外壁2の圧力計4の測定値から算出された外壁2面と屋内の圧力差(ΔPOi)と、内壁1の圧力計4の測定値から算出された内壁1面と屋内の圧力差(ΔPIi)はパーソナルコンピュータ(PC)等の演算手段に送られ、演算手段から上記した指令が駆動手段に伝達される。駆動手段の動作に基づいて外壁2の開口部の開閉が行われ、開放時に外気が導入され、屋外→屋内→屋外の通風が確保される。屋内に導入された外気に起因する屋内温度・湿度の変化、開口部を外気が通過するときの風速等の情報は演算手段にフィードバックされ、時々刻々得られるデータ(ΔPOi、ΔPIi)による次の指令に反映される。 FIG. 16 is a block diagram showing an example of control in FIG. The pressure difference between the outer wall 2 surface calculated from the measured value of the pressure gauge 4 on the outer wall 2 and the indoor pressure difference (ΔP Oi ), and the pressure difference between the inner wall 1 surface calculated from the measured value of the pressure gauge 4 of the inner wall 1 and the indoor pressure difference (ΔP Ii ) is sent to computing means such as a personal computer (PC), and the above-mentioned command is transmitted from the computing means to the driving means. The opening of the outer wall 2 is opened and closed based on the operation of the driving means, and outside air is introduced when the opening is opened, and outdoor-to-indoor-to-outdoor ventilation is ensured. Changes in indoor temperature / humidity caused by the outside air introduced indoors, wind speed when the outside air passes through the opening, etc. are fed back to the calculation means, and the following data (ΔP Oi , ΔP Ii ) is obtained every moment. Is reflected in the directive.

(a)はシングルスキン構造物をモデル化した模型を示した立面図、(b)は平面図である。(A) is the elevation which showed the model which modeled the single skin structure, (b) is a top view. (a)はダブルスキン構造物をモデル化した模型を示した立面図、(b)は平面図である。(A) is the elevation which showed the model which modeled the double skin structure, (b) is a top view. (a)は実験に使用した風洞を示した平面図、(b)は立面図である。(A) is the top view which showed the wind tunnel used for experiment, (b) is an elevation view. シングルスキンの模型における内壁面風圧の分布を示した平面図である。It is the top view which showed distribution of the inner wall surface wind pressure in the model of a single skin. (a)は外筒の全開口を開放させた場合の、ダブルスキンの模型における内壁面風圧の分布を示した平面図、(b)は外筒の開口の開放位置を示した平面図である。(A) is the top view which showed distribution of the inner wall surface wind pressure in the model of a double skin at the time of opening all the openings of an outer cylinder, (b) is the top view which showed the open position of the opening of an outer cylinder. . (a)は外筒の風上側の開口を開放させた場合の、ダブルスキンの模型における内壁面風圧の分布を示した平面図、(b)は外筒の開口の開放位置を示した平面図である。(A) is a plan view showing the distribution of the wind pressure on the inner wall surface of the double skin model when the windward opening of the outer cylinder is opened, and (b) is a plan view showing the opening position of the opening of the outer cylinder. It is. (a)は外筒の風上側の一部の開口を開放させた場合の、ダブルスキンの模型における内壁面風圧の分布を示した平面図、(b)は外筒の開口の開放位置を示した平面図である。(A) is a plan view showing the distribution of the wind pressure on the inner wall surface in a double skin model when a part of the windward opening of the outer cylinder is opened, and (b) shows the opening position of the opening of the outer cylinder. FIG. (a)は外筒の風上側の剥離点までの開口を開放させた場合の、ダブルスキンの模型における内壁面風圧の分布を示した平面図、(b)は外筒の開口の開放位置を示した平面図である。(A) is a plan view showing the distribution of wind pressure on the inner wall surface in a double skin model when the opening up to the separation point on the windward side of the outer cylinder is opened, (b) is the opening position of the opening of the outer cylinder. It is the shown top view. (a)は外筒の風上側の剥離点までの開口を開放させた場合の、ダブルスキンの模型における内壁面風圧の分布を示した平面図、(b)は外筒の開口の開放位置を示した平面図である。(A) is a plan view showing the distribution of wind pressure on the inner wall surface in a double skin model when the opening up to the separation point on the windward side of the outer cylinder is opened, (b) is the opening position of the opening of the outer cylinder. It is the shown top view. (a)は外筒の風下側の開口を開放させ、風上側の開口を閉鎖させた場合の、ダブルスキンの模型における内壁面風圧の分布を示した平面図、(b)は外筒の開口の開放位置を示した平面図である。(A) is a plan view showing the distribution of wind pressure on the inner wall surface in a double skin model when the leeward opening of the outer cylinder is opened and the leeward opening is closed, and (b) is the opening of the outer cylinder. It is the top view which showed the open position. (a)は全周がダブルスキンである場合の外気の流れを示した平面図、(b)は1方向に対向する面がダブルスキンである場合の外気の流れを示した平面図である。(A) is a plan view showing a flow of outside air when the entire circumference is a double skin, and (b) is a plan view showing a flow of outside air when a surface facing in one direction is a double skin. (a)は全周がダブルスキンであり、内壁の内周側に排気筒を有する場合の外気の流れを示した平面図、(b)は斜視図である。(A) is a plan view showing the flow of outside air when the entire circumference is a double skin and has an exhaust pipe on the inner circumference side of the inner wall, and (b) is a perspective view. 1方向に対向する面がダブルスキンである場合に、内壁の内周側に排気筒を有する場合の外気の流れを示した平面図である。It is the top view which showed the flow of the external air in the case of having an exhaust pipe on the inner peripheral side of the inner wall when the surface facing in one direction is a double skin. ダブルスキンを有効に利用した通気換気システムの具体例を示した概念図である。It is the conceptual diagram which showed the specific example of the ventilation system which utilized the double skin effectively. 図14に示す通気換気システムにおける、円筒形の建物での圧力計の配置例を示した平面図である。It is the top view which showed the example of arrangement | positioning of the pressure gauge in a cylindrical building in the ventilation ventilation system shown in FIG. 内壁面と屋内の圧力差を均等化させるための制御例を示したブロックである。It is the block which showed the example of control for equalizing the pressure difference of an inner wall surface and indoors. ダブルスキンが風下側にのみある場合の空気の流れを示した概要図である。It is the schematic which showed the flow of the air in case a double skin exists only in the leeward side.

符号の説明Explanation of symbols

1………内壁
2………外壁
3………排気筒
4………圧力計
1 ……… Inner wall 2 ……… Outer wall 3 ……… Exhaust tube 4 ……… Pressure gauge

Claims (10)

平面上の周囲を周回する外周壁の内、少なくとも互いに対向する区間が内壁と外壁からなるダブルスキンを構成し、前記外壁が周方向に間隔を隔て、開閉自在な開口部を有していることを特徴とするダブルスキン構造物。   Among the outer peripheral walls that circulate around the plane, at least the sections facing each other constitute a double skin composed of an inner wall and an outer wall, and the outer wall has an opening that can be opened and closed with an interval in the circumferential direction. A double skin structure. 前記外壁の全開口部の内、風上側に位置する開口部が、風上側から風の剥離点となる位置、またはその近傍まで開放し、その他の開口部が閉鎖していることを特徴とする請求項1に記載のダブルスキン構造物。   Of all the openings of the outer wall, the opening located on the windward side is open from the windward side to the position where the wind is peeled off or in the vicinity thereof, and the other openings are closed. The double skin structure according to claim 1. 前記内壁が周方向に間隔を隔て、開閉自在な開口部を有していることを特徴とする請求項1、もしくは請求項2に記載のダブルスキン構造物。   The double skin structure according to claim 1, wherein the inner wall has an opening that can be opened and closed with a space in the circumferential direction. 平面上の周囲を周回する外周壁の内、少なくとも互いに対向する区間が内壁と外壁からなるダブルスキンを構成し、前記外壁の風上側に、風上側から風の剥離点となる位置、またはその近傍まで周方向に間隔を隔て、開放可能な開口部を有していることを特徴とするダブルスキン構造物。   Of the outer peripheral walls that circulate around the plane, at least the sections facing each other constitute a double skin consisting of an inner wall and an outer wall, on the windward side of the outer wall, the position where the wind separation point from the windward side, or the vicinity thereof A double skin structure characterized by having an opening that can be opened at a distance in the circumferential direction. 前記内壁が周方向に間隔を隔て、開閉自在な開口部を有していることを特徴とする請求項4に記載のダブルスキン構造物。   The double skin structure according to claim 4, wherein the inner wall has an opening that can be opened and closed at an interval in the circumferential direction. 前記外壁の開口部の、開放状態での開放面積が自由に調整自在であることを特徴とする請求項1乃至請求項5のいずれかに記載のダブルスキン構造物。   The double skin structure according to any one of claims 1 to 5, wherein an opening area of the opening of the outer wall in an open state is freely adjustable. 前記内壁の内周側に、前記外壁の開口部から取り入れた外気を屋外へ導く排気筒を有することを特徴とする請求項1乃至請求項6のいずれかに記載のダブルスキン構造物。   The double skin structure according to any one of claims 1 to 6, further comprising an exhaust pipe that guides outside air taken from an opening of the outer wall to the outside on an inner peripheral side of the inner wall. 前記外周壁の全周が内壁と外壁からなるダブルスキンを構成していることを特徴とする請求項1乃至請求項7のいずれかに記載のダブルスキン構造物。   The double skin structure according to any one of claims 1 to 7, wherein the entire circumference of the outer peripheral wall constitutes a double skin comprising an inner wall and an outer wall. 請求項3、または請求項5〜請求項8のいずれかに記載のダブルスキン構造物において、前記内壁における圧力が周方向に均等化されるように、前記外壁における開口部の開閉を制御するダブルスキン構造物における外壁開口部の制御方法。   The double skin structure according to any one of claims 3 and 5 to 8, wherein the double skin structure controls the opening and closing of the opening in the outer wall so that the pressure in the inner wall is equalized in the circumferential direction. A method for controlling an outer wall opening in a skin structure. 請求項3、または請求項5〜請求項8のいずれかに記載のダブルスキン構造物において、前記内壁における圧力と屋内の圧力との差が周方向に均等化されるように、前記外壁における圧力と屋内の圧力との差が大きい外壁における開口部の開閉を制御するダブルスキン構造物における外壁開口部の制御方法。

9. The double skin structure according to claim 3, or a pressure in the outer wall so that a difference between a pressure in the inner wall and an indoor pressure is equalized in a circumferential direction. A method for controlling an opening of an outer wall in a double skin structure, which controls opening and closing of the opening in an outer wall having a large difference between the indoor pressure and the indoor pressure.

JP2005233145A 2005-08-11 2005-08-11 Double-skin structure and control method for its external wall openings in that double-skin structure Pending JP2007046373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005233145A JP2007046373A (en) 2005-08-11 2005-08-11 Double-skin structure and control method for its external wall openings in that double-skin structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005233145A JP2007046373A (en) 2005-08-11 2005-08-11 Double-skin structure and control method for its external wall openings in that double-skin structure

Publications (1)

Publication Number Publication Date
JP2007046373A true JP2007046373A (en) 2007-02-22

Family

ID=37849421

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005233145A Pending JP2007046373A (en) 2005-08-11 2005-08-11 Double-skin structure and control method for its external wall openings in that double-skin structure

Country Status (1)

Country Link
JP (1) JP2007046373A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013155584A (en) * 2012-01-31 2013-08-15 Takenaka Komuten Co Ltd Double skin structure and design method of double skin structure
CN104990192A (en) * 2015-07-24 2015-10-21 浙江解放装饰工程有限公司 Air in-out structure of dual-layer curtain
CN105465938A (en) * 2015-12-30 2016-04-06 广州市住邦建材发展有限公司 Novel power ventilator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013155584A (en) * 2012-01-31 2013-08-15 Takenaka Komuten Co Ltd Double skin structure and design method of double skin structure
CN104990192A (en) * 2015-07-24 2015-10-21 浙江解放装饰工程有限公司 Air in-out structure of dual-layer curtain
CN105465938A (en) * 2015-12-30 2016-04-06 广州市住邦建材发展有限公司 Novel power ventilator
CN105465938B (en) * 2015-12-30 2019-06-25 广州市住邦建材发展有限公司 A kind of new type power ventilator

Similar Documents

Publication Publication Date Title
JP5870450B2 (en) Double skin curtain wall and air conditioning system
KR102036517B1 (en) Window-type Air Purifier and Control Method thereof
CN106939618A (en) A kind of underground pipe gallery ground ventilation mouthful and blower fan hoisting port and escaping exit
JP2007046373A (en) Double-skin structure and control method for its external wall openings in that double-skin structure
JP2015036599A (en) Warehouse ventilation method
NO344755B1 (en) Method and system for monitoring air leaks through a building envelope and controlling a ventilation system
JP2014173826A (en) Total heat exchange type ventilation device
KR20170068643A (en) Stack effect reduced system of high-rise building
FI126255B (en) Pressure control and ventilation in a pressurized multi-storey building
KR20160038550A (en) Energy saving envelope ventilation structure in renovation building
CN106123222A (en) A kind of thermostatic type measuring instrument workplace
JP2013181333A (en) Double skin structure
CN207160904U (en) A kind of temperature adjusting window and building
JP2017161165A (en) Airflow control system and booth including the same
JP4687984B2 (en) Control method for air conditioning equipment
JP5002339B2 (en) Ventilation system for buildings having a ventilation layer in the outer wall
JP2015045489A (en) Air conditioning system for building
JP2015197251A (en) Ventilation system of building
CA3194306A1 (en) Method and system for controlling a ventilation system to prevent infiltration of pollutants through a building envelope
JP5805810B2 (en) Building ventilation structure
JP2017141628A (en) Double-skin curtain wall
CN205717764U (en) The accurate measurement worker-house structure that a kind of constant temperature control is wet
JP4179854B2 (en) Ventilation structure
JP6374255B2 (en) Ventilation system for data center
JP2013036719A (en) Air conditioning system