JP2007045803A - Method for obtaining purified methyl methacrylate - Google Patents

Method for obtaining purified methyl methacrylate Download PDF

Info

Publication number
JP2007045803A
JP2007045803A JP2005234885A JP2005234885A JP2007045803A JP 2007045803 A JP2007045803 A JP 2007045803A JP 2005234885 A JP2005234885 A JP 2005234885A JP 2005234885 A JP2005234885 A JP 2005234885A JP 2007045803 A JP2007045803 A JP 2007045803A
Authority
JP
Japan
Prior art keywords
methyl methacrylate
distillation column
column
distillation
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005234885A
Other languages
Japanese (ja)
Inventor
Atsuki Adachi
厚喜 安達
Kokukan Matsuda
國寛 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2005234885A priority Critical patent/JP2007045803A/en
Publication of JP2007045803A publication Critical patent/JP2007045803A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid product with little coloration by effectively removing coloration-causing materials included in methyl methacrylate by suppressing generation of polymerization in a simple method and stably carrying out a long term operation, and a high quality resin molded product using the same as a raw material. <P>SOLUTION: The purification method is to add an ethyleneamine below a feeding position for feeding methyl methacrylate to a first distillation tower, remove impurities having low boiling points from the upper part of the tower, remove methyl methacrylate from the lower part of the tower, subsequently feed methyl methacrylate to a second distillation tower and take out methyl methacrylate and remove isopropenyl methyl ketone. The purification method provides a colorless liquid methyl methacrylate product and resin molded products. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、メタクリル酸メチルの精製方法に関する。より詳細には、本発明は、メタクリル酸メチルに含まれる着色起因不純物を化学的および物理的方法を組み合わせて除去して、着色のないメタクリル酸メチル、ならびにこれを原料にして生産される樹脂または樹脂組成物を得る方法を提供する。   The present invention relates to a method for purifying methyl methacrylate. More specifically, the present invention removes the color-caused impurities contained in methyl methacrylate by a combination of chemical and physical methods, so that methyl methacrylate without color, and a resin or A method for obtaining a resin composition is provided.

メタクリル酸メチルは、耐候性・透明性に優れた樹脂成型品の原料として有用であり、その製法は大きく分けて2つの方法が知られている。1つは、アセトンシアンヒドリンを硫酸を用いてアミド化したのちメタノールを加えてメタクリル酸メチルを得る方法であり、他の1つはイソブチレンを酸化したのち直ちにエステル化するか、あるいは再度酸化してメタクリル酸としたあとメタノールを加えてメタクリル酸メチルを得る方法である。いずれの方法においても多様な反応副生物が発生するので、これらの反応副生物を除去して精製されたメタクリル酸メチルを得るために各種の工夫が提案されている。   Methyl methacrylate is useful as a raw material for resin molded products having excellent weather resistance and transparency, and its production methods are roughly divided into two methods. One is a method in which acetone cyanohydrin is amidated with sulfuric acid and methanol is added to obtain methyl methacrylate, and the other one is esterified immediately after isobutylene is oxidized or oxidized again. In this method, methacrylic acid is added and methanol is added to obtain methyl methacrylate. In any of the methods, various reaction by-products are generated, and various ideas have been proposed for obtaining purified methyl methacrylate by removing these reaction by-products.

とりわけ、メタクリル酸メチルのもっとも重要な性質である耐候性と透明性を損なう着色起因物質の除去はもっとも重要な技術に属する。メタクリル酸メチルの製造工程において発生する、着色の原因となる不純物としてよく知られている物質はジアセチルである。   In particular, removal of color-causing substances that impair the weather resistance and transparency, which are the most important properties of methyl methacrylate, belongs to the most important technology. Diacetyl is a substance well known as an impurity that causes coloring in the production process of methyl methacrylate.

たとえば、アセトンシアンヒドリン法によるメタクリル酸メチルの精製方法において、酸触媒の存在下で、非芳香族1,2−ジエチルアミンを、蒸留すべきメタクリル酸メチルに含まれる着色起因物質であるジアセチル1モル当り1〜200モルの量で加えて、反応時間として少なくとも10分とすることで、ジアセチルを0.1ppm以下にする方法が示されている(特許文献1)。しかしながら、この方法では粗メタクリル酸メチルに含まれる着色起因物質としてジアセチルのみに着目しているが、実際にはその他にも着色起因物質は存在しており、これらを無視することはできない。また、酸触媒を用いるため、装置の腐食対策が必要になり、設備費が高くなる。さらにアミン類の添加量が非常に多いため、余剰のアミンの除去が不十分だと、製品メタクリル酸メチル中に残留するアミンが着色を引き起こすおそれがある。   For example, in a method for purifying methyl methacrylate by the acetone cyanohydrin method, in the presence of an acid catalyst, non-aromatic 1,2-diethylamine is converted to 1 mol of diacetyl which is a color-causing substance contained in methyl methacrylate to be distilled. A method of adding diacetyl to 0.1 ppm or less by adding 1 to 200 mol per mol and setting the reaction time to at least 10 minutes is disclosed (Patent Document 1). However, this method focuses only on diacetyl as the color-causing substance contained in the crude methyl methacrylate, but in fact, there are other color-causing substances that cannot be ignored. In addition, since an acid catalyst is used, it is necessary to take measures against corrosion of the apparatus, resulting in an increase in equipment costs. Furthermore, since the added amount of amines is very large, if the removal of excess amine is insufficient, the amine remaining in the product methyl methacrylate may cause coloring.

メタクリル酸メチルに含まれるビアセチル(ジアセチルと同じ)と、3つ以上の1級あるいは2級のアミノ基を分子内に持つ脂肪族化合物、特に沸点が150℃以上であるジエチレントリアミンまたはトリエチレンテトラミンとを反応させたのち、該反応生成物を除去することによる、実質的にビアセチルを含まないメタクリル酸メチルの製造方法が示されている(特許文献2)。しかしながら、この方法では含まれているビアセチルのモル数に対して添加するアミノ基のモル数が1〜50倍であるため、コストアップになるとともにアミンの余剰分が製品に混じらないように蒸留分離が必要である。さらに、蒸留精製する前に反応器を設置して混合・反応させるために、設備費が高くなるという問題がある。さらに、メタクリル酸メチルをアミノ基の存在下で加熱するため、過酸化物が存在している場合にはアミン効果によってメタクリル酸メチルの重合が起こるという問題がある。   Biacetyl (same as diacetyl) contained in methyl methacrylate and an aliphatic compound having 3 or more primary or secondary amino groups in the molecule, particularly diethylenetriamine or triethylenetetramine having a boiling point of 150 ° C. or higher. A method for producing methyl methacrylate substantially free of biacetyl by removing the reaction product after the reaction is disclosed (Patent Document 2). However, in this method, the number of moles of amino groups added to the moles of biacetyl contained is 1 to 50 times, so that the cost is increased and distillation separation is performed so that excess amine is not mixed with the product. is required. Furthermore, since the reactor is installed and mixed and reacted before distillation purification, there is a problem that the equipment cost becomes high. Furthermore, since methyl methacrylate is heated in the presence of an amino group, there is a problem that polymerization of methyl methacrylate occurs due to the amine effect when a peroxide is present.

4−ヒドロキシ−2,2,6,6−テトラメチルピペリジノオキシル等のN−オキシル化合物と、ハイドロキノン等のフェノール化合物、フェノティアジン、マンガン塩化合物、銅塩化合物等の組み合わせによる(メタ)アクリル酸およびそのエステルの重合防止方法が示されている(特許文献3、4)。しかしながら、これらの方法ではいずれも、3種類の化合物を同時に使用することによって重合防止効果を得ているため、それぞれの使用量の調整が難しいこと、注入設備が複雑になるため設備費が高くなること等の問題がある。   By a combination of an N-oxyl compound such as 4-hydroxy-2,2,6,6-tetramethylpiperidinooxyl and a phenol compound such as hydroquinone, phenothiazine, a manganese salt compound, a copper salt compound, etc. Methods for preventing polymerization of acrylic acid and its esters have been shown (Patent Documents 3 and 4). However, in these methods, since the polymerization preventing effect is obtained by using three kinds of compounds at the same time, it is difficult to adjust the amount of each used, and the injection equipment becomes complicated, resulting in high equipment costs. There are problems.

液相直メタ法(イソブチレンの酸化によってメタクロレインを得たあと、ただちに液相において触媒を用いてメタノールとエステル化する方法、直接的酸化エステル法とも呼ぶ)で得た着色起因物質および/または重合阻害要因物質を含むメタクリル酸を含む混合物に、第1級および/または第2級のアミノ基含有化合物、強酸性イオン交換樹脂、ならびに、ホルムアルデヒド含有物およびスルホン酸基含有化合物を接触させる方法が示されている(特許文献5)。しかしながら、この方法では使用する薬剤が4種類と多くコストが高くなる、また工程が複雑になるため設備費が高くなり運転管理も複雑になるという問題がある。   Color-causing substances and / or polymerization obtained by liquid phase direct meta method (method of obtaining methacrolein by oxidation of isobutylene and then immediately esterifying with methanol using catalyst in liquid phase, also called direct oxidation ester method) A method of contacting a mixture containing methacrylic acid containing an inhibitory substance with a primary and / or secondary amino group-containing compound, a strongly acidic ion exchange resin, and a formaldehyde-containing compound and a sulfonic acid group-containing compound is shown. (Patent Document 5). However, this method has a problem that the cost is high because there are four types of chemicals to be used, and the process becomes complicated, resulting in high equipment costs and complicated operation management.

少なくとも水を含む(メタ)アクリル酸エステルに含まれる着色不純物を除去するために、蒸留塔の塔頂蒸気または凝縮液に第1級および/または第2級アミノ基含有化合物を添加し、デカンターで水相を分離させ、その水相を塔頂ガスに循環させ、エステル相を次の蒸留塔で精製する方法が示されている(特許文献6)。しかしながら、この方法ではアミノ処理の対象となるエステルには蒸留後に2相分離するための水の存在が必要であり、水相を発生させるための設備としてデカンターが必要なため設備費が高くなる、また精製の程度が低い段階で適用するため、着色不純物の濃度が高く処理薬品の使用量が多くなるという問題がある。精製されたメタクリル酸メチルに残されたジアセチル濃度は実施例によると2〜3ppmと高く、このままでは樹脂成型品としては使えないおそれがある。   In order to remove the colored impurities contained in the (meth) acrylic acid ester containing at least water, a primary and / or secondary amino group-containing compound is added to the top vapor or condensate of the distillation column, and a decanter is used. A method is disclosed in which an aqueous phase is separated, the aqueous phase is circulated to the top gas, and the ester phase is purified in the next distillation column (Patent Document 6). However, in this method, the ester to be subjected to amino treatment requires the presence of water for separation into two phases after distillation, and a decanter is required as equipment for generating an aqueous phase, resulting in high equipment costs. Further, since it is applied at a stage where the degree of purification is low, there is a problem that the concentration of colored impurities is high and the amount of processing chemicals used is increased. The diacetyl concentration remaining in the purified methyl methacrylate is as high as 2 to 3 ppm according to the examples, and there is a possibility that it cannot be used as a resin molded product as it is.

このようにメタクリル酸メチルに含まれる着色起因不純物を簡便な方法で効果的に除去する方法は、いまだ見出されていないのが現状である。   Thus, the present condition is that the method of removing effectively the coloring cause impurity contained in methyl methacrylate by a simple method has not been found yet.

特開平8−169862号公報JP-A-8-169862 特開2000−256265号公報JP 2000-256265 A 特許第2725593号Japanese Patent No. 2725593 特許第2725638号Japanese Patent No. 2725638 特開2001−72639号公報JP 2001-72639 A 特開2002−205971号公報JP 2002-205971 A

本発明は、メタクリル酸メチルに含まれる着色起因物質を簡便な方法でかつ効果的に除去するとともに、重合の発生を抑えて長期的に安定運転を行い、着色の少ない液体製品およびそれを原料とした高品質の樹脂成型品を得る方法を提供することを目的とする。   The present invention eliminates the color-causing substance contained in methyl methacrylate by a simple method and effectively, suppresses the occurrence of polymerization, performs stable operation over a long period of time, and uses a liquid product with less color and the raw material as a raw material. An object of the present invention is to provide a method for obtaining a high-quality molded resin product.

本発明者らは上記課題を解決すべく鋭意研究した結果、着色起因不純物質としてジアセチルとともにイソプロペニルメチルケトンに着目し、これを効果的に除去する精製方法を見い出して、本発明の完成に至った。本発明は、着色起因物質を含むメタクリル酸メチルを2本の蒸留塔を用いて精製する際にエチレンアミン類を添加することにより、簡便でしかも効果的な方法で着色起因物質であるイソプロペニルメチルケトンを除去できる方法である。   As a result of diligent research to solve the above-mentioned problems, the present inventors have focused on isopropenyl methyl ketone together with diacetyl as a color-causing impurity, and have found a purification method for effectively removing this, resulting in the completion of the present invention. It was. In the present invention, when methyl methacrylate containing a color-causing substance is purified using two distillation towers, isopropenylmethyl, which is a color-causing substance, is added in a simple and effective manner by adding ethyleneamines. This is a method that can remove ketones.

すなわち本発明は、下記のとおりである。
(1)メタクリル酸メチルを精製する方法であって、イソプロペニルメチルケトンを含有する粗メタクリル酸メチルを、重合防止剤の存在下、2本の蒸留塔を用いて精製するに際し、第一の蒸留塔に送入されるメタクリル酸メチルの送入位置の下部からエチレンアミン類を添加し、塔上部から低沸点不純物を取除き塔下部からメタクリル酸メチルを取り出し、つづいて第二の蒸留塔にメタクリル酸メチルを送入し塔上部からメタクリル酸メチルを取り出すことにより、イソプロペニルメチルケトンを除去することを特徴とする方法。
(2)メタクリル酸メチル中のイソプロペニルメチルケトンの含有量が50ppm以下に精製される上記方法。
(3)メタクリル酸メチルが、イソブチレンあるいはイソブタンを酸化して得られるメタクロレインを直接的酸化エステル法によって得られるメタクリル酸メチルである上記方法。
(4)エチレンアミン類の添加量が、第一の蒸留塔に送入されるメタクリル酸メチルに含まれるジアセチル1モルあたり、0.5モル以上1モル未満である上記方法。
(5)第一および第二の蒸留操作を、減圧下で、かつ重合防止剤としてN−オキシル化合物の存在下で行うことを特徴とする上記方法。
(6)エチレンアミン類の添加位置が、第一の蒸留塔の塔底部である上記方法。
(7)第一の蒸留塔の塔底部から抜き出されるメタクリル酸メチルを、第二の蒸留塔の塔下部に送入することを特徴とする上記方法。
(8)第二の蒸留塔の塔底部の液の少なくとも一部を第一の蒸留塔の塔下部に戻すことを特徴とする上記方法。
(9)上記のいずれかの方法により精製されたメタクリル酸メチルを重合することにより得られる樹脂または樹脂組成物。
That is, the present invention is as follows.
(1) A method for purifying methyl methacrylate, in which crude methyl methacrylate containing isopropenyl methyl ketone is purified using two distillation columns in the presence of a polymerization inhibitor, and the first distillation Add ethyleneamines from the bottom of the methyl methacrylate feed position to the tower, remove low-boiling impurities from the top of the tower, remove methyl methacrylate from the bottom of the tower, and then add methacrylic to the second distillation tower. A method characterized in that isopropenyl methyl ketone is removed by feeding methyl acid and removing methyl methacrylate from the top of the column.
(2) The above method wherein the content of isopropenyl methyl ketone in methyl methacrylate is purified to 50 ppm or less.
(3) The above method, wherein the methyl methacrylate is methyl methacrylate obtained by directly oxidizing methacrolein obtained by oxidizing isobutylene or isobutane by the direct oxidation ester method.
(4) The said method whose addition amount of ethyleneamine is 0.5 mol or more and less than 1 mol per mol of diacetyl contained in the methyl methacrylate sent to the 1st distillation column.
(5) The above method, wherein the first and second distillation operations are performed under reduced pressure and in the presence of an N-oxyl compound as a polymerization inhibitor.
(6) The said method whose addition position of ethyleneamines is the tower bottom part of a 1st distillation tower.
(7) The method as described above, wherein methyl methacrylate extracted from the bottom of the first distillation column is fed to the lower portion of the second distillation column.
(8) The method as described above, wherein at least part of the liquid at the bottom of the second distillation column is returned to the lower portion of the first distillation column.
(9) A resin or resin composition obtained by polymerizing methyl methacrylate purified by any of the above methods.

なお、本発明において、蒸留塔の塔上部とは蒸留塔の全理論段の2分の1より上側の位置を表し、塔下部とは全理論段2分の1より下側の位置を表し、塔頂部とは全理論段の上側から5分の1より上の位置を表し、塔底部とは蒸留塔の全理論段の下側から5分の1より下の位置を表す。   In the present invention, the upper part of the distillation column represents a position above one half of the total theoretical plate of the distillation column, and the lower part of the column represents a position lower than one half of the total theoretical plate, The top of the column represents a position above 1/5 from the upper side of the entire theoretical plate, and the bottom of the column represents a position below 1/5 from the lower side of the entire theoretical plate of the distillation column.

本発明により、着色起因物質の含有量の少ないメタクリル酸メチル、およびこれを原料にして生産された樹脂組成物を得ることができる。   According to the present invention, it is possible to obtain methyl methacrylate having a low content of coloring-causing substances and a resin composition produced using this as a raw material.

メタクリル酸メチルを合成する際に副生する数多くの成分のなかで、それらのすべての成分名と着色への影響度合いの全容は未だ解明されていない。前記した代表的な2つの製法、アセトンシアンヒドリン法およびイソブチレン法においては、まったく異なる副生物が発生しており、さらにイソブチレン法においてもメタクロレインの直接的酸化エステル法とメタクリル酸経由エステル法でも副生物は大きく異なっている。しかし、いずれの場合にも、着色起因物質の代表的な成分として、ジアセチルが古くから知られており、その除去方法についても多くの研究がなされている。   Among the many components that are by-produced when synthesizing methyl methacrylate, the names of all these components and the extent of their influence on coloring have not yet been elucidated. In the two typical production methods described above, the acetone cyanohydrin method and the isobutylene method, completely different by-products are generated, and also in the isobutylene method, the direct oxidation ester method of methacrolein and the ester method via methacrylic acid. By-products are very different. However, in any case, diacetyl has been known for a long time as a representative component of the color-causing substance, and many studies have been made on its removal method.

今回、本発明者らは、イソプロペニルメチルケトンが樹脂組成物の耐候性を悪化させる成分として重要であることを見出した。イソプロペニルメチルケトンは、メタクロレインの直接的酸化エステル法において顕著に見出される不純物であるが、これまで正確な着色挙動・耐候性悪化挙動は解明されていない。イソプロペニルメチルケトンは、モノマー段階においても重合製品においても、着色度合いと成分挙動の傾向が一致しており、これを除去することにより着色のない製品を取得することができる。イソプロペニルメチルケトンは、沸点が98℃であってメタクリル酸メチルの沸点100℃に極めて近いため、蒸留による分離は非常に困難であるが、本発明にしたがってエチレンアミン類を添加することにより、効果的に取り除くことができる。   The present inventors have now found that isopropenyl methyl ketone is important as a component that deteriorates the weather resistance of the resin composition. Isopropenyl methyl ketone is an impurity that is prominently found in the direct oxidation ester method of methacrolein, but accurate coloring behavior and weathering deterioration behavior have not been elucidated so far. Isopropenyl methyl ketone has the same degree of coloring and component behavior in both the monomer stage and the polymerized product, and by removing this, a product having no color can be obtained. Isopropenyl methyl ketone has a boiling point of 98 ° C. and is very close to the boiling point of methyl methacrylate of 100 ° C., so that separation by distillation is very difficult. However, by adding ethyleneamines according to the present invention, it is effective. Can be removed.

エチレンアミン類としては、限定されないが、例えば、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサミン等を用いることができる。特に好ましくは、ジエチレントリアミンを用いる。   Although it does not limit as ethyleneamines, For example, ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine etc. can be used. Particularly preferably, diethylenetriamine is used.

エチレンアミン類の添加量は、ジアセチルに対して0.3モルから1モル未満、好ましくは0.5モルから1モル未満の比率である。本発明においては、アミンの添加量が1モル未満であることが重要である。1モルを大きく上回る添加量の場合には、未反応アミンが製品中へ混入して製品を汚染するおそれが高い。さらに、アミンの有効利用を図るために、ジアセチル等の比較的低沸点の着色起因物ができるだけ少ない部分にアミンを添加することが必要である。したがって、エチレンアミン類を低沸点分離蒸留塔に加える際には、メタクリル酸メチルの送入位置の下部から添加することが好ましい。   The addition amount of ethyleneamines is 0.3 mol to less than 1 mol, preferably 0.5 mol to less than 1 mol with respect to diacetyl. In the present invention, it is important that the amount of amine added is less than 1 mole. In the case of an addition amount greatly exceeding 1 mol, there is a high possibility that unreacted amine is mixed into the product and contaminates the product. Further, in order to effectively use the amine, it is necessary to add the amine to a portion having as little as possible a coloring matter having a relatively low boiling point such as diacetyl. Therefore, when adding ethyleneamines to the low boiling point separation distillation column, it is preferable to add them from the lower part of the methyl methacrylate feeding position.

さらに本発明者らの研究によれば、メタクリル酸メチルを減圧下において蒸留精製する際に、特にアミン類を加えたままで加熱・蒸留することは、微量の過酸化物の存在で「アミン効果」が発現し、急速にメタクリル酸メチルが重合することを見出した。この現象を防止するために鋭意研究を行った結果、本発明方法において特異な効果を発揮する重合防止剤として、N−オキシル化合物を見出した。つまり、メタクリル酸エステル類の蒸留は、重合を抑制するために温度を下げる目的で減圧下で行うのが一般的であるが、装置からの空気の漏れこみによってある種の有機物と分子状酸素から微量の過酸化物が生成し、このものが「アミン効果」を引き起こす起因物質になっていることを見出した。N−オキシル化合物はそれ自体が赤味を帯びた着色物であり、窒素含有物であって強力な着色起因物質そのものである。そのため、精製されたメタクリル酸メチルの中には決して存在を許されないものであるが、本発明にしたがってその使用を正しく行えば驚くべき効果を発揮させることができる。本発明におけるN−オキシル化合物の使用量は、メタクリル酸メチル100部に対して、0.0001〜1部、好ましくは0.0005〜0.5部、最も好ましくは、0.001〜0.1部である。この範囲を下回る場合には、アミン効果による重合を防止する効果が不足する。また、この範囲を上回る場合には、メタクリル酸メチルの着色が起こりやすくなり、より慎重な管理が必要になる。   Furthermore, according to the study by the present inventors, when distilling and purifying methyl methacrylate under reduced pressure, heating and distilling with adding amines in particular is the “amine effect” in the presence of a small amount of peroxide. And methyl methacrylate was rapidly polymerized. As a result of intensive studies to prevent this phenomenon, an N-oxyl compound was found as a polymerization inhibitor that exhibits a unique effect in the method of the present invention. In other words, distillation of methacrylic acid esters is generally performed under reduced pressure for the purpose of lowering the temperature in order to suppress polymerization, but from certain organic substances and molecular oxygen due to air leakage from the apparatus. It was found that a small amount of peroxide was generated, and this was a causative substance that caused the “amine effect”. The N-oxyl compound itself is a reddish colored substance, and is a nitrogen-containing substance and a strong coloring-causing substance itself. Therefore, although it is never allowed to exist in purified methyl methacrylate, if it is used correctly according to the present invention, a surprising effect can be exhibited. The amount of the N-oxyl compound used in the present invention is 0.0001 to 1 part, preferably 0.0005 to 0.5 part, most preferably 0.001 to 0.1, based on 100 parts of methyl methacrylate. Part. When it is below this range, the effect of preventing polymerization due to the amine effect is insufficient. In addition, if it exceeds this range, methyl methacrylate is likely to be colored, and more careful management is required.

また、本発明において顕著な効果を示す重合防止剤N−オキシル化合物としては、第3ブチルニトロオキシド、2,2,6,6−テトラメチル−4―ヒドロキシピペリジノ−1−オキシル、2,2,6,6−テトラメチルピペリジル−1−オキシル、4−ヒドロキシ−2,2,6,6−テトラメチルピペリジノオキシル等が挙げられる。これらは単独で使用してもよく、組み合わせて使用してもよい。   Examples of the polymerization inhibitor N-oxyl compound having a remarkable effect in the present invention include tert-butyl nitrooxide, 2,2,6,6-tetramethyl-4-hydroxypiperidino-1-oxyl, 2, Examples include 2,6,6-tetramethylpiperidyl-1-oxyl and 4-hydroxy-2,2,6,6-tetramethylpiperidinooxyl. These may be used alone or in combination.

本発明に使用する蒸留塔としては、棚段塔でも充填塔でもよい。たとえば、棚段塔の場合は、シーブトレイ、デュアルトレイ、泡鐘トレイ、フレキシトレイ等から選ばれる。充填塔の場合は、円柱状、円筒状、球状、サドル型ラッシヒリング、ポールリング、テラレット、カスケードミニリング等の不規則充填物、規則充填物としては、スルザーパッキング、テクノパック、メラパック等から選ばれる。   The distillation column used in the present invention may be a plate column or a packed column. For example, in the case of a plate tower, it is selected from a sieve tray, dual tray, bubble bell tray, flexi tray and the like. For packed towers, columnar, cylindrical, spherical, saddle-type Raschig rings, pole rings, terralet, cascade mini-rings and other irregular packings, and regular packings are selected from sulzer packing, technopacks, melapacks, etc. .

次に図面を参照して本発明をより詳細に説明する。イソプロペニルメチルケトン等の着色起因物質を含むメタクリル酸メチル(1)は、ラインAを通じて第1の蒸留塔B(低沸分離塔Bと呼ぶ)の中段部に送られる。低沸分離塔Bは最下部に加熱装置Cを備え、塔頂部には凝縮器D、水分が含まれた場合に備えたデカンターおよび減圧発生装置Eを備えている。アミン類(2)は適当な希釈剤で適切な濃度に調節されて、ラインFを通じて低沸分離塔Bのメタクリル酸メチル入り口より下部に送入される。重合防止剤としてN−オキシル化合物(3)は、適当な希釈剤で適切な濃度に調整されてラインGを通じて低沸分離塔の上部から送入されて、低沸分離塔のほとんどすべての範囲に存在させる。塔頂部からは凝縮液の一部を還流として頂部に返しながら、低沸点不純物(4)としてアセトン、メタノール、メタクロレイン、水の他にイソプロペニルメチルケトン、ジアセチルのそれぞれ一部が抜き出される。低沸分離塔Bの底部からの抜き出し液(5)は、メタクリル酸メチルの実質的に全てと、添加した重合防止剤、および添加したアミン類のうち未だ着色起因物質との反応が完了していない部分がラインHを通じて抜き出される。つづいて、抜き出し液(5)は、第2の蒸留塔(製品塔Iと呼ぶ)の底部を含む位置に送入される。製品塔Iは下部に加熱装置J、頂部に凝縮装置Kおよび真空発生装置Lを備えている。精製されたメタクリル酸メチル(6)は上部からラインMを通じて得られる。重合防止剤は必要に応じて製品塔に適当な位置Nから注入される。一方、製品塔底部からは、反応生成物、重合防止剤、メタクリル酸メチルその他高沸点物類が抜き出される。その一部はラインOを通じて第1の蒸留塔(低沸分離塔B)の下部に戻さ、残りはラインPを通じて回収工程あるいは他の処理工程に送られる。   Next, the present invention will be described in more detail with reference to the drawings. Methyl methacrylate (1) containing a color-causing substance such as isopropenyl methyl ketone is sent through line A to the middle stage of first distillation column B (referred to as low boiling separation column B). The low-boiling separation tower B includes a heating device C at the bottom, and a condenser D, a decanter and a decompression generator E provided when water is contained at the top of the tower. The amine (2) is adjusted to an appropriate concentration with an appropriate diluent, and is sent to the lower part from the methyl methacrylate inlet of the low boiling separation column B through the line F. The N-oxyl compound (3) as a polymerization inhibitor is adjusted to an appropriate concentration with an appropriate diluent and fed from the upper part of the low boiling separation column through the line G to reach almost the entire range of the low boiling separation column. To exist. From the top of the column, a part of the condensate is returned to the top as reflux, and in addition to acetone, methanol, methacrolein and water, a part of each of isopropenyl methyl ketone and diacetyl is extracted as low boiling point impurities (4). In the liquid (5) withdrawn from the bottom of the low boiling separation column B, the reaction of substantially all of the methyl methacrylate with the added polymerization inhibitor and the coloring-causing substances among the added amines has been completed. The missing part is extracted through line H. Subsequently, the extracted liquid (5) is sent to a position including the bottom of the second distillation column (referred to as product column I). The product column I includes a heating device J at the bottom and a condenser K and a vacuum generator L at the top. Purified methyl methacrylate (6) is obtained from the top through line M. The polymerization inhibitor is injected from a suitable position N into the product column as necessary. On the other hand, reaction products, polymerization inhibitors, methyl methacrylate and other high boiling substances are extracted from the bottom of the product tower. A part of it is returned to the lower part of the first distillation column (low boiling separation column B) through line O, and the rest is sent to the recovery step or other processing step through line P.

本発明の方法にしたがえば、ジアセチル0.1ppm以下、イソプロペニルメチルケトン50ppm以下、かつ液体YI値2以下の精製メタクリル酸メチルを得ることができる。好ましくは、イソプロペニルメチルケトンの含有量は20ppm以下である。   According to the method of the present invention, purified methyl methacrylate having a diacetyl of 0.1 ppm or less, an isopropenyl methyl ketone of 50 ppm or less, and a liquid YI value of 2 or less can be obtained. Preferably, the content of isopropenyl methyl ketone is 20 ppm or less.

次に、実施例によって本発明を詳細に説明するが、本発明はこれらの実施例によりその範囲を限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention in detail, this invention is not limited the range by these Examples.

ジアセチルとして340ppm、イソプロピルメチルケトン120ppm、その他成分2.5重量%を含むメタクリル酸メチル(液体着色度YI値=17)を毎時380grで、直径35mm、段数50段を有するオルダーショー蒸留装置の上から25段目に送入し、ジエチレントリアミンの20%水溶液を上から30段目に毎時0.5grで、後の製品塔底部液毎時20grとともに送入した。このとき、初めに送入されるメタクリル酸メチルに含まれるジアセチルは毎時1.5マイクロモルであり、一方、新たに添加したジエチレントリアミンは毎時0.97マイクロモルであった。したがって、ジエチレントリアミン対ジアセチルのモル比は0.64であった。重合防止剤として、2,2,6,6−テトラメチル−4ヒドロキシピペリジノ−1−オキシルの10重量%を毎時0.6grで還流液とともに注入し、塔底部からメタクリル酸メチルを毎時390gr抜き出した。塔頂部から留出し凝縮した留分は、油水分離して油相のみを重合防止剤を混合させて蒸留塔頂部に戻し、水相は系外に抜き出した。運転圧力は−65kpa、塔頂温度は60℃であった。つづいて、塔底部からの抜き出し液を、直径35mm、段数50段を有するオルダーショー蒸留装置の上から45段目に送入し、重合防止剤として前記水溶液を上から15段目に毎時0.5gr注入した。塔頂部から精製メタクリル酸メチルを毎時350gr取り出し、塔底部から毎時40grを抜き出して、その一部を毎時20grで低沸分離塔のアミン注入位置に戻した。残りの塔底部液は別の回収工程に送った。24時間ごとに4回、精製メタクリル酸メチルのサンプルを採取した(サンプルA、B、CおよびD)。   Methyl methacrylate (liquid coloring degree YI value = 17) containing 340 ppm as diacetyl, 120 ppm of isopropyl methyl ketone, and 2.5% by weight of other components at 380 gr / h, 25 mm from the top of the Oldershaw distillation apparatus having a diameter of 35 mm and 50 stages A 20% aqueous solution of diethylenetriamine was fed to the 30th stage from the top at 0.5 gr / hour and with the subsequent product tower bottom liquid at 20 gr / hour. At this time, the amount of diacetyl contained in the methyl methacrylate initially fed was 1.5 μmol / hour, while the newly added diethylenetriamine was 0.97 μmol / hour. Therefore, the molar ratio of diethylenetriamine to diacetyl was 0.64. As a polymerization inhibitor, 10% by weight of 2,2,6,6-tetramethyl-4hydroxypiperidino-1-oxyl was injected together with the reflux liquid at 0.6 gr / h, and methyl methacrylate was 390 gr / h from the bottom of the column. Extracted. The fraction distilled and condensed from the top of the column was separated into oil and water, and only the oil phase was mixed with a polymerization inhibitor and returned to the top of the distillation column, and the aqueous phase was extracted out of the system. The operating pressure was -65 kpa and the column top temperature was 60 ° C. Subsequently, the liquid extracted from the bottom of the column is fed to the 45th stage from the top of the Oldershaw distillation apparatus having a diameter of 35 mm and the number of stages of 50, and the aqueous solution is added at 0.5 gr per hour to the 15th stage from the top as a polymerization inhibitor. Injected. Purified methyl methacrylate was taken out from the top of the column at 350 g / h, and 40 g / h was taken out from the bottom of the column, and a part thereof was returned to the amine injection position of the low boiling point separation column at 20 g / h. The remaining tower bottom liquid was sent to another recovery step. Samples of purified methyl methacrylate were taken 4 times every 24 hours (Samples A, B, C and D).

このようにして得られた精製メタクリル酸メチルのサンプルについて、液体製品としての着色度合いを評価した。液体着色測定装置としては、日本電色工業(株)製 石油製品測定装置OME―2000を用い、標準着色基準液(APHA標準液)と比較して測定した。その結果は、YI(黄色度合)値で表現される。また、着色成分の分析はガスクロマトグラフィーにより測定した。   Thus, about the sample of the refined methyl methacrylate obtained, the coloring degree as a liquid product was evaluated. As a liquid color measuring device, a petroleum product measuring device OME-2000 manufactured by Nippon Denshoku Industries Co., Ltd. was used and measured in comparison with a standard coloring reference solution (APHA standard solution). The result is expressed as a YI (Yellow Degree) value. The analysis of the coloring component was measured by gas chromatography.

結果は下記の表1に示すとおりであった。ジアセチル濃度は0.1ppm以下、イソプロペニルメチルケトン濃度は15ppm、窒素分は検出限界の1ppm以下であった。   The results were as shown in Table 1 below. The diacetyl concentration was 0.1 ppm or less, the isopropenyl methyl ketone concentration was 15 ppm, and the nitrogen content was 1 ppm or less of the detection limit.

次に、得られた液体サンプルから樹脂成型品を製造し、着色度合いを評価した。
手順1 重合開始剤等を含んだ液体製品をガラス板で囲ったキャスト重合器に仕込み、50±1℃の水浴中で6時間かけて重合する。
手順2 つづいて、115±1℃の気流乾燥機中で2時間かけてキュアリングしたあと、一昼夜かけて徐冷する。
手順3 出来上がった樹脂成型板を長さ550mm、幅100mm、厚さ50mmに仕上げて、両端部を研磨(研磨紙#400およびバフ研磨機)仕上げする。
手順4 仕上がった樹脂成型板を、日本電色工業(株)製 長光路透過測定器ASA―2型を用いて測定し、その測定値YIを求める。
Next, a resin molded product was produced from the obtained liquid sample, and the degree of coloring was evaluated.
Procedure 1 A liquid product containing a polymerization initiator and the like is charged into a cast polymerization vessel surrounded by a glass plate and polymerized in a water bath at 50 ± 1 ° C. over 6 hours.
Procedure 2 Next, after curing for 2 hours in an air dryer at 115 ± 1 ° C., cool slowly over a day and night.
Procedure 3 Finished resin molded plate is finished to a length of 550 mm, a width of 100 mm, and a thickness of 50 mm, and both ends are polished (polishing paper # 400 and buffing machine).
Procedure 4 The finished resin molded plate is measured using a long optical path transmission measuring device ASA-2 manufactured by Nippon Denshoku Industries Co., Ltd., and the measured value YI is obtained.

また、連続運転15日を経過した後に、装置内の重合物の有無を確認するための便宜的な方法であるメタノール検出法およびヘキサン検出法によって、塔底部液の試験を行ったところ、2本の蒸留塔ともに澄明なままであり重合物が存在する場合に見られる白濁は見られなかった。さらに1000時間連続運転後に2本の蒸留塔を解体点検した結果、どこにも固形物の発生は認められなかった。   In addition, after 15 days of continuous operation, the column bottom liquid was tested by a methanol detection method and a hexane detection method, which are convenient methods for confirming the presence or absence of a polymer in the apparatus. Both of the distillation towers remained clear and the white turbidity observed in the presence of polymer was not observed. Furthermore, as a result of disassembling and inspecting the two distillation towers after 1000 hours of continuous operation, no generation of solid matter was observed anywhere.

Figure 2007045803
液体製品および樹脂製品はともに市場で認められる品質であった。
Figure 2007045803
Both liquid products and resin products were market recognized quality.

〔比較例1〕
ジエチレントリアミンを添加しないことを除いて実施例1と同じ条件で連続運転を行い、塔頂部から精製メタクリル酸メチルを取得した。24時間ごとに4回、精製メタクリル酸メチルのサンプルを採取した(サンプルE、F、GおよびH)。
[Comparative Example 1]
A continuous operation was performed under the same conditions as in Example 1 except that diethylenetriamine was not added, and purified methyl methacrylate was obtained from the top of the column. Samples of purified methyl methacrylate were taken 4 times every 24 hours (Samples E, F, G and H).

Figure 2007045803
液体製品および樹脂製品はともに着色があり、市場では認められない品質であった。
Figure 2007045803
Both liquid products and resin products were colored and had unacceptable quality on the market.

〔比較例2〕
重合防止剤として、2,2,6,6−テトラメチル−4ヒドロキシピペリジノ−1−オキシルの代わりにハイドロキノンの10%メタクリル酸メチル溶液を用い、これを低沸分離塔に毎時1gr、製品塔にも同じ調合で毎時1grを注入した以外は、実施例1と同じ条件で連続運転を行った。その結果、50時間経過後に製品塔底部液にヘキサンを添加したところ、白濁が認められた。さらに、100時間を超えるころから製品塔底部液の白濁が始まり、加熱機の性能低下が始まった。200時間経過後に、塔内差圧が大きくなり連続運転が不可能になったので停止した。解体点検した結果、メタクリル酸メチルの重合物が認められた。
[Comparative Example 2]
As a polymerization inhibitor, instead of 2,2,6,6-tetramethyl-4hydroxypiperidino-1-oxyl, a 10% methyl methacrylate solution of hydroquinone was used, and this was added to a low-boiling separation column at 1 gr per hour. Continuous operation was carried out under the same conditions as in Example 1 except that 1 gr per hour was injected into the tower with the same formulation. As a result, turbidity was observed when hexane was added to the product tower bottom liquid after 50 hours. Furthermore, the cloudiness of the liquid at the bottom of the product tower started from around 100 hours, and the performance of the heater began to deteriorate. After 200 hours, the pressure in the tower increased and continuous operation became impossible, so the operation was stopped. As a result of dismantling inspection, a polymer of methyl methacrylate was observed.

本発明にしたがって精製することにより、着色起因不純物の含有量のきわめて少ないメタクリル酸メチルを得ることができる。本発明の方法により精製されたメタクリル酸メチルは、着色の少ない樹脂あるいは樹脂組成物の原料として有用である。   By purifying according to the present invention, it is possible to obtain methyl methacrylate having a very low content of coloring-induced impurities. Methyl methacrylate purified by the method of the present invention is useful as a raw material for resins or resin compositions with little coloration.

図1は本発明のメタクリル酸メチルの精製方法の概略図である。FIG. 1 is a schematic view of the method for purifying methyl methacrylate of the present invention.

符号の説明Explanation of symbols

A:メタクリル酸メチル送入ライン
B:第1の蒸留塔(低沸分離塔)
C:加熱器
D:凝縮器
E:真空発生器
F:アミン類送入ライン
G:重合防止剤注入ライン
H:低沸分離塔底部液抜き出しライン
I:第2の蒸留塔(製品塔)
J:加熱器
K:凝縮器
L:真空発生器
M:精製品取り出しライン
N:重合防止剤注入ライン
O:製品塔底部から低沸分離塔への戻しライン
P:製品塔底部抜き出しライン
(1)重合防止剤
(2)アミン類
(3)重合防止剤
(4)低沸不純物
(5)低沸分離塔底部抜き出し液
(6)精製品

A: Methyl methacrylate feed line B: First distillation column (low boiling separation column)
C: Heater D: Condenser E: Vacuum generator F: Amines feed line G: Polymerization inhibitor injection line H: Low-boiling separation column bottom liquid discharge line I: Second distillation column (product column)
J: Heater K: Condenser L: Vacuum generator M: Fine product take-out line N: Polymerization inhibitor injection line O: Return line from the bottom of the product tower to the low boiling separation tower P: Product tower bottom take-out line (1) Polymerization inhibitor (2) Amines (3) Polymerization inhibitor (4) Low-boiling impurities (5) Low-boiling separation bottom extract liquid (6) Refined product

Claims (9)

メタクリル酸メチルを精製する方法であって、イソプロペニルメチルケトンを含有する粗メタクリル酸メチルを、重合防止剤の存在下、2本の蒸留塔を用いて精製するに際し、第一の蒸留塔に送入されるメタクリル酸メチルの送入位置の下部からエチレンアミン類を添加し、塔上部から低沸点不純物を取除き塔下部からメタクリル酸メチルを取り出し、つづいて第二の蒸留塔にメタクリル酸メチルを送入し塔上部からメタクリル酸メチルを取り出すことにより、イソプロペニルメチルケトンを除去することを特徴とする方法。 A method for purifying methyl methacrylate, in which crude methyl methacrylate containing isopropenyl methyl ketone is sent to the first distillation column when it is purified using two distillation columns in the presence of a polymerization inhibitor. Add ethyleneamines from the bottom of the methyl methacrylate feed position, remove low-boiling impurities from the top of the column, take out methyl methacrylate from the bottom of the column, and then add methyl methacrylate to the second distillation column. A method characterized in that isopropenyl methyl ketone is removed by feeding and taking out methyl methacrylate from the upper part of the tower. メタクリル酸メチル中のイソプロペニルメチルケトンの含有量が50ppm以下に精製される、請求項1記載の方法。 The process according to claim 1, wherein the content of isopropenyl methyl ketone in methyl methacrylate is purified to 50 ppm or less. メタクリル酸メチルが、イソブチレンあるいはイソブタンを酸化して得られるメタクロレインを直接的酸化エステル法によって得られるメタクリル酸メチルである、請求項1または2に記載の方法。 The method according to claim 1 or 2, wherein the methyl methacrylate is methyl methacrylate obtained by direct oxidation of methacrolein obtained by oxidizing isobutylene or isobutane. エチレンアミン類の添加量が、第一の蒸留塔に送入されるメタクリル酸メチルに含まれるジアセチル1モルあたり、0.5モル以上1モル未満である、請求項1−3のいずれかに記載の方法。 The addition amount of ethyleneamines is 0.5 mol or more and less than 1 mol per 1 mol of diacetyl contained in methyl methacrylate fed to the first distillation column. the method of. 第一および第二の蒸留操作を、減圧下で、かつ重合防止剤としてN−オキシル化合物の存在下で行うことを特徴とする、請求項1−4のいずれかに記載の方法。 The method according to any one of claims 1 to 4, wherein the first and second distillation operations are carried out under reduced pressure and in the presence of an N-oxyl compound as a polymerization inhibitor. エチレンアミン類の添加位置が、第一の蒸留塔の塔底部である、請求項1−5のいずれかに記載の方法。 The method according to any one of claims 1 to 5, wherein the ethyleneamine is added at the bottom of the first distillation column. 第一の蒸留塔の塔底部から抜き出されるメタクリル酸メチルを、第二の蒸留塔の塔下部に送入することを特徴とする、請求項1−6のいずれかに記載の方法。 The method according to any one of claims 1 to 6, wherein methyl methacrylate extracted from the bottom of the first distillation column is fed to the lower portion of the second distillation column. 第二の蒸留塔の塔底部の液の少なくとも一部を第一の蒸留塔の塔下部に戻すことを特徴とする、請求項1−7のいずれかに記載の方法。 The method according to claim 1, wherein at least a part of the liquid at the bottom of the second distillation column is returned to the lower portion of the first distillation column. 請求項1−7のいずれかに記載の方法により精製されたメタクリル酸メチルを重合することにより得られる樹脂または樹脂組成物。


A resin or a resin composition obtained by polymerizing methyl methacrylate purified by the method according to claim 1.


JP2005234885A 2005-08-12 2005-08-12 Method for obtaining purified methyl methacrylate Pending JP2007045803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005234885A JP2007045803A (en) 2005-08-12 2005-08-12 Method for obtaining purified methyl methacrylate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005234885A JP2007045803A (en) 2005-08-12 2005-08-12 Method for obtaining purified methyl methacrylate

Publications (1)

Publication Number Publication Date
JP2007045803A true JP2007045803A (en) 2007-02-22

Family

ID=37848940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005234885A Pending JP2007045803A (en) 2005-08-12 2005-08-12 Method for obtaining purified methyl methacrylate

Country Status (1)

Country Link
JP (1) JP2007045803A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007045795A (en) * 2005-08-12 2007-02-22 Asahi Kasei Chemicals Corp Method for purifying methyl methacrylate
WO2015055843A1 (en) * 2013-10-18 2015-04-23 Arkema France Unit and process for purification of crude methyl methacrylate
CN107074729A (en) * 2014-10-31 2017-08-18 陶氏环球技术有限责任公司 Separation method
JP2019504078A (en) * 2016-01-21 2019-02-14 アルケマ フランス (Meth) acrylic acid ester purification method
JP2020531673A (en) * 2017-08-29 2020-11-05 レーム・ゲーエムベーハーRoehm GmbH Manufacturing method of optical molding material
CN113457186A (en) * 2020-03-30 2021-10-01 中石油吉林化工工程有限公司 Method for improving separation effect of crude MMA (methyl methacrylate) separation tower
CN113754163A (en) * 2020-06-01 2021-12-07 中国石油天然气股份有限公司 Method for treating wastewater of methyl methacrylate device
WO2022230913A1 (en) * 2021-04-28 2022-11-03 三菱ケミカル株式会社 Methyl methacrylate-containing composition and methyl methacrylate polymer production method
WO2024090576A1 (en) * 2022-10-28 2024-05-02 三菱ケミカル株式会社 Monomer composition, methacrylic resin composition and production method therefor, and molded resin object

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58183641A (en) * 1982-04-19 1983-10-26 Asahi Chem Ind Co Ltd Purification of methyl (meth)acrylate
JPH08169862A (en) * 1994-06-30 1996-07-02 Elf Atochem Sa Production of methyl methacrylate not containing diacetyl
JP2725593B2 (en) * 1993-04-15 1998-03-11 株式会社日本触媒 Method for preventing polymerization of (meth) acrylic acid and its ester
JP2725638B2 (en) * 1994-06-02 1998-03-11 株式会社日本触媒 Method for preventing polymerization of (meth) acrylic acid and its ester
JP2000256265A (en) * 1999-03-12 2000-09-19 Mitsubishi Gas Chem Co Inc Production of methyl methacrylate
JP2001072639A (en) * 1999-09-01 2001-03-21 Mitsubishi Rayon Co Ltd Purification of methacrylic acid
JP2001288147A (en) * 2000-04-11 2001-10-16 Mitsubishi Rayon Co Ltd Method for producing methyl methacrylate
JP2002194022A (en) * 2000-12-26 2002-07-10 Mitsubishi Rayon Co Ltd Method for purifying (meth) acrylate ester, (meth) acrylate ester and (meth)acrylic resin
JP2002205971A (en) * 2001-01-10 2002-07-23 Mitsubishi Rayon Co Ltd Method for purifying (meth)acrylate and (meth)acrylate
JP2002234863A (en) * 2001-02-07 2002-08-23 Mitsubishi Rayon Co Ltd Method for purifying (meth)acrylic ester and (meth) acrylic ester
JP2003104939A (en) * 2001-09-28 2003-04-09 Asahi Kasei Corp Method for producing methyl methacrylate
JP2006016339A (en) * 2004-07-01 2006-01-19 Mitsubishi Rayon Co Ltd Method for producing methyl methacrylate
JP2007045795A (en) * 2005-08-12 2007-02-22 Asahi Kasei Chemicals Corp Method for purifying methyl methacrylate

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58183641A (en) * 1982-04-19 1983-10-26 Asahi Chem Ind Co Ltd Purification of methyl (meth)acrylate
JP2725593B2 (en) * 1993-04-15 1998-03-11 株式会社日本触媒 Method for preventing polymerization of (meth) acrylic acid and its ester
JP2725638B2 (en) * 1994-06-02 1998-03-11 株式会社日本触媒 Method for preventing polymerization of (meth) acrylic acid and its ester
JPH08169862A (en) * 1994-06-30 1996-07-02 Elf Atochem Sa Production of methyl methacrylate not containing diacetyl
JP2000256265A (en) * 1999-03-12 2000-09-19 Mitsubishi Gas Chem Co Inc Production of methyl methacrylate
JP2001072639A (en) * 1999-09-01 2001-03-21 Mitsubishi Rayon Co Ltd Purification of methacrylic acid
JP2001288147A (en) * 2000-04-11 2001-10-16 Mitsubishi Rayon Co Ltd Method for producing methyl methacrylate
JP2002194022A (en) * 2000-12-26 2002-07-10 Mitsubishi Rayon Co Ltd Method for purifying (meth) acrylate ester, (meth) acrylate ester and (meth)acrylic resin
JP2002205971A (en) * 2001-01-10 2002-07-23 Mitsubishi Rayon Co Ltd Method for purifying (meth)acrylate and (meth)acrylate
JP2002234863A (en) * 2001-02-07 2002-08-23 Mitsubishi Rayon Co Ltd Method for purifying (meth)acrylic ester and (meth) acrylic ester
JP2003104939A (en) * 2001-09-28 2003-04-09 Asahi Kasei Corp Method for producing methyl methacrylate
JP2006016339A (en) * 2004-07-01 2006-01-19 Mitsubishi Rayon Co Ltd Method for producing methyl methacrylate
JP2007045795A (en) * 2005-08-12 2007-02-22 Asahi Kasei Chemicals Corp Method for purifying methyl methacrylate

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007045795A (en) * 2005-08-12 2007-02-22 Asahi Kasei Chemicals Corp Method for purifying methyl methacrylate
WO2015055843A1 (en) * 2013-10-18 2015-04-23 Arkema France Unit and process for purification of crude methyl methacrylate
FR3012140A1 (en) * 2013-10-18 2015-04-24 Arkema France
CN105636929A (en) * 2013-10-18 2016-06-01 阿肯马法国公司 Unit and process for purification of crude methyl methacrylate
US10793505B2 (en) 2013-10-18 2020-10-06 Arkema France Unit and process for purification of crude methyl methacrylate
CN107074729B (en) * 2014-10-31 2020-08-04 陶氏环球技术有限责任公司 Separation method
CN107074729A (en) * 2014-10-31 2017-08-18 陶氏环球技术有限责任公司 Separation method
JP2019504078A (en) * 2016-01-21 2019-02-14 アルケマ フランス (Meth) acrylic acid ester purification method
JP2020531673A (en) * 2017-08-29 2020-11-05 レーム・ゲーエムベーハーRoehm GmbH Manufacturing method of optical molding material
JP7197568B2 (en) 2017-08-29 2022-12-27 レーム・ゲーエムベーハー Manufacturing method of optical molding material
CN113457186A (en) * 2020-03-30 2021-10-01 中石油吉林化工工程有限公司 Method for improving separation effect of crude MMA (methyl methacrylate) separation tower
CN113754163A (en) * 2020-06-01 2021-12-07 中国石油天然气股份有限公司 Method for treating wastewater of methyl methacrylate device
CN113754163B (en) * 2020-06-01 2023-05-26 中国石油天然气股份有限公司 Method for treating wastewater of methyl methacrylate device
WO2022230913A1 (en) * 2021-04-28 2022-11-03 三菱ケミカル株式会社 Methyl methacrylate-containing composition and methyl methacrylate polymer production method
WO2024090576A1 (en) * 2022-10-28 2024-05-02 三菱ケミカル株式会社 Monomer composition, methacrylic resin composition and production method therefor, and molded resin object

Similar Documents

Publication Publication Date Title
JP2007045803A (en) Method for obtaining purified methyl methacrylate
FR2934261A1 (en) PROCESS FOR THE SYNTHESIS OF ESTERS OF ACRYLIC ACID
JP2007291137A (en) Method for purifying 2-hydroxyisobutyric acid-containing methacrylic acid stream
TW201305096A (en) Method for removal of organic compounds from waste water streams in a process for production of (meth) acrylic acid
US6787001B2 (en) Method for distilling (meth) acrylic acid solution
JP3672818B2 (en) (Meth) acrylic acid ester purification method
JP2007045795A (en) Method for purifying methyl methacrylate
CN109153633B (en) Process for recovering by-product from MMA
JPH08193051A (en) Purifying method for alpha,beta-unsaturated ester
JP2000256265A (en) Production of methyl methacrylate
JP7016366B2 (en) Method for preventing polymer precipitation in the method for purifying (meth) acrylic acid
JP4942878B2 (en) (Meth) acrylic acid ester purification method
JP7470134B2 (en) Production of polymer grade acrylic acid
RU2412151C1 (en) Method of extracting acrylic acid
KR101860166B1 (en) A process for producing methyl methacrylate having reduced biacetyl content
US9517999B2 (en) Process for purifying (meth)acrylic acid
JPS6314752A (en) Purification of methacrylic acid
JP2005089359A (en) [4-(hydroxymethyl)cyclohexyl]methyl acrylate
JPS63162652A (en) Purification of methacrylic acid
JP2002179617A (en) Method for producing high-purity acrylic acid and the resultant high-purity acrylic acid
WO2005044772A1 (en) Method for producing purified (meth)acrylic acid
JPH01100143A (en) Purification of methacrylic acid
JP2002155021A (en) Polymerization inhibitor composition for vinyl monomer and method for producing high-purity (meth)acrylic acid
JP2004339111A (en) Method for removing allyl alcohol from acetonitrile
JP2008266159A (en) Method for purifying butyl acrylate

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080808

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110906

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120110