JP2007045643A - Method of manufacturing glass preform for optical fiber - Google Patents

Method of manufacturing glass preform for optical fiber Download PDF

Info

Publication number
JP2007045643A
JP2007045643A JP2005229537A JP2005229537A JP2007045643A JP 2007045643 A JP2007045643 A JP 2007045643A JP 2005229537 A JP2005229537 A JP 2005229537A JP 2005229537 A JP2005229537 A JP 2005229537A JP 2007045643 A JP2007045643 A JP 2007045643A
Authority
JP
Japan
Prior art keywords
glass
optical fiber
preform
rod
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005229537A
Other languages
Japanese (ja)
Other versions
JP5046500B2 (en
Inventor
Tetsuya Otsusaka
哲也 乙坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2005229537A priority Critical patent/JP5046500B2/en
Publication of JP2007045643A publication Critical patent/JP2007045643A/en
Application granted granted Critical
Publication of JP5046500B2 publication Critical patent/JP5046500B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • C03B37/01426Plasma deposition burners or torches

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a glass preform for a low-loss optical fiber using a porous glass preform with a very little water content prepared by using a high-frequency induction heat plasma torch. <P>SOLUTION: The porous glass preform is manufactured by providing a glass material and oxygen to a high-frequency induction heat plasma torch to synthesize glass microparticles and spraying the formed glass microparticles onto the surface of a glass rod to be deposited. A quartz glass substantially free from OH group is preferred to be used as the glass rod. As the glass material, silicon tetrachloride or the like is used. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高周波誘導熱プラズマトーチを用いて生成するガラス微粒子をターゲット(ガラスロッド)上に堆積して光ファイバ用多孔質ガラス母材を作製し、透明ガラス化する光ファイバ用ガラス母材の製造方法に関する。   The present invention relates to a glass preform for optical fiber that is produced by depositing glass fine particles generated using a high frequency induction thermal plasma torch on a target (glass rod) to produce a porous glass preform for optical fiber, and forming a transparent glass. It relates to a manufacturing method.

光通信システムに利用される光ファイバの特性として、伝送損失がある。これは、単位伝搬距離あたりどの程度光が減衰するかを示す指標で、この値が低いほど遠くまで信号を伝えることができる。最も一般的に用いられている光ファイバは、コアにゲルマニウムをドープして屈折率を上昇させた石英ガラスを用い、クラッドには純粋な石英ガラスを用いた、ゲルマニウムドープコアファイバである。   Transmission loss is a characteristic of an optical fiber used in an optical communication system. This is an index indicating how much light is attenuated per unit propagation distance, and the lower this value, the more the signal can be transmitted. The most commonly used optical fiber is a germanium-doped core fiber in which quartz glass doped with germanium is used to increase the refractive index and pure silica glass is used for the cladding.

これに対し、非特許文献1に記載されているような、コアに純粋な石英ガラスを用い、クラッドには、フッ素をドープして屈折率を低下させた石英ガラスを用いた純シリカコアファイバがある。
ゲルマニウムドープコアファイバは、純シリカコアファイバに比べ、コアにゲルマニウムがドープされていることにより、レイリー散乱が増し、伝送損失が高くなっている。
On the other hand, as described in Non-Patent Document 1, pure silica core fiber using pure silica glass for the core and silica glass doped with fluorine to reduce the refractive index is used for the cladding. is there.
In the germanium-doped core fiber, Rayleigh scattering is increased and transmission loss is increased because germanium is doped in the core as compared with a pure silica core fiber.

純シリカコアファイバのバリエーションとして、特許文献1に記されているような、コアに塩素をドープしたものも存在する。レイリー散乱の面からは、ゲルマニウムドープコアファイバより、純シリカコアファイバの方が優れているが、1.38 μm近傍に存在するOH吸収損失に関しては、一般的にゲルマニウムドープコアファイバの方が優れている。   As a variation of the pure silica core fiber, there is a core doped with chlorine as described in Patent Document 1. In terms of Rayleigh scattering, pure silica core fiber is superior to germanium doped core fiber, but germanium doped core fiber is generally superior in terms of OH absorption loss near 1.38 μm. .

ゲルマニウムドープコアファイバは、近年では、商業的にOH吸収損失寄与分が0.01 dB/km未満(OH濃度にして0.15 ppb未満)まで低減した光ファイバ、すなわちLow Water Peak Fiber (LWPF)が市販されている。これは、ゲルマニウムドープファイバの製造方法として一般的なVAD法を用いた場合、コア及びコア近傍のクラッド部を同時に合成でき、脱水工程において、光がしみだす領域のOH基をほぼ完全に除去することが可能であることによる。   In recent years, germanium-doped core fiber has been commercially available as an optical fiber with low OH absorption loss contribution of less than 0.01 dB / km (OH concentration less than 0.15 ppb), that is, Low Water Peak Fiber (LWPF). Yes. This is because when a general VAD method is used as a method for producing germanium-doped fiber, the core and the clad portion in the vicinity of the core can be synthesized at the same time, and the OH group in the region where light bleeds is almost completely removed in the dehydration process By being possible.

これに対し、クラッドにフッ素をドープした純シリカコアファイバは、特許文献1に記されているように、0.3 dB/km程度か、もしくはそれより大きなOH吸収損失を持つものが一般的である。
図1にゲルマニウムドープのLWPFと、純シリカコアファイバ(PSCF)の伝送損失スペクトルの例を示した。この例では、PSCFにはおよそ0.5 dB/kmのOH吸収損失が存在する。
再公表特許WO 00/42458号公報 SEIテクニカルレビュー、Sept., 2003、第163号10〜13頁、
On the other hand, as described in Patent Document 1, a pure silica core fiber doped with fluorine in the clad generally has an OH absorption loss of about 0.3 dB / km or more.
Fig. 1 shows examples of transmission loss spectra of germanium-doped LWPF and pure silica core fiber (PSCF). In this example, the PSCF has an OH absorption loss of approximately 0.5 dB / km.
Re-published patent WO 00/42458 SEI Technical Review, Sept., 2003, No.163, pp. 10-13,

純シリカコアファイバは、1.3 μmおよび1.55 μm帯の伝送損失の低減には有効な手段であるが、1.38 μm近傍に存在するOH吸収損失を低減する商業的に利用可能な手段はこれまで知られていなかった。純シリカコアファイバにおいて、1.38 μm近傍のOH吸収損失を十分に低減することができれば、およそ1200〜1650 nmという広い波長帯域において低損失伝送を行うことができ、この波長帯を用いた波長多重伝送等にきわめて有効である。   Pure silica core fiber is an effective means to reduce transmission loss in the 1.3 μm and 1.55 μm bands, but commercially available means to reduce OH absorption loss in the vicinity of 1.38 μm have been known so far. It wasn't. If the OH absorption loss near 1.38 μm can be sufficiently reduced in a pure silica core fiber, low loss transmission can be performed in a wide wavelength band of approximately 1200 to 1650 nm, and wavelength division multiplexing transmission using this wavelength band is possible. It is very effective for such as.

本発明は、高周波誘導熱プラズマトーチを使用して、水分含有量の極めて少ない光ファイバ用多孔質ガラス母材を作製し、これを用いて低損失の光ファイバ用ガラス母材の製造方法を提供することを目的としている。   The present invention uses a high frequency induction thermal plasma torch to produce a porous glass preform for an optical fiber having a very low moisture content, and provides a method for producing a low loss optical fiber glass preform using the same. The purpose is to do.

本発明の光ファイバ用多孔質ガラス母材の製造方法は、高周波誘導熱プラズマトーチにガラス原料および酸素を供給してガラス微粒子を合成し、生成したガラス微粒子をガラスロッドの表面に吹き付けて堆積させることを特徴としており、ガラスロッドには、OH基を実質的に含まない純石英ガラスを使用する。ガラス原料は四塩化ケイ素である。   The method for producing a porous glass preform for an optical fiber according to the present invention comprises synthesizing glass particles by supplying glass raw material and oxygen to a high-frequency induction thermal plasma torch, and spraying and depositing the generated glass particles on the surface of the glass rod. The glass rod is made of pure quartz glass substantially free of OH groups. The glass raw material is silicon tetrachloride.

本発明の光ファイバ用ガラス母材の製造方法は、高周波誘導熱プラズマトーチにガラス原料および酸素を供給してガラス微粒子を合成し、生成したガラス微粒子をガラスロッド上に堆積して多孔質ガラス母材を形成し、該多孔質ガラス母材を900〜1200 ℃の塩素含有雰囲気中で加熱して脱水処理した後に、1300〜1600 ℃のフッ素含有雰囲気中で加熱・透明化することを特徴としており、ガラスロッドには、OH基を実質的に含まない純石英ガラスを使用する。ガラス原料は四塩化ケイ素である。このようにして得られたガラス母材には、さらにその外側にフッ素ドープ石英ガラス層が付与され、光ファイバ用純シリカコアガラス母材が得られる。   The method for producing a glass preform for an optical fiber according to the present invention comprises synthesizing glass fine particles by supplying a glass raw material and oxygen to a high frequency induction thermal plasma torch, and depositing the produced glass fine particles on a glass rod to form a porous glass preform. The porous glass base material is heated in a chlorine-containing atmosphere at 900 to 1200 ° C and dehydrated, and then heated and transparentized in a fluorine-containing atmosphere at 1300 to 1600 ° C. For the glass rod, pure quartz glass substantially free of OH groups is used. The glass raw material is silicon tetrachloride. The glass base material thus obtained is further provided with a fluorine-doped quartz glass layer on the outside thereof, and a pure silica core glass base material for optical fibers is obtained.

本発明によれば、水分含有量の極めて少ない光ファイバ用多孔質ガラス母材が得られ、これを透明ガラス化した後、さらにこの外側にフッ素ドープ石英ガラス層を付与することで、極めて低損失の純シリカコア光ファイバ用ガラス母材が得られる。   According to the present invention, a porous glass preform for optical fiber with an extremely low water content can be obtained, and after this is made into a transparent glass, a fluorine-doped quartz glass layer is further provided on the outside thereof, so that an extremely low loss can be obtained. A glass preform for a pure silica core optical fiber is obtained.

特許文献1に記載されている製造方法を詳細に検討したところ、純シリカコアファイバの製造ではコアとコアに隣接するクラッド部分を同時に合成することはできない。コアに隣接するクラッド部分を合成するためには、コアとなるガラスロッドの外周に、酸水素火炎等による火炎加水分解で生成したガラス微粒子を堆積させる必要があるが、その際に、コアとなるガラスロッドの表面にOH基が生成し、それがガラスロッドの内部まで拡散することで、最終的なOH吸収損失が大きくなっていることを見い出した。   When the production method described in Patent Document 1 is examined in detail, the production of a pure silica core fiber cannot simultaneously synthesize the core and the cladding portion adjacent to the core. In order to synthesize the clad portion adjacent to the core, it is necessary to deposit glass fine particles generated by flame hydrolysis with an oxyhydrogen flame or the like on the outer periphery of the glass rod that becomes the core. It was found that the final OH absorption loss was increased by generating OH groups on the surface of the glass rod and diffusing it to the inside of the glass rod.

このようにして製造された多孔質ガラス母材は、脱水・焼結して透明なガラス母材となるが、この脱水工程でガラスロッド上に堆積された多孔質ガラス層部分のOH基は除去されるものの、コアとなるガラスロッドの内部まで拡散したOH基が除去されることはない。
本発明者は、鋭意検討の結果この問題を、クラッド堆積工程に通常用いられる酸水素火炎を用いず、プラズマ火炎を用いることで解決できることを見出した。
以下、図を用いて本発明を詳細に説明する。
The porous glass base material manufactured in this way is dehydrated and sintered to become a transparent glass base material, but the OH group in the porous glass layer portion deposited on the glass rod in this dehydration process is removed. However, the OH group diffused to the inside of the core glass rod is not removed.
As a result of intensive studies, the present inventor has found that this problem can be solved by using a plasma flame without using an oxyhydrogen flame usually used in a cladding deposition process.
Hereinafter, the present invention will be described in detail with reference to the drawings.

図2は、本発明のクラッド堆積工程の概略を示す部分縦断面図である。回転・往復運動するターゲット棒1上にクラッドとなる、プラズマ3で生成されるガラス微粒子が堆積され、多孔質ガラス母材2が形成される。プラズマ3は、高周波誘導熱プラズマトーチ(以下、単にプラズマトーチと称する)で生成され、プラズマトーチは、第1管4、第2管5、第3管6および第4管7からなる4重管で構成され、第4管7の外側に高周波コイル8が配設されている。   FIG. 2 is a partial longitudinal sectional view showing an outline of the cladding deposition process of the present invention. On the target rod 1 that rotates and reciprocates, glass fine particles generated by plasma 3 serving as a clad are deposited, and a porous glass base material 2 is formed. The plasma 3 is generated by a high frequency induction thermal plasma torch (hereinafter simply referred to as a plasma torch), and the plasma torch is a quadruple tube comprising a first tube 4, a second tube 5, a third tube 6 and a fourth tube 7. The high frequency coil 8 is disposed outside the fourth tube 7.

プラズマトーチの流路9には四塩化ケイ素及びアルゴンが、流路10にはアルゴンが、流路11には酸素及びアルゴンが供給される。なお、流路12には冷却水が供給される。流路9〜11に流れるガスは、高周波コイル8の誘導を受けてプラズマ化され、数千℃以上の高温のプラズマとなり、プラズマ内部で反応して石英ガラス微粒子を生じ、ターゲット棒1上に堆積して多孔質ガラス母材2を形成する。
このプラズマ内には水素分が供給されないため、本質的にターゲット棒1中にOH基が侵入・拡散することはない。
Silicon tetrachloride and argon are supplied to the flow path 9 of the plasma torch, argon is supplied to the flow path 10, and oxygen and argon are supplied to the flow path 11. Note that cooling water is supplied to the flow path 12. The gas flowing in the flow paths 9 to 11 is converted into plasma by induction of the high frequency coil 8, becomes high temperature plasma of several thousand degrees C. or more, reacts inside the plasma to generate quartz glass fine particles, and deposits on the target rod 1. Thus, the porous glass base material 2 is formed.
Since no hydrogen content is supplied into the plasma, OH groups do not essentially penetrate and diffuse into the target rod 1.

このようにして得られた多孔質ガラス母材2は、図3に示す脱水焼結装置において脱水処理および透明ガラス化処理がなされる。多孔質ガラス母材2は、シャフト13を介して回転・昇降装置14に接続され、炉芯管15内に垂下される。
炉芯管15内にはガス導入口16からヘリウムガスで希釈した塩素等の脱水ガスが供給され、排気口17から排出される。この状態で加熱炉18を900〜1200 ℃に加熱し、回転・昇降装置14にて多孔質ガラス母材を回転しつつゆっくり引き下げ、脱水処理を行う。
The porous glass preform 2 thus obtained is subjected to dehydration and transparent vitrification in the dehydration and sintering apparatus shown in FIG. The porous glass base material 2 is connected to a rotating / lifting device 14 via a shaft 13 and is suspended in the furnace core tube 15.
Dehydrated gas such as chlorine diluted with helium gas is supplied from the gas inlet 16 into the furnace core tube 15 and discharged from the exhaust port 17. In this state, the heating furnace 18 is heated to 900 to 1200 ° C., and the porous glass base material is slowly pulled down by the rotating / lifting device 14 to perform dehydration.

多孔質ガラス母材全体の脱水処理が終了したら、多孔質ガラス母材を一旦引き上げ、今度はガス導入口16から必要に応じてヘリウムで希釈した四フッ化ケイ素や六フッ化硫黄などのフッ素含有ガスを供給し、この状態で加熱炉18を1300〜1600 ℃に加熱し、回転・昇降装置14にて多孔質ガラス母材を回転しつつゆっくり引き下げ、多孔質ガラス層にフッ素ドープしながら透明ガラス化処理を行う。   Once the entire porous glass base material has been dehydrated, the porous glass base material is once pulled up, and this time it contains fluorine such as silicon tetrafluoride and sulfur hexafluoride diluted with helium as needed from the gas inlet 16 In this state, the heating furnace 18 is heated to 1300 to 1600 ° C., and the porous glass base material is slowly pulled down while rotating by the rotating / lifting device 14, and the porous glass layer is doped with fluorine and transparent glass. Process.

一度の多孔質ガラス層の堆積で、必要なコア・クラッド比を得るようにしても良いが、再度同様の工程を繰り返して必要なコア・クラッド比を得るようにしても良い。また、一度目の工程で光がしみだす領域を超えてクラッド量を付着させた場合には、2度目の工程では、一般に良く知られているOVD法や軸付け法等の火炎加水分解による通常の多孔質ガラス母材の製造プロセスを用いて必要なコア・クラッド比を得るようにしても良い。   The necessary core / cladding ratio may be obtained by depositing the porous glass layer once, but the same process may be repeated again to obtain the necessary core / cladding ratio. In addition, when the amount of clad is deposited beyond the area where light oozes out in the first step, the second step is usually performed by flame hydrolysis such as the well-known OVD method or shafting method. A necessary core / cladding ratio may be obtained by using the porous glass preform manufacturing process.

(実施例1)
VAD法を用いて合成された、OH基含有量が0.15 ppb以下の合成石英ガラスロッドを窒素雰囲気下において電気炉で加熱延伸し、表面を研削・研磨して外径10 mm、長さ1000 mmの純石英からなるコアロッドを作製した。このコアロッドの両端に天然石英ガラスのダミーロッドを接続して堆積装置に取り付け、このコアロッドの周囲に、図2に示したプラズマ装置を用いてガラス微粒子を堆積させた。なお、コアロッドは回転数60rpmで回転させ、移動速度75 mm/minで上下方向に往復移動させた。
(Example 1)
A synthetic silica glass rod with an OH group content of 0.15 ppb or less, synthesized using the VAD method, is heated and stretched in an electric furnace in a nitrogen atmosphere, and the surface is ground and polished to an outer diameter of 10 mm and a length of 1000 mm. A core rod made of pure quartz was prepared. A natural quartz glass dummy rod was connected to both ends of the core rod and attached to a deposition apparatus, and glass particles were deposited around the core rod using the plasma apparatus shown in FIG. The core rod was rotated at a rotational speed of 60 rpm and reciprocated in the vertical direction at a moving speed of 75 mm / min.

高周波コイル8には、3.5 MHz、9kWの高周波電力を供給し、流路9には四塩化ケイ素4 L/minとアルゴン4L/minを、流路10にはアルゴン20 L/minを、流路11にはアルゴン30 L/minと酸素40 L/minを供給した。堆積時間745分間で、付着量4147 g、外径103 mmの多孔質ガラス母材を得た。   The high frequency coil 8 is supplied with high frequency power of 3.5 MHz and 9 kW, the flow channel 9 is silicon tetrachloride 4 L / min and argon 4 L / min, the flow channel 10 is argon 20 L / min, the flow channel 11 was supplied with argon 30 L / min and oxygen 40 L / min. With a deposition time of 745 minutes, a porous glass base material having an adhesion amount of 4147 g and an outer diameter of 103 mm was obtained.

この多孔質ガラス母材を、図3に示す装置に移し、塩素3%を含有するヘリウム雰囲気下で1100 ℃に加熱して脱水処理を行い、引き続いて四フッ化ケイ素を5%含有するヘリウム雰囲気下で1500 ℃に加熱して透明ガラス化処理を行った。
さらに、このようにして得られたガラスロッドの外側に、通常のOVDプロセスを用いてガラス微粒子を堆積して多孔質ガラス母材を作製し、これを同様に脱水・焼結して純シリカコア光ファイバ用ガラス母材を得た。
This porous glass base material is transferred to the apparatus shown in FIG. 3 and dehydrated by heating to 1100 ° C. in a helium atmosphere containing 3% chlorine, followed by a helium atmosphere containing 5% silicon tetrafluoride. A transparent vitrification treatment was performed by heating to 1500 ° C. below.
In addition, a porous glass base material is produced by depositing glass fine particles on the outside of the glass rod thus obtained by using a normal OVD process, and this is similarly dehydrated and sintered to obtain a pure silica core light. A glass base material for fiber was obtained.

これを約2000 ℃に加熱・線引きして得られた光ファイバの伝送損失スペクトルを図4に示した。1385 nmにおける伝送損失は0.24 dB/kmであり、OH吸収による損失増加分はおよそ0.01 dB/kmであった。   FIG. 4 shows the transmission loss spectrum of the optical fiber obtained by heating and drawing this at about 2000 ° C. The transmission loss at 1385 nm was 0.24 dB / km, and the increase in loss due to OH absorption was approximately 0.01 dB / km.

(比較例1)
VAD法を用いて合成された、OH基含有量が0.15 ppb以下の合成石英ガラスロッドを窒素雰囲気下において電気炉で加熱延伸し、表面を研削・研磨して外径10 mm、長さ1000 mmのコアロッドを作製した。このコアロッドの両端に天然石英ガラスのダミーロッドを接続して堆積装置に取り付け、このコアロッドの周囲に、多重管酸水素火炎バーナーを用いてガラス微粒子を堆積した。なお、コアロッドは回転数60 rpmで回転させ、移動速度75 mm/minで上下方向に往復移動させた。
(Comparative Example 1)
A synthetic silica glass rod with an OH group content of 0.15 ppb or less, synthesized using the VAD method, is heated and stretched in an electric furnace in a nitrogen atmosphere, and the surface is ground and polished to an outer diameter of 10 mm and a length of 1000 mm. The core rod was manufactured. Natural quartz glass dummy rods were connected to both ends of the core rod and attached to a deposition apparatus, and glass particles were deposited around the core rod using a multi-tube oxyhydrogen flame burner. The core rod was rotated at a rotational speed of 60 rpm and reciprocated in the vertical direction at a moving speed of 75 mm / min.

多重管酸水素火炎バーナーには、四塩化ケイ素4L/min、アルゴン4L/min、窒素3 L/min、 空気4L/min、水素80 L/minおよび酸素40 L/minを供給した。堆積時間745分間で、付着量4410 g、外径112 mmの多孔質ガラス母材を得た。   The multi-tube oxyhydrogen flame burner was supplied with silicon tetrachloride 4 L / min, argon 4 L / min, nitrogen 3 L / min, air 4 L / min, hydrogen 80 L / min and oxygen 40 L / min. With a deposition time of 745 minutes, a porous glass base material having an adhesion amount of 4410 g and an outer diameter of 112 mm was obtained.

この多孔質ガラス母材を、図3に示す装置に移し、塩素3%を含有するヘリウム雰囲気下で1100 ℃に加熱して脱水処理を行い、引き続いて四フッ化ケイ素を5%含有するヘリウム雰囲気下で1500 ℃に加熱して透明ガラス化処理を行った。
このようにして得られたガラスロッドの外側に、通常のOVDプロセスを用いてガラス微粒子を堆積して多孔質ガラス母材を作製し、これを同様に脱水・焼結して純シリカコア光ファイバ用ガラス母材を得た。
This porous glass base material is transferred to the apparatus shown in FIG. 3 and dehydrated by heating to 1100 ° C. in a helium atmosphere containing 3% chlorine, followed by a helium atmosphere containing 5% silicon tetrafluoride. A transparent vitrification treatment was performed by heating to 1500 ° C. below.
On the outside of the glass rod thus obtained, glass fine particles are deposited using a normal OVD process to produce a porous glass preform, which is similarly dehydrated and sintered for a pure silica core optical fiber. A glass base material was obtained.

これを約2000 ℃に加熱し線引きして得られた光ファイバの伝送損失スペクトルを図4に示した。1385 nmにおける伝送損失は0.73 dB/kmであり、OH吸収による損失増加分はおよそ0.50 dB/kmであった。   FIG. 4 shows the transmission loss spectrum of the optical fiber obtained by heating this to about 2000 ° C. and drawing. The transmission loss at 1385 nm was 0.73 dB / km, and the increase in loss due to OH absorption was approximately 0.50 dB / km.

伝送損失が広い帯域で極めて小さく、長距離波長多重伝送に有効である。   The transmission loss is extremely small in a wide band and is effective for long-distance wavelength multiplex transmission.

ゲルマニウムドープのLWPFと、純シリカコアファイバ(PSCF)の伝送損失スペクトルの例を示すグラフである。It is a graph which shows the example of the transmission loss spectrum of germanium dope LWPF and pure silica core fiber (PSCF). 本発明のクラッド堆積工程の概略を示す部分縦断面図である。It is a fragmentary longitudinal cross-section which shows the outline of the clad deposition process of this invention. 焼結装置の概略を示す図である。It is a figure which shows the outline of a sintering apparatus. 実施例1および比較例1で得られた光ファイバの伝送損失スペクトルを示すグラフである。6 is a graph showing transmission loss spectra of optical fibers obtained in Example 1 and Comparative Example 1.

符号の説明Explanation of symbols

1…ターゲット棒、
2…多孔質ガラス母材、
3…プラズマ、
4…第1管、
5…第2管、
6…第3管、
7…第4管、
8…高周波コイル、
9,10,11,12…流路、
13…シャフト、
14…回転・昇降装置、
15…炉芯管、
16…ガス導入口、
17…排気口、
18…加熱炉。
1 ... Target stick,
2 ... Porous glass base material,
3 ... Plasma,
4 ... 1st pipe,
5 ... second pipe,
6 ... Third pipe,
7 ... 4th tube,
8 ... High frequency coil,
9, 10, 11, 12 ... flow path,
13 ... shaft,
14: Rotating / elevating device,
15 ... Furnace core tube,
16 ... gas inlet,
17 ... Exhaust port,
18 ... heating furnace.

Claims (7)

高周波誘導熱プラズマトーチにガラス原料および酸素を供給してガラス微粒子を合成し、生成したガラス微粒子をガラスロッドの表面に吹き付けて堆積させることを特徴とする光ファイバ用多孔質ガラス母材の製造方法。   A method for producing a porous glass preform for an optical fiber, comprising synthesizing glass fine particles by supplying glass raw material and oxygen to a high-frequency induction thermal plasma torch, and spraying and depositing the generated glass fine particles on the surface of a glass rod . 前記ガラスロッドが、OH基を実質的に含まない純石英ガラスである請求項1に記載の光ファイバ用多孔質ガラス母材の製造方法。   The method for producing a porous glass preform for an optical fiber according to claim 1, wherein the glass rod is pure quartz glass substantially free of OH groups. 前記ガラス原料が、四塩化ケイ素である請求項1に記載の光ファイバ用多孔質ガラス母材の製造方法。   The method for producing a porous glass preform for an optical fiber according to claim 1, wherein the glass raw material is silicon tetrachloride. 高周波誘導熱プラズマトーチにガラス原料および酸素を供給してガラス微粒子を合成し、生成したガラス微粒子をガラスロッド上に堆積して多孔質ガラス母材を形成し、該多孔質ガラス母材を900〜1200 ℃の塩素含有雰囲気中で加熱して脱水処理した後に、1300〜1600 ℃のフッ素含有雰囲気中で加熱・透明化することを特徴とする光ファイバ用ガラス母材の製造方法。   Glass raw material and oxygen are supplied to a high frequency induction thermal plasma torch to synthesize glass particles, and the generated glass particles are deposited on a glass rod to form a porous glass base material. A method for producing a glass preform for an optical fiber, comprising heating and transparentizing in a fluorine-containing atmosphere at 1300 to 1600 ° C after dehydration by heating in a chlorine-containing atmosphere at 1200 ° C. 前記ガラスロッドが、OH基を実質的に含まない純石英ガラスである請求項4に記載の光ファイバ用ガラス母材の製造方法。   The method for producing a glass preform for an optical fiber according to claim 4, wherein the glass rod is pure silica glass substantially free of OH groups. 前記ガラス原料が、四塩化ケイ素である請求項4に記載の光ファイバ用ガラス母材の製造方法。   The method for producing a glass preform for an optical fiber according to claim 4, wherein the glass raw material is silicon tetrachloride. 請求項4乃至6のいずれかに記載の方法で製造した光ファイバ用ガラス母材のさらに外側に、フッ素ドープ石英ガラス層を付与する光ファイバ用ガラス母材の製造方法。
The manufacturing method of the glass preform for optical fibers which provides a fluorine dope quartz glass layer on the further outer side of the glass preform for optical fibers manufactured by the method in any one of Claims 4 thru | or 6.
JP2005229537A 2005-08-08 2005-08-08 Manufacturing method of glass preform for optical fiber Expired - Fee Related JP5046500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005229537A JP5046500B2 (en) 2005-08-08 2005-08-08 Manufacturing method of glass preform for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005229537A JP5046500B2 (en) 2005-08-08 2005-08-08 Manufacturing method of glass preform for optical fiber

Publications (2)

Publication Number Publication Date
JP2007045643A true JP2007045643A (en) 2007-02-22
JP5046500B2 JP5046500B2 (en) 2012-10-10

Family

ID=37848797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005229537A Expired - Fee Related JP5046500B2 (en) 2005-08-08 2005-08-08 Manufacturing method of glass preform for optical fiber

Country Status (1)

Country Link
JP (1) JP5046500B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010029734A1 (en) * 2008-09-09 2010-03-18 信越化学工業株式会社 Process for producing optical-fiber base material
CN101767929A (en) * 2008-12-26 2010-07-07 信越化学工业株式会社 Method and apparatus for manufacturing optical fiber preform using high frequency induction thermal plasma torch
JP2010155732A (en) * 2008-12-26 2010-07-15 Shin-Etsu Chemical Co Ltd Method and apparatus for manufacturing optical fiber preform using high frequency induction thermal plasma torch
KR101221379B1 (en) * 2010-04-28 2013-01-11 한국세라믹기술원 Plasma torch for fabricating a silica-glass and process chamber with the same
WO2023248836A1 (en) * 2022-06-22 2023-12-28 住友電気工業株式会社 Manufacturing method of optical fiber preform, and optical fiber preform

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6168330A (en) * 1984-09-07 1986-04-08 Furukawa Electric Co Ltd:The Formation of fine particle of optical glass
JPS62100448A (en) * 1985-10-25 1987-05-09 Furukawa Electric Co Ltd:The Production of optical transmission glass raw material
JPS63134529A (en) * 1986-11-25 1988-06-07 Fujikura Ltd Optical fiber production device
JPS63222035A (en) * 1987-03-11 1988-09-14 Sumitomo Electric Ind Ltd Production of preform for optical fiber
JPH11180725A (en) * 1997-12-24 1999-07-06 Sumitomo Electric Ind Ltd Production of optical fiber preform
JP2002053326A (en) * 2000-08-04 2002-02-19 Sumitomo Electric Ind Ltd Method for manufacturing fluorinated glass product
JP2004307281A (en) * 2003-04-08 2004-11-04 Shin Etsu Chem Co Ltd Method of manufacturing fluorine added quartz glass article

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6168330A (en) * 1984-09-07 1986-04-08 Furukawa Electric Co Ltd:The Formation of fine particle of optical glass
JPS62100448A (en) * 1985-10-25 1987-05-09 Furukawa Electric Co Ltd:The Production of optical transmission glass raw material
JPS63134529A (en) * 1986-11-25 1988-06-07 Fujikura Ltd Optical fiber production device
JPS63222035A (en) * 1987-03-11 1988-09-14 Sumitomo Electric Ind Ltd Production of preform for optical fiber
JPH11180725A (en) * 1997-12-24 1999-07-06 Sumitomo Electric Ind Ltd Production of optical fiber preform
JP2002053326A (en) * 2000-08-04 2002-02-19 Sumitomo Electric Ind Ltd Method for manufacturing fluorinated glass product
JP2004307281A (en) * 2003-04-08 2004-11-04 Shin Etsu Chem Co Ltd Method of manufacturing fluorine added quartz glass article

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010029734A1 (en) * 2008-09-09 2010-03-18 信越化学工業株式会社 Process for producing optical-fiber base material
JP2010064915A (en) * 2008-09-09 2010-03-25 Shin-Etsu Chemical Co Ltd Method for producing optical fiber preform
EP2351715A1 (en) * 2008-09-09 2011-08-03 Shin-Etsu Chemical Co., Ltd. Process for producing optical-fiber base material
CN102149648A (en) * 2008-09-09 2011-08-10 信越化学工业株式会社 Process for producing optical-fiber base material
EP2351715A4 (en) * 2008-09-09 2012-10-03 Shinetsu Chemical Co Process for producing optical-fiber base material
US8820121B2 (en) 2008-09-09 2014-09-02 Shin-Etsu Chemical Co., Ltd. Method of manufacturing optical fiber base material
CN102149648B (en) * 2008-09-09 2015-06-03 信越化学工业株式会社 Process for producing optical-fiber base material
CN101767929A (en) * 2008-12-26 2010-07-07 信越化学工业株式会社 Method and apparatus for manufacturing optical fiber preform using high frequency induction thermal plasma torch
JP2010155732A (en) * 2008-12-26 2010-07-15 Shin-Etsu Chemical Co Ltd Method and apparatus for manufacturing optical fiber preform using high frequency induction thermal plasma torch
JP2010155731A (en) * 2008-12-26 2010-07-15 Shin-Etsu Chemical Co Ltd Method and apparatus for manufacturing optical fiber preform using high frequency induction thermal plasma torch
KR101221379B1 (en) * 2010-04-28 2013-01-11 한국세라믹기술원 Plasma torch for fabricating a silica-glass and process chamber with the same
WO2023248836A1 (en) * 2022-06-22 2023-12-28 住友電気工業株式会社 Manufacturing method of optical fiber preform, and optical fiber preform

Also Published As

Publication number Publication date
JP5046500B2 (en) 2012-10-10

Similar Documents

Publication Publication Date Title
US20050000253A1 (en) Method of manufacture of low water peak single mode optical fiber
WO2011136325A1 (en) Method for producing glass preform
JPH11209141A (en) Production of segment core optical waveguide preform
US8820121B2 (en) Method of manufacturing optical fiber base material
JP5046500B2 (en) Manufacturing method of glass preform for optical fiber
JP5697065B2 (en) Manufacturing method of glass base material
WO2016021576A1 (en) Optical fiber base material and method for producing optical fiber
RU2380326C2 (en) Method of preparing optical fibres and workpieces thereof
CN112062460B (en) Low-loss G.652.D optical fiber and manufacturing method thereof
JP2021500292A (en) Method for producing halogen-doped silica
JP2003026436A (en) Method and device for manufacturing optical fiber using adjustment of oxygen stoichiometric ratio
JPH0820574B2 (en) Dispersion shift fiber and manufacturing method thereof
JP2004307280A (en) Glass preform for optical fiber in which absorption due to hydroxide group is reduced and a method of manufacturing the same
US7391946B2 (en) Low attenuation optical fiber and its producing method in MCVD
JP2005181414A (en) Method for manufacturing optical fiber
JP2000159531A (en) Production of optical fiber preform
KR20070075034A (en) Method for fabricating optical fiber preform and method for fabricating low water peak fiber using the same
JP2017043512A (en) Optical fiber preform manufacturing method, optical fiber manufacturing method, and lens manufacturing method
KR100762611B1 (en) Method for fabricating optical fiber preform and method for fabricating optical fiber using the same
CN111847866A (en) Low-loss optical fiber preform outer cladding layer, preparation equipment and preparation method thereof, and optical fiber
JPH0826763A (en) Optical fiber and its production
JP2005200255A (en) Production method for optical fiber preform, and optical fiber
JPH0784330B2 (en) Manufacturing method of base material for dispersion shift fiber
JPS62283838A (en) Production of optical fiber
JPS63285128A (en) Production of optical fiber preform

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120717

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees