JP2007045354A - Pneumatic tire - Google Patents

Pneumatic tire Download PDF

Info

Publication number
JP2007045354A
JP2007045354A JP2005233201A JP2005233201A JP2007045354A JP 2007045354 A JP2007045354 A JP 2007045354A JP 2005233201 A JP2005233201 A JP 2005233201A JP 2005233201 A JP2005233201 A JP 2005233201A JP 2007045354 A JP2007045354 A JP 2007045354A
Authority
JP
Japan
Prior art keywords
tire
reinforcing layer
steel cord
bead
crack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005233201A
Other languages
Japanese (ja)
Inventor
Takashi Okane
俊 大金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2005233201A priority Critical patent/JP2007045354A/en
Publication of JP2007045354A publication Critical patent/JP2007045354A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Tires In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve durability of a bead part of a pneumatic tire by extending a developable distance of crack developing along a steel cord of a reinforcing layer, and suppressing generation and development rate of the crack. <P>SOLUTION: The reinforcing layer 40 which is longer than a carcass layer 30 in a tire radial direction is disposed at the outside of a folded part 32 of the carcass layer 30 of the bead part. A plurality of steel cords 44 embedded in the reinforcing layer 40 are bent in a wave shape having the predetermined half amplitude, and the center line T of the amplitude is inclined by a predetermined angle theta with respect to the tire circumferential line C. The developable distance near to the end part 33 of the carcass layer of the crack along the steel cord 44 is extended thereby, and the generation and the development rate of the crack are suppressed by giving retractility to the steel cord 44. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ビード部のカーカス層の外側に補強層を備えた空気入りタイヤに関し、特に、補強層に埋設するコードの形状を波形状に屈曲させてビード部の耐久性を向上させた空気入りタイヤに関する。   The present invention relates to a pneumatic tire provided with a reinforcing layer outside a carcass layer of a bead portion, and more particularly, a pneumatic tire in which a cord embedded in the reinforcing layer is bent into a wave shape to improve the durability of the bead portion. Regarding tires.

空気入りタイヤは、一般に、一対のビードコアと、その間をトロイダル状に延びる少なくとも1枚のカーカスプライからなるカーカス層とを備えており、このカーカスプライの内部には複数本の補強のためのコードが埋設されている。このカーカス層の両端部は、通常、プライコードにかかる引っ張り応力等によりビードコアから引き抜かれるのを防止するため、ビードコアを包み込むように折り返して固定されている。   A pneumatic tire generally includes a pair of bead cores and a carcass layer including at least one carcass ply extending between them in a toroidal shape, and a plurality of reinforcing cords are provided inside the carcass ply. Buried. Both ends of the carcass layer are usually folded and fixed so as to wrap the bead core in order to prevent the carcass layer from being pulled out of the bead core due to tensile stress applied to the ply cord.

図4は、特許文献に記載されたものではないが、このような従来のビード部100の構造の例を示す断面図である。
従来のビード部100の構造は、図示のように、カーカス層101の端部をビードコア102の周りにタイヤ幅方向内側(図では左側)から外側(図では右側)へ向かって大きく折り返して巻き上げ、その折り返し部101aをゴム中に埋め込んで固定している。これにより、タイヤをリムに組み付けて内圧を充填した時(以下、内圧充填時という)や、路面走行時等の荷重が負荷された状態で転動する時(以下、荷重負荷転動時という)に、プライコードがビードコア102から引き抜かれるのを防止している。
FIG. 4 is a sectional view showing an example of the structure of such a conventional bead unit 100, although it is not described in the patent literature.
As shown in the figure, the conventional bead portion 100 has a structure in which the end portion of the carcass layer 101 is largely folded around the bead core 102 from the inner side in the tire width direction (left side in the figure) to the outer side (right side in the figure). The folded portion 101a is embedded and fixed in rubber. As a result, when the tire is assembled to the rim and filled with internal pressure (hereinafter referred to as internal pressure filling), or when the vehicle rolls under a load such as when traveling on the road surface (hereinafter referred to as load loaded rolling) In addition, the ply cord is prevented from being pulled out from the bead core 102.

ところが、このようなビード部100の構造を有する従来の空気入りタイヤでは、以下で説明するように、各部材の剛性段差等により、内圧充填時や荷重負荷転動時等にカーカス層101の折り返し部101aのタイヤ径方向外側端部(図では上側端部)101bに大きなせん断歪みが発生して、その部分に亀裂が生じるとともに、この亀裂が時間の経過と共にタイヤ周方向に進展して互いに繋がり、ビード部100が破壊(故障)することがある。   However, in the conventional pneumatic tire having the structure of the bead portion 100, the carcass layer 101 is folded back at the time of internal pressure filling or load load rolling due to a rigidity step of each member as described below. A large shear strain is generated in the tire radial outer end portion (upper end portion in the figure) 101b of the portion 101a and a crack is generated in the portion, and the crack develops in the tire circumferential direction over time and is connected to each other. The bead unit 100 may be destroyed (failed).

即ち、タイヤへの内圧充填時に、内圧によってカーカス層101の折り返し部101aとリムフランジ103に挟まれたビード背面部104のゴムには、内圧とリムフランジ103から受ける反力により圧縮力が作用する。しかし、ゴムは非圧縮性のため、ビード背面部104のゴムは、圧縮力の作用しない部分であるリムフランジ先端部103aよりもタイヤ径方向外側(図では上側)に向かって、圧縮力に対応する変形分だけ流動する。この流動可能なゴムに対し、スチール等の高剛性コードにより補強されたカーカス層101は、前記圧縮力を受けても変形しにくいため、その折り返し部101aの端部101bと前記流動するゴムの間には大きなせん断歪みが発生する。特にトラック・バス用等の重荷重用空気入りラジアルタイヤ等の高い内圧で使用されるタイヤの場合には、前記圧縮力及びゴムの流動量も多くなるため、発生するせん断歪みも大きくなる。   That is, when the tire is filled with the internal pressure, a compression force acts on the rubber of the bead back surface portion 104 sandwiched between the folded portion 101a of the carcass layer 101 and the rim flange 103 by the internal pressure due to the internal pressure and the reaction force received from the rim flange 103. . However, since the rubber is incompressible, the rubber of the bead back surface portion 104 corresponds to the compressive force toward the outer side in the tire radial direction (the upper side in the figure) from the rim flange tip portion 103a which is a portion where the compressive force does not act. Flows as much as the deformation that occurs. Since the carcass layer 101 reinforced with a high-rigidity cord such as steel is not easily deformed even when subjected to the compressive force, the flowable rubber has a gap between the end 101b of the folded portion 101a and the flowing rubber. A large shear strain is generated. In particular, in the case of a tire that is used at a high internal pressure, such as a heavy-duty pneumatic radial tire for trucks and buses, the amount of compressive force and the amount of rubber flowing increases, so that the generated shear strain increases.

また、荷重負荷転動時には、路面に接地したトレッドは路面形状に合わせて平面状に変形するが、その変形に追従して接地面上方の一対のサイドウォール部もタイヤ幅方外側に向かって大きく撓み変形する。この撓み変形は前記サイドウォール部に連なるビード部100まで伝播し、ビード部100のリムフランジ103よりもタイヤ径方向外側(図では上側)部分100aが、タイヤ幅方向外側(図では右側)に向かって倒れ込むように変形する、いわゆるビード部100の倒れ込み現象が生じる。この現象に伴って、カーカス層101に図の矢印T方向の引き抜き力が作用する等して、その端部101bに大きなせん断歪みが生じる。   In addition, when rolling under load, the tread that touches the road surface deforms into a flat shape in accordance with the road surface shape, and the pair of sidewall portions above the ground surface also increase toward the outer side of the tire width following the deformation. Deforms and deforms. This bending deformation propagates to the bead portion 100 connected to the sidewall portion, and the tire radial direction outer side (upper side in the drawing) portion 100a of the bead portion 100 faces the outer side in the tire width direction (right side in the drawing). Therefore, a so-called falling phenomenon of the bead portion 100 that deforms so as to fall down occurs. Accompanying this phenomenon, a pulling force in the direction of arrow T in the figure acts on the carcass layer 101, and a large shear strain is generated at the end 101b.

加えて、荷重負荷転動時には、トレッド接地面の特に踏み込み部と蹴り出し部で、カーカス層101の外周側に位置するベルト層等が略タイヤ周方向へ大きく変形するが、その影響を受けてサイドウォール部に略周方向の引っ張り力が作用して同方向へ大きく変形する。この変形が伝達されてビード部100も略周方向に変形する結果、カーカス層101の端部101bには、タイヤ周方向のせん断歪みも生じる。   In addition, the belt layer located on the outer peripheral side of the carcass layer 101 is largely deformed in the tire circumferential direction at the tread contact surface, particularly at the stepped-on portion and the kicked-out portion of the tread contact surface during rolling under load. A tensile force in a substantially circumferential direction acts on the sidewall portion, and the side wall portion is greatly deformed in the same direction. As a result of this deformation being transmitted and the bead portion 100 also being deformed in the substantially circumferential direction, shear strain in the tire circumferential direction also occurs at the end portion 101b of the carcass layer 101.

以上のように、この従来構造のビード部100では、カーカス層折り返し部101aの端部101bに大きなせん断歪みが生じるため、その付近にビード部100の故障の原因となる亀裂等の故障核が生じやすいという問題がある。更に、この故障核が生じた場合には、荷重負荷転動時等に入力されるせん断応力を駆動力として、ビード部100内で周方向に亀裂が進展して互いに繋がる等し、ビード部100に故障が生じやすくなるという問題がある。   As described above, in the bead portion 100 having this conventional structure, a large shear strain is generated at the end portion 101b of the carcass layer folded portion 101a, and therefore a failure nucleus such as a crack that causes the failure of the bead portion 100 is generated in the vicinity thereof. There is a problem that it is easy. Further, when this failure nucleus occurs, the shear stress input at the time of load load rolling or the like is used as a driving force, cracks propagate in the circumferential direction in the bead portion 100 and are connected to each other. However, there is a problem that failure is likely to occur.

このような故障の発生は、新品タイヤの完走を阻害するばかりではなく、トレッドの更正(リキャップ)を含むタイヤの長寿命化の要請の実現を妨げることにもなる。即ち、トレッドの長寿命化や更正実施及びその実施回数を増加させるためには、ビード部100は、長期使用に十分に耐える高い耐久性を備え、長期使用後においても新品時と変わらないような十分な性能を発揮することが要求される。   The occurrence of such a failure not only hinders the complete running of a new tire, but also hinders the realization of a request for extending the life of the tire including the tread correction (recapping). That is, in order to prolong the life of the tread, perform correction, and increase the number of executions, the bead unit 100 has high durability enough to withstand long-term use, and does not change from when it is new even after long-term use. It is required to exhibit sufficient performance.

これらの要求に対し、ワイヤチェーファと呼ばれる補強層をビード部に配置し、カーカス層端部のせん断歪みを低下させる等して上記した問題に対処してビード部の耐久性を向上させた空気入りタイヤが知られている(特許文献1参照)。   In response to these demands, a reinforcing layer called a wire chafer is arranged in the bead part, and the air that has improved the durability of the bead part by addressing the above-mentioned problems by reducing the shear strain at the end of the carcass layer, etc. An entering tire is known (see Patent Document 1).

図5は、この従来の空気入りタイヤ110の構造を示す幅方向半断面図である。
この空気入りタイヤ110のビード部100は、前記図4のビード部100の構造に加えて、図示のように、ビードコア102の周りに折り返したカーカス層101の外側に、複数本のスチールコードをゴムに埋設した補強層105を備えている。この補強層105のコードをタイヤ円周線に対して所定角度で傾斜させるとともに、そのタイヤ幅方向外側(図では左側)に位置するカーカス層101の折り返し部101aに重ねて配置された外側部105aを、カーカス層101の折り返し部101aよりも長くして、その端部105bがカーカス層の端部101bよりもタイヤ径方向外側(図では上側)になるように配置している。
FIG. 5 is a half-sectional view in the width direction showing the structure of the conventional pneumatic tire 110.
In addition to the structure of the bead portion 100 shown in FIG. 4, the bead portion 100 of the pneumatic tire 110 has a plurality of steel cords on the outer side of the carcass layer 101 folded around the bead core 102 as shown in the figure. The reinforcing layer 105 is embedded in. The cord of the reinforcing layer 105 is inclined at a predetermined angle with respect to the tire circumferential line, and the outer portion 105a disposed so as to overlap the folded portion 101a of the carcass layer 101 located on the outer side in the tire width direction (left side in the drawing). Is made longer than the folded portion 101a of the carcass layer 101, and the end portion 105b thereof is disposed on the outer side in the tire radial direction (upper side in the drawing) than the end portion 101b of the carcass layer.

この従来の空気入りタイヤ110では、補強層105を設けることで、ビードコア102やカーカス層101、特にその折り返し部101aを補強して、それらをリムフランジから受ける衝撃や摩擦等から保護するとともに、ビード部100の剛性を高めて、上記した内圧充填時のゴムの流動や、荷重負荷転動時の倒れ込みや周方向の変形を抑制することができる。この時、その端部105bをカーカス層101の端部101bよりも高い位置にして、その付近の周方向等の各種せん断応力を補強層105内のコードで受けるようにしたため、カーカス層101の端部101b付近に生じる変形を抑制して周方向等のせん断歪みを低減し、その部分での亀裂等の発生を抑制することもできる。   In this conventional pneumatic tire 110, the reinforcing layer 105 is provided to reinforce the bead core 102 and the carcass layer 101, particularly the folded portion 101a, and protect them from impacts and friction received from the rim flange. The rigidity of the part 100 can be increased, and the above-described rubber flow at the time of filling with internal pressure, the falling-down at the time of load-load rolling, and the deformation in the circumferential direction can be suppressed. At this time, the end portion 105b is positioned higher than the end portion 101b of the carcass layer 101, and various shear stresses in the vicinity thereof are received by the cords in the reinforcing layer 105. It is also possible to suppress deformation that occurs in the vicinity of the portion 101b, reduce shear strain in the circumferential direction, and suppress occurrence of cracks and the like in that portion.

ただし、カーカス層101に代わってせん断応力を受ける補強層105の端部105b付近には、カーカス層101の端部101bに生じていたのと同様のせん断歪みが発生し、その部分に亀裂等の故障核が発生しやすくなる。即ち、せん断歪み及び故障核の発生箇所は補強層105の端部105b付近に移ることになるが、この従来のコード部100の構造では、たとえ亀裂が生じても、その亀裂は周方向に進展せずに、補強層105内のコードに沿ってタイヤ径方向内側(図では下側)に向かって進展する。従って、このビード部100の構造では、補強層105の各コードの亀裂は、コードに沿って進展している間は互いに独立しており、それらが周方向に進展して繋がる等の、大きな故障は生じにくくなっている。   However, in the vicinity of the end portion 105b of the reinforcing layer 105 that receives shear stress in place of the carcass layer 101, shear strain similar to that generated in the end portion 101b of the carcass layer 101 is generated, and cracks or the like are generated in that portion. Failure nuclei are likely to occur. That is, the location where the shear strain and the failure nucleus are generated moves to the vicinity of the end portion 105b of the reinforcing layer 105. In the structure of the conventional cord portion 100, even if a crack occurs, the crack propagates in the circumferential direction. Without progressing, it progresses along the cord in the reinforcing layer 105 toward the inner side in the tire radial direction (lower side in the figure). Therefore, in the structure of the bead portion 100, the cracks of the cords of the reinforcing layer 105 are independent from each other while progressing along the cords, and the major faults such as the fact that they are developed and connected in the circumferential direction. Is less likely to occur.

しかしながら、補強層105のコードに沿って進展した亀裂がカーカス層101の端部101b近傍に達すると、亀裂がコードから離れてカーカス層101の端部101b側へ移る傾向があり、その場合には、上記したように亀裂が周方向に進展してビード部100に大きな故障が生じやすくなる。   However, when the crack that has developed along the cord of the reinforcing layer 105 reaches the vicinity of the end portion 101b of the carcass layer 101, the crack tends to move away from the cord and move toward the end portion 101b of the carcass layer 101. As described above, the cracks propagate in the circumferential direction and a large failure is likely to occur in the bead portion 100.

しかし、このビード部100では、亀裂の発生箇所である補強層105の端部105bを、カーカス層101の端部101bよりもタイヤ径方向外側(図では上側)に離して配置し、かつ、補強層105のコードを周方向に対して所定角度で傾斜させて、各端部105b、101b間のコードに沿った距離(亀裂の進展可能距離)を長くしている。従って、亀裂が発生箇所からカーカス層101の端部101bに達するまで進展する距離、従って時間が長くなり、ビード部100に大きな故障が発生するのを遅らせることができる。   However, in this bead portion 100, the end portion 105b of the reinforcing layer 105, where the crack is generated, is arranged farther outward in the tire radial direction (upper side in the drawing) than the end portion 101b of the carcass layer 101, and is reinforced. The cord of the layer 105 is inclined at a predetermined angle with respect to the circumferential direction, so that the distance along the cord between the end portions 105b and 101b (the crack propagation distance) is increased. Accordingly, the distance and the time required for the crack to propagate from the occurrence location to the end portion 101b of the carcass layer 101 become longer, and the occurrence of a major failure in the bead portion 100 can be delayed.

以上説明したように、このような補強層105をビード部100に配置することで、ビード部100に大きな故障が生じるのを抑制でき、従って、その耐久性を向上できる。しかしながら、近年、更正回数の増加を含む更なるタイヤの長寿命化が望まれており、そのためには、更にビード部100の耐久性の向上を図る必要がある。   As described above, by disposing such a reinforcing layer 105 on the bead portion 100, it is possible to suppress the occurrence of a major failure in the bead portion 100, and thus the durability can be improved. However, in recent years, it has been desired to further extend the life of the tire including an increase in the number of corrections. To that end, it is necessary to further improve the durability of the bead portion 100.

なお、ビード部の耐久性を向上させた空気入りタイヤとしては、上記の他に、カーカス層の折り返し部の外側にそれよりも長い補強層を配置するとともに、補強層内に埋設するスチールコードの形状を波形状に屈曲させたものも知られている(特許文献2参照)。   In addition to the above, as a pneumatic tire with improved durability of the bead portion, a longer reinforcing layer is disposed outside the folded portion of the carcass layer, and a steel cord embedded in the reinforcing layer is used. There is also known one whose shape is bent into a wave shape (see Patent Document 2).

この従来の空気入りタイヤは、波形状に屈曲させた複数本のスチールコードを互いに平行に配列した補強層をビード部底面からサイドウォール部まで配置し、波形状コードの伸縮性を利用してコードとゴムとの剛性段差を緩和し、亀裂の発生を抑制してビード部等の耐久性を向上させている。即ち、波形状のコードは、引っ張り応力の作用時には振幅が小さく(波長が長く)なるように変形し、圧縮応力の作用時には振幅が大きく(波長が短く)なるように変形するため、ゴムの変形に追従変形でき、コード端部の応力集中を緩和してその部分での亀裂の発生を抑制している。   In this conventional pneumatic tire, a reinforcing layer in which a plurality of steel cords bent in a corrugated shape are arranged in parallel to each other is arranged from the bottom surface of the bead portion to the sidewall portion, and the cord using the stretchability of the corrugated cord The rigidity difference between the rubber and the rubber is alleviated and the occurrence of cracks is suppressed to improve the durability of the bead portion and the like. That is, the wave-shaped cord is deformed so that the amplitude is small (long wavelength) when the tensile stress is applied, and is deformed so that the amplitude is large (short wavelength) when the compressive stress is applied. Therefore, the stress concentration at the end of the cord is relaxed and the occurrence of cracks at that portion is suppressed.

しかしながら、この従来の空気入りタイヤでは、波形コードの具体的な形状等については何ら規定されておらず、一端亀裂が生じた場合には、従来と同様に亀裂がタイヤ周方向に進展してビード部等に故障が生じる恐れがある。即ち、適切な波形コード形状の設定等による、コードに沿った亀裂の進展や進展可能距離の確保等については何ら考慮されておらず、従って、この補強層の構造では、効果的なビード部の耐久性の向上を図れない。   However, in this conventional pneumatic tire, the specific shape of the corrugated cord is not defined at all, and if a crack occurs at one end, the crack propagates in the tire circumferential direction as in the conventional case, and the bead is There is a risk of failure in parts. In other words, no consideration is given to the progress of cracks along the cord and the securing of the distance that can be propagated by setting an appropriate corrugated cord shape, etc. Therefore, in this reinforcing layer structure, an effective bead portion Durability cannot be improved.

特開2005−162022号公報JP 2005-162022 A 特開昭51−91506号公報JP 51-91506 A

本発明は、前記従来の問題に鑑みなされたものであって、その目的は、ビード部のカーカス層の外側に補強層を備えた空気入りタイヤにおいて、補強層のスチールコードに沿って進展する亀裂の進展可能距離を長くし、かつ亀裂の発生及び進展速度を抑制し、ビード部の耐久性を向上させることである。   The present invention has been made in view of the above-described conventional problems, and an object thereof is a crack that propagates along a steel cord of a reinforcing layer in a pneumatic tire including a reinforcing layer outside a carcass layer of a bead portion. It is to improve the durability of a bead part by lengthening the distance which can be propagated and suppressing the generation | occurrence | production and progress rate of a crack.

請求項1の発明は、一対のビードコアと、該ビードコア間をトロイダル状に延びる本体部及び前記ビードコアの周りをタイヤ幅方向内側から外側に向かって巻き上げた折り返し部を有するカーカス層と、前記ビードコア近傍の前記カーカス層の外側に、前記折り返し部に沿ってタイヤ幅方向内側まで配置され、内部に複数本のスチールコードを埋設した補強層とを備え、前記折り返し部に沿う前記補強層のタイヤ径方向外側端部が前記折り返し部のタイヤ径方向外側端部よりもタイヤ径方向外側に配置されている空気入りタイヤにおいて、前記スチールコードは波形状に屈曲し、該波形の片振幅をA、波長をλとするとき、0.12≦2×A/λ≦1.2であることを特徴とする。
請求項2の発明は、請求項1に記載された空気入りタイヤにおいて、前記スチールコードの振幅の中心線のタイヤ円周線に対する傾斜角度をθとするとき、10゜≦θ≦40゜、又は140゜≦θ≦170゜であることを特徴とする。
請求項3の発明は、請求項1又は2に記載された空気入りタイヤにおいて、リム径位置から前記補強層のタイヤ径方向外側端部までのタイヤ径方向の高さをタイヤ断面高さで除した値をB、前記補強層のトリート曲げ剛性をMとしたとき、0.10≦M/B≦0.75であることを特徴とする。
The invention according to claim 1 is a carcass layer having a pair of bead cores, a main body portion extending between the bead cores in a toroidal shape, and a turn-up portion wound around the bead core from the inner side to the outer side in the tire width direction, and the vicinity of the bead core A reinforcing layer in which a plurality of steel cords are embedded in the tire width direction along the folded portion outside the carcass layer, and in the tire radial direction of the reinforcing layer along the folded portion In the pneumatic tire in which the outer end portion is disposed on the outer side in the tire radial direction than the outer end portion in the tire radial direction of the folded portion, the steel cord is bent in a wave shape, and the half amplitude of the waveform is represented by A and the wavelength. When λ, 0.12 ≦ 2 × A / λ ≦ 1.2.
According to a second aspect of the present invention, in the pneumatic tire according to the first aspect, when the inclination angle of the center line of the amplitude of the steel cord with respect to the tire circumferential line is θ, 10 ° ≦ θ ≦ 40 °, or 140 ° ≦ θ ≦ 170 °.
According to a third aspect of the present invention, in the pneumatic tire according to the first or second aspect, a height in a tire radial direction from a rim radial position to a tire radial direction outer end portion of the reinforcing layer is divided by a tire cross-sectional height. 0.10 ≦ M / B 2 ≦ 0.75, where B is the measured value and M is the treat bending rigidity of the reinforcing layer.

(作用)
本発明によれば、ビード部のカーカス層の外側に補強層を備えた空気入りタイヤにおいて、亀裂の進展経路であるスチールコードを波形状に屈曲させて、亀裂の進展可能距離を長くする。また、スチールコードを周囲のゴムの変形に追従変形させてゴムとの剛性段差を小さくし、スチールコード端部の応力集中及び、その部分のせん断歪みを緩和し、亀裂の発生を抑制する。同時に、亀裂を進展させる駆動力となるせん断入力を緩和して、亀裂の進展速度を遅くする。更に、スチールコードの振幅の中心線の傾斜角度や、補強層の外側部の高さ等を適切に設定して、亀裂の進展可能距離を長くし、かつ、亀裂を確実にスチールコードに沿って進展させるとともに、スチールコードの折損を防止する。
(Function)
According to the present invention, in a pneumatic tire provided with a reinforcing layer outside the carcass layer of the bead portion, the steel cord, which is a crack propagation path, is bent into a corrugated shape, thereby increasing the crack propagation distance. In addition, the steel cord is deformed following the deformation of the surrounding rubber to reduce the rigidity step with the rubber, the stress concentration at the end of the steel cord and the shear strain at the portion are alleviated, and the occurrence of cracks is suppressed. At the same time, the shear input, which is the driving force for propagating cracks, is relaxed, and the crack growth rate is slowed. In addition, by setting the inclination angle of the center line of the steel cord amplitude and the height of the outer part of the reinforcing layer, etc., it is possible to lengthen the crack propagation distance and ensure that the crack follows the steel cord. Make progress and prevent breakage of steel cord.

本発明によれば、補強層に埋設されたスチールコードを波形状に屈曲等させたため、亀裂の進展可能距離を長くすることができる。また、スチールコードがゴムの変形に追従変形できるため、周囲のゴムとの剛性段差を小さくでき、スチールコード端部の応力集中及び、その部分のせん断歪みを緩和して亀裂の発生を抑制できる。同時に、亀裂の進展駆動力を緩和でき、亀裂の進展速度を遅くできる。更に、亀裂を確実にスチールコードに沿って進展させることができるとともに、スチールコードの折損も防止できる。従って、ビード部に大きな破壊等が生じるのを抑制でき、ビード部の耐久性を効果的に向上させることができる。   According to the present invention, since the steel cord embedded in the reinforcing layer is bent into a corrugated shape, the possible crack propagation distance can be increased. In addition, since the steel cord can be deformed following the deformation of the rubber, the step difference in rigidity with the surrounding rubber can be reduced, and the stress concentration at the end of the steel cord and the shear strain at that portion can be alleviated to suppress the occurrence of cracks. At the same time, the crack driving force can be relaxed and the crack growth rate can be slowed. Further, the crack can be reliably propagated along the steel cord, and the steel cord can be prevented from being broken. Therefore, it is possible to suppress the occurrence of large breakage in the bead portion, and it is possible to effectively improve the durability of the bead portion.

以下、本発明の空気入りタイヤの一実施形態について、図面を参照して説明する。
本発明の空気入りタイヤ1は、図5に示す従来の空気入りタイヤ110と同様に、ビード部のビードコア周りにカーカス層を折り返し、その外側に補強層を配置してビード部の耐久性を向上させているが、補強層のコードを波形状に屈曲させる等して亀裂の進展可能距離を長くし、かつコード端部の応力集中を緩和して亀裂の発生を抑制し、さらにビード部の耐久性を向上させたものである。
Hereinafter, an embodiment of a pneumatic tire of the present invention will be described with reference to the drawings.
Like the conventional pneumatic tire 110 shown in FIG. 5, the pneumatic tire 1 of the present invention improves the durability of the bead portion by folding the carcass layer around the bead core of the bead portion and arranging a reinforcing layer on the outside thereof. However, the cord of the reinforcing layer is bent into a wave shape, etc., so that the distance that the crack can propagate is lengthened, the stress concentration at the end of the cord is relaxed, and the occurrence of cracks is suppressed. Improved.

図1は、本実施形態の空気入りタイヤの構造を示す幅方向半断面図である。
本実施形態の空気入りタイヤ1は、図示のように、外周面にトレッドパターン2が形成された略円筒状のトレッド部3と、その両端からそれぞれタイヤ径方向内側(図では下側)に向かって延びる一対のサイドウォール部4(図では片側のみ示す)と、サイドウォール部4のタイヤ径方向内側に位置する一対のビード部5(図では片側のみ示す)とを備えている。
FIG. 1 is a half-sectional view in the width direction showing the structure of the pneumatic tire of the present embodiment.
As shown in the figure, the pneumatic tire 1 of the present embodiment has a substantially cylindrical tread portion 3 having a tread pattern 2 formed on the outer peripheral surface, and the tire radial direction inner side (lower side in the figure) from both ends thereof. And a pair of bead portions 5 (shown only on one side in the drawing) positioned on the inner side in the tire radial direction of the sidewall portion 4.

また、この空気入りタイヤ1は、ビード部5のタイヤ径方向内側端部付近に配置された一対のビードコア6と、ビードコア6周りに折り返され、かつ一対のビードコア6間に渡ってトロイダル状に延びるカーカス層30と、ビード部5のカーカス層30の外側に沿って延びるワイヤチェーファと呼ばれる補強層40と、トレッド部3内でカーカス層30のタイヤ径方向外側(図では上側)に配置されたベルト層7とを有している。   In addition, the pneumatic tire 1 includes a pair of bead cores 6 disposed in the vicinity of the inner end in the tire radial direction of the bead portion 5, and is folded around the bead core 6 and extends in a toroidal shape between the pair of bead cores 6. The carcass layer 30, the reinforcing layer 40 called a wire chafer extending along the outside of the carcass layer 30 of the bead portion 5, and the tire radial direction outer side (upper side in the drawing) of the carcass layer 30 in the tread portion 3. Belt layer 7.

ビードコア6は、複数本のスチールワイヤ等を巻き重ねたリング状のもので、カーカス層30の両端部を固定する他に、内部空気圧の保持や、タイヤ1がリムから外れるのを防ぐ役割等を有する。ベルト層7は、複数本のスチールコードや有機繊維コード等をゴムで被覆したベルトプライ8を複数枚(図では4枚)、タイヤ径方向に重ねて構成され、カーカス層30を保護してトレッド部3を強化するとともに、周方向の剛性を高めて、たが効果を発揮する。   The bead core 6 is a ring-shaped member in which a plurality of steel wires or the like are wound. In addition to fixing both ends of the carcass layer 30, the bead core 6 holds internal air pressure and prevents the tire 1 from coming off the rim. Have. The belt layer 7 is formed by stacking a plurality of belt plies 8 (four in the figure) in which a plurality of steel cords, organic fiber cords, etc. are covered with rubber, in the tire radial direction, protecting the carcass layer 30 and treading. While strengthening the part 3, the rigidity in the circumferential direction is increased, and the effect is exhibited.

カーカス層30は、トレッド部3からサイドウォール部4を通りビード部5のビードコア6までトロイダル状に延び、その部分を補強する本体部31と、ビードコア6の周りをタイヤ幅方向内側から外側(図では左側から右側)に向かって折り返して巻き上げた、折り返し部32とからなる。このカーカス層30は、少なくとも1枚のカーカスプライから構成され、カーカスプライの内部には複数本の非伸縮性の補強コード(プライコード)、例えばスチールコードが埋設されている。なお、本実施形態のカーカス層30は、実質上ラジアル方向(子午線方向)に延びるプライコードが埋設された1枚のカーカスプライから構成されている。   The carcass layer 30 extends in a toroidal shape from the tread portion 3 through the sidewall portion 4 to the bead core 6 of the bead portion 5, and a body portion 31 that reinforces the portion, and the bead core 6 around the bead core 6 from the inner side in the tire width direction (see FIG. Then, it consists of a folded portion 32 which is folded from the left side toward the right side. The carcass layer 30 is composed of at least one carcass ply, and a plurality of non-stretchable reinforcing cords (ply cords), for example, steel cords, are embedded in the carcass ply. The carcass layer 30 of the present embodiment is composed of a single carcass ply in which a ply cord extending substantially in the radial direction (the meridian direction) is embedded.

補強層40は、ビードコア6近傍のカーカス層30の外側に重ねて配置されており、ビードコア6の下側からカーカス層30の本体部31の外側(図ではタイヤ幅方向内側である左側)に沿ってタイヤ径方向外側(図では上側)に向かって延びる内側部41と、ビードコア6の下側からカーカス層30の折り返し部32の外側(図ではタイヤ幅方向外側である右側)に沿ってタイヤ径方向外側に向かって延びる外側部42とからなる。   The reinforcing layer 40 is disposed so as to overlap the outer side of the carcass layer 30 in the vicinity of the bead core 6, and extends from the lower side of the bead core 6 to the outer side of the main body portion 31 of the carcass layer 30 (the left side which is the inner side in the tire width direction in the drawing). Tire diameter direction along the inner side 41 extending toward the outer side in the tire radial direction (upper side in the figure) and the outer side of the folded part 32 of the carcass layer 30 from the lower side of the bead core 6 (the right side that is the outer side in the tire width direction in the figure). The outer portion 42 extends outward in the direction.

ここで、リム径位置S(ビードヒール)から外側部42の補強層端部(径方向外側端部)43までの径方向距離L(以下、外側部42の高さLという)は、リム径位置Sから折り返し部32のカーカス層端部(径方向外側端部)33までの径方向距離J(以下、折り返し部32の高さJという)よりも長くなっている。従って、図5に示した従来の空気入りタイヤ110と同様に、外側部42の補強層端部43は、折り返し部32のカーカス層端部33よりもタイヤ径方向外側に位置しており、タイヤの荷重負荷転動時のせん断歪み及び亀裂の発生箇所をカーカス層端部33から補強層端部43に移動させることができ、発生した亀裂は補強層40のコードに沿って進展する。   Here, the radial distance L (hereinafter referred to as the height L of the outer portion 42) from the rim diameter position S (bead heel) to the reinforcing layer end portion (radial outer end portion) 43 of the outer portion 42 is the rim diameter position. It is longer than the radial distance J (hereinafter referred to as the height J of the folded portion 32) from S to the carcass layer end portion (radially outer end portion) 33 of the folded portion 32. Therefore, like the conventional pneumatic tire 110 shown in FIG. 5, the reinforcing layer end 43 of the outer portion 42 is located on the outer side in the tire radial direction with respect to the carcass layer end 33 of the folded portion 32. The locations where shear strain and cracks occur during rolling under load can be moved from the carcass layer end portion 33 to the reinforcing layer end portion 43, and the generated cracks propagate along the cord of the reinforcing layer 40.

図2は、この補強層40内に埋設するスチールコード44の一部を拡大して示す側面図であり、図3は、外側部42の補強層端部43付近を拡大して示す模式図である。   FIG. 2 is an enlarged side view showing a part of the steel cord 44 embedded in the reinforcing layer 40, and FIG. 3 is an enlarged schematic view showing the vicinity of the reinforcing layer end 43 of the outer portion 42. As shown in FIG. is there.

補強層40は、少なくとも1枚(ここでは1枚)の補強プライから構成され、この補強プライ(補強層40)のゴムの内部には、波形状に屈曲させたスチールコード44が埋設されている。なお、本実施形態のスチールコード44は、複数本のスチール製のフィラメントに撚りを加えた直線状のコードを、図2に示すように、片振幅A、波長λの正弦波形状に屈曲させて形成しているが、正弦波形状以外でも、一定の片振幅Aと波長λを有する滑らかに湾曲しながら屈曲する波形状であればよい。   The reinforcing layer 40 is composed of at least one (here, one) reinforcing ply, and a steel cord 44 bent into a wave shape is embedded in the rubber of the reinforcing ply (reinforcing layer 40). . The steel cord 44 of this embodiment is obtained by bending a straight cord obtained by twisting a plurality of steel filaments into a sinusoidal shape having a single amplitude A and a wavelength λ as shown in FIG. Although it is formed, any wave shape other than a sine wave shape may be used as long as it has a constant half amplitude A and a wavelength λ and is bent while being smoothly curved.

補強層40には、図3に示すように、この波形状のスチールコード44が複数本、その振幅の中心線Tをタイヤ円周線Cに対して所定角度θで傾斜させて互いに平行になるように、かつ、振幅A方向が補強プライの平面方向の同方向を向くように配列され、それらが互いに接触しないようにゴムに埋設されている。また、図には、実質上ラジアル方向に延びるカーカス層30のプライコード34も示すが、上記したようにスチールコード44の端部である補強層端部43は、プライコード34の端部であるカーカス層端部33よりもタイヤ径方向外側(図では上側)に向かって距離Q(図1参照)だけ離れて配置されている。   As shown in FIG. 3, the reinforcing layer 40 includes a plurality of the corrugated steel cords 44, and the amplitude center line T is inclined at a predetermined angle θ with respect to the tire circumferential line C so as to be parallel to each other. Thus, the amplitude A direction is arranged so as to face the same direction as the plane direction of the reinforcing ply, and is embedded in rubber so as not to contact each other. The figure also shows the ply cord 34 of the carcass layer 30 that extends substantially in the radial direction, but the reinforcing layer end 43 that is the end of the steel cord 44 is the end of the ply cord 34 as described above. It is arranged at a distance Q (see FIG. 1) away from the carcass layer end 33 toward the outer side in the tire radial direction (upper side in the figure).

ここで、上記したように補強層端部43付近に亀裂が発生した場合には、その亀裂は補強層40内のスチールコード44に沿ってタイヤ径方向内側(図3では下側)に向かって進展するが、本実施形態のスチールコード44は波形状であるため、亀裂はスチールコード44に沿って波状に進展する。従って、本実施形態の補強層40では、亀裂の進展経路を波状にすることができ、従来の直線状のスチールコード44に比べて、カーカス層端部33付近に到達するまでに亀裂はより長い経路をとる、即ち、亀裂の進展可能距離が長くなり、カーカス層端部33付近まで亀裂が進展するのが遅くなる。   Here, when a crack occurs near the reinforcing layer end 43 as described above, the crack is directed along the steel cord 44 in the reinforcing layer 40 toward the inner side in the tire radial direction (lower side in FIG. 3). However, since the steel cord 44 of the present embodiment has a wave shape, the crack propagates in a wave shape along the steel cord 44. Therefore, in the reinforcing layer 40 of the present embodiment, the crack propagation path can be wave-shaped, and the crack is longer by the time it reaches the vicinity of the end portion 33 of the carcass layer than the conventional straight steel cord 44. It takes a path, that is, the crack propagation distance becomes long, and the crack progresses slowly to the vicinity of the end portion 33 of the carcass layer.

また、波形状のスチールコード44は伸縮性を有する。即ち、引っ張り応力の作用時には片振幅Aが小さく(波長λが長く)なるように変形し、圧縮応力の作用時には片振幅Aが大きく(波長λが短く)なるように変形するため、ゴムの変形に追従変形できる。従って、スチールコード44とその周りのゴムの剛性段差が小さくなり、スチールコード44端部の応力集中及び、その部分のせん断歪みが緩和され、亀裂の発生が抑制される。同時に、亀裂を進展させる駆動力となるせん断入力が緩和されるため、亀裂の進展速度が遅くなる。   Further, the corrugated steel cord 44 has elasticity. That is, when the tensile stress is applied, the piece amplitude A is deformed so as to be small (wavelength λ is long), and when the compressive stress is applied, the piece amplitude A is deformed so as to be large (wavelength λ is short). Can be deformed to follow. Therefore, the difference in rigidity between the steel cord 44 and the surrounding rubber is reduced, the stress concentration at the end of the steel cord 44 and the shear strain at that portion are alleviated, and the occurrence of cracks is suppressed. At the same time, since the shear input, which is the driving force for propagating the crack, is relaxed, the crack propagation speed is slowed.

従って、このような補強層40を有する本実施形態の空気入りタイヤ1では、直線状のスチールコードからなる補強層を備えた従来の空気入りタイヤに比べて、亀裂の発生が抑制されるとともに、その進展可能距離が長く、かつ進展速度が遅くなり、亀裂の連結等の大きな故障の発生を抑制でき、ビード部5の耐久性を向上できる。   Therefore, in the pneumatic tire 1 of this embodiment having such a reinforcing layer 40, the occurrence of cracks is suppressed as compared with a conventional pneumatic tire provided with a reinforcing layer made of a linear steel cord, The advanceable distance is long and the advancement speed is slow, so that the occurrence of a large failure such as a crack connection can be suppressed, and the durability of the bead portion 5 can be improved.

なお、上記したようにこの波形状のスチールコード44は、所定の片振幅Aと波長λをなすように形成されているが、片振幅Aを波長λで除して2倍した値(2×A/λ)が0.12未満である場合には、片振幅Aが小さく(波長λが長く)なって、スチールコード44が直線状に近くなるため、上記した亀裂の進展可能距離が短くなり、亀裂がより早くカーカス層端部33に到達する。同時に、スチールコード44の伸縮性が低下して、その端部43付近の応力集中及び、せん断歪みが大きくなり亀裂が発生しやすくなるとともに、亀裂を進展させる駆動力であるせん断入力が大きくなり、亀裂の進展速度が早くなる。従って、ビード部5の耐久性が低下する恐れがある。   As described above, the corrugated steel cord 44 is formed so as to have a predetermined half amplitude A and a wavelength λ. However, a value obtained by dividing the half amplitude A by the wavelength λ (2 × When (A / λ) is less than 0.12, the half amplitude A becomes smaller (the wavelength λ becomes longer), and the steel cord 44 becomes nearly linear, so that the above-described crack propagation distance becomes shorter. The crack reaches the end portion 33 of the carcass layer earlier. At the same time, the stretchability of the steel cord 44 is reduced, the stress concentration near the end portion 43 and the shear strain are increased and cracks are easily generated, and the shear input which is the driving force for propagating the cracks is increased. The speed of crack growth increases. Therefore, the durability of the bead portion 5 may be reduced.

また、前記2×A/λの値が1.2よりも大きい場合には、片振幅Aが大きく(波長λが短く)なって、スチールコード44がより大きく屈曲する結果、亀裂がスチールコード44から離れやすくなり、亀裂がスチールコード44に沿わずに進展してその進展経路が波状をなさなくなる恐れがある。従って、前記2×A/λの値は、0.12以上1.2以下(0.12≦2×A/λ≦1.2)であることが好ましい。   When the value of 2 × A / λ is larger than 1.2, the half amplitude A becomes large (wavelength λ becomes short), and the steel cord 44 is bent more greatly. There is a risk that the cracks will not extend along the steel cord 44 and the path of progress will not be wavy. Therefore, the value of 2 × A / λ is preferably 0.12 or more and 1.2 or less (0.12 ≦ 2 × A / λ ≦ 1.2).

この範囲内であれば、スチールコード44の波形状が好適化され、亀裂が確実にスチールコード44に沿って進展してその進展可能距離が長くなるとともに、スチールコード44が適度に伸縮して、その端部43付近のせん断歪みや亀裂の進展駆動力が小さくなる。従って、亀裂のカーカス層端部33付近への到達を遅くでき、かつ、亀裂の発生や進展速度を抑制でき、ビード部5の耐久性を効果的に向上させることができる。   If it is within this range, the wave shape of the steel cord 44 is optimized, the crack is surely propagated along the steel cord 44, and the advanceable distance is increased, and the steel cord 44 is appropriately expanded and contracted, The shear strain and crack growth driving force near the end 43 are reduced. Accordingly, the arrival of cracks near the carcass layer end portion 33 can be delayed, the generation and progress of cracks can be suppressed, and the durability of the bead portion 5 can be effectively improved.

また、上記したようにスチールコード44の振幅の中心線Tは、タイヤ円周線Cに対して所定角度θ(図3参照)で傾斜しているが、この傾斜角度θが10度未満または170度よりも大きい、即ち、円周線C方向に近くなると、亀裂がスチールコード44を離れて進展する恐れがある。また、θが40度よりも大きく140度未満、即ち円周線Cと直交する方向に近くなると、上記と同様に亀裂がスチールコード44を離れて進展する恐れがあるとともに、亀裂の進展可能距離が短くなり、亀裂が早くカーカス層端部33に到達してビード部5の耐久性が低下する恐れもある。従って、その傾斜角度θは、10度以上40度以下、または140度以上170度以下(10゜≦θ≦40゜、又は140゜≦θ≦170゜)にすることが好ましく、この範囲内であれば、亀裂を確実にスチールコード44に沿って進展させることができる。   As described above, the center line T of the amplitude of the steel cord 44 is inclined at a predetermined angle θ (see FIG. 3) with respect to the tire circumferential line C. However, the inclination angle θ is less than 10 degrees or 170. If the angle is larger than the degree, that is, close to the direction of the circumferential line C, the crack may propagate away from the steel cord 44. Further, when θ is greater than 40 degrees and less than 140 degrees, that is, close to the direction orthogonal to the circumferential line C, the crack may possibly leave the steel cord 44 as described above, and the crack propagation distance , The cracks quickly reach the end portion 33 of the carcass layer, and the durability of the bead portion 5 may be reduced. Therefore, the inclination angle θ is preferably 10 degrees or more and 40 degrees or less, or 140 degrees or more and 170 degrees or less (10 ° ≦ θ ≦ 40 °, or 140 ° ≦ θ ≦ 170 °). If present, the crack can be reliably propagated along the steel cord 44.

更に、補強層40の外側部42の高さLと、カーカス層30の折り返し部32の高さJの差Q(図1参照)が10mm未満であると、補強層端部43とカーカス層端部33の距離、即ち亀裂の進展可能距離が短くなり、ビード部5の耐久性が低下する恐れがある。従って、Qは、10mm以上にすることが好ましく、この場合には、亀裂がカーカス層端部33近傍に達するまでに進展する距離が長くなり、ビード部5の破壊を効果的に抑制できる。   Furthermore, if the difference Q (see FIG. 1) between the height L of the outer portion 42 of the reinforcing layer 40 and the height J of the folded portion 32 of the carcass layer 30 is less than 10 mm, the reinforcing layer end 43 and the carcass layer end There is a possibility that the distance of the portion 33, that is, the distance at which the crack can progress is shortened, and the durability of the bead portion 5 is lowered. Therefore, it is preferable to set Q to 10 mm or more. In this case, the distance that the crack propagates before reaching the vicinity of the end portion 33 of the carcass layer becomes long, and the breakage of the bead portion 5 can be effectively suppressed.

ここで、タイヤの断面高さをH(以下、タイヤ高さHという)、前記補強層40の外側部42の高さL(図1参照)をタイヤ高さHで除した値(L/H)をB、補強層40のトリート曲げ剛性をM、Mを前記値Bの2乗で除した値(M/B)をFとしたとき、このFは0.10以上0.75以下(0.10≦F≦0.75)にすることが好ましい。その理由は、Fが0.10未満であると、圧縮力が作用した場合にスチールコード44が座屈変形を起こして折損する恐れがあり、一方、Fが0.75よりも大きいと、圧縮変形に対してスチールコード44が追従変形できなくなり、せん断歪みが顕著に増大してスチールコード44に沿っての亀裂の進展速度が大幅に上昇する恐れが高くなるからである。 Here, the value obtained by dividing the cross-sectional height of the tire by H (hereinafter referred to as tire height H) and the height L (see FIG. 1) of the outer portion 42 of the reinforcing layer 40 divided by the tire height H (L / H). ) Is B, treat bending rigidity of the reinforcing layer 40 is M, and F is a value obtained by dividing M by the square of the value B (M / B 2 ). 0.10 ≦ F ≦ 0.75) is preferable. The reason is that if F is less than 0.10, the steel cord 44 may buckle and break when a compressive force is applied. On the other hand, if F is greater than 0.75, the compression may occur. This is because the steel cord 44 cannot be deformed following the deformation, the shear strain is remarkably increased, and the risk of a significant increase in the crack propagation speed along the steel cord 44 is increased.

これに対し、上記したようにFを0.10以上0.75以下にすると、補強層40内のスチールコード44の座屈による折損を防止しながら、亀裂の進展可能距離を長くするとともに、その進展速度を低下させることができ、ビード部5の耐久性を効果的に向上させることができる。なお、Fの値を0.15以上0.40以下の範囲内にすると、上記した効果がより顕著となり好ましい。   On the other hand, when F is set to 0.10 or more and 0.75 or less as described above, the crack propagation distance is increased while preventing breakage due to buckling of the steel cord 44 in the reinforcing layer 40. The progress speed can be reduced, and the durability of the bead portion 5 can be effectively improved. In addition, when the value of F is in the range of 0.15 or more and 0.40 or less, the above-described effect becomes more remarkable, which is preferable.

ここで、補強層40のトリート曲げ剛性Mとは、1本のスチールコード44の曲げ剛性に50mm当たりのコード打ち込み本数を乗じた値であり、その単位はN・mである。なお、コードの曲げ剛性に関しては、以下の数1に示した式、即ち、良く知られているコードの曲げ剛性の簡易モデル計算式に従う。ここで、スチールコード44が複撚り構造の場合には、重ね梁の原理に従い、それぞれの層における曲げ剛性値を足し合わせた値を1本のスチールコード44の曲げ剛性とする。 Here, the treat bending stiffness M of the reinforcing layer 40 is a value obtained by multiplying the bending stiffness of one steel cord 44 by the number of cords driven per 50 mm, and its unit is N · m 2 . Note that the bending stiffness of the cord follows the formula shown in the following equation 1, that is, the well-known simple model calculation formula for the bending stiffness of the cord. Here, when the steel cord 44 has a double twist structure, a value obtained by adding the bending stiffness values in the respective layers is set as the bending stiffness of one steel cord 44 in accordance with the principle of the laminated beam.

Figure 2007045354
Figure 2007045354

この式において、Nは各層当たりのフィラメント本数、αはフィラメントの撚り角度(tanα=P/2πR、ここでPはコード撚りピッチ、Rはスチールコードを構成する各層の外接円直径)、Eはフィラメントのヤング率(縦弾性係数)、Gはフィラメントの横弾性係数、Iは断面2次モーメント(I=πd/64)、Ipは断面2次極モーメント(Ip=πd/32)、dはフィラメントの直径、μfはフィラメントのポアソン比である。 In this equation, N is the number of filaments per layer, α is the twist angle of the filament (tan α = P / 2πR, where P is the cord twist pitch, R is the circumscribed circle diameter of each layer constituting the steel cord), and E is the filament Young's modulus of the (longitudinal elastic modulus), G is the modulus of transverse elasticity of the filament, I is the second moment (I = πd 4/64) , Ip is polar moment of inertia of area (Ip = πd 3/32) , d is The filament diameter, μf, is the Poisson's ratio of the filament.

以上説明したように、本実施形態の空気入りタイヤ1では、ビード部5のカーカス層30の外側に補強層40を設けたため、ビード部5の剛性が高まり荷重負荷転動時の変形等を抑制できる。また、補強層外側部42の補強層端部43をカーカス層折り返し部32のカーカス層端部33よりもタイヤ径方向外側に位置させたため、カーカス層端部33付近のせん断歪みを低減できるとともに、タイヤの荷重負荷転動時のせん断歪み及び亀裂の発生箇所をカーカス層端部33から補強層端部43に移動させることができる。この補強層端部43で発生した亀裂は、補強層40内のスチールコード44に沿って進展するため、ビード部5に大きな破壊等が生じるのが抑制され、ビード部5の耐久性を向上できる。   As described above, in the pneumatic tire 1 of the present embodiment, since the reinforcing layer 40 is provided outside the carcass layer 30 of the bead portion 5, the rigidity of the bead portion 5 is increased and deformation and the like during rolling under load are suppressed. it can. Further, since the reinforcing layer end portion 43 of the reinforcing layer outer portion 42 is positioned on the outer side in the tire radial direction from the carcass layer end portion 33 of the carcass layer folded portion 32, the shear strain near the carcass layer end portion 33 can be reduced, The locations where shear strain and cracks occur when rolling tires under load load can be moved from the carcass layer end portion 33 to the reinforcing layer end portion 43. Since the crack generated at the end portion 43 of the reinforcing layer propagates along the steel cord 44 in the reinforcing layer 40, it is possible to suppress the occurrence of large breakage in the bead portion 5 and improve the durability of the bead portion 5. .

また、本実施形態では、スチールコード44を波形状に屈曲させたため、従来の直線状のスチールコード44に比べて、カーカス層端部33付近までの亀裂の進展可能距離を長くでき、亀裂がそこまで進展するのを遅くすることができる。また、スチールコード44がゴムの変形に追従変形できるため、周囲のゴムとの剛性段差を小さくでき、スチールコード44端部の応力集中及び、その部分のせん断歪みを緩和して亀裂の発生を抑制できる。同時に、亀裂の進展駆動力を緩和でき、亀裂の進展速度を遅くできる。従って、従来の空気入りタイヤに比べて、亀裂の連結等の大きな故障の発生を抑制でき、ビード部5の耐久性を向上できる。   Further, in this embodiment, since the steel cord 44 is bent into a wave shape, the crack propagation distance to the vicinity of the end portion 33 of the carcass layer can be increased as compared with the conventional straight steel cord 44, and there is no crack. Can slow down to progress. In addition, since the steel cord 44 can be deformed following the deformation of the rubber, the rigidity step with the surrounding rubber can be reduced, and the stress concentration at the end of the steel cord 44 and the shear strain at that portion are alleviated to suppress the occurrence of cracks. it can. At the same time, the crack driving force can be relaxed, and the crack growth rate can be slowed. Therefore, compared with the conventional pneumatic tire, generation | occurrence | production of big failures, such as a connection of a crack, can be suppressed and durability of the bead part 5 can be improved.

更に、補強層40の外側部42の高さLや、スチールコード44の振幅の中心線Tの傾斜角度θを適正化したため、亀裂の進展可能距離を長くし、かつ、その進展速度を効果的に低下させることができる。これらに加えて、補強層40内のスチールコード44の座屈による折損を防止できるとともに、亀裂を確実にスチールコード44に沿って進展させることもでき、ビード部5の破壊を抑制して、その耐久性を効果的に向上させることができる。   Furthermore, since the height L of the outer portion 42 of the reinforcing layer 40 and the inclination angle θ of the center line T of the amplitude of the steel cord 44 are optimized, the crack propagation distance is lengthened and the propagation speed is effective. Can be lowered. In addition to these, breakage due to buckling of the steel cord 44 in the reinforcing layer 40 can be prevented, and cracks can be reliably propagated along the steel cord 44, suppressing the breakage of the bead portion 5, Durability can be improved effectively.

(実施例)
本発明の空気入りタイヤ1の効果を確認するため、以上で説明した構造の補強層40を備えた実施例のタイヤ(以下、実施品という)と、一部の構造が異なる補強層40を備えた比較例のタイヤ(以下、比較品という)と、直線状のスチールコード44を有する従来構造の補強層40を備えた従来例のタイヤ(以下、従来品という)を数種類作製し、以下の条件でビード部5の耐久性を試験した。
(Example)
In order to confirm the effect of the pneumatic tire 1 of the present invention, the tire of the example (hereinafter referred to as an example product) provided with the reinforcing layer 40 having the structure described above is provided with a reinforcing layer 40 having a partly different structure. In addition, several types of conventional tires (hereinafter referred to as conventional products) including a reinforcing layer 40 having a conventional structure having a linear steel cord 44 and the following tires are manufactured according to the following conditions: Then, the durability of the bead portion 5 was tested.

以下の実施品、比較品、従来品は全て、JATMA YEAR BOOK(2004、日本自動車タイヤ協会規格)で定めるタイヤサイズ275/70R22.5の重荷重用ラジアルタイヤであり、適用リムは7.50×22.5である。これら各タイヤをリムに装着後、最高空気圧900kPaを充填し、ドラム試験機により、最大負荷能力3150kgの1.8倍である5670kgの荷重を作用させながら、速度60km/hで直径1.7mのドラム上をビード部5が破壊するまで連続負荷転動させ、破壊するまでの距離を測定して比較した。なお、その結果は、従来品1の走行距離を100としたライフ指数として示す。   The following implementation products, comparative products, and conventional products are all heavy-duty radial tires of tire size 275 / 70R22.5 defined by JATMA YEAR BOOK (2004, Japan Automobile Tire Association Standard), and applicable rim is 7.50 × 22. .5. After these tires are mounted on the rim, the maximum air pressure of 900 kPa is filled, and a load of 5670 kg, which is 1.8 times the maximum load capacity of 3150 kg, is applied by a drum testing machine, while a speed of 1.7 km at a speed of 60 km / h. The load was continuously rolled on the drum until the bead portion 5 was broken, and the distance until the bead was broken was measured and compared. The result is shown as a life index with the travel distance of the conventional product 1 as 100.

なお、表中、片振幅Aはスチールコード44の片振幅(単位はmm)であり、波長λはスチールコード44の波長(単位はmm)であり、傾斜角度θ(図3参照)はスチールコード44の振幅の中心線Tのタイヤ円周線Cに対する傾斜角度(単位は度)であり、距離Q(図1参照)は補強層40の外側部42の高さLからカーカス層30の折り返し部32の高さJを減じた距離(L―J、単位はmm)であり、曲げ剛性Mは1本のスチールコード44の曲げ剛性に50mm当たりのコード打ち込み本数を乗じたトリート曲げ剛性M(単位はN・m)であり、値B(図1参照)は補強層40の外側部42の高さLをタイヤ断面高さHで除した値(L/H)であり、値Fは補強層40のトリート曲げ剛性Mを前記値Bの2乗で除した値(M/B)である。 In the table, the half amplitude A is the half amplitude (unit: mm) of the steel cord 44, the wavelength λ is the wavelength (unit: mm) of the steel cord 44, and the inclination angle θ (see FIG. 3) is the steel cord. 44 is an inclination angle (unit: degree) of the center line T with an amplitude of 44 with respect to the tire circumferential line C, and the distance Q (see FIG. 1) is the folded portion of the carcass layer 30 from the height L of the outer portion 42 of the reinforcing layer 40. The distance obtained by subtracting the height J of 32 (LJ, unit is mm), and the bending stiffness M is a treat bending stiffness M (unit: the bending stiffness of one steel cord 44 multiplied by the number of cords driven per 50 mm. Is N · m 2 ), the value B (see FIG. 1) is a value obtained by dividing the height L of the outer portion 42 of the reinforcing layer 40 by the tire cross-sectional height H (L / H), and the value F is the reinforcement. A value obtained by dividing the treat bending rigidity M of the layer 40 by the square of the value B (M / B 2 ).

表1に、1種類の従来品1と、8種類の実施品(実施品1から8)と、5種類の比較品(比較品1から5)の補強層40の構造諸元とライフ指数を示す。   Table 1 shows the structural specifications and life index of the reinforcing layer 40 of one type of conventional product 1, eight types of implementation products (execution products 1 to 8), and five types of comparison products (comparison products 1 to 5). Show.

Figure 2007045354
Figure 2007045354

表1に示すように、従来品1のライフ指数100に対し、実施品1から8のライフ指数は、全て100以上(最高値が実施品3の136、最低値が実施品4の105)であり、これに対し、比較品のライフ指数は全て100よりも低く、従って、前記実施品のライフ指数は、従来品に比べてビード部5の耐久性が向上していることが分かる。この結果から、本発明により、空気入りタイヤ1のビード部5の耐久性が向上することが証明された。   As shown in Table 1, the life index of the implementation products 1 to 8 is 100 or more (the maximum value is 136 of the implementation product 3 and the minimum value is 105 of the implementation product 4) with respect to the life index 100 of the conventional product 1. On the other hand, all of the life indexes of the comparative products are lower than 100. Therefore, it can be seen that the durability index of the bead portion 5 is improved as compared with the conventional product. From this result, it was proved that the durability of the bead portion 5 of the pneumatic tire 1 is improved by the present invention.

本実施形態の空気入りタイヤの構造を示す幅方向半断面図である。It is a width direction half sectional view showing the structure of the pneumatic tire of this embodiment. 本実施形態の補強層に埋設したコードの一部を拡大して示す側面図である。It is a side view which expands and shows a part of code | cord | chord embed | buried under the reinforcement layer of this embodiment. 本実施形態の補強層外側部の端部付近を拡大して示す模式図である。It is a schematic diagram which expands and shows the edge part vicinity of the reinforcement layer outer side part of this embodiment. 従来のビード部の構造の例を示す断面図である。It is sectional drawing which shows the example of the structure of the conventional bead part. 従来の空気入りタイヤの構造を示す幅方向半断面図である。It is a width direction half sectional view which shows the structure of the conventional pneumatic tire.

符号の説明Explanation of symbols

1・・・空気入りタイヤ、2・・・トレッドパターン、3・・・トレッド部、4・・・サイドウォール部、5・・・ビード部、6・・・ビードコア、7・・・ベルト層、8・・・ベルトプライ、30・・・カーカス層、31・・・本体部、32・・・折り返し部、33・・・カーカス層端部、34・・・プライコード、40・・・補強層、41・・・内側部、42・・・外側部、43・・・補強層端部、44・・・スチールコード。 DESCRIPTION OF SYMBOLS 1 ... Pneumatic tire, 2 ... Tread pattern, 3 ... Tread part, 4 ... Side wall part, 5 ... Bead part, 6 ... Bead core, 7 ... Belt layer, 8 ... belt ply, 30 ... carcass layer, 31 ... main body, 32 ... folded portion, 33 ... end of carcass layer, 34 ... ply cord, 40 ... reinforcing layer , 41 ... inner part, 42 ... outer part, 43 ... reinforcing layer end, 44 ... steel cord.

Claims (3)

一対のビードコアと、
該ビードコア間をトロイダル状に延びる本体部及び前記ビードコアの周りをタイヤ幅方向内側から外側に向かって巻き上げた折り返し部を有するカーカス層と、
前記ビードコア近傍の前記カーカス層の外側に、前記折り返し部に沿ってタイヤ幅方向内側まで配置され、内部に複数本のスチールコードを埋設した補強層とを備え、
前記折り返し部に沿う前記補強層のタイヤ径方向外側端部が前記折り返し部のタイヤ径方向外側端部よりもタイヤ径方向外側に配置されている空気入りタイヤにおいて、
前記スチールコードは波形状に屈曲し、該波形の片振幅をA、波長をλとするとき、0.12≦2×A/λ≦1.2であることを特徴とする空気入りタイヤ。
A pair of bead cores;
A carcass layer having a body portion extending in a toroidal manner between the bead cores and a folded portion wound around the bead cores from the inner side in the tire width direction toward the outer side;
The outer side of the carcass layer in the vicinity of the bead core, disposed along the folded portion to the inner side in the tire width direction, and a reinforcing layer having a plurality of steel cords embedded therein,
In the pneumatic tire in which the tire radial direction outer end portion of the reinforcing layer along the folded portion is disposed on the outer side in the tire radial direction than the tire radial direction outer end portion of the folded portion,
The pneumatic tire is characterized in that the steel cord is bent into a wave shape, and 0.12 ≦ 2 × A / λ ≦ 1.2, where A is a half amplitude of the waveform and λ is a wavelength.
請求項1に記載された空気入りタイヤにおいて、
前記スチールコードの振幅の中心線のタイヤ円周線に対する傾斜角度をθとするとき、10゜≦θ≦40゜、又は140゜≦θ≦170゜であることを特徴とする空気入りタイヤ。
In the pneumatic tire according to claim 1,
A pneumatic tire characterized by satisfying 10 ° ≦ θ ≦ 40 ° or 140 ° ≦ θ ≦ 170 °, where θ is an inclination angle of the center line of the steel cord amplitude with respect to the tire circumferential line.
請求項1又は2に記載された空気入りタイヤにおいて、
リム径位置から前記補強層のタイヤ径方向外側端部までのタイヤ径方向の高さをタイヤ断面高さで除した値をB、前記補強層のトリート曲げ剛性をMとしたとき、
0.10≦M/B≦0.75であることを特徴とする空気入りタイヤ。
In the pneumatic tire according to claim 1 or 2,
When the value obtained by dividing the height in the tire radial direction from the rim diameter position to the outer end in the tire radial direction of the reinforcing layer by the tire cross-sectional height is B, and the treat bending rigidity of the reinforcing layer is M,
A pneumatic tire characterized by satisfying 0.10 ≦ M / B 2 ≦ 0.75.
JP2005233201A 2005-08-11 2005-08-11 Pneumatic tire Pending JP2007045354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005233201A JP2007045354A (en) 2005-08-11 2005-08-11 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005233201A JP2007045354A (en) 2005-08-11 2005-08-11 Pneumatic tire

Publications (1)

Publication Number Publication Date
JP2007045354A true JP2007045354A (en) 2007-02-22

Family

ID=37848552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005233201A Pending JP2007045354A (en) 2005-08-11 2005-08-11 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP2007045354A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012026123A1 (en) * 2010-08-27 2012-03-01 株式会社ブリヂストン Pneumatic radial aircraft tire
JP2012531346A (en) * 2009-06-30 2012-12-10 コンパニー ゼネラール デ エタブリッスマン ミシュラン Retread tire
US8636044B2 (en) 2009-06-30 2014-01-28 Michelin Recherche Et Technique S.A. Reduced weight precured tread band for retreaded tire
US8651152B2 (en) 2009-06-30 2014-02-18 Michelin Recherche Et Technique S.A. Tread band for retreaded tire
US8826952B2 (en) 2009-06-30 2014-09-09 Michelin Recherche Et Technique S.A. Retread tire having tread band matched to base tread
US9370971B2 (en) 2010-12-29 2016-06-21 Compagnie Generale Des Etablissements Michelin Methods for retreading a tire
KR101815386B1 (en) * 2016-08-08 2018-01-08 한국타이어 주식회사 A tire having chafer structure for enhancing bead endurance
JP2019111885A (en) * 2017-12-22 2019-07-11 Toyo Tire株式会社 Heavy duty pneumatic radial tire

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8651152B2 (en) 2009-06-30 2014-02-18 Michelin Recherche Et Technique S.A. Tread band for retreaded tire
JP2012531346A (en) * 2009-06-30 2012-12-10 コンパニー ゼネラール デ エタブリッスマン ミシュラン Retread tire
US8826952B2 (en) 2009-06-30 2014-09-09 Michelin Recherche Et Technique S.A. Retread tire having tread band matched to base tread
US8776849B2 (en) 2009-06-30 2014-07-15 Michelin Recherche Et Technique S.A. Retreaded tire
US8636044B2 (en) 2009-06-30 2014-01-28 Michelin Recherche Et Technique S.A. Reduced weight precured tread band for retreaded tire
JPWO2012026123A1 (en) * 2010-08-27 2013-10-28 株式会社ブリヂストン Pneumatic radial tire for aircraft
WO2012026123A1 (en) * 2010-08-27 2012-03-01 株式会社ブリヂストン Pneumatic radial aircraft tire
CN103153649A (en) * 2010-08-27 2013-06-12 株式会社普利司通 Pneumatic radial aircraft tire
JP5788882B2 (en) * 2010-08-27 2015-10-07 株式会社ブリヂストン Pneumatic radial tire for aircraft
US9643455B2 (en) 2010-08-27 2017-05-09 Bridgestone Corporation Pneumatic radial tire for aircraft
US9370971B2 (en) 2010-12-29 2016-06-21 Compagnie Generale Des Etablissements Michelin Methods for retreading a tire
KR101815386B1 (en) * 2016-08-08 2018-01-08 한국타이어 주식회사 A tire having chafer structure for enhancing bead endurance
EP3281808B1 (en) * 2016-08-08 2020-06-03 Hankook Tire Co., Ltd. A tire having a chafer structure for enhancing bead endurance
US10766315B2 (en) 2016-08-08 2020-09-08 Hankook Tire Co., Ltd. Tire having chafer structure for enhancing bead endurance
JP2019111885A (en) * 2017-12-22 2019-07-11 Toyo Tire株式会社 Heavy duty pneumatic radial tire

Similar Documents

Publication Publication Date Title
JP4934178B2 (en) Heavy duty pneumatic tire
JP2007045354A (en) Pneumatic tire
WO2003043837A1 (en) Pneumatic radial tire
JP2006321473A (en) Aircraft radial tire and method of manufacture of aircraft radial tire
JP2007331424A (en) Safety tire
JP2007015638A (en) Pneumatic tire
JP2009126459A (en) Pneumatic radial tire
JP5435889B2 (en) Pneumatic radial tire for aircraft
JP2011162023A (en) Pneumatic tire
JP2006321406A (en) Pneumatic tire
JP4353788B2 (en) Pneumatic tire
JP2007045353A (en) Pneumatic tire
JP5164453B2 (en) Pneumatic tire
JP5046555B2 (en) Safety tire
JP5584053B2 (en) Pneumatic tire
JP2001191756A (en) Pneumatic tire
JP2008201147A (en) Pneumatic tire
JP5116449B2 (en) Pneumatic tire
JP4307226B2 (en) Pneumatic tire
JPH0999716A (en) Pneumatic tire
JPH09193625A (en) Pneumatic tire
JP2006199220A (en) Pneumatic tire
JP2009262826A (en) Pneumatic tire
JP2008088613A (en) Steel cord, rubber-steel cord composite and heavy load pneumatic radial tire
JPH0717220A (en) Radial tire for high speed and heavy load

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110811