JP2007044836A - Leg type biped robot - Google Patents

Leg type biped robot Download PDF

Info

Publication number
JP2007044836A
JP2007044836A JP2005233523A JP2005233523A JP2007044836A JP 2007044836 A JP2007044836 A JP 2007044836A JP 2005233523 A JP2005233523 A JP 2005233523A JP 2005233523 A JP2005233523 A JP 2005233523A JP 2007044836 A JP2007044836 A JP 2007044836A
Authority
JP
Japan
Prior art keywords
robot
body part
joint
landing
posture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005233523A
Other languages
Japanese (ja)
Inventor
Satoru Nishii
悟 西井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP2005233523A priority Critical patent/JP2007044836A/en
Publication of JP2007044836A publication Critical patent/JP2007044836A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manipulator (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a leg type biped robot capable of solving a problem of what kind of norm should be taken as a basis of posture correction during a period of a robot taking off and grounding on a floor as a change of a state of the robot in the middle of jumping is conventionally handled only by simple judgement of whether it takes off from or grounds on the floor. <P>SOLUTION: This robot has an acceleration sensor 9. A foot part 6 of the robot has a switch to detect whether a sole part a back surface of which grounds on the ground grounds on the ground or not. A joint actuator is provided on a leg part 5, and its joint angle is controlled by a joint angle control means. A posture control part provided in the robot drives and controls the joint actuator so as to follow a target joint angle by carrying out center-of-gravity position correction in a direction where grounding impact of the robot is reduced and by generating a control signal of the target joint angle to be in the corrected center-of-gravity position in accordance with an acceleration detection value of the acceleration sensor 9 at an instant when the sole part grounds on the floor after taking off. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は脚式二足ロボットに係り、特に脚部の関節アクチュエータの実時間角度制御により、人間などの二足歩行動物の身体メカニズムや動作を実現する脚式二足ロボットに関する。   The present invention relates to a legged biped robot, and more particularly to a legged biped robot that realizes the body mechanism and operation of a bipedal animal such as a human by real-time angle control of a joint actuator of a leg.

2つの可動脚を備えた下肢と、その下肢の上方に配設された上体とで構成され、下肢の運動により各種の動作パターンを実現する脚式二足ロボットは、4足又は6足などの脚式ロボットに比べて不安定で姿勢制御や歩行制御が難しいが、階段の昇降や障害物の乗り越えなどの柔軟な動作が可能である。このような特徴を持つ脚式二足ロボットは、歩行、走行、ジャンプなどの動作パターンを実行した際に、ロボットが離床動作した後に着床する時の床面から受ける衝撃を緩和するように制御されることが知られている(例えば、特許文献1参照)。   A legged biped robot that consists of a lower limb with two movable legs and an upper body arranged above the lower limb, and realizes various motion patterns by movement of the lower limbs, such as four legs or six legs Although it is unstable and difficult to control posture and walking, compared to conventional legged robots, it can move flexibly, such as moving up and down stairs and getting over obstacles. A legged biped robot with these characteristics is controlled so as to mitigate the impact received from the floor surface when the robot is landing after performing a motion pattern such as walking, running, and jumping. (For example, refer to Patent Document 1).

この特許文献1記載の脚式二足ロボットは、離床、着床期の重心位置を補正すべく、関節の屈伸動作によりロボットの姿勢を対応させ、関節アクチュエータのインピーダンスの可変により、離床時の姿勢安定化と着床時の衝撃を緩和させるものである。   In this legged biped robot described in Patent Document 1, in order to correct the position of the center of gravity at the time of getting out and landing, the posture of the robot is made to correspond to the posture of the robot by bending and extending the joint, and the impedance of the joint actuator is changed. It stabilizes and relieves impact during landing.

特開2001−138273号公報JP 2001-138273 A

しかしながら、上記の特許文献1記載の従来の脚式二足ロボットでは、離床、着床期間に、ロボットの関節伸展を利用し重心位置変更により姿勢安定化と着床衝撃緩和の手法について説明されているが、例えばジャンプ中におけるロボット状態変化については離床か着床かの判断のみで扱われており、ロボット離床、着床期間においてどのような規範に基づいて姿勢の補正を行うかの具体的手法について明示されていない。   However, in the conventional legged biped robot described in Patent Document 1 described above, a technique for stabilizing the posture and mitigating the landing impact by changing the center of gravity position using the joint extension of the robot during the flooring and landing periods is described. However, for example, the robot state change during jumping is handled only by the judgment of whether to get off or landing, and a specific method for correcting posture based on the norm during robot leaving or landing Is not explicitly stated.

本発明は上記の点に鑑みなされたもので、完全に着床に至る直前のロボットの加速度に基づいて姿勢補正を行うことにより、運動性能安定化を実現し得る脚式二足ロボットを提供することを目的とする。   The present invention has been made in view of the above points, and provides a legged biped robot capable of stabilizing the motion performance by performing posture correction based on the acceleration of the robot immediately before reaching the ground completely. For the purpose.

上記の目的を達成するため、本発明は上体部と下体部とからなり、上体部は、少なくとも胴体部と、その胴体部の上部に取り付けられた頭部と、胴体部の両側面に可動自在に取り付けられた一対の腕部とからなり、下体部は、胴体部に一端が取り付けられた一対の脚部と、脚部の他端に可動自在に取り付けられ裏面が地面に接地する足基底部を備えた一対の足部とからなり、脚部は任意の角度に制御可能な複数の関節アクチュエータが連結した構造とされ、関節アクチュエータの動作を制御して所望の姿勢を形成する脚式二足ロボットであって、
胴体部内に設置された、ロボットの動きに応じた加速度を検出する加速度検出手段と、足基底部に設けられた、足基底部の着床又は離床状態を検出するスイッチ手段と、スイッチ手段により足基底部が離床状態から着床状態へ変化したことを検出した時のタイミングの、加速度検出手段の加速度検出値に基づき、ロボットの着地衝撃が軽減される方向へ姿勢を制御するための制御信号を生成する姿勢制御手段と、姿勢制御手段により生成された制御信号に基づいて、複数の関節アクチュエータの関節角をそれぞれ制御する関節角制御手段とを有することを特徴とする。
In order to achieve the above object, the present invention comprises an upper body part and a lower body part, and the upper body part includes at least a body part, a head attached to the upper part of the body part, and both side surfaces of the body part. The lower body part is composed of a pair of legs that are movably attached, and the lower body part is a pair of legs that are attached to the body part, and a leg that is movably attached to the other end of the leg part and the back surface is grounded to the ground. A leg type that consists of a pair of feet with a base, and the legs are structured by connecting a plurality of joint actuators that can be controlled to an arbitrary angle, controlling the movement of the joint actuators to form a desired posture A biped robot,
Acceleration detecting means for detecting acceleration according to the movement of the robot installed in the torso, switch means for detecting the landing or leaving state of the foot base, provided on the foot base, and the foot by the switch means Based on the acceleration detection value of the acceleration detection means at the timing when it is detected that the base portion changes from the leaving state to the landing state, a control signal for controlling the posture in a direction in which the landing impact of the robot is reduced It is characterized by having posture control means to be generated and joint angle control means for controlling joint angles of a plurality of joint actuators based on control signals generated by the posture control means.

この発明では、ロボットが離床した後着床する瞬間のタイミングをスイッチ手段で検出し、そのスイッチ手段の検出時点における加速度検出手段の加速度検出値に基づいて、姿勢制御手段によりロボットの着地衝撃が軽減される方向へ姿勢を制御するための制御信号を生成して関節角制御手段に供給するようにしたため、ロボットが完全に着床した時のロボットの着地衝撃が軽減される方向への重心位置補正を行うことができる。   In this invention, the timing of the moment of landing after the robot leaves the floor is detected by the switch means, and the landing impact of the robot is reduced by the attitude control means based on the acceleration detection value of the acceleration detection means at the time of detection of the switch means. Since the control signal for controlling the posture in the direction to be generated is generated and supplied to the joint angle control means, the gravity center position correction in the direction in which the landing impact of the robot is reduced when the robot is completely landed It can be performed.

本発明によれば、ロボットが離床した後着床する瞬間の加速度検出値に基づいて、ロボットの着地衝撃が軽減される方向への姿勢制御を行い、姿勢制御により補正された重心位置となる目標関節角に関節アクチュエータを制御することにより、ロボットが完全に着床した時のロボットの着地衝撃が軽減される方向への重心位置補正が行われ、その結果、必要最小限の姿勢補正により、安定した着地を実現できる。   According to the present invention, based on the acceleration detection value at the moment of landing after the robot leaves the floor, the posture control is performed in a direction in which the landing impact of the robot is reduced, and the center of gravity position corrected by the posture control is obtained. By controlling the joint actuator to the joint angle, the center of gravity is corrected in the direction that reduces the landing impact of the robot when the robot has completely landed. Landing can be realized.

次に、本発明の実施の形態について図面と共に説明する。図1(a)、(b)は本発明になる脚式二足ロボットの一実施の形態の正面図、左側面図を示す。同図(a)、(b)に示すように、この実施の形態の脚式二足ロボットは、胴体部1と、胴体部1の下部に可動自在に取り付けられた腰部2と、胴体部1の両側面に可動自在に取り付けられた2つの腕部3と、胴体部1の上部に取り付けられた頭部4とからなる上体部7と、2つの脚部5と、脚部5の他端に可動自在に取り付けられた2つの足部6とからなる下体部8とから構成されている。   Next, embodiments of the present invention will be described with reference to the drawings. 1A and 1B are a front view and a left side view of an embodiment of a legged biped robot according to the present invention. As shown in FIGS. 1A and 1B, the legged biped robot of this embodiment includes a body part 1, a waist part 2 movably attached to the lower part of the body part 1, and a body part 1. An upper body portion 7 including two arm portions 3 movably attached to both side surfaces of the body, a head portion 4 attached to an upper portion of the body portion 1, two leg portions 5, and the other leg portions 5. It is comprised from the lower body part 8 which consists of the two leg | foot parts 6 attached to the end so that movement was possible.

脚部5の、足部6が取り付けられた端部とは反対側端部は腰部2に可動自在に取り付けられている。ロボット全体の重心は概ね胴体部1の中心付近にあり、その付近に重心方向加速度を検出するための加速度センサ9が付設されている。上記の各部は、自由度を持った関節で連結され、2つの脚部5のそれぞれは図2に示すように股関節ヨウ軸10、股関節ロール軸11、股関節ピッチ軸12、膝ピッチ軸13、足首ロール軸14、足首ピッチ軸15の計6軸の自由度を持つ。   The end of the leg 5 opposite to the end to which the foot 6 is attached is movably attached to the waist 2. The center of gravity of the entire robot is approximately in the vicinity of the center of the body 1, and an acceleration sensor 9 for detecting the acceleration in the center of gravity direction is provided near the center. Each of the above parts is connected by a joint having a degree of freedom, and each of the two legs 5 has a hip joint yaw axis 10, a hip roll axis 11, a hip pitch axis 12, a knee pitch axis 13, an ankle as shown in FIG. The roll shaft 14 and the ankle pitch shaft 15 have a total of six degrees of freedom.

一方、図3に示すように、足部6は概ね長方形の足基底部16が、足基底部16と足上部構造17との間の概略4隅に配置されたストローク型のプッシュスイッチ18を介して接地面鉛直方向にスイッチ18のストローク可動を許容するよう、足上部構造17に保持された構造とされている。スイッチ18はその可動範囲において適度な弾性を持っており、ロボットが遊脚中はその弾性により足基底部16を足上部構造17から一定量離すだけの付勢力を保持している。   On the other hand, as shown in FIG. 3, the foot portion 6 has a generally rectangular foot base portion 16 via a stroke type push switch 18 disposed at approximately four corners between the foot base portion 16 and the foot upper structure 17. Thus, the structure is held by the foot upper structure 17 so as to allow the switch 18 to move in the vertical direction on the ground surface. The switch 18 has an appropriate elasticity in its movable range, and maintains an urging force enough to separate the foot base 16 from the foot upper structure 17 by the elasticity while the robot is swinging.

これにより、ロボットの全重量が足部6にかからないロボットの離床時は図3(a)に18aで示すように、スイッチ18のアクチュエータ部が最大距離突出してスイッチオフ状態にあり、着地の瞬間は同図(b)に18bで示すように、スイッチ18のアクチュエータ部が若干押されることによりスイッチ18がオンとなり、着地(接地)完了するとロボットの全重量が足部6にかかるために、同図(c)に18cで示すように、スイッチ18のアクチュエータ部は最大距離押されたスイッチオン状態となる。なお、スイッチ18の構造そのものは、本発明の要旨とは直接の関係はないので、その説明を省略する。   Thus, when the robot leaves the floor where the total weight of the robot does not apply to the foot 6, as shown by 18a in FIG. 3 (a), the actuator part of the switch 18 protrudes the maximum distance and is in the switch-off state. As shown by 18b in FIG. 8B, the switch 18 is turned on when the actuator portion of the switch 18 is slightly pushed, and when the landing (grounding) is completed, the entire weight of the robot is applied to the foot portion 6. As indicated by 18c in (c), the actuator portion of the switch 18 is switched on by being pushed the maximum distance. Note that the structure of the switch 18 itself is not directly related to the gist of the present invention, and the description thereof is omitted.

また、本実施の形態では、例えば胴体部1内に信号処理装置が内蔵されている。図4はこの信号処理装置の一実施の形態のブロック図を示す。同図において、姿勢制御部21はロボットの姿勢を制御するための姿勢制御信号を出力する。センサ処理装置22は、スイッチ18がオンした時点の加速度センサ9の加速度情報を記憶して姿勢制御部21へ出力する。関節角制御部23は関節アクチュエータ24の関節角を制御する。また、関節アクチュエータ24は、胴体部1と腕部3とを連結する関節、上体部7と下体部8とを連結する関節、図2に示した2つの脚部5に設けられた股関節ヨウ軸10、股関節ロール軸11、股関節ピッチ軸12、膝ピッチ軸13、足首ロール軸14、足首ピッチ軸15などからなり、制御信号によりそれらの角度(関節角)が制御される構成とされている。制御された関節角は、関節角制御部23にフィードバックされる。   In the present embodiment, for example, a signal processing device is built in the body portion 1. FIG. 4 shows a block diagram of an embodiment of this signal processing apparatus. In the figure, the posture control unit 21 outputs a posture control signal for controlling the posture of the robot. The sensor processing device 22 stores the acceleration information of the acceleration sensor 9 at the time when the switch 18 is turned on and outputs it to the attitude control unit 21. The joint angle control unit 23 controls the joint angle of the joint actuator 24. Further, the joint actuator 24 is a joint that connects the body part 1 and the arm part 3, a joint that connects the upper body part 7 and the lower body part 8, and a hip joint arm provided on the two leg parts 5 shown in FIG. The shaft 10, the hip joint roll shaft 11, the hip joint pitch shaft 12, the knee pitch shaft 13, the ankle roll shaft 14, the ankle pitch shaft 15, etc., and these angles (joint angles) are controlled by a control signal. . The controlled joint angle is fed back to the joint angle control unit 23.

次に、本実施の形態の動作について説明する。ここでは、動作の一例として鉛直上方向へのジャンプ着地動作について述べる。すなわち、図1に示したロボット20が図5(a)に示すように、ジャンプして両足が地面21から離れた後、自重により自然落下して図5(b)に示すように着地(着床)し、続いて、本実施の形態では図5(c)に示すように、脚部5を更に屈曲して重心位置補正をする。   Next, the operation of the present embodiment will be described. Here, a jump landing operation in the vertically upward direction will be described as an example of the operation. That is, as shown in FIG. 5A, the robot 20 shown in FIG. 1 jumps and both feet separate from the ground 21, and then naturally falls due to its own weight, and landing (landing) as shown in FIG. 5B. Then, in this embodiment, as shown in FIG. 5C, the leg 5 is further bent to correct the center of gravity.

このジャンプ着地動作の場合、図5(c)に示した重心位置補正動作を行わない時のロボットの速度とスイッチ18のスイッチタイミングとは、図6(a)に示すようになる。すなわち、ロボットが図5(a)に示すようにジャンプし、両足が地面より離れて離床時に得られた初速度に応じ上昇する間は、ロボットの速度は図6(a)にIで示すように正方向に増加するが、その後自重により自然落下状態に入ると速度は負方向に増加し、時刻t2の接地完了後も着地時の衝撃を吸収しきれずに減衰振動する。なお、スイッチ18は、図6(a)にIIで示すように、接地の瞬間の時刻t1で図3(b)に示したオン状態となり、以後図3(c)に示すオン状態が継続する。   In the case of this jump landing operation, the speed of the robot and the switch timing of the switch 18 when the gravity center position correcting operation shown in FIG. 5C is not performed are as shown in FIG. That is, while the robot jumps as shown in FIG. 5 (a) and both feet move away from the ground and rise according to the initial speed obtained when leaving the floor, the speed of the robot is shown by I in FIG. 6 (a). However, when entering a natural fall state due to its own weight, the speed increases in the negative direction, and even after the completion of the ground contact at time t2, the impact at the time of landing cannot be absorbed and damped and oscillated. Note that, as indicated by II in FIG. 6A, the switch 18 is turned on as shown in FIG. 3B at time t1 at the moment of grounding, and thereafter the ON state shown in FIG. 3C continues. .

これに対し、本実施の形態では、ロボットが図5(a)に示すようにジャンプし両足が地面より離れ離床時に得られた初速度に応じ上昇する間は、ロボットの速度は図6(b)にIIIで示すように正方向に増加し、その後自重により自然落下状態に入ると速度は負方向に増加する点は重心位置補正を行わない時と同様であるが、本実施の形態では、図6(b)に示す時刻t2でロボットが図5(b)に示すように足裏が着地を始めると、図3に示した足基底部16の一部または全体が押され、足基底部16と足上部構造17との間の概略4隅に配置された4つのスイッチ18のいずれか一つ又は複数が同時に、図3(b)に示したオン状態となる。この4つのスイッチ18のうち最初にオンしたスイッチのオン時刻を図6(b)にt1で示す。スイッチ18のスイッチタイミングは図6(b)にIIで示され、これは図6(a)のスイッチタイミングと同じである。   On the other hand, in this embodiment, while the robot jumps as shown in FIG. 5A and both feet move away from the ground and rise according to the initial speed obtained at the time of getting off, the robot speed is as shown in FIG. ) Is increased in the positive direction as indicated by III, and then the point where the speed increases in the negative direction when entering a natural fall state due to its own weight is the same as when the center of gravity position correction is not performed. When the robot starts landing at the time t2 shown in FIG. 6B as shown in FIG. 5B, a part or the whole of the foot base portion 16 shown in FIG. Any one or more of the four switches 18 arranged at approximately four corners between 16 and the foot upper structure 17 are simultaneously turned on as shown in FIG. The on time of the first switch that is turned on among the four switches 18 is indicated by t1 in FIG. 6B. The switch timing of the switch 18 is indicated by II in FIG. 6 (b), which is the same as the switch timing of FIG. 6 (a).

本実施の形態のロボット内の図4のブロック図中のセンサ処理装置22は、4つのスイッチ18のうち最初のスイッチがオンした時刻t1で加速度センサ9の値(加速度情報)を記憶し、姿勢制御部21へ出力する。この時の加速度センサ9の値(加速度情報)は、ロボットが完全に着床に至る寸前のロボット落下速度を意味する。   The sensor processing device 22 in the block diagram of FIG. 4 in the robot of the present embodiment stores the value (acceleration information) of the acceleration sensor 9 at the time t1 when the first switch among the four switches 18 is turned on, and the posture Output to the control unit 21. The value (acceleration information) of the acceleration sensor 9 at this time means the robot drop speed immediately before the robot reaches the floor completely.

次に、ロボットの姿勢制御部21は、予め設定された姿勢に対し重心が着地衝撃を吸収する方向へ、すなわちロボットがしゃがむ体勢になるよう、検出したスイッチ18のオン時刻t1での落下速度に応じた重心位置補正量を決定する。これに基づき、姿勢制御部21は関節角制御部23に供給する脚部関節角目標値を再設定する。関節角制御部23は再設定された脚部関節角目標値に追従するよう、関節アクチュエータ24(ここでは、図2に示した脚部5の6軸10〜15のうち、11〜15)の関節角を制御する。関節アクチュエータ24の実関節角は関節角制御部23にフィードバックされ、関節アクチュエータ24が正確に目標値に制御され、ロボットがしゃがむ体勢となるようにされ、着地衝撃を吸収させる。   Next, the posture control unit 21 of the robot sets the detected drop speed at the on-time t1 of the switch 18 so that the center of gravity absorbs the landing impact with respect to the preset posture, that is, the posture in which the robot squats down. A corresponding center-of-gravity position correction amount is determined. Based on this, the posture control unit 21 resets the leg joint angle target value to be supplied to the joint angle control unit 23. The joint angle control unit 23 follows the reset leg joint angle target value so that the joint actuator 24 (here, 11 to 15 of the six axes 10 to 15 of the leg 5 shown in FIG. 2). Control the joint angle. The actual joint angle of the joint actuator 24 is fed back to the joint angle control unit 23 so that the joint actuator 24 is accurately controlled to the target value so that the robot is in a posture of squatting and absorbs the landing impact.

以上の動作により、ロボットは着床時の落下速度に応じた着床後の安定規範となる重心位置補正を得、図5(c)に示すような安定かつ適度なしゃがみこみ動作を実現できる。これにより、ロボットの速度は時刻t2以降、図6(b)にIIIで示すように、短時間で0に収束する。このように、本実施の形態によれば、ロボットは離床、着床のタイミングをロボットの構造により明確に定めロボットが持つ加速度センサ9によりロボットが完全に着床に至る直前のロボット速度を検出することにより、ロボットが必要最小限の姿勢補正により、安定した着地を実現できる。   With the above operation, the robot obtains the center-of-gravity position correction as a stability standard after landing according to the falling speed at the time of landing, and can realize a stable and appropriate squatting operation as shown in FIG. Thereby, the speed of the robot converges to 0 in a short time after time t2, as indicated by III in FIG. 6B. As described above, according to this embodiment, the robot determines the timing of getting out and landing clearly by the structure of the robot and detects the robot speed immediately before the robot reaches the landing completely by the acceleration sensor 9 of the robot. As a result, the robot can achieve a stable landing with minimum necessary posture correction.

なお、本実施の形態では、ロボットがジャンプした後、完全着床(床反力を全て受けるタイミング)する前に、着床時の落下速度に応じた着床後の安定規範となる重心位置補正量を得る点に特徴があり、その重心位置補正量による関節アクチュエータ24の制御を完全着床時に終えるものではなく、実際にはその制御は完全着床後も続くが、ロボットの速度は時刻t2以降、図6(b)にIIIで示すように、短時間で0に収束する。   In this embodiment, after the robot jumps and before complete landing (timing to receive all floor reaction force), the center of gravity position correction becomes a stability criterion after landing according to the falling speed at the time of landing. The control of the joint actuator 24 based on the center-of-gravity position correction amount does not end at the time of complete landing, and actually the control continues even after complete landing, but the speed of the robot is at time t2. Thereafter, as indicated by III in FIG. 6B, it converges to 0 in a short time.

なお、本発明は以上の実施の形態に限定されるものではなく、以下の各種の実施例を含むものである。   In addition, this invention is not limited to the above embodiment, The following various examples are included.

図7は本発明になる脚式二足ロボットの実施例1の概略外観図を示す。本実施例の脚式二足ロボット25は、体操競技を実現するロボットであり、例えば鉄棒26を使って体操選手の高度の技を真似したり、あるいは人間ではできないような技を行った後の着地は難しく、通常のロボットであればよろけるか転倒することもしばしばある。しかし、本実施例の脚式二足ロボット25は、着地は基本的には膝などの関節により衝撃を緩衝して行い、その直後の着地時の微妙なバランスの比較的長い期間内において、重心移動を行うことにより、倒れにくくすることができる。   FIG. 7 shows a schematic external view of a legged biped robot according to the first embodiment of the present invention. The legged biped robot 25 of the present embodiment is a robot that realizes gymnastics. For example, after using the iron bar 26 to imitate the advanced skill of a gymnast, or after performing a technique that cannot be performed by humans. Landing is difficult, and if it is a normal robot, it will often fool or fall. However, the legged biped robot 25 of the present embodiment basically performs landing by buffering the impact with a joint such as a knee, and the center of gravity is within a relatively long period of delicate balance at the time of landing. By moving, it can be made difficult to fall down.

図8は本発明になる脚式二足ロボットの実施例2の概略外観図を示す。本実施例の脚式二足ロボット28は、足部の下にスプリング29を持っていて、スプリング29の弾性力を利用してジャンプするロボットである。本実施例の脚式二足ロボット28は、着地直後からはスプリング29が最大に縮むまでの比較的長い期間内において、重心移動を最適位置に行うことができ、これにより倒れにくくすることができる。   FIG. 8 is a schematic external view of a legged biped robot according to a second embodiment of the present invention. The legged biped robot 28 of this embodiment is a robot that has a spring 29 under the foot and jumps using the elastic force of the spring 29. The legged biped robot 28 according to the present embodiment can move the center of gravity to the optimal position within a relatively long period from the time of landing until the spring 29 contracts to the maximum, thereby making it difficult to fall down. .

図9は本発明になる脚式二足ロボットの実施例3の概略外観図を示す。本実施例の脚式二足ロボット30は、トランポリン31を用いて演技するロボットである。脚式二足ロボット30は、ジャンプしてから足部がトランポリン31に着床してから、次にトランポリン31からジャンプするまでの期間は、トランポリン31が着地の衝撃により最下点に達してから復元する力を利用するため、比較的長い時間がある。   FIG. 9 is a schematic external view of a legged biped robot according to a third embodiment of the present invention. The legged biped robot 30 of the present embodiment is a robot that acts using a trampoline 31. The legged biped robot 30 has a period from when the foot reaches the trampoline 31 after the jump until the next jump from the trampoline 31 until the trampoline 31 reaches the lowest point due to the impact of landing. There is a relatively long time to use the power to restore.

この時間を利用して脚式二足ロボット30は、落下速度に応じた重心位置補正量を決定し、これに基づき、脚部関節角目標値を再設定し、再設定された目標関節角に追従するよう図2に示した6軸10〜15を持つ脚部5を制御することにより、重心移動を次のジャンプに備えた最適位置に行うことができる。なお、脚式二足ロボット30は、足部だけでなく、尻部や上体部にもスイッチ18に相当するスイッチを設けることも考えられる。   Using this time, the legged biped robot 30 determines the center-of-gravity position correction amount according to the falling speed, resets the leg joint angle target value based on this, and sets the target joint angle to the reset target joint angle. By controlling the leg 5 having the six axes 10 to 15 shown in FIG. 2 so as to follow, the center of gravity can be moved to the optimum position for the next jump. The legged biped robot 30 may be provided with a switch corresponding to the switch 18 not only at the foot but also at the buttocks and the upper body.

本発明の一実施の形態の正面図及び左側面図である。It is the front view and left view of one embodiment of this invention. 図1中の脚部の一例の詳細構成を示す図である。It is a figure which shows the detailed structure of an example of the leg part in FIG. 図1中の脚部の一例の構造説明図である。It is structure explanatory drawing of an example of the leg part in FIG. 本発明のロボット内に設けられる信号処理装置の一実施の形態のブロック図である。It is a block diagram of one embodiment of a signal processing device provided in the robot of the present invention. 本発明の一実施の形態の鉛直上方向へのジャンプ着地動作を示す図である。It is a figure which shows the jump landing operation | movement to the vertical upward direction of one embodiment of this invention. ロボット速度とスイッチタイミングとの関係を重心位置補正なしの従来と重心位置補正ありの本発明の実施の形態とを対比して示す図である。It is a figure which shows the relationship between a robot speed and switch timing in contrast with the embodiment of this invention with a center-of-gravity position correction | amendment and the prior art without center-of-gravity position correction. 本発明ロボットの実施例1の概略外観図である。It is a schematic external view of Example 1 of the robot of the present invention. 本発明ロボットの実施例2の概略外観図である。It is a general | schematic external view of Example 2 of the robot of this invention. 本発明ロボットの実施例3の概略外観図である。It is a schematic external view of Example 3 of the robot of the present invention.

符号の説明Explanation of symbols

1 胴体部
2 腰部
3 腕部
4 頭部
5 脚部
6 足部
7 上体部
8 下体部
9 加速度センサ
10 股関節ヨウ軸
11 股関節ロール軸
12 股関節ピッチ軸
13 膝ピッチ軸
14 足首ロール軸
15 足首ピッチ軸
16 足基底部
17 足上部構造
18 プッシュスイッチ
21 姿勢制御部
22 センサ処理装置
23 関節角制御部
24 関節アクチュエータ

DESCRIPTION OF SYMBOLS 1 Torso part 2 Lumbar part 3 Arm part 4 Head part 5 Leg part 6 Foot part 7 Upper body part 8 Lower body part 9 Acceleration sensor 10 Hip joint axis 11 Hip joint roll axis 12 Hip joint pitch axis 13 Knee pitch axis 14 Ankle roll axis 15 Ankle pitch Axis 16 Foot base 17 Upper foot structure 18 Push switch 21 Posture control unit 22 Sensor processing device 23 Joint angle control unit 24 Joint actuator

Claims (1)

上体部と下体部とからなり、前記上体部は、少なくとも胴体部と、その胴体部の上部に取り付けられた頭部と、前記胴体部の両側面に可動自在に取り付けられた一対の腕部とからなり、前記下体部は、前記胴体部に一端が取り付けられた一対の脚部と、前記脚部の他端に可動自在に取り付けられ裏面が地面に接地する足基底部を備えた一対の足部とからなり、前記脚部は任意の角度に制御可能な複数の関節アクチュエータが連結した構造とされ、前記関節アクチュエータの動作を制御して所望の姿勢を形成する脚式二足ロボットであって、
前記胴体部内に設置された、前記ロボットの動きに応じた加速度を検出する加速度検出手段と、
前記足基底部に設けられた、前記足基底部の着床又は離床状態を検出するスイッチ手段と、
前記スイッチ手段により前記足基底部が離床状態から着床状態へ変化したことを検出した時のタイミングの、前記加速度検出手段の加速度検出値に基づき、前記ロボットの着地衝撃が軽減される方向へ姿勢を制御するための制御信号を生成する姿勢制御手段と、
前記姿勢制御手段により生成された前記制御信号に基づいて、前記複数の関節アクチュエータの関節角をそれぞれ制御する関節角制御手段と
を有することを特徴とする脚式二足ロボット。

The upper body part is composed of an upper body part and a lower body part, and the upper body part includes at least a body part, a head attached to an upper part of the body part, and a pair of arms movably attached to both side surfaces of the body part. The lower body part includes a pair of leg parts having one end attached to the body part and a foot base part movably attached to the other end of the leg part and having a back surface grounded to the ground. A leg-type biped robot that has a structure in which a plurality of joint actuators that can be controlled at an arbitrary angle are connected, and a desired posture is formed by controlling the operation of the joint actuators. There,
Acceleration detecting means installed in the body part for detecting acceleration according to the movement of the robot;
Switch means for detecting the landing or getting-off state of the foot base, provided on the foot base;
Based on the acceleration detection value of the acceleration detection means at a timing when the switch means detects that the foot base portion has changed from the bed leaving state to the landing state, the posture in a direction in which the landing impact of the robot is reduced Attitude control means for generating a control signal for controlling
A legged biped robot, comprising: joint angle control means for controlling joint angles of the plurality of joint actuators based on the control signal generated by the posture control means.

JP2005233523A 2005-08-11 2005-08-11 Leg type biped robot Pending JP2007044836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005233523A JP2007044836A (en) 2005-08-11 2005-08-11 Leg type biped robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005233523A JP2007044836A (en) 2005-08-11 2005-08-11 Leg type biped robot

Publications (1)

Publication Number Publication Date
JP2007044836A true JP2007044836A (en) 2007-02-22

Family

ID=37848110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005233523A Pending JP2007044836A (en) 2005-08-11 2005-08-11 Leg type biped robot

Country Status (1)

Country Link
JP (1) JP2007044836A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101460140B1 (en) 2008-04-16 2014-11-11 삼성전자주식회사 Humanoid robot and method for controlling thereof
CN110328689A (en) * 2019-07-09 2019-10-15 达闼科技(北京)有限公司 Robot equivalent detection method, device, equipment and robot
CN111113379A (en) * 2019-12-13 2020-05-08 桂林凯歌信息科技有限公司 Robot based on three-axis acceleration anti-falling protection and control method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101460140B1 (en) 2008-04-16 2014-11-11 삼성전자주식회사 Humanoid robot and method for controlling thereof
CN110328689A (en) * 2019-07-09 2019-10-15 达闼科技(北京)有限公司 Robot equivalent detection method, device, equipment and robot
CN111113379A (en) * 2019-12-13 2020-05-08 桂林凯歌信息科技有限公司 Robot based on three-axis acceleration anti-falling protection and control method thereof
CN111113379B (en) * 2019-12-13 2023-03-14 桂林凯歌信息科技有限公司 Robot based on three-axis acceleration anti-falling protection and control method thereof

Similar Documents

Publication Publication Date Title
KR100687461B1 (en) Robot And Knuckle Apparatus For Robot
JP4513320B2 (en) Robot apparatus and motion control method of robot apparatus
KR100977348B1 (en) Operation control device for leg-type mobile robot and operation control method, and robot device
US6901313B2 (en) Legged mobile robot and control method thereof, leg structure of legged mobile robot, and mobile leg unit for legged mobile robot
KR101537039B1 (en) Robot and control method thereof
US8892257B2 (en) Walking robot and method of controlling the same
JP5083463B2 (en) Walking assist device
JP4277671B2 (en) Walking robot and its foot device
CN112405504B (en) Exoskeleton robot
WO2004033160A1 (en) Robot device operation control device and operation control method
JP2009184022A (en) Apparatus, method and program for robot control
JP2007044836A (en) Leg type biped robot
JP4585252B2 (en) Robot apparatus and walking control method for robot apparatus
Baltes et al. Active balancing using gyroscopes for a small humanoid robot
JP2007007795A (en) Gait data correction method of robot and walking robot
JP4660870B2 (en) Legged mobile robot and control method thereof
JP2009107033A (en) Legged mobile robot and its control method
JP4770990B2 (en) Legged mobile robot and control method thereof
JP5477064B2 (en) Walking assist device
JP2004299035A (en) Feet of leg-type bipedal walking robot and leg-type bipedal walking robot
JP6044452B2 (en) Walking assist device
JP3674787B2 (en) Robot apparatus motion control device, motion control method, and computer program
JP2008126382A (en) Biped mobile robot and its control method
JP2010058253A (en) Control device and method for biped walking robot
JP4010267B2 (en) Walking robot for mitigating landing impact, its control method, and gait data correction program

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20071228

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A977 Report on retrieval

Effective date: 20090730

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A02 Decision of refusal

Effective date: 20091201

Free format text: JAPANESE INTERMEDIATE CODE: A02