JP2007044831A - Method of manufacturing nano-imprinting mold - Google Patents

Method of manufacturing nano-imprinting mold Download PDF

Info

Publication number
JP2007044831A
JP2007044831A JP2005232755A JP2005232755A JP2007044831A JP 2007044831 A JP2007044831 A JP 2007044831A JP 2005232755 A JP2005232755 A JP 2005232755A JP 2005232755 A JP2005232755 A JP 2005232755A JP 2007044831 A JP2007044831 A JP 2007044831A
Authority
JP
Japan
Prior art keywords
mold
conductive layer
resin plate
matrix
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005232755A
Other languages
Japanese (ja)
Other versions
JP4905634B2 (en
Inventor
Tsutomu Morimoto
勉 森本
Nobuhito Miura
伸仁 三浦
Osanori Tsutsui
長徳 筒井
Kazuhiko Fujii
和彦 藤井
Hide Ayukawa
秀 鮎川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AITESU KK
Ites Co Ltd
Original Assignee
AITESU KK
Ites Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AITESU KK, Ites Co Ltd filed Critical AITESU KK
Priority to JP2005232755A priority Critical patent/JP4905634B2/en
Publication of JP2007044831A publication Critical patent/JP2007044831A/en
Application granted granted Critical
Publication of JP4905634B2 publication Critical patent/JP4905634B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Micromachines (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a nano-imprinting mold which includes a master formed of Si, SiO<SB>2</SB>, or the like and having a nano-scale minute structure, the nano-imprinting mold faithfully transferring the minute structure even if an aspect ratio of indentation of the minute structure is as large as 1 or more. <P>SOLUTION: The method of manufacturing the nano-imprinting mold comprises: a step of preparing the master having the minute structure formed in a surface thereof; a step of coating the surface of the master in which the minute structure is formed, with a conductive nano-particle-dispersed liquid; a step of drying the coated conductive nano-particle-dispersed liquid to form a conductive layer on the surface of the master; a step of obtaining a plated master by depositing metallic plating on the surface of the master having the conductive layer formed thereon, according to an electrolytic plating method; and a step of removing the master from the plated master to obtain the mold formed of the conductive layer and the metallic plating. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ナノインプリント用金型の製造方法に関するものである。   The present invention relates to a method for producing a nanoimprint mold.

近年、半導体集積回路に代表されるように、シリコンウエハ等の表面微細構造は更なる微細化・集積化が望まれている。例えばフォトリソグラフィー法では、表面微細構造のパターン転写技術として高精度化が進められてきた。しかし要求されるパターン構造がナノメートルのオーダーになり光露光の光源の波長に近づいた現在では、フォトリソグラフィー技術も限界を迎えつつある。   In recent years, as represented by a semiconductor integrated circuit, further miniaturization and integration of a surface microstructure such as a silicon wafer has been desired. For example, in the photolithography method, high precision has been promoted as a pattern transfer technique for a surface fine structure. However, now that the required pattern structure is on the order of nanometers and approaches the wavelength of the light source for light exposure, the photolithography technology is reaching its limit.

電子ビームを用いたパターン形成も有力であるが、マスクパターンを描画する方法をとるため、要求されるパターン構造が微細化・複雑化するに従いパターン形成に要する時間が飛躍的に長くなる。また、ナノメートルのオーダーの微細なパターンを短時間に、例えば一括してパターン形成しようとすると、電子ビーム描画装置やマスクを含めた全体の機構は大型化・高性能化し、装置コストが高くなる。   Pattern formation using an electron beam is also effective, but since the method of drawing a mask pattern is used, the time required for pattern formation increases dramatically as the required pattern structure becomes finer and more complex. In addition, if a minute pattern of nanometer order is formed in a short time, for example, collectively, the entire mechanism including the electron beam drawing apparatus and the mask becomes larger and higher performance, and the apparatus cost increases. .

そこで近年ナノメートルのオーダーの超微細な表面構造を持つ金型を用いて、レジストや樹脂に表面微細構造を転写するナノインプリント技術が開発されている。ナノインプリント技術は、電子ビーム法に比べて加工時間が短く、パターン形成に必要な装置コストや材料費が少なくて済む。また、量産性にも優れるため、現在非常に注目を集めている。   Therefore, in recent years, nanoimprint technology has been developed in which a surface microstructure is transferred to a resist or resin using a mold having an ultrafine surface structure on the order of nanometers. The nanoimprint technology has a shorter processing time than the electron beam method, and requires less apparatus cost and material cost for pattern formation. In addition, because of its excellent mass productivity, it is currently attracting a great deal of attention.

特許文献1に、ナノインプリント転写装置及び方法が開示されている。特許文献1によればナノインプリント転写するための金型の材料としてシリコンウエハ、各種金属材料、ガラス、セラミック、プラスチック等が列挙されている。しかし、ナノメートルのオーダーの微細なパターンを表面に形成するには、シリコンウエハを用いざるを得ない。ところがシリコンウエハは強度・耐性が弱いため金型としてせいぜい数十回しか使用できないうえ、非常に高価である。   Patent Document 1 discloses a nanoimprint transfer apparatus and method. According to Patent Literature 1, silicon wafers, various metal materials, glass, ceramics, plastics, and the like are listed as mold materials for nanoimprint transfer. However, in order to form a fine pattern on the order of nanometers on the surface, a silicon wafer must be used. However, since silicon wafers have low strength and resistance, they can be used only several tens of times as molds and are very expensive.

特開2004−288783JP-A-2004-288787 Jpn.J.Appl.Phys.Vol41(2002)(4186頁〜4189頁)Jpn.J.Appl.Phys.Vol41 (2002) (pages 4186-4189)

そこで、表面微細構造をもつシリコンウエハを母型とし、この母型を転写した金型を用いてナノインプリントする方法が考えられている。   In view of this, a method has been considered in which a silicon wafer having a surface microstructure is used as a mother die, and nanoimprinting is performed using a die obtained by transferring the mother die.

例えばシリコンウエハの母型にNiスパッタを行い、シリコンウエハ表面の微細構造が転写されたNiの金型を作ることができる。しかしシリコンウエハ表面の凹凸、例えば凹型孔のアスペクト比が1以上になってくると、いわゆるネスト現象が生じてしまう。即ち凹型孔の上部にスパッタ粒子が必要以上に付着し、孔の底部までNi粒子が付着することができなくなる。この結果Ni金型の表面構造は、ナノスケールではシリコンウエハ表面の微細構造を再現することが出来ないこととなる。   For example, Ni sputtering can be performed on a silicon wafer matrix to produce a Ni mold in which the fine structure of the silicon wafer surface is transferred. However, when the unevenness of the silicon wafer surface, for example, the aspect ratio of the concave hole becomes 1 or more, a so-called nest phenomenon occurs. That is, sputtered particles adhere to the top of the concave hole more than necessary, and Ni particles cannot adhere to the bottom of the hole. As a result, the surface structure of the Ni mold cannot reproduce the fine structure of the silicon wafer surface at the nanoscale.

非特許文献1には、Si/SiO母型上にNi無電界メッキとNi電界メッキを施すことにより、ナノインプリントリソグラフィー用の複製のNi金型を製造する方法が記載されている。この方法によれば母型を転写したナノスケールのNi金型を得ることが可能である。しかし、非導電体であるSi等上にNi電界メッキをするため予めNi無電界メッキが必要であり、このNi無電界メッキをするためのSi/SiO表面の前処理が必要となり煩雑である。 Non-Patent Document 1 describes a method of manufacturing a replica Ni mold for nanoimprint lithography by performing Ni electroless plating and Ni electroplating on a Si / SiO 2 matrix. According to this method, it is possible to obtain a nanoscale Ni mold to which a matrix is transferred. However, Ni electroless plating is necessary in advance to perform Ni electroplating on Si or the like, which is a non-conductive material, and the Si / SiO 2 surface pretreatment for performing Ni electroless plating is necessary, which is complicated. .

そこで本発明は、SiやSiO等から形成される母型がナノスケールの微細構造を有し、かつ、当該微細構造の凹凸のアスペクト比が1以上であっても忠実に当該微細構造を転写可能なナノインプリント用金型を容易に、かつ安価に製造する方法を提供する。 Therefore, the present invention faithfully transfers the microstructure even when the matrix formed of Si, SiO 2 or the like has a nanoscale microstructure and the aspect ratio of the irregularities of the microstructure is 1 or more. Provided is a method for easily and inexpensively manufacturing a mold for possible nanoimprinting.

本発明のナノインプリント用金型の製造方法は、表面に微細構造を形成した母型を準備する工程と、前記母型の微細構造を形成した面に導電性ナノ粒子分散液を塗布する工程と、
塗布された前記導電性ナノ粒子分散液を乾燥させて前記母型の面に導電層を形成する工程と、前記導電層が形成された前記母型の表面に電解メッキ法により金属メッキを析出させメッキされた母型を得る工程と、前記メッキされた母型から前記母型を除去して、前記導電層と前記金属メッキからなる金型を得る工程と、を含む。
The method for producing a mold for nanoimprinting according to the present invention includes a step of preparing a matrix having a microstructure formed on the surface, a step of applying a conductive nanoparticle dispersion on the surface on which the microstructure of the matrix is formed,
Drying the applied conductive nanoparticle dispersion to form a conductive layer on the surface of the matrix; and depositing metal plating on the surface of the matrix on which the conductive layer is formed by electrolytic plating. A step of obtaining a plated mother die, and a step of removing the mother die from the plated mother die to obtain a die made of the conductive layer and the metal plating.

また、本発明のナノインプリント用金型の製造方法は、樹脂板及び表面に微細構造を形成した母型を準備する工程と、前記母型の表面に形成した微細構造を、前記樹脂板の面に圧転写する工程と、前記樹脂板の圧転写された面に、導電性ナノ粒子分散液を塗布する工程と、塗布された前記導電性ナノ粒子分散液を乾燥させて前記圧転写された面に導電層を形成する工程と、前記導電層が形成された前記樹脂板の表面に電解メッキ法により金属メッキを析出させメッキされた樹脂板を得る工程と、前記メッキされた樹脂板から前記樹脂板を除去して、前記導電層と前記金属メッキからなる金型を得る工程と、を含み得る。   Further, the method for producing a mold for nanoimprinting of the present invention comprises a step of preparing a resin plate and a mother die having a fine structure formed on the surface, and a fine structure formed on the surface of the mother die on the surface of the resin plate. A step of pressure transfer, a step of applying a conductive nanoparticle dispersion on the pressure-transferred surface of the resin plate, and a step of drying the applied conductive nanoparticle dispersion to the pressure-transferred surface. A step of forming a conductive layer; a step of obtaining a plated resin plate by depositing metal plating on the surface of the resin plate on which the conductive layer is formed by electrolytic plating; and the resin plate from the plated resin plate And removing the conductive layer to obtain a mold made of the conductive layer and the metal plating.

前記母型の素材はSiまたはSiOであり得る。 The matrix material may be Si or SiO 2 .

前記微細構造は突起状または孔状の凹凸を含み得、該凹凸の径は10nm以上1μm以下であり得る。   The microstructure may include protrusions or pores, and the diameter of the unevenness may be 10 nm or more and 1 μm or less.

本発明のナノインプリント用金型の製造方法においては、前記母型を準備する工程は、SiまたはSiOにより形成した平面状の該母型を準備し、この母型の表面に凹凸を含む微細構造を形成する工程であり得る。 In the method for producing a mold for nanoimprinting according to the present invention, the step of preparing the master mold includes preparing a planar master mold formed of Si or SiO 2 , and a microstructure including irregularities on the surface of the master mold. It can be a step of forming.

前記凹凸のアスペクト比は10以下であり得る。   The aspect ratio of the unevenness may be 10 or less.

前記導電性ナノ粒子分散液中の微粒子の径は前記凹凸の径の1/10以下であり得る。   The diameter of the fine particles in the conductive nanoparticle dispersion may be 1/10 or less of the diameter of the unevenness.

前記微粒子の径は前記凹凸の径の1/100以下であり得る。   The diameter of the fine particles may be 1/100 or less of the diameter of the unevenness.

前記導電層の厚さは5nm以下であり得る。   The conductive layer may have a thickness of 5 nm or less.

前記導電性ナノ粒子分散液中の微粒子はITO粒子であり得る。   The fine particles in the conductive nanoparticle dispersion may be ITO particles.

本発明のナノインプリント用金型の製造方法は、母型表面の微細構造物のアスペクト比が1以上であっても、母型の表面構造に忠実に沿った薄い導電層上で電解メッキを行なうので、母型のナノスケールの表面構造を忠実に転写した金型を得ることができる。しかも導電性ナノ粒子分散液を塗布する際の母型表面の前処理も特に必要なく、導電性ナノ粒子分散液を母型表面にスピンコートするという単純な工程を利用して母型の表面構造に忠実に沿った薄い導電層が形成できる。また、容易に電解メッキにより高精度の金型の形成を行なうことができる。   The method for producing a mold for nanoimprinting of the present invention performs electrolytic plating on a thin conductive layer faithfully along the surface structure of the mother mold even when the aspect ratio of the microstructure on the mother mold surface is 1 or more. Thus, a mold that faithfully transfers the nanoscale surface structure of the matrix can be obtained. In addition, there is no need for pretreatment of the surface of the matrix when applying the conductive nanoparticle dispersion, and the surface structure of the matrix is made using a simple process of spin-coating the conductive nanoparticle dispersion onto the matrix. It is possible to form a thin conductive layer faithfully along. In addition, a highly accurate mold can be easily formed by electrolytic plating.

また、本発明に係るナノインプリント用金型は高額な装置を使わず、電解メッキによって成形することができるので、低コストで製造することができる。更に本発明に係るナノインプリント用金型は耐久性や強度に優れたNiやNi・Fe合金等で成形できるので、Siウエハ等を素材とするナノインプリント用の型と異なり多数回ナノインプリントを繰り返すことができる。   In addition, the nanoimprint mold according to the present invention can be formed by electrolytic plating without using an expensive apparatus, and can be manufactured at low cost. Furthermore, since the nanoimprint mold according to the present invention can be formed of Ni or Ni / Fe alloy having excellent durability and strength, the nanoimprint can be repeated many times unlike a nanoimprint mold made of Si wafer or the like. .

本発明のナノインプリント用金型の製造方法を、図1を用いて説明する。以下図中、共通の構成要素の符号はすべて同じものを用いる。   A method for producing a mold for nanoimprinting of the present invention will be described with reference to FIG. In the drawings, the same reference numerals are used for the common components.

本実施形態のナノインプリント用金型の製造方法は、以下の(1)〜(4)の工程を含む。
(1)表面に微細構造を形成した母型10を準備する工程(図1(a))。
(2)母型10の微細構造を形成した面に導電性ナノ粒子分散液を塗布し、乾燥させて導電層50を形成する工程(図1(b))。
(3)導電層50上に電解メッキ法により金属メッキ110を析出させる工程(図1(c))。
(4)導電層50と金属メッキ110からなる金型を、母型10から分離する工程(図1(d))。
The manufacturing method of the nanoimprint mold of the present embodiment includes the following steps (1) to (4).
(1) A step of preparing a mother die 10 having a fine structure formed on the surface (FIG. 1A).
(2) A step of applying the conductive nanoparticle dispersion liquid on the surface of the matrix 10 on which the microstructure is formed and drying to form the conductive layer 50 (FIG. 1B).
(3) A step of depositing a metal plating 110 on the conductive layer 50 by electrolytic plating (FIG. 1C).
(4) A step of separating the mold made of the conductive layer 50 and the metal plating 110 from the mother mold 10 (FIG. 1D).

このように本発明のナノインプリント用金型の製造方法は、表面に微細構造を形成した母型を準備する工程(図1(a))と、前記母型の微細構造を形成した面に導電性ナノ粒子分散液を塗布し、塗布された前記導電性ナノ粒子分散液を乾燥させて前記母型の面に導電層を形成する工程(図1(b))と、前記導電層が形成された前記母型の表面に電解メッキ法により金属メッキを析出させメッキされた母型を得る工程(図1(c))と、前記メッキされた母型から前記母型を除去して、前記導電層と前記金属メッキからなる金型を得る工程(図1(d))とを含む。   As described above, the method for producing a mold for nanoimprinting according to the present invention comprises a step of preparing a mother mold having a fine structure formed on the surface (FIG. 1 (a)), and a surface on which the fine structure of the mother mold is formed. A step of applying a nanoparticle dispersion, drying the applied conductive nanoparticle dispersion to form a conductive layer on the surface of the matrix (FIG. 1B), and forming the conductive layer Depositing metal plating on the surface of the matrix by electrolytic plating to obtain a plated matrix (FIG. 1C), removing the matrix from the plated matrix and removing the conductive layer And a step of obtaining a mold made of the metal plating (FIG. 1D).

図1(a)は、SiやSiO2の表面に、リソグラフィー等の公知技術を用いて凸型の微細構造を形成した母型10の断面図である。母型10の大きさは例えば一辺が1mm〜200mm程度であり、高さは1mm程度であってよい。 FIG. 1A is a cross-sectional view of a mother die 10 in which a convex microstructure is formed on the surface of Si or SiO 2 using a known technique such as lithography. The size of the mother die 10 may be, for example, about 1 mm to 200 mm on a side and about 1 mm in height.

図1(a)で凸型の微細構造は、円柱状や角柱状等の突起物が格子状・千鳥状又はランダムに並んだ構造でもいいし、断面がテーパー状あるいは長方形の畝が平行に並んだ構造でもよく、あるいは複雑に交差した回路の断面であってもよく、構造は特に限定されない。図1(a)において凸型構造物の径は10nm〜1μm、アスペクト比は10以下であってよく、また、構造物同士の間隔は200nm程度であってよい。半導体技術の成果により、Si、SiO2ウエハー表面に上記のようなナノスケールの微細構造を形成することができる。 The convex fine structure in FIG. 1A may be a structure in which projections such as a columnar shape or a prismatic shape are arranged in a lattice shape, a staggered shape, or a random shape, or a ridge having a tapered or rectangular cross section is arranged in parallel. The structure may be a cross section of a circuit that intersects in a complicated manner, and the structure is not particularly limited. In FIG. 1A, the diameter of the convex structure may be 10 nm to 1 μm, the aspect ratio may be 10 or less, and the interval between the structures may be about 200 nm. As a result of semiconductor technology, the above-described nanoscale microstructure can be formed on the Si, SiO 2 wafer surface.

図1(b)において、導電層50は、例えばITO(Indium Tin Oxide)粒子を溶媒に分散させ、更に必要に応じてアルコール等で希釈したペースト状または液状の導電性ナノ粒子分散液を高温乾燥して形成したものである。次工程(3)で非導電体であるSi等の母型10上に電解メッキを行なうため、母型10の表面に導電性ナノ粒子分散液を薄く塗布する。塗布は1回でもよいが、数回の重ね塗りがなされてもよい。ITO粒子等の導電性微粒子の径は、上記凸型等の微細構造の直径の1/10〜1/100以下であることが好ましい。   In FIG. 1 (b), the conductive layer 50 is a high-temperature drying paste or liquid conductive nanoparticle dispersion liquid in which, for example, ITO (Indium Tin Oxide) particles are dispersed in a solvent, and further diluted with alcohol or the like as necessary. Formed. In the next step (3), in order to perform electroplating on the mother die 10 such as Si which is a non-conductor, a conductive nanoparticle dispersion is thinly applied to the surface of the mother die 10. The application may be performed once, but several times of overcoating may be performed. The diameter of the conductive fine particles such as ITO particles is preferably 1/10 to 1/100 or less of the diameter of the fine structure such as the convex shape.

導電性微粒子はITOに特に限定されず、直径5nm程度あるいはそれ以下の他の導電性微粒子であってもよい。例えば微粒子の素材はAu、Ag、Niであってもよい。また本実施形態では、導電性材料の溶媒は導電性ナノ粒子を含む材料をアルコールで10〜50倍に希釈したものを用いたが、上記溶媒に限定されるものではなく、以下のような溶媒を希釈化してもよい。   The conductive fine particles are not particularly limited to ITO, and may be other conductive fine particles having a diameter of about 5 nm or less. For example, the material of the fine particles may be Au, Ag, or Ni. In the present embodiment, the solvent for the conductive material is obtained by diluting a material containing conductive nanoparticles 10 to 50 times with alcohol. However, the present invention is not limited to the above solvent, and the following solvent is used. May be diluted.

即ち、水、トルエン、キシレン、ソルベントナフサ、ノルマルヘキサン、イソヘキサン、シクロヘキサン、メチルシクロヘキサン、ノルマルヘプタン等の炭化水素系溶剤、メタノール、エタノール、ブタノール、プロパノール、フェノキシエタノール、イソプロピルアルコール、テルピオネ−ル、等のアルコール系溶剤、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、DAA(ジアセトンアルコール)等のケトン系溶剤、酢酸エチル、酢酸ブチル、酢酸メトキシブチル、酢酸セロソルブ、酢酸アミル、酢酸ノルマルプロピル、酢酸イソプロピル、乳酸ブチルのエステル系溶剤、メチルセロソルブ、セロソルブ、ブチルセロソルブ、ジオキサン、MTBE(メチルターシャリーブタノール)、ブチルカルビトール等のエーテル系溶剤、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール等のグリコール系溶剤、ジエチレングリコールモノメチルエーテル、トリエチレングリコールモノメチルエーテル、ジエチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテル,3-メトキシ-3-メチル-1-ブタノール等のグリコールエーテル系溶剤、エチレングリコールモノメチルエーテルアセテート、PMA(プロピレングリコールモノメチルエーテルアセテート)、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート等のグリコールエステル系溶剤、塩化メチレン、トリクロロエチレン、パークロロエチレン、HCFC-141B、HCFC-225、ブロモプロパン、クロロホルム等のハロゲン系溶剤、NMP(N-メチルピロリドン)、THF(テトラヒドロフラン)、DMF(ジメチルホルムアミド)、DBE(ニ塩基酸エステル)、EEP(3-エトキシプロピオン酸エチル)等の特殊溶剤、その他、スチレンモノマー、ジオキソラン、γブチロラクトン、DMSO(ジメチルスルホキシド)、DOP(フタル酸ジオクチル)、DINP(フタル酸ジイソノニル)、DBP(フタル酸ジブチル)等であってもよい。これらは、2種以上が混合されて用いられてもよい。また、導電性ナノ粒子を分散させた分散液がさらにこれらの溶媒で希釈されてもよく、界面活性剤を添加してもよい。   That is, hydrocarbon solvents such as water, toluene, xylene, solvent naphtha, normal hexane, isohexane, cyclohexane, methylcyclohexane, normal heptane, alcohols such as methanol, ethanol, butanol, propanol, phenoxyethanol, isopropyl alcohol, terpionol, etc. Solvents, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, DAA (diacetone alcohol) and other ketone solvents, ethyl acetate, butyl acetate, methoxybutyl acetate, cellosolve acetate, amyl acetate, normal propyl acetate, isopropyl acetate, butyl lactate Ester solvents, methyl cellosolve, cellosolve, butyl cellosolve, dioxane, MTBE (methyl tertiary butanol), butyl carbitol Ether solvents such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol and other glycol solvents, diethylene glycol monomethyl ether, triethylene glycol monomethyl ether, diethylene glycol diethyl ether, propylene glycol monomethyl ether, 3-methoxy-3-methyl- Glycol ether solvents such as 1-butanol, glycol ester solvents such as ethylene glycol monomethyl ether acetate, PMA (propylene glycol monomethyl ether acetate), diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate, methylene chloride, trichloroethylene, perchloroethylene , HCFC-141B, HCFC-225, bromopropane , Halogen solvents such as chloroform, special solvents such as NMP (N-methylpyrrolidone), THF (tetrahydrofuran), DMF (dimethylformamide), DBE (dibasic acid ester), EEP (ethyl 3-ethoxypropionate), etc. Styrene monomer, dioxolane, γ-butyrolactone, DMSO (dimethyl sulfoxide), DOP (dioctyl phthalate), DINP (diisononyl phthalate), DBP (dibutyl phthalate), and the like. Two or more of these may be mixed and used. Moreover, the dispersion liquid in which conductive nanoparticles are dispersed may be further diluted with these solvents, and a surfactant may be added.

なお、ITO粒子等の導電性微粒子は導電性ナノ粒子分散液が導電性を保てる程度の濃度で上記溶媒・アルコールに混入する。導電性ナノ粒子分散液における導電性微粒子の濃度は0.1〜0.6重量%であることが好ましい。導電性ナノ粒子分散液は母型10上に薄く塗布されるため、これを乾燥して形成される導電層50は母型10の表面上に一定の、例えば厚さ5nm以下の厚みとなる。乾燥の温度は分散液の溶媒の沸点より高いことが好ましい。例えば、150〜250℃であることが好ましい。   The conductive fine particles such as ITO particles are mixed in the solvent / alcohol at such a concentration that the conductive nanoparticle dispersion can maintain conductivity. The concentration of the conductive fine particles in the conductive nanoparticle dispersion is preferably 0.1 to 0.6% by weight. Since the conductive nanoparticle dispersion is thinly applied on the mother die 10, the conductive layer 50 formed by drying the conductive nanoparticle dispersion has a constant thickness of, for example, 5 nm or less on the surface of the mother die 10. The drying temperature is preferably higher than the boiling point of the solvent of the dispersion. For example, it is preferable that it is 150-250 degreeC.

次に第(3)工程において、導電層50上に公知の方法でNiまたはFe等の電解メッキを行なう。これにより図1(c)のように導電層50上に例えばNiメッキ層100が形成される。このNiメッキ層100の導電層50との接面構造は、母型10の表面構造が転写された構造となる。   Next, in step (3), electrolytic plating such as Ni or Fe is performed on the conductive layer 50 by a known method. Thereby, for example, a Ni plating layer 100 is formed on the conductive layer 50 as shown in FIG. The contact surface structure of the Ni plating layer 100 with the conductive layer 50 is a structure in which the surface structure of the mother die 10 is transferred.

最後に工程(4)において、例えばSi、SiO2等で形成された母型10を、例えばフッ酸を主とした混合溶液により溶解させて除去し、金型100を得る。なお、図1(d)において、金型100は便宜上Niメッキ層上に導電層50が積層されているように図示されているが、導電層50を構成する微粒子は工程(3)の電解メッキの際にNiメッキ層中に拡散していると考えられる。 Finally, in step (4), the mother die 10 formed of, for example, Si, SiO 2 or the like is removed by dissolving with, for example, a mixed solution mainly containing hydrofluoric acid to obtain the mold 100. In FIG. 1D, the mold 100 is shown as a conductive layer 50 laminated on a Ni plating layer for convenience, but the fine particles constituting the conductive layer 50 are electroplated in the step (3). At this time, it is considered that the Ni plating layer has diffused.

母型10の表面構造と同一構造の薄い導電層50上で電解メッキを行なうので、母型10の表面構造が忠実に転写された金型100を得ることができる。   Since electrolytic plating is performed on the thin conductive layer 50 having the same structure as the surface structure of the mother die 10, the mold 100 in which the surface structure of the mother die 10 is faithfully transferred can be obtained.

尚、上記実施形態において母型10は表面に凸状の構造物が形成されたが、図2(a)のように凹状の溝や孔を形成した母型20を用いてもよい。この場合、図2(b)のように、上記金型100とは逆に、凸状の表面構造を持った金型200を得ることができる。   In the above-described embodiment, the mother die 10 has a convex structure formed on the surface, but a mother die 20 having a concave groove or hole may be used as shown in FIG. In this case, as shown in FIG. 2B, a mold 200 having a convex surface structure can be obtained on the contrary to the mold 100.

上記凹状の孔等のアスペクト比が1以上になってくると、従来のようにスパッタによる粒子堆積による金型の製法では上述のようにネスト現象が生じたが、本発明によればこのような不都合を回避することができる。例えば、孔等のアスペクト比が10程度になっても、母型10、20の表面構造を忠実に再現した金型100、200を得ることができる。本発明によれば孔等のアスペクト比が1〜2.5である場合、母型10、20の表面構造をさらに忠実に再現した金型100、200を得ることができる。   When the aspect ratio of the concave hole or the like becomes 1 or more, the nesting phenomenon occurs as described above in the mold manufacturing method by particle deposition by sputtering as in the prior art. Inconvenience can be avoided. For example, even when the aspect ratio of holes and the like is about 10, it is possible to obtain molds 100 and 200 that faithfully reproduce the surface structures of the mother dies 10 and 20. According to the present invention, when the aspect ratio of the hole or the like is 1 to 2.5, it is possible to obtain the molds 100 and 200 that faithfully reproduce the surface structures of the mother dies 10 and 20.

次に、本発明のナノインプリント用金型の製造方法の別の実施形態について、図3を用いて説明する。   Next, another embodiment of the method for producing a nanoimprint mold of the present invention will be described with reference to FIG.

本実施形態のナノインプリント用金型のこの製造方法は、以下の(1)〜(4)の工程を含む。
(1)基板60上に樹脂板70を積層した被転写基板80を準備する工程(図3(a))。
(2)表面に微細構造を形成した母型10(元母型)を準備し、母型10の表面に形成した微細構造を、被転写基板80の樹脂板70の面に圧転写する工程(図3(b))。
(3)母型10を離型する工程(図3(c))。
(4)被転写基板80の圧転写された樹脂板70の面に導電性ナノ粒子分散液を塗布し、高温乾燥させて導電層50を形成し、被転写基板80の導電層50上に電解メッキ法により金属メッキ300を析出させる工程(図3(d))。
(5)導電層50と金属メッキ310からなる金型300を、被転写基板から分離する工程(図3(e))。
This manufacturing method of the nanoimprint mold of the present embodiment includes the following steps (1) to (4).
(1) A step of preparing a transfer substrate 80 in which a resin plate 70 is laminated on a substrate 60 (FIG. 3A).
(2) A step of preparing a master mold 10 (original master mold) having a fine structure formed on the surface and pressure-transferring the fine structure formed on the surface of the master mold 10 onto the surface of the resin plate 70 of the substrate 80 to be transferred ( FIG. 3 (b)).
(3) A step of releasing the mother die 10 (FIG. 3C).
(4) The conductive nanoparticle dispersion is applied to the surface of the pressure-transferred resin plate 70 of the transfer substrate 80 and dried at a high temperature to form the conductive layer 50, and electrolysis is performed on the conductive layer 50 of the transfer substrate 80. A step of depositing a metal plating 300 by a plating method (FIG. 3D).
(5) A step of separating the mold 300 composed of the conductive layer 50 and the metal plating 310 from the substrate to be transferred (FIG. 3E).

工程(1)において、基板60は特に限定されないが、例えばガラスやプラスチックである。樹脂板70の材料も特に限定されず、例えばレジストであってよい。   In the step (1), the substrate 60 is not particularly limited, and is, for example, glass or plastic. The material of the resin plate 70 is not particularly limited, and may be a resist, for example.

工程(1)において樹脂板70表面への圧転写は、樹脂板70表面が軟化した状態で行われることが好ましい。このためには温度50℃〜200℃で母型10の表面を樹脂板70表面にプレスすることによって行なわれることが好ましい。樹脂板70の大きさが25mm四方とすると、プレス力の大きさは約10N以下である。また、母型10を樹脂板70に押し付けたままで樹脂板70を冷却してから、母型10を樹脂板70から離型することが正確な圧転写を行ううえでさらに好ましい。 In the step (1), the pressure transfer to the surface of the resin plate 70 is preferably performed in a state where the surface of the resin plate 70 is softened. For this purpose, it is preferable that the surface of the mother die 10 is pressed onto the surface of the resin plate 70 at a temperature of 50 ° C. to 200 ° C. When the size of the resin plate 70 is 25 mm square, the size of the pressing force is about 10 4 N or less. In addition, it is more preferable to perform accurate pressure transfer by cooling the resin plate 70 while pressing the mother die 10 against the resin plate 70 and then releasing the mother die 10 from the resin plate 70.

被転写基板80は基板60を備えることが好ましいが、樹脂板70のみからなるものであってもよい。   The transferred substrate 80 preferably includes the substrate 60, but may be formed only of the resin plate 70.

工程(3)において母型10を被転写基板80から離型するが、母型10の表面に予め樹脂板70の樹脂が付着しないように離型剤を塗布しておくことにより、容易に図3(c)の離型を行なうことができる。   In step (3), the mother mold 10 is released from the transferred substrate 80. By applying a release agent in advance so that the resin of the resin plate 70 does not adhere to the surface of the mother mold 10, the process can be easily performed. 3 (c) can be released.

工程(4)においては、上記実施形態と同様に被転写基板80上にITOペースト等の導電性ナノ粒子分散液を薄く塗布し、高温乾燥させて導電層50を形成し、続いて導電層50上に電解メッキを行なう。このようにして図3(d)のように導電層50上にNi等のメッキ層310を積層することができる。   In the step (4), a conductive nanoparticle dispersion such as ITO paste is thinly applied on the transfer substrate 80 and dried at a high temperature to form the conductive layer 50 in the same manner as in the above embodiment, and then the conductive layer 50 is formed. Electrolytic plating is performed on the top. In this way, the plating layer 310 of Ni or the like can be laminated on the conductive layer 50 as shown in FIG.

最後に工程(5)において、樹脂板70のみを溶解する溶解液に図3(d)の積層体を浸して樹脂板70を取り除き、図3(e)のように金型300を分離することができる。上記溶解液は、使用する樹脂板70によって自由に選択することができる。   Finally, in step (5), the laminate of FIG. 3 (d) is immersed in a solution that dissolves only the resin plate 70, the resin plate 70 is removed, and the mold 300 is separated as shown in FIG. 3 (e). Can do. The solution can be freely selected depending on the resin plate 70 to be used.

あるいは、樹脂板70は燃焼させることによって除去してもよい。この場合も金型300を基板60等から分離して取り出することができる。   Alternatively, the resin plate 70 may be removed by burning. Also in this case, the mold 300 can be separated from the substrate 60 and taken out.

このように、本実施形態のナノインプリント用金型の製造方法は、樹脂板及び表面に微細構造を形成した母型を準備する工程(図3(a))と、前記母型の表面に形成した微細構造を、前記樹脂板の面に圧転写する工程(図3(b))と、前記樹脂板の圧転写された面(図3(c))に導電性ナノ粒子分散液を塗布し、塗布された前記導電性ナノ粒子分散液を乾燥させて前記圧転写された面に導電層を形成し、前記導電層が形成された前記樹脂板の表面に電解メッキ法により金属メッキを析出させメッキされた樹脂板を得る工程(図3(d))と、前記メッキされた樹脂板から前記樹脂板を除去して、前記導電層と前記金属メッキからなる金型を得る工程(図3(e))と、を含む。   Thus, the nanoimprint mold manufacturing method of the present embodiment was formed on the surface of the matrix and the step of preparing the matrix having a fine structure formed on the resin plate and the surface (FIG. 3A). A step of pressure-transferring the fine structure to the surface of the resin plate (FIG. 3B), and applying a conductive nanoparticle dispersion to the pressure-transferred surface of the resin plate (FIG. 3C); The coated conductive nanoparticle dispersion is dried to form a conductive layer on the pressure-transferred surface, and metal plating is deposited on the surface of the resin plate on which the conductive layer has been formed by electrolytic plating. A step of obtaining the resin plate (FIG. 3D), and a step of removing the resin plate from the plated resin plate to obtain a mold made of the conductive layer and the metal plating (FIG. 3E). )).

上記実施形態では、母型10の表面微細構造とこれを転写した金型100の表面微細構造は反転していたが、本実施形態では母型10と金型300の表面微細構造は一致する。   In the above embodiment, the surface microstructure of the mother die 10 and the surface microstructure of the mold 100 to which the mother die 10 is transferred are reversed, but in this embodiment, the surface microstructure of the mother die 10 and the die 300 is the same.

尚、上記実施形態と同様に、表面に凸状の構造物が形成された母型10に代えて、図2(a)のように凹状の溝や孔を形成した母型20(元母型)を用いてもよい。この場合も上記実施形態で得られる図2(b)の反転構造の金型200と異なり、本実施形態では母型20とこれから得られる金型の表面微細構造は一致する。   As in the above embodiment, instead of the mother die 10 having a convex structure formed on the surface, a mother die 20 (former mother die) in which concave grooves and holes are formed as shown in FIG. ) May be used. Also in this case, unlike the mold 200 having the inverted structure shown in FIG. 2B obtained in the above embodiment, in this embodiment, the surface microstructure of the mother mold 20 and the mold obtained therefrom is the same.

図3に示す上記実施形態においては、母型10を軟化した樹脂面に圧転写するので、母型10は100回以上の多くの回数の繰り返しの使用が可能である。即ち、1個の母型10から多くの被転写基板の作製が可能であり、ナノインプリント用金型の製造コストを下げることができる。   In the above-described embodiment shown in FIG. 3, since the mother die 10 is pressure-transferred onto the softened resin surface, the mother die 10 can be used many times over 100 times. That is, a large number of transfer substrates can be produced from a single mother die 10, and the manufacturing cost of the nanoimprint mold can be reduced.

以上、本発明の実施形態について説明したが、母型10はSi、SiO2ウエハに限定されない。本発明のナノインプリント用金型の製造方法には、ナノスケールの微細構造を表面に形成し得る材料で形成されたあらゆる母型が含まれ得る。 Although the embodiment of the present invention has been described above, the mother die 10 is not limited to a Si or SiO 2 wafer. The method for producing a mold for nanoimprinting of the present invention may include any matrix formed of a material capable of forming a nanoscale microstructure on the surface.

電解メッキはメッキ材料としてNi、Feを用いたが、これらの材料に限定されるわけではなく、本発明のナノインプリント用金型の製造方法には、その他の電解メッキ可能なすべてのメッキ材料を使用し得る。ただし、金型としての強度・耐性に優れた材料が好ましい。   Although electrolytic plating used Ni and Fe as plating materials, it is not limited to these materials, and all other plating materials that can be electroplated are used in the manufacturing method of the nanoimprint mold of the present invention. Can do. However, a material excellent in strength and resistance as a mold is preferable.

その他、本発明は、その主旨を逸脱しない範囲で当業者の知識に基づき種々の改良、修正、変更を加えた態様で実施できるものである。   In addition, the present invention can be carried out in a mode in which various improvements, modifications, and changes are added based on the knowledge of those skilled in the art without departing from the spirit of the present invention.

本発明は、非導電性の母型を転写した金型の製造方法一般に利用可能である。   INDUSTRIAL APPLICABILITY The present invention can be generally used for a method for manufacturing a mold having a non-conductive matrix transferred.

本発明の一実施形態におけるナノインプリント用金型の製造方法の流れ図。The flowchart of the manufacturing method of the metal mold | die for nanoimprint in one Embodiment of this invention. 本発明の他の実施形態における母型とナノインプリント用金型の断面模式図。The cross-sectional schematic diagram of the mother die and the metal mold | die for nanoimprint in other embodiment of this invention. 本発明の更に他の実施形態におけるナノインプリント用金型の製造方法の流れ図。The flowchart of the manufacturing method of the metal mold | die for nanoimprint in further another embodiment of this invention.

符号の説明Explanation of symbols

10,20:母型
50:導電層
60:ガラス基板
70:樹脂板
100,200,300:金型
110、310:メッキ
10, 20: Master mold 50: Conductive layer 60: Glass substrate 70: Resin plate 100, 200, 300: Mold 110, 310: Plating

Claims (9)

表面に微細構造を形成した母型を準備する工程と、
前記母型の微細構造を形成した面に導電性ナノ粒子分散液を塗布する工程と、
塗布された前記導電性ナノ粒子分散液を乾燥させて前記母型の面に導電層を形成する工程と、
前記導電層が形成された前記母型の表面に電解メッキ法により金属メッキを析出させメッキされた母型を得る工程と、
前記メッキされた母型から前記母型を除去して、前記導電層と前記金属メッキからなる金型を得る工程と、
を含むナノインプリント用金型の製造方法。
Preparing a matrix having a microstructure on the surface;
Applying a conductive nanoparticle dispersion on the surface on which the matrix microstructure is formed;
Drying the applied conductive nanoparticle dispersion to form a conductive layer on the surface of the matrix; and
Depositing metal plating on the surface of the matrix on which the conductive layer is formed by electrolytic plating to obtain a plated matrix;
Removing the mother mold from the plated mother mold to obtain a mold comprising the conductive layer and the metal plating;
A method for producing a mold for nanoimprinting, comprising:
樹脂板及び表面に微細構造を形成した母型を準備する工程と、
前記母型の表面に形成した微細構造を、前記樹脂板の面に圧転写する工程と、
前記樹脂板の圧転写された面に、導電性ナノ粒子分散液を塗布する工程と、
塗布された前記導電性ナノ粒子分散液を乾燥させて前記圧転写された面に導電層を形成する工程と、
前記導電層が形成された前記樹脂板の表面に電解メッキ法により金属メッキを析出させメッキされた樹脂板を得る工程と、
前記メッキされた樹脂板から前記樹脂板を除去して、前記導電層と前記金属メッキからなる金型を得る工程と、
を含むナノインプリント用金型の製造方法。
Preparing a resin plate and a matrix having a microstructure formed on the surface;
Pressure-transferring the microstructure formed on the surface of the matrix to the surface of the resin plate;
Applying a conductive nanoparticle dispersion to the pressure-transferred surface of the resin plate;
Drying the applied conductive nanoparticle dispersion to form a conductive layer on the pressure-transferred surface;
A step of depositing metal plating on the surface of the resin plate on which the conductive layer is formed by electrolytic plating to obtain a plated resin plate;
Removing the resin plate from the plated resin plate to obtain a mold made of the conductive layer and the metal plating;
A method for producing a mold for nanoimprinting, comprising:
前記母型の素材がSiまたはSiOである請求項1または請求項2に記載のナノインプリント用金型の製造方法。 The method for producing a mold for nanoimprinting according to claim 1 or 2 , wherein the matrix material is Si or SiO2. 前記微細構造が突起状または孔状の凹凸を含み、該凹凸の径は10nm以上1μm以下である、請求項1ないし3のいずれかに記載のナノインプリント用金型の製造方法。 The method for producing a mold for nanoimprinting according to any one of claims 1 to 3, wherein the microstructure includes protrusions or hole-shaped unevenness, and the diameter of the unevenness is 10 nm or more and 1 µm or less. 前記凹凸のアスペクト比は10以下である、請求項4に記載のナノインプリント用金型の製造方法。 The method for producing a mold for nanoimprinting according to claim 4, wherein the unevenness has an aspect ratio of 10 or less. 前記導電性ナノ粒子分散液中の微粒子の径が前記凹凸の径の1/10以下である、請求項4又は5に記載のナノインプリント用金型の製造方法。 The method for producing a mold for nanoimprinting according to claim 4 or 5, wherein the diameter of the fine particles in the conductive nanoparticle dispersion is 1/10 or less of the diameter of the unevenness. 前記微粒子の径が前記凹凸の径の1/100以下である、請求項6に記載のナノインプリント用金型の製造方法。 The method for producing a mold for nanoimprinting according to claim 6, wherein the diameter of the fine particles is 1/100 or less of the diameter of the unevenness. 前記導電層の厚さが5nm以下である請求項1乃至請求項7に記載のナノインプリント用金型の製造方法。 The method for producing a mold for nanoimprinting according to claim 1, wherein the conductive layer has a thickness of 5 nm or less. 前記導電性ナノ粒子分散液中の微粒子がITO粒子である請求項1乃至請求項8に記載のナノインプリント用金型の製造方法。
The method for producing a mold for nanoimprinting according to claim 1, wherein the fine particles in the conductive nanoparticle dispersion are ITO particles.
JP2005232755A 2005-08-11 2005-08-11 Manufacturing method of nanoimprint mold Expired - Fee Related JP4905634B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005232755A JP4905634B2 (en) 2005-08-11 2005-08-11 Manufacturing method of nanoimprint mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005232755A JP4905634B2 (en) 2005-08-11 2005-08-11 Manufacturing method of nanoimprint mold

Publications (2)

Publication Number Publication Date
JP2007044831A true JP2007044831A (en) 2007-02-22
JP4905634B2 JP4905634B2 (en) 2012-03-28

Family

ID=37848105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005232755A Expired - Fee Related JP4905634B2 (en) 2005-08-11 2005-08-11 Manufacturing method of nanoimprint mold

Country Status (1)

Country Link
JP (1) JP4905634B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009129430A2 (en) * 2008-04-18 2009-10-22 University Of Massachusetts Lowell Methods for forming metal-polymer hybrid tooling for forming parts having micro features
WO2011043086A1 (en) * 2009-10-08 2011-04-14 株式会社バイオセレンタック Method for manufacturing microneedle stamper
WO2011043085A1 (en) * 2009-10-08 2011-04-14 株式会社バイオセレンタック Stamper for microneedle sheet, method for manufacturing the stamper, and method for manufacturing microneedle using the stamper
JP2011530803A (en) * 2008-08-05 2011-12-22 スモルテック アーベー Templates and methods for producing high aspect ratio templates for lithography, and use of templates to drill substrates at the nanoscale
JP2014203826A (en) * 2013-04-01 2014-10-27 ローム・アンド・ハース・エレクトロニック・マテリアルズ,エル.エル.シー. Method of manufacturing patterned transparent conductor
WO2016087551A1 (en) * 2014-12-03 2016-06-09 Université Du Maine Method for producing a nanostructured metal pattern and metal pattern

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2633088B2 (en) * 1990-12-27 1997-07-23 シャープ株式会社 Manufacturing method of stamper
JP2003022585A (en) * 2001-07-06 2003-01-24 Hitachi Maxell Ltd Method for manufacturing stamper, and original disk exposing device
JP2004288845A (en) * 2003-03-20 2004-10-14 Hitachi Ltd Stamper for nano-printing and microstructure transfer method
WO2005063612A1 (en) * 2003-12-26 2005-07-14 Hitachi, Ltd. Fine metal structure, process for producing the same, fine metal mold and device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2633088B2 (en) * 1990-12-27 1997-07-23 シャープ株式会社 Manufacturing method of stamper
JP2003022585A (en) * 2001-07-06 2003-01-24 Hitachi Maxell Ltd Method for manufacturing stamper, and original disk exposing device
JP2004288845A (en) * 2003-03-20 2004-10-14 Hitachi Ltd Stamper for nano-printing and microstructure transfer method
WO2005063612A1 (en) * 2003-12-26 2005-07-14 Hitachi, Ltd. Fine metal structure, process for producing the same, fine metal mold and device
JP2005189128A (en) * 2003-12-26 2005-07-14 Hitachi Ltd Fine metal structure, manufacturing method therefor, fine mold and device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009129430A2 (en) * 2008-04-18 2009-10-22 University Of Massachusetts Lowell Methods for forming metal-polymer hybrid tooling for forming parts having micro features
WO2009129430A3 (en) * 2008-04-18 2010-03-04 University Of Massachusetts Lowell Methods for forming metal-polymer hybrid tooling for forming parts having micro features
JP2011530803A (en) * 2008-08-05 2011-12-22 スモルテック アーベー Templates and methods for producing high aspect ratio templates for lithography, and use of templates to drill substrates at the nanoscale
US9028242B2 (en) 2008-08-05 2015-05-12 Smoltek Ab Template and method of making high aspect ratio template for lithography and use of the template for perforating a substrate at nanoscale
WO2011043086A1 (en) * 2009-10-08 2011-04-14 株式会社バイオセレンタック Method for manufacturing microneedle stamper
WO2011043085A1 (en) * 2009-10-08 2011-04-14 株式会社バイオセレンタック Stamper for microneedle sheet, method for manufacturing the stamper, and method for manufacturing microneedle using the stamper
JP2011078618A (en) * 2009-10-08 2011-04-21 Toray Eng Co Ltd Method for producing stamper for microneedle
JP2011078617A (en) * 2009-10-08 2011-04-21 Toray Eng Co Ltd Stamper for microneedle sheet, and manufacturing method for the same, and manufacturing method for microneedle using the same
JP2014203826A (en) * 2013-04-01 2014-10-27 ローム・アンド・ハース・エレクトロニック・マテリアルズ,エル.エル.シー. Method of manufacturing patterned transparent conductor
WO2016087551A1 (en) * 2014-12-03 2016-06-09 Université Du Maine Method for producing a nanostructured metal pattern and metal pattern
FR3029516A1 (en) * 2014-12-03 2016-06-10 Univ Maine METHOD FOR MANUFACTURING A NANOSTRUCTURED METAL PATTERN AND METALLIC PATTERN

Also Published As

Publication number Publication date
JP4905634B2 (en) 2012-03-28

Similar Documents

Publication Publication Date Title
Liang et al. Self‐assembly of colloidal spheres toward fabrication of hierarchical and periodic nanostructures for technological applications
US10026609B2 (en) Nanoshape patterning techniques that allow high-speed and low-cost fabrication of nanoshape structures
US9028242B2 (en) Template and method of making high aspect ratio template for lithography and use of the template for perforating a substrate at nanoscale
Li et al. Nanofabrication on unconventional substrates using transferred hard masks
Smythe et al. A technique to transfer metallic nanoscale patterns to small and non-planar surfaces
JP4905634B2 (en) Manufacturing method of nanoimprint mold
US8828871B2 (en) Method for forming pattern and mask pattern, and method for manufacturing semiconductor device
US20150283743A1 (en) Base mold and method of fabricating mold
Chen et al. Self-assembly, alignment, and patterning of metal nanowires
Deng et al. Micropatterning of block copolymer solutions
US9631291B2 (en) Controlling dimensions of nanowires
US20100301004A1 (en) Fabrication of metallic stamps for replication technology
CN110891895B (en) Method for micro-and nano-fabrication by selective template removal
JP4550569B2 (en) Electroforming mold and manufacturing method thereof
JP2004314238A (en) Manufacturing method of nanostructure and nanostructure
KR101573052B1 (en) Method for fabrication pattern of nano material
JP5071643B2 (en) Manufacturing method of electronic device
KR102203701B1 (en) A preparation method of micro-nano composite pattern using extraction of nano particles and a preparation method of light guide plate using the same method
KR20220096324A (en) Method for alignment of block copolymer using superfine pattern
JP2004319762A (en) Nanostructure and manufacturing method thereof
JP4414847B2 (en) Electroforming mold and manufacturing method thereof
CN116322283B (en) Preparation method of Josephson junction
US11261085B2 (en) Methods for micro and nano fabrication by selective template removal
KR100978366B1 (en) Method for preparing nano imprinting stamp
Tomioka et al. Fabrication of Au nanorod and nanogap split-ring structures by reactive-monolayer-assisted thermal nanoimprint lithography involving electrodeposition

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080303

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111128

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4905634

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150120

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees