JP2007044160A - Rehabilitation training apparatus for finger exercise - Google Patents
Rehabilitation training apparatus for finger exercise Download PDFInfo
- Publication number
- JP2007044160A JP2007044160A JP2005229986A JP2005229986A JP2007044160A JP 2007044160 A JP2007044160 A JP 2007044160A JP 2005229986 A JP2005229986 A JP 2005229986A JP 2005229986 A JP2005229986 A JP 2005229986A JP 2007044160 A JP2007044160 A JP 2007044160A
- Authority
- JP
- Japan
- Prior art keywords
- finger
- rehabilitation training
- training
- board
- training apparatus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Rehabilitation Tools (AREA)
Abstract
Description
本発明は、指運動のためのリハビリテーション訓練装置に関し、特に、段階的にリハビリテーション訓練を行うようにした訓練装置に関するものである。 The present invention relates to a rehabilitation training apparatus for finger movement, and more particularly to a training apparatus configured to perform rehabilitation training in stages.
従来、指の機能回復を目指したリハビリテーション装置はいくつか存在する。これらは指を受動的に伸展または 屈曲させる器具(例えば、特許文献1、2、3参照。)と、指の筋力をつけるもの(例えば、特許文献4参照。)に大別できる。
脳卒中等の後遺症に苦しむ患者数は150万人をこえる。特に指運動の機能回復は難しく、障害のある側の手を使用することを諦めてしまうことも少なくない。現在、指の機能回復のためのリハビリテーション器具として上記した特許文献1乃至4に記載のものが提唱されているが、いずれも科学的根拠に乏しく、また訓練の進行度合いを定量的に評価することができないなど、多くの問題があった。 The number of patients suffering from sequelae such as stroke exceeds 1.5 million. In particular, it is difficult to recover the function of finger movements, and it is not uncommon for people to give up using the hand on the disabled side. Currently, the devices described in Patent Documents 1 to 4 above are proposed as rehabilitation devices for restoring the function of the fingers, but all of them have poor scientific basis and quantitatively evaluate the progress of training. There were many problems, such as being unable to.
指運動の機能回復を目指すためには、脳の残された領域の可塑性(柔軟性)を最大限に利用し、指運動のための神経回路を再建する必要がある。
本発明は、動物実験により脳の可塑的変化を誘導することが知られている知見を応用した指運動のためのリハビリテーション訓練装置であって、
(1)難易度の異なるくぼみを複数用意することにより、段階的にリハビリテーション訓練を行う、
(2)日々の課題成績を定量化することで、指運動の機能回復を評価する、
(3)くぼみの付いたボードにカメラを設置することで、指運動を至近距離で撮影し、カメラで撮影された指の動きを解析し、機能回復の指標とする、
ことが可能な指運動のためのリハビリテーション訓練装置を提供することを目的とする。
In order to aim for functional recovery of finger movement, it is necessary to reconstruct a neural circuit for finger movement by making maximum use of the plasticity (flexibility) of the remaining area of the brain.
The present invention is a rehabilitation training apparatus for finger movement applying knowledge known to induce plastic changes in the brain through animal experiments,
(1) Rehabilitation training is performed in stages by preparing multiple indentations with different levels of difficulty.
(2) Assessing the functional recovery of finger movements by quantifying daily task results,
(3) By installing a camera on the board with the indentation, the finger movement is photographed at a close range, the movement of the finger photographed by the camera is analyzed, and it is used as an index of function recovery.
An object of the present invention is to provide a rehabilitation training apparatus for finger movement that can be performed.
上記目的を達成するため本発明の指運動のためのリハビリテーション訓練装置は、ボードにくぼみを設け、該くぼみに収納可能な大きさの小寸法の物体を収納し、くぼみ内の物体を指で把握することにより指運動の訓練を行うことを特徴とする。
また、本発明の指運動のためのリハビリテーション訓練装置は、くぼみを複数設け、各々のくぼみの開口面積及び深さを異ならせることを特徴とする。
また、本発明の指運動のためのリハビリテーション訓練装置は、ボードを円板形とするとともに該ボードを中心軸回りに回転自在なように本体部で支持し、開口面積及び深さの異なる複数のくぼみをボードの中心軸回りに配置することを特徴とする。
また、本発明の指運動のためのリハビリテーション訓練装置は、ボードを支持する本体部に、訓練位置にあるくぼみに向けてカメラを設置することを特徴とする。
また、本発明の指運動のためのリハビリテーション訓練装置は、カメラで撮影された指の動きを解析する解析手段を設けることを特徴とする。
In order to achieve the above object, the rehabilitation training apparatus for finger movement according to the present invention is provided with a recess in a board, storing a small-sized object that can be stored in the recess, and grasping the object in the recess with a finger. It is characterized by performing finger movement training.
The rehabilitation training apparatus for finger movement according to the present invention is characterized in that a plurality of depressions are provided, and the opening area and depth of each depression are made different.
The rehabilitation training apparatus for finger movement according to the present invention has a board shape and supports the board by a main body so as to be rotatable about the central axis, and has a plurality of openings having different opening areas and depths. The indentation is arranged around the central axis of the board.
The rehabilitation training apparatus for finger movement according to the present invention is characterized in that a camera is installed in a body portion supporting a board toward a recess at a training position.
Moreover, the rehabilitation training apparatus for finger movement of the present invention is characterized by providing an analysis means for analyzing the movement of a finger taken by a camera.
本発明は、以下のような優れた効果を奏する。
(1)本装置は科学的な知見に基づいたリハビリテーション訓練装置であり、くぼみの開口面積及び深さを変更することにより課題の難易度を自由に調整できるため、回復の初期から後期に至るまで一貫した訓練が可能である。
(2)各くぼみにおける小寸法の物体の取り出し課題の成功率により、機能回復の進捗状況を把握できる。これは、患者本人にとっても理解しやすい指標である。
(3)装置に小型カメラを設置し、指の動きの撮影画像を解析することにより、指運動の変化を詳細に解析することができ、訓練の進行度合い又は機能が回復の度合いを定量的に評価することができる。
(4)本装置を用いることで、指の独立した動きが困難なため手掌全体の動きを用いた代償的な把握のみが可能な回復の前期から、指の独立した動きが可能となる回復の後期に至るまで一貫したリハビリテーション訓練を行うことが可能である。
(5)本装置を用いたリハビリテーション訓練により、脳の機能が回復することが動物実験により明らかにされている。科学的な裏づけがあるため、患者は安心して訓練を行うことができる。
The present invention has the following excellent effects.
(1) This device is a rehabilitation training device based on scientific knowledge, and since the difficulty of the task can be adjusted freely by changing the opening area and depth of the dent, from the early stage to the late stage of recovery Consistent training is possible.
(2) The progress of functional recovery can be grasped by the success rate of the task of taking out a small-sized object in each recess. This is an index that is easy for the patient to understand.
(3) By installing a small camera on the device and analyzing the captured images of finger movements, it is possible to analyze changes in finger movements in detail and quantitatively determine the degree of progress or function of training. Can be evaluated.
(4) By using this device, it is difficult for the finger to move independently, so the recovery of the finger can be performed independently from the previous period of recovery where only compensatory grasping using the movement of the entire palm is possible. It is possible to perform consistent rehabilitation training up to the later stage.
(5) It has been clarified by animal experiments that brain function is restored by rehabilitation training using this device. Because of scientific support, patients can be trained with peace of mind.
本発明に係る指運動のためのリハビリテーション訓練装置を実施するための最良の形態を実施例に基づいて図面を参照して以下に説明する。 The best mode for carrying out the rehabilitation training apparatus for finger movement according to the present invention will be described below with reference to the drawings based on the embodiments.
図1は、指運動のためのリハビリテーション訓練装置の外観を示す斜視図である。
基盤1及び基盤1から立設した支持枠2からなる本体部3には、円板形のボード5が中心軸4回りに回転自在なように支持されている。
円板形のボード5には、開口面積及び深さの異なるくぼみ(以下、「ウェル」ということもある。)6を設ける。図1では直径及び深さの異なる複数の円筒形のくぼみを示しているが、各くぼみの形状は円筒形に限らず円筒部の下部を円錐形にしたすり鉢形、横断面が楕円形をした楕円筒形、直方体形、直方体の下部を下方に膨出させたコンベックス形等、種々の形状を採用することができる。また、ウエル6の数は7個に限らず、訓練の内容に応じて適宜設定する。
円板形のボード5は、留め金16を外すことにより本体部3から取り外し可能であり、工作用ドリルを用いることで、患者の状態や指の長さに合ったウェル6を簡単に設けることができる。円板形のボード5は、本体部3に支持されている状態においてつまみ7を引くことにより、固定が解除され自由に回転できる。また、つまみ7を離すと、いずれかのウェル6が11で示す訓練位置に来た段階でボード5の回転方向の動きが固定されるようになっている。
FIG. 1 is a perspective view showing an appearance of a rehabilitation training apparatus for finger movement.
A disk-shaped board 5 is supported on a main body 3 including a base 1 and a support frame 2 standing from the base 1 so as to be rotatable around a central axis 4.
The disk-shaped board 5 is provided with recesses (hereinafter also referred to as “wells”) 6 having different opening areas and depths. Although FIG. 1 shows a plurality of cylindrical recesses having different diameters and depths, the shape of each recess is not limited to a cylindrical shape, but a mortar shape in which the lower portion of the cylindrical portion is conical, and the cross section is elliptical. Various shapes such as an elliptic cylindrical shape, a rectangular parallelepiped shape, and a convex shape in which a lower portion of the rectangular parallelepiped bulges downward can be adopted. The number of wells 6 is not limited to seven, and is set as appropriate according to the content of training.
The disk-shaped board 5 can be removed from the main body 3 by removing the clasp 16 and a well 6 suitable for the patient's condition and finger length can be easily provided by using a work drill. Can do. The disk-shaped board 5 is released from being fixed and can be freely rotated by pulling the knob 7 while being supported by the main body 3. When the knob 7 is released, the movement of the board 5 in the rotational direction is fixed when any of the wells 6 reaches the training position indicated by 11.
患者は、訓練位置11にあるウェル6に予め収容されている小寸法(最大でも手掌全体で把握可能な寸法)の物体8を取り出す課題を行うことにより、指を用いたリハビリテーション訓練を行うものである。小寸法の物体8としては金属製、セラミックス製あるいは合成樹脂製等からなるパチンコ玉のようなウエル6に収容可能な小さな球状、小豆形状、コンペイトー形状、円筒形状あるいは砕石形状のものが用いられる。場合によっては、物体8として食品を用いることによって、リハビリ意欲の低下した患者のやる気を引き出すことができると考えられる。なお、図1では、小寸法の物体8として小球状のものを示している。
指の機能回復過程では、手掌全体を用いた把握から、親指と人差し指を対立させたつまみ把握(以下、「精密把握」ということがある。)への変化が起こることが多い。そのため、ウェル6の大きさの最大のものは手掌全体で小球を把握可能であることが望ましく、また、ウェル6の大きさの最小のものは精密把握を用いた把握が必要であるものが望ましい。さらに、その中間の大きさのウェル6を設置し、段階的に小さいウェルを用いた訓練を行うことで、精密把握の回復を目指すことができる。
The patient performs rehabilitation training using a finger by performing a task of taking out an object 8 of a small size (a size that can be grasped by the whole palm at the maximum) stored in the well 6 at the training position 11 in advance. is there. As the small-sized object 8, a small spherical, red bean shape, complex shape, cylindrical shape, or crushed stone shape that can be accommodated in a well 6 such as a pachinko ball made of metal, ceramics, or synthetic resin is used. In some cases, by using food as the object 8, it is considered that the patient's motivation for rehabilitation can be reduced. In FIG. 1, a small spherical object 8 is shown as the small-sized object 8.
In the process of recovering the function of a finger, there is often a change from grasping using the entire palm to grasping a thumb with the thumb and index finger opposed (hereinafter, sometimes referred to as “precision grasping”). Therefore, it is desirable that the largest one of the size of the well 6 can grasp a small sphere with the entire palm, and the smallest one of the size of the well 6 needs to be grasped using a precise grasp. desirable. Furthermore, by setting up a well 6 having an intermediate size and performing training using small wells in stages, it is possible to aim at recovery of precise grasp.
課題遂行中の指の動きを至近距離から撮影するために、装置には小型のカメラ9が設置されている。装置とカメラ9を一体型にすることによって、課題遂行中は、訓練位置11に存在する指と、カメラとの距離は常に一定となる。このことにより、撮影の日時が異なっても常に同じ位置から指を撮影することになるので、機能回復時における指の動きの変化を詳細に比較することが可能になる。カメラ9には投光器10が設置してあり、手の影になって暗くなりがちな撮影領域を照らすことができ、より鮮明な画像が得られる。円形のボード5とカメラ9、投光器10を一体型にし、装置全体を小型化することによって、持ち運びが用意になり、例えば車椅子に乗りながら、またはベッドの上でも簡便に訓練を行うことができる。患者は右手を用いた訓練を行う場合と左手を用いた訓練を行う場合が考えられるため、装置の反対側12にもカメラ取り付け部を設け、カメラ位置の切り替えができるようにする。 A small camera 9 is installed in the apparatus in order to photograph the movement of the finger while performing the task from a close range. By integrating the apparatus and the camera 9, the distance between the finger at the training position 11 and the camera is always constant during the task. As a result, since the finger is always photographed from the same position even when the photographing dates and times are different, it is possible to compare in detail the change in finger movement when the function is restored. The projector 9 is provided with a projector 10, which can illuminate a shooting area that tends to be dark as a shadow of a hand, and a clearer image can be obtained. By making the circular board 5, the camera 9, and the projector 10 into a single unit and reducing the size of the entire apparatus, it is possible to carry the apparatus, and for example, training can be performed easily while riding on a wheelchair or on a bed. Since the patient can perform training using the right hand and training using the left hand, a camera mounting portion is provided on the opposite side 12 of the apparatus so that the camera position can be switched.
また必要に応じて、カメラを2つ用いて異なった角度から撮影し、画像の3次元再構成を行うことで、より詳細な指の動きの変化を捕らえることが可能になる。図2に2台のカメラ9、9を装置に設置した場合の模式図を示す。2台のカメラ9、9はいずれも訓練位置11に焦点があっている。それぞれのカメラ9、9は画像記録用機器13に接続されていて、必要な動画像は記録し、画像解析を行うことができる。 If necessary, two more cameras can be used to capture images from different angles, and three-dimensional reconstruction of images can capture more detailed changes in finger movement. FIG. 2 shows a schematic diagram when two cameras 9 and 9 are installed in the apparatus. The two cameras 9 and 9 are both focused on the training position 11. Each of the cameras 9 and 9 is connected to an image recording device 13 so that necessary moving images can be recorded and image analysis can be performed.
訓練の順序としては、まず最大のウェル6を用いて一日1時間程度の訓練を行い、一定個数の小寸法の物体、例えば一日に1000個把握することが出来たら翌日は次の大きさのウェル6に移り、同様の訓練を行う。図1及び2において、14は予備のウェル15(一点鎖線)を設置するための位置を示す下孔であり、予め形成されているウェル6の大きさが急に小さくなることで訓練が停滞した時には、さらに中間の大きさのウェル15を設け、複数の大きさのウェルで交互に訓練を行うことにより、機能回復の進展を促す。また、それぞれのウェル6において毎日10回程度のテスト課題を行うことで、回復の程度を定量的に示すことができる。下孔14の位置に予備のウエル15を形成するには、ボード5を取り外し、下孔14を利用して予備のウエル15を形成すればよい。なお、予備のウエル15は、他のウエル6と同様に予め形成しておくことも可能である。その場合、ウエルの総数は8個になる。 As a training sequence, first, the largest well 6 is used for training for about 1 hour a day, and if the fixed number of small-sized objects, for example, 1000 objects can be grasped per day, the next day is the next size. Go to well 6 and do the same training. In FIGS. 1 and 2, reference numeral 14 is a pilot hole indicating a position for installing a spare well 15 (one-dot chain line), and training has been stagnant due to a sudden decrease in the size of the well 6 formed in advance. In some cases, a medium-sized well 15 is further provided, and training is performed alternately on a plurality of wells to promote the progress of functional recovery. In addition, the degree of recovery can be quantitatively shown by performing test tasks about 10 times daily in each well 6. In order to form the spare well 15 at the position of the lower hole 14, the board 5 may be removed and the spare well 15 may be formed using the lower hole 14. The spare well 15 can be formed in advance in the same manner as the other wells 6. In that case, the total number of wells is eight.
図3にモデル動物を用いて本装置の効果を確認した実験の結果を示す。モデル動物として、人に近い指の運動特性を持つニホンザルを用いた。上段には本装置を用いて行った課題成績の変化を示す。最大の大きさのウェルにおける課題成績を実線で、最小の大きさのウェルにおける課題成績の変化を破線で示す。横軸は損傷後の日数(Days after lesion)を示し、縦軸には各ウェルに対して一日にそれぞれ10回の施行をテスト課題として行い、その中で何回把握することが出来たかという課題の成功率を示している。ニホンザルの運動皮質に人工的脳損傷を作成すると、上肢の運動麻痺が生じ、損傷後最初の約10日間は課題を行うことができなかった。これは、人間の場合において、脳硬塞等により運動を司る部分が損傷してしまった状態に相当する。損傷後10日目以降、課題成績は上昇と下降を繰り返しながら次第に上昇し、損傷後45日で損傷前(prelesion training)と同じ程度に課題成績は改善した。下段には本装置によって撮影された、損傷前と損傷後の指の動きの連続写真を示す。撮影された動画を画像処理し、指の各関節を結んだ線を写真に重ねて示した。損傷前(Before lesion)には親指と人差し指を対立させて小寸法の物体を摘みとる、いわゆる精密把握による把握が見られた。損傷後21日では一時的な課題成績の上昇が見られたが、この時には人差し指の屈曲とともに親指も屈曲してしまい、人差し指の先端部と親指の付け根の外側部付近で挟み込むようにして小寸法の物体を把握していた。損傷後45日目にはそれぞれの指の独立した動きが可能になり、親指と人差し指の先端での把握が再び見られるようになった。 FIG. 3 shows the result of an experiment for confirming the effect of this apparatus using a model animal. As a model animal, a Japanese monkey having a finger movement characteristic close to that of a human was used. The upper part shows the changes in the task results performed using this device. The task results in the largest well are shown by a solid line, and the changes in the task results in the smallest well are shown by a broken line. The horizontal axis shows the number of days after damage (Days after revision), and the vertical axis shows how many times each test was performed 10 times a day for each well. Indicates the success rate of the task. When artificial brain injury was created in the motor cortex of the Japanese monkey, motor paralysis of the upper limbs occurred, and the task could not be performed for the first approximately 10 days after injury. This corresponds to a state in which a part responsible for exercise is damaged due to brain infarction or the like in the case of a human being. From the 10th day after the injury, the task score gradually increased while repeating the rise and fall, and the task score improved to the same extent as the pretraining at 45 days after the injury. The lower row shows a series of photographs of finger movements taken before and after injury taken by this device. The captured video was processed and the lines connecting the joints of the fingers were superimposed on the photo. Before damage (Before region), grasping by so-called precise grasping, in which a thumb and forefinger were opposed to pick up a small-sized object, was observed. On the 21st day after injury, there was a temporary increase in task performance. At this time, the thumb was bent along with the bending of the index finger. I knew the object. On the 45th day after the injury, each finger can move independently, and the grasp of the tip of the thumb and index finger can be seen again.
図4には小寸法の物体を把握した時の把握の方法を、小寸法の物体と親指との関係によって分類したものである。上段と中段の図に示すように、把握方法を、1.人差し指先端と親指のIP関節以遠での把握、2.人差し指先端と親指のIP関節上での把握、3.人差し指先端と親指の貴節骨内側面上での把握、4.人差し指先端と親指のIP関節とMP関節の間での把握、5.人差し指先端と親指のMP関節上での把握、の5つに分類した。また下段には各実験日において、5種類の把握方法の割合の経時変化を示す。 損傷前は100%が1番の把握方法であり、親指の先端部で把握を行っていた。損傷後21日目は、親指のMP関節(指先から数えて二つ目の関節、図4の4.5.)付近で把握し、31日目では親指のIP関節(指先から数えて一つ目の関節、図4の2.3.)付近で把握していたことが分かった。損傷後45日目には損傷前と同じく親指の先端を用いた把握が100%を占めていた。 In FIG. 4, the grasping method when grasping a small-sized object is classified according to the relationship between the small-sized object and the thumb. As shown in the upper and middle figures, the grasping method is as follows: 1. Grasp the index finger tip and thumb beyond the IP joint. 2. grasping of the tip of the index finger and the thumb on the IP joint; 3. grasping the tip of the index finger and the inner side of the noble bone of the thumb; 4. Grasp between index finger tip and thumb IP joint and MP joint; The index finger tip and thumb grasp on the MP joint were classified into five. The lower part shows the change over time of the ratio of the five types of grasping methods on each experimental day. Before the damage, 100% was the number one grasping method, and grasped with the tip of the thumb. On the 21st day after injury, grasp near the MP joint of the thumb (second joint counted from the fingertip, 4.5. In FIG. 4), and on the 31st day, the thumb IP joint (one counted from the fingertip) It turned out that it was grasped in the vicinity of the joint of the eye, 2.3.) In FIG. On the 45th day after the injury, 100% were grasped using the tip of the thumb as before the injury.
図5は、1回の把握において親指と人差し指のなす角度の時間変化を調べたものである。横軸は時間(ミリ秒)であり、縦軸が親指と人差し指のなす角度を示す。損傷前は親指と人差し指のなす角度は安定して90度以内であるのに対して、損傷後21日目、または、31日目では親指と人差し指のなす角度が経時的に大きくなっていた。物体把握時の角度は160度、または、220度程度であった。損傷後45日目の角度変化は損傷前と全く同じではないものの、小球把握時の角度は90度以内であり、損傷前に近付いたと言える。 FIG. 5 shows the time change of the angle between the thumb and the index finger in one grasp. The horizontal axis represents time (milliseconds), and the vertical axis represents the angle between the thumb and index finger. Before the injury, the angle between the thumb and the index finger was stably within 90 degrees, whereas on the 21st or 31st day after the injury, the angle between the thumb and the index finger increased with time. The angle at the time of grasping the object was about 160 degrees or 220 degrees. Although the angle change on the 45th day after the damage is not exactly the same as before the damage, the angle at the time of grasping the small ball is within 90 degrees, and it can be said that the angle approached before the damage.
図6に本装置を用いたリハビリテーション訓練を行ったモデル動物による行動実験の結果を模式的に示す。本装置によって、実験的脳損傷を作成したサルの精密把握の回復が見られた。また回復の過程では、一時的に親指関節付近での代償的な把握が見られ、その後親指先端を用いた精密把握が可能になった。 FIG. 6 schematically shows the results of a behavioral experiment using a model animal that has undergone rehabilitation training using this apparatus. This device showed a recovery of the precise grasp of the monkey that created the experimental brain injury. In the process of recovery, a compensatory grasp was seen near the thumb joint, and then a precise grasp using the tip of the thumb became possible.
図7は、2頭のニホンザルの脳における運動皮質に、同程度の損傷を作成した後、本装置を用いた訓練を行った個体(訓練個体)と本装置を用いた訓練を行わなかった個体(非訓練個体)の課題成績の変化を示したものである。図3と同じく、最大の大きさのウェルにおける課題成績を実線で、最小の大きさのウェルにおける課題成績の変化を破線で示す。横軸は損傷後の日数( Days after lesion)を示し、縦軸は課題の成功率を示している。非訓練個体では小さいウェルにおける課題成績の改善がほとんど見られなかった。 FIG. 7 shows an individual (training individual) who has been trained using the present apparatus and an individual who has not been trained using the present apparatus after creating the same degree of damage to the motor cortex in the brains of two Japanese monkeys. This shows the change in task performance of (untrained individuals). As in FIG. 3, the task results in the maximum size well are indicated by solid lines, and the change in the task results in the minimum size wells are indicated by broken lines. The horizontal axis indicates the number of days after damage (Days after version), and the vertical axis indicates the success rate of the task. Non-trained individuals showed little improvement in task performance in small wells.
図8に訓練個体と非訓練個体の指の動きの違いを模式的に示す。訓練個体では損傷後45日目で指の独立した動きが見られたのに対し、非訓練個体では指の独立した動きが見られず、精密把握も不可能であった。この結果から、本装置を用いたリハビリテーション訓練が指の独立した動きの回復を促進する可能性が考えられる。 FIG. 8 schematically shows the difference in finger movement between the training individual and the non-training individual. The trained individuals showed independent finger movements on the 45th day after injury, whereas the non-trained individuals did not see independent finger movements, and precise grasping was impossible. From this result, it is considered that rehabilitation training using this device may promote recovery of independent finger movement.
図9は、本装置による訓練を行った機能回復個体において、脳内遺伝子変化を調べた図である。機能回復個体では通常個体に比べて、とくに運動前野と呼ばれる脳領域で、GAP・43という遺伝子の発現が亢進していた。この分子は脳の神経回路の変化に伴って発現量が増加することが知られており、したがって本装置による訓練に伴って、失われた脳領域の機能を代償するような神経回路の再構成が脳内で起こっている可能性を示唆する。これまでに提案されたリハビリ装置のなかで、脳内神経回路の再構成を誘導することが知られているものは皆無である。他の装置による訓練でも神経回路の再構成が起きる可能性は否定できないが、本装置を用いた課題のように科学的裏づけのある課題を用いることは、長く苦しいリハビリ生活において患者のリハビリ意欲を向上するのに役立つものである。 FIG. 9 is a diagram in which genetic changes in the brain were examined in the function-recovered individuals trained by this apparatus. In the functionally restored individuals, the expression of the gene GAP · 43 was increased, particularly in the brain region called the premotor cortex, compared to the normal individuals. This molecule is known to increase in expression with changes in the neural circuit of the brain, and as a result of training with this device, reconfiguration of the neural circuit compensates for the function of the lost brain region. Suggests that this is happening in the brain. None of the rehabilitation devices that have been proposed so far are known to induce reconfiguration of neural circuits in the brain. Although it is undeniable that neural network reconfiguration may occur during training with other devices, using scientifically-supported tasks, such as those using this device, will reinforce patient rehabilitation in a long and difficult rehabilitation life. It helps to improve.
1 基盤
2 支持枠
3 本体部
4 中心軸
5 ボード
6 くぼみ(ウエル)
7 つまみ
8 小寸法の物体
9 カメラ
10 投光器
11 訓練位置
13 画像記録用機器
14 予備のウェルの下孔
15 予備のウェル
16 留め金
DESCRIPTION OF SYMBOLS 1 Base 2 Support frame 3 Main-body part 4 Center axis 5 Board 6 Recess (well)
7 Knob 8 Small object 9 Camera 10 Projector 11 Training position 13 Image recording device 14 Spare well pilot hole 15 Spare well 16 Clasp
Claims (5)
5. The rehabilitation training apparatus for finger movement according to claim 4, further comprising analysis means for analyzing movement of a finger photographed by a camera.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005229986A JP2007044160A (en) | 2005-08-08 | 2005-08-08 | Rehabilitation training apparatus for finger exercise |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005229986A JP2007044160A (en) | 2005-08-08 | 2005-08-08 | Rehabilitation training apparatus for finger exercise |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007044160A true JP2007044160A (en) | 2007-02-22 |
Family
ID=37847549
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005229986A Pending JP2007044160A (en) | 2005-08-08 | 2005-08-08 | Rehabilitation training apparatus for finger exercise |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007044160A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104997514A (en) * | 2014-04-16 | 2015-10-28 | 日本光电工业株式会社 | Rehabilitation assistance system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6023054U (en) * | 1980-11-30 | 1985-02-16 | 跡部 秀夫 | finger exercise equipment |
JPH0271563U (en) * | 1988-11-21 | 1990-05-31 | ||
JP2001054587A (en) * | 1999-08-17 | 2001-02-27 | Togami Electric Mfg Co Ltd | Device and method for rehabilitation of finger function |
JP2003250780A (en) * | 2001-12-25 | 2003-09-09 | Japan Science & Technology Corp | Foot movement analyzing system |
-
2005
- 2005-08-08 JP JP2005229986A patent/JP2007044160A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6023054U (en) * | 1980-11-30 | 1985-02-16 | 跡部 秀夫 | finger exercise equipment |
JPH0271563U (en) * | 1988-11-21 | 1990-05-31 | ||
JP2001054587A (en) * | 1999-08-17 | 2001-02-27 | Togami Electric Mfg Co Ltd | Device and method for rehabilitation of finger function |
JP2003250780A (en) * | 2001-12-25 | 2003-09-09 | Japan Science & Technology Corp | Foot movement analyzing system |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104997514A (en) * | 2014-04-16 | 2015-10-28 | 日本光电工业株式会社 | Rehabilitation assistance system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2940824T3 (en) | Systems for the formation of neural bridges of the central nervous system | |
ES2897683T3 (en) | Apparatus for use in the diagnosis and/or treatment of neurological disorders | |
JP6850026B2 (en) | Exercise teaching system and exercise teaching method | |
Van Dijk et al. | Task-oriented gaming for transfer to prosthesis use | |
Volpe et al. | Robotics in the rehabilitation treatment of patients with stroke | |
Dario et al. | Robotics as a future and emerging technology: biomimetics, cybernetics, and neuro-robotics in European projects | |
Mollazadeh et al. | Principal components of hand kinematics and neurophysiological signals in motor cortex during reach to grasp movements | |
JPWO2009028221A1 (en) | Quantitative motor function evaluation system | |
WO2006115841A3 (en) | Computer aided orthodontic treatment planning | |
Menz et al. | Representation of continuous hand and arm movements in macaque areas M1, F5, and AIP: a comparative decoding study | |
Key et al. | Manual restrictions on Palaeolithic technological behaviours | |
Tepe et al. | Classification of emg finger data acquired with myo armband | |
Royer et al. | Goal selection versus process control while learning to use a brain–computer interface | |
Van Ommeren et al. | Detection of the intention to grasp during reaching in stroke using inertial sensing | |
WO2015156696A1 (en) | Device for restoring and developing hand functions | |
JP2024507172A (en) | System for functional rehabilitation and/or pain rehabilitation due to sensorimotor disorders | |
Dwivedi et al. | High-density electromyography based control of robotic devices: On the execution of dexterous manipulation tasks | |
JP2007044160A (en) | Rehabilitation training apparatus for finger exercise | |
Brown et al. | Co-location of force and action improves identification of force-displacement features | |
Hao et al. | Decoding grasp movement from monkey premotor cortex for real-time prosthetic hand control | |
Jo et al. | EEG-EMG hybrid real-time classification of hand grasp and release movements intention in chronic stroke patients | |
Yang et al. | Interactive upper limb training device for arm-reaching and finger pointing exercise | |
Hwang et al. | Channel selection for simultaneous myoelectric prosthesis control | |
Castaño et al. | Shoulder flexion rehabilitation in patients with monoparesia using an exergame | |
US20190088163A1 (en) | Kit, method and apparatus for surgical simulation and/or fine motor skill training for surgical work |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080305 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100729 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100803 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100916 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20101005 |