JP2007044091A - Compact apparatus for radiating near infrared ray - Google Patents

Compact apparatus for radiating near infrared ray Download PDF

Info

Publication number
JP2007044091A
JP2007044091A JP2005228908A JP2005228908A JP2007044091A JP 2007044091 A JP2007044091 A JP 2007044091A JP 2005228908 A JP2005228908 A JP 2005228908A JP 2005228908 A JP2005228908 A JP 2005228908A JP 2007044091 A JP2007044091 A JP 2007044091A
Authority
JP
Japan
Prior art keywords
light
near infrared
irradiation device
cylindrical case
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005228908A
Other languages
Japanese (ja)
Inventor
Masahiro Nishikawa
雅弘 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2005228908A priority Critical patent/JP2007044091A/en
Publication of JP2007044091A publication Critical patent/JP2007044091A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for radiating linearly polarized near infrared ray which is carried to various places at home or in the office, is used easily by anyone when necessary, and is used for various objects to be radiated. <P>SOLUTION: The compact apparatus for radiating near infrared ray comprises a carriable tubular case 3 having a cross section and a length which can be gripped and operated by the fingers of the hand, a light source 4 for radiating near infrared ray and visible light having continuous spectra, a wavelength converting material 6 arranged around the light source for converting the visible light into near infrared ray, a polarizer 8 for linearly polarizing the near infrared light radiated from the light source, a visible light absorbing material 10 arranged between the polarizer 8 and the light source 4 for absorbing and damping the visible light, and an irradiation port 12 for making the near infrared ray pass through the polarizer 8 to be emitted outside. The linearly polarized near infrared ray emitted from the irradiation port 12 is radiated to an object to be radiated. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、動植物や無機物に照射する近赤外線照射装置に関し、更に詳細には、ランダムに偏光した近赤外線を直線偏光化して被照射体に照射する直線偏光近赤外線照射装置に関するものである。   The present invention relates to a near-infrared irradiation device that irradiates animals and plants and inorganic substances, and more particularly to a linearly polarized near-infrared irradiation device that linearly polarizes near-polarized near infrared rays and irradiates an irradiated object.

昔から健康を維持するためにマッサージ、指圧、針治療などが盛んに行われてきたが、近年、めまぐるしい社会環境の変化につれてストレスを原因とした体調不良に悩まされる人々が多い。また、人と同様に動物にもストレスを原因とした様々の病気が発生して飼い主を悩ましている。従って、家庭や職場で手軽に使用でき誰にでも安全に扱え、動物などにも利用できる新しい健康器具の開発が期待されている。   Massage, acupressure, acupuncture, etc. have been actively performed for a long time to maintain health, but in recent years, many people suffer from poor physical condition due to stress as the social environment changes rapidly. In addition, as with humans, animals suffer from various diseases caused by stress, which are bothering their owners. Therefore, it is expected to develop a new health appliance that can be easily used at home or at work, can be safely handled by anyone, and can be used for animals.

実際、病院等の専門機関では、慢性的な痛みに対して知覚神経や交換神経のブロック療法や薬物療法、各種の物理療法などが施されているが、これらの治療方法は、取り扱いに高度な技術が求められ、針の刺しいれに伴う痛みなど患者にかかる負担が大きい。従って、患者に苦痛を与えない治療法が見直されている。   In fact, in specialized institutions such as hospitals, block therapy, drug therapy, and various physical therapies for sensory nerves and exchange nerves are given for chronic pain, but these treatment methods are sophisticated in handling. Technology is required, and the burden on patients such as pain associated with needle sticks is large. Therefore, treatments that do not cause pain to patients are being reviewed.

これまで一般家庭などで使用されてきた健康器具としては、低周波を応用したマッサージ器やホットバックなどの温熱具、赤外線灯を用いた光線治療器などがある。近年、特に病院等の専門機関で注目されているのが、レーザー光を利用したレーザー治療器や近赤外線を照射する近赤外線照射装置などである。   Examples of health appliances that have been used in ordinary homes include massage devices that apply low frequencies, heating devices such as hot bags, and phototherapy devices that use infrared lamps. In recent years, laser therapy devices using laser light, near-infrared irradiation devices that irradiate near-infrared rays, and the like have attracted particular attention in specialized institutions such as hospitals.

レーザー治療器は、低出力で単波長の光線を照射できるので、圧痛点や炎症部位などにピンスポット的に照射し、鎮痛、消炎、創傷治癒に対する有効性が高いが、従来の赤外線治療器は、赤外線ランプから発生する赤外線を含む光を反射鏡で反射させ照射するもので、十分なエネルギー密度をもつ赤外線を照射できなかった。これに反し、近年、特に注目されている近赤外線照射装置は、光線の中でもっとも生体深達性の高い近赤外線をスポット状に照射できる装置である。照射される光エネルギーは、患部の局所において熱エネルギーに変換され、痛みなどの苦痛が全くなく、鍼や温灸のような心地よい刺激感と温感を有している。   Laser therapy devices can irradiate single-wavelength light with low output, so they can be used for pin-spot irradiation or inflammation sites in a pin-spot, and are highly effective for analgesia, anti-inflammation, and wound healing. The light containing infrared rays generated from the infrared lamp is reflected by a reflecting mirror and irradiated, and infrared rays having a sufficient energy density cannot be irradiated. On the other hand, the near-infrared irradiation device that has attracted particular attention in recent years is a device that can irradiate the near-infrared rays having the highest living body depth among the light rays in a spot shape. The irradiated light energy is converted into heat energy in the affected area, and there is no pain and other pains, and there is a pleasant irritation and warm feeling such as acupuncture and warmth.

このような有効性を有する直線偏光近赤外線照射装置に関する先行技術として国際公開公報WO96/21490号公報(特許文献1)が開示されている。この技術は、理学診療用のための近赤外線治療器に関するもので、小さな患部に対しても十分なエネルギー密度を有する近赤外線を照射することができる装置に関するものである。
国際公開公報WO96/21490号公報
International publication WO96 / 21490 (patent document 1) is disclosed as a prior art relating to a linearly polarized near-infrared irradiation device having such effectiveness. This technique relates to a near-infrared treatment device for use in physical practice, and relates to a device that can irradiate a small infrared region with a near-infrared ray having a sufficient energy density.
International Publication No. WO96 / 21490

特許文献1に記載の直線偏光近赤外線照射装置は、照射装置本体と照射部材が分離して配置され、照射装置本体に発光源として大容量のハロゲンランプが用いられている。そのため発熱量が大きく放熱のために大きな冷却用ファンの設置を要し、光ケーブルを通じて照射部材に近赤外線を放射するための複雑な電気制御回路が必要となっている。その結果、照射装置本体の大きさは、幅50cm位、奥行き20cm位、高さ100cm位あり、重量も重くて移動用キャスターにより移動しなければならず、価格的にも非常に高価なものである。また、近赤外線の光束を集光レンズにより絞り込んで強力な近赤外線を照射できるので、取り扱いには細心の注意が要求され、専門家でなければ使用できないものである。更に、使用電源には専用回路が必要で、どこででも使用することができない。従って、家庭や職場のどこででも気軽に利用できるものでなく、病院などの専門機関で専属の係員が使用しているに過ぎない。   In the linearly polarized near-infrared irradiation device described in Patent Document 1, the irradiation device main body and the irradiation member are arranged separately, and a large-capacity halogen lamp is used as the light source in the irradiation device main body. For this reason, a large amount of heat generation is required to install a large cooling fan for heat dissipation, and a complicated electric control circuit for radiating near infrared rays to the irradiation member through an optical cable is required. As a result, the size of the main body of the irradiation device is about 50 cm wide, about 20 cm deep, and about 100 cm high. It is heavy and must be moved by a moving caster, which is very expensive. is there. In addition, since the near-infrared luminous flux can be narrowed down by a condensing lens to irradiate powerful near-infrared rays, handling requires utmost care and can only be used by professionals. Furthermore, the power supply used requires a dedicated circuit and cannot be used anywhere. Therefore, it cannot be easily used anywhere in the home or workplace, and is only used by dedicated staff at specialized institutions such as hospitals.

本発明者は、前述の優れた効能を有する直線偏光近赤外線をどこででも必要な時に利用できるよう本発明を創案した。従って、本発明の目的は、家庭や職場のどこにでも持ち運びできる小型軽量性、必要な時に誰にでも容易に使用できる操作性の良さ、どんな被照射体にも利用可能な安全性を有し、価格的に安価な直線偏光近赤外線照射装置を提供することである。   The inventor of the present invention has devised the present invention so that the linearly polarized near-infrared ray having the above-described excellent effects can be used everywhere when necessary. Therefore, the object of the present invention is small and lightweight that can be carried anywhere in the home or workplace, good operability that can be easily used by anyone when needed, and safety that can be used for any irradiated object. It is to provide a linearly polarized near-infrared irradiation device that is inexpensive in price.

本発明は、上記課題を解決するために提案されたものであって、本発明の第1の形態は、手指で把握操作可能な断面積と長さを有した携帯可能な筒状ケースと、筒状ケース内の所要位置に配置された近赤外線を放射する発光源と、筒状ケース内に配置され前記発光源から放射される近赤外線を直線偏光化するポラライザと、ポラライザを透過した直線偏光近赤外線を外部に放射する筒状ケース先端の照射口と、前記発光源の発光を制御する発光制御器から少なくとも構成され、照射口から放射される直線偏光近赤外線を被照射体に照射する小型近赤外線照射装置である。   The present invention has been proposed in order to solve the above problems, and a first embodiment of the present invention includes a portable cylindrical case having a cross-sectional area and a length that can be grasped and operated by fingers, A light emitting source that emits near infrared rays arranged at a required position in a cylindrical case, a polarizer that is arranged in a cylindrical case and linearly polarizes near infrared rays emitted from the light emitting source, and linearly polarized light that has passed through the polarizer A compact unit that irradiates the irradiated object with linearly polarized near-infrared rays radiated from the irradiation port, comprising at least an irradiation port at the tip of the cylindrical case that radiates near infrared rays to the outside and a light emission controller that controls the light emission of the light source. It is a near infrared irradiation device.

本発明の第2の形態は、第1の形態において、発光源が近赤外線と共に可視光線を連続スペクトルとして発光する小型近赤外線照射装置である。   The 2nd form of this invention is a small near-infrared irradiation apparatus in which a light emission source light-emits visible light as a continuous spectrum with a near infrared ray in the 1st form.

本発明の第3の形態は、第2の形態において、発光源の周囲に可視光線を近赤外線に変換する波長変換材を配置し、ポラライザに入射する近赤外線の強度を増幅する小型近赤外線照射装置である。   According to a third aspect of the present invention, in the second aspect, a small near-infrared radiation that amplifies the intensity of near-infrared light incident on the polarizer by disposing a wavelength conversion material that converts visible light into near-infrared light around the light emitting source. Device.

本発明の第4の形態は、第2又は第3の形態において、ポラライザの前又は後に可視光線を吸収減衰させる可視光線吸収材を配置し、照射口から放射される直線偏光近赤外線の純度を高める小型近赤外線照射装置である。   According to a fourth aspect of the present invention, in the second or third aspect, a visible light absorbing material that absorbs and attenuates visible light is disposed before or after the polarizer, and the purity of linearly polarized near-infrared radiation emitted from the irradiation port is increased. It is a small near-infrared irradiation device to enhance

本発明の第5の形態は、第1の形態において、発光源が近赤外波長域の1つ以上の単色近赤外線を発光する半導体発光源である小型近赤外線照射装置である。   According to a fifth aspect of the present invention, there is provided a compact near-infrared irradiation device according to the first aspect, wherein the light-emitting source is a semiconductor light-emitting source that emits one or more monochromatic near-infrared rays in the near-infrared wavelength region.

本発明の第6の形態は、第5の形態において、発光源はLED組合体からなり、発光波長の異なる複数のLEDの放射面が筒状ケースの放射方向に揃えて配置される小型近赤外線照射装置である。   According to a sixth aspect of the present invention, in the fifth aspect, the light emitting source is an LED combination, and a small near infrared ray in which the emission surfaces of a plurality of LEDs having different emission wavelengths are aligned in the radiation direction of the cylindrical case. Irradiation device.

本発明の第7の形態は、第1〜6の形態において、発光制御器が筒状ケース内に装填される小型近赤外線照射装置である。   The 7th form of this invention is a small near infrared irradiation apparatus with which the light emission controller is loaded in a cylindrical case in the 1st-6th form.

本発明の第8の形態は、第1〜6の形態において、発光制御器が筒状ケースと別に配置され、筒状ケースと発光制御器が接続ケーブルで接続される小型近赤外線照射装置である。   The 8th form of this invention is a small near-infrared irradiation apparatus by which a light emission controller is arrange | positioned separately from a cylindrical case in the 1st-6th form, and a cylindrical case and a light emission controller are connected with a connection cable. .

本発明の第1の形態によれば、手指で把握し操作可能な断面積と長さを有した筒状ケースに近赤外線照射装置が収納されているから、小型でどこにでも携帯して持ち運びできる。また、手指で把握操作できるので老人や子供でも容易に使用できる。更に、近赤外線を放射する発光源が筒状ケース外ではなく筒状ケース内に配置されているので、小さな発光源で近赤外線を照射でき、複雑で大掛りな電気回路を必要としない。その結果、消費電力を小さくでき、近赤外線照射装置の小型軽量化と低価格化が実現できる。また、発光源の前にポラライザを配置して従来、大型の装置でなければ照射できなかった直線偏光近赤外線を照射できる。本発明に係るポラライザは、円偏光、ランダム偏光などの光をすべて直線偏光に変換するポラライザであり、このポラライザは、通常の偏光板、ビームスプリッタ、直線偏光素子などを包含している。この直線偏光近赤外線は、生体深達性が極めて高く種々の効果を有しており、従来、病院などの専門機関でしか利用できなかった。本発明の小型近赤外線照射装置により、家庭や職場の一人一人が直線偏光近赤外線を利用して種々の効果を達成できる。更に、使用電源を蓄電池式や乾電池式にすれば、どこにでも持ち運びでき、必要な時にいつでも使用することができる。   According to the first aspect of the present invention, the near infrared irradiation device is housed in a cylindrical case having a cross-sectional area and a length that can be grasped and operated by a finger, so that it is small and can be carried and carried anywhere. . In addition, since it can be grasped and operated by fingers, it can be easily used by elderly people and children. Furthermore, since the light emitting source that radiates near infrared rays is disposed not inside the cylindrical case but inside the cylindrical case, the near infrared rays can be irradiated with a small light emitting source, and a complicated and large electric circuit is not required. As a result, power consumption can be reduced, and the near-infrared irradiation device can be reduced in size, weight, and cost. In addition, a polarizer can be placed in front of the light emitting source to irradiate linearly polarized near-infrared rays that could not be irradiated without a large apparatus. The polarizer according to the present invention is a polarizer that converts all light such as circularly polarized light and random polarized light into linearly polarized light, and this polarizer includes a normal polarizing plate, a beam splitter, a linearly polarizing element, and the like. This linearly polarized near-infrared ray is extremely deep in the living body and has various effects. Conventionally, this linearly polarized near-infrared ray can only be used in specialized institutions such as hospitals. With the small near infrared irradiation device of the present invention, each individual at home or at work can achieve various effects using linearly polarized near infrared rays. Furthermore, if the power source used is a storage battery type or a dry battery type, it can be carried anywhere and can be used whenever necessary.

本発明の第2の形態によれば、発光源は、近赤外線と共に可視光線を連続スペクトルとして放射しているから、近赤外線が有する特有の照射効力を和らげる効果がある。従って、人や動植物の皮膚や外皮に照射すれば照射部位に優しい刺激を与えることができ、安全に利用できる。近赤外線と共に可視光線を連続スペクトルとして発光する発光源には、ハロゲンランプ、キセノンランプ、タングステンランプ等があり、使用容量に応じて大小様々の球があるから使用目的に応じて選択して使用できる。従って、使用目的に応じた最適な大きさの筒状ケースを作製でき近赤外線照射装置の小型軽量化を実現できる。   According to the 2nd form of this invention, since the light emission source radiates | emits a visible ray as a continuous spectrum with near infrared rays, there exists an effect which relieve | moderates the specific irradiation efficacy which near infrared rays have. Therefore, if it irradiates the skin and outer skin of a person, animals and plants, it can give a gentle stimulus to the irradiated part and can be used safely. There are halogen lamps, xenon lamps, tungsten lamps, etc. as light emitting sources that emit visible light as a continuous spectrum together with near infrared rays, and there are various sizes of spheres depending on the usage capacity, which can be selected and used according to the purpose of use. . Accordingly, a cylindrical case having an optimum size according to the purpose of use can be produced, and the near infrared irradiation device can be reduced in size and weight.

本発明の第3の形態によれば、発光源の周囲に可視光線を近赤外線に変換する波長変換材を配置して近赤外線の強度を増幅できるので、発光源の消費電力を少なくできる。波長変換材を発光源の周囲全体に配置すれば、近赤外線の強度をより一層増幅することができ、より一層消費電力を少なくできる。更に、近赤外線が透過する筒状ケース内を鏡面仕上に形成することにより近赤外線強度の減衰を防止でき、消費電力をより一層少なくできるので、近赤外線照射装置を長時間使用できる。   According to the third aspect of the present invention, the wavelength conversion material that converts visible light into near infrared light can be disposed around the light emitting source to amplify the intensity of the near infrared light, so that the power consumption of the light emitting source can be reduced. If the wavelength conversion material is arranged around the entire periphery of the light emitting source, the intensity of near infrared light can be further amplified, and the power consumption can be further reduced. Further, by forming the inside of the cylindrical case through which the near infrared rays are transmitted with a mirror finish, the near infrared intensity can be prevented from being attenuated and the power consumption can be further reduced, so that the near infrared irradiation device can be used for a long time.

本発明の第4の形態によれば、ポラライザの前又は後に可視光線を吸収減衰させる可視光線吸収材を配置し、照射口から放射される直線偏光近赤外線の純度を高めることができるので、近赤外線特有の照射効力を増大できる。従って、より小さな発光源で発光できるから、消費電力をより少なくでき長時間の使用ができる。   According to the fourth aspect of the present invention, a visible light absorbing material that absorbs and attenuates visible light is disposed before or after the polarizer, and the purity of linearly polarized near-infrared radiation emitted from the irradiation port can be increased. Irradiation efficiency peculiar to infrared rays can be increased. Accordingly, since light can be emitted from a smaller light source, power consumption can be reduced and the device can be used for a long time.

本発明の第5の形態によれば、発光源が1つ以上の単色近赤外線を発光する半導体発光源であるから可視光線が含まれていないので、波長変換材や可視光線吸収減衰フィルターの配置の必要がない。更に、半導体発光源は、小電力で発光し発熱が少ないので、冷却用ファンなどの放熱装置が不要であるから、近赤外線照射装置の小型軽量化が達成できる。また、特定の波長を発光する半導体発光源を用いれば高い生体深達性を達成でき、照射効率を高めることができるから消費電力も小さくできる。その結果、近赤外線照射装置をより小型軽量化でき、しかも低価格で製造できる。また、半導体発光源を用いた近赤外線照射装置は、小電力で発光するから消費電力も少なく短時間の充電で長時間使用でき、しかも、耐久性が高く小型軽量なので使い易く便利である。半導体発光源には、発光ダイオードや半導体レーザーなどがあり、発光ダイオードには各波長の発光ダイオードがあり容易に利用できる。半導体レーザーは、指向性が強く光束の密度が高いので凹レンズなどで拡散すれば安全に利用できる。   According to the fifth aspect of the present invention, since the light emitting source is a semiconductor light emitting source that emits one or more monochromatic near infrared rays, visible light is not included, and therefore the wavelength conversion material and the visible light absorption attenuation filter are arranged. There is no need for. Furthermore, since the semiconductor light emitting source emits light with low power and generates little heat, a heat radiating device such as a cooling fan is unnecessary, and thus the near infrared irradiation device can be reduced in size and weight. In addition, if a semiconductor light emitting source that emits a specific wavelength is used, high living body deepness can be achieved, and irradiation efficiency can be increased, so that power consumption can be reduced. As a result, the near-infrared irradiation device can be reduced in size and weight, and can be manufactured at a low price. In addition, a near-infrared irradiation device using a semiconductor light-emitting source emits light with low power and can be used for a long period of time with short power consumption, and is durable and small and lightweight, so it is easy to use and convenient. Examples of the semiconductor light emitting source include a light emitting diode and a semiconductor laser. The light emitting diode includes a light emitting diode of each wavelength and can be easily used. Semiconductor lasers can be safely used if they are diffused by a concave lens because they have high directivity and high light flux density.

本発明の第6の形態によれば、発光源が、発光波長の異なる複数のLED組合体から構成されているので、使用目的に適した波長域の近似スペクトルを自在に形成でき、照射効力の高い近赤外線を照射できる。従って、照射効率を高めることができ消費電力を一層少なくできるから、短時間の充電でも長時間の使用ができる。   According to the sixth aspect of the present invention, since the light source is composed of a plurality of LED assemblies having different light emission wavelengths, an approximate spectrum in a wavelength region suitable for the purpose of use can be freely formed, and the irradiation efficiency can be improved. High near infrared rays can be irradiated. Accordingly, the irradiation efficiency can be increased and the power consumption can be further reduced, so that even a short charge can be used for a long time.

本発明の第7の形態によれば、発光制御器が筒状ケース内に装填されているので持ち運びに便利で、使用電源を蓄電池式、乾電池式にすれば商用電源がないところでも使用できる。また、筒状ケースは手指で把持しながら操作できるので、どのような場所でも照射できる。また、発光制御器を筒状ケースに一体として装填して製造できるから、製造部品数を少なくでき製造工程を簡素化して製造コストを低下できる。   According to the seventh aspect of the present invention, since the light emission controller is loaded in the cylindrical case, it is convenient to carry and can be used even if there is no commercial power supply if the power source used is a storage battery type or a dry battery type. Further, since the cylindrical case can be operated while being gripped with fingers, it can be irradiated at any place. In addition, since the light emission controller can be manufactured by being integrated into the cylindrical case, the number of manufactured parts can be reduced, the manufacturing process can be simplified, and the manufacturing cost can be reduced.

本発明の第8の形態によれば、発光制御器が筒状ケースと別に配置されているので、発光源の発熱から発光制御器を保護する必要がなく、冷却のための装置が不要であるから筒状ケースを小型軽量化できる。従って、筒状ケースの操作性を高めることができ、どのような場所でも近赤外線を照射できる。その上、筒状ケースと発光制御器を別個に形成しているので各々をより一層小型化でき、接続ケーブルを取り外し自由に配置すれば容易に持ち運びできる。逆に、発光制御器をより大型化すれば筒状ケースの照射効力をより高めることができる。   According to the eighth aspect of the present invention, since the light emission controller is arranged separately from the cylindrical case, it is not necessary to protect the light emission controller from heat generation of the light source, and no cooling device is required. The cylindrical case can be reduced in size and weight. Therefore, the operability of the cylindrical case can be improved, and near infrared rays can be irradiated at any place. In addition, since the cylindrical case and the light emission controller are formed separately, each can be further reduced in size, and can be easily carried if the connecting cable is freely removed and arranged. Conversely, if the light emission controller is made larger, the irradiation efficiency of the cylindrical case can be further increased.

以下、本発明に係る小型近赤外線照射装置の実施の形態を図に基いて詳細に説明する。   Embodiments of a small near infrared irradiation device according to the present invention will be described below in detail with reference to the drawings.

光は、波長が長くなるにしたがって紫外線、可視光線、赤外線と分布する。更に、赤外線は近赤外線、中赤外線、遠赤外線に分かれ、近赤外線は、大体0.65〜1.5ミクロン位の波長域にあり、中赤外線は、大体1.5〜5ミクロン位の波長域にあり、遠赤外線は、大体5〜1000ミクロン位の波長域にある。遠赤外線は、皮膚に照射されると皮膚に含まれているHOと反応して、皮膚の表面に効果的に作用するので色々と利用されてきた。これに反し、近赤外線はHOとの相互作用が少なく、そのため殆んど利用されてこなかったが、近年、近赤外線の生体深達性が注目され、直線偏光近赤外線療法の有効性、例えば、難治性円形脱毛症に対する効果や顎関節症の疼痛を緩和し、顎の開口量の改善や、星状神経節近傍の照射によるレイノー症状の改善効果、帯状疱疹・帯状疱疹後の神経痛に対する鎮痛効果などが報告されている。近赤外線照射による生体への詳しい作用メカニックについては殆んど不明であるが、近赤外線の照射による血管の拡張や生体活性物質の生産促進作用、更に、神経性興奮に対する抑制作用などに関与し、鎮痛や消炎、創傷治癒に効果をもたらすと考えられている。 Light is distributed with ultraviolet rays, visible rays, and infrared rays as the wavelength increases. Furthermore, infrared rays are divided into near infrared rays, middle infrared rays, and far infrared rays. Near infrared rays are in a wavelength range of about 0.65 to 1.5 microns, and mid infrared rays are in a wavelength range of about 1.5 to 5 microns. The far infrared rays are in the wavelength range of about 5 to 1000 microns. Far-infrared rays have been used in various ways because they react with H 2 O contained in the skin when irradiated to the skin and effectively act on the surface of the skin. Contrary to this, near infrared rays have little interaction with H 2 O, and thus have been rarely used. However, in recent years, the near-infrared penetration of near infrared rays has attracted attention, and the effectiveness of linearly polarized near-infrared therapy, For example, relieve pain in refractory alopecia areata and temporomandibular disorders, improve jaw opening, improve Raynaud's symptoms by irradiation in the vicinity of stellate ganglion, neuralgia after herpes zoster and herpes zoster Analgesic effects have been reported. Although it is almost unknown about the detailed action mechanics on the living body by near-infrared irradiation, it is involved in the blood vessel expansion and bioactive substance production promoting action by near-infrared irradiation, and also the inhibitory action on neural excitation, etc. It is thought to have an effect on analgesia, anti-inflammation and wound healing.

このように、直線偏光近赤外線は高い有用性が広い領域で認められているが、病院などの専門機関での利用だけでなく、森林浴や自然浴を親しむように家庭や職場でいつでも利用できるよう小型軽量化し、どこにでも持ち運びでき誰にでも容易に操作できるように取扱を安全にしたものが本発明に係る近赤外線照射装置である。この近赤外線照射装置は、人や動植物だけでなく無機物に対しても利用でき、近赤外線照射による様々の効果を達成できる。   In this way, linearly polarized near-infrared rays are recognized for their high utility in a wide range, but they can be used at home and at any time, not only in specialized institutions such as hospitals, but also in forest and natural baths. The near-infrared irradiation device according to the present invention is compact and lightweight, and is safe to handle so that it can be carried anywhere and easily operated by anyone. This near infrared irradiation device can be used not only for humans, animals and plants but also for inorganic substances, and can achieve various effects by near infrared irradiation.

図1は、本発明に係る発光源が近赤外線と共に可視光線を連続スペクトルとして発光する小型近赤外線照射装置の模式横断面図である。この小型近赤外線照射装置2は、手指で把握操作可能な断面積と長さを有した携帯可能な筒状ケース3に、近赤外線と共に可視光線を連続スペクトルとして発光する発光源4と、この発光源の周囲に配置され可視光線を近赤外線に変換する波長変換材6と、発光源から放射される近赤外線を直線偏光化するポラライザ8と、このポラライザ8と発光源4との間に配置された可視光線を吸収減衰させる可視光線吸収材10と、近赤外線をポラライザ8に透過させ外部に放射させる照射口12とから構成されている。照射口12とポラライザ8との間には、ポラライザ8を保護するためにサファイヤガラス14が配置されている。このサファイヤガラス14の代わりに他の透光性部材を使用することもでき、例えば、ガラス、プラスチックなどの透光性部材を利用することができる。この透光性部材としては、熱伝導性の高い材料が好ましく、近赤外線によって発生する熱を、筒状ケース3を介して装置外へ放出することができ、本発明に係る小型近赤外線照射装置の安定性と耐久性を向上させることができる。前記サファイヤガラス14は、ガラスの中でも特に高い熱伝導性を有している。また、発光源4の発光を制御する発光制御器は、外部に配置され接続ケーブル16により接続されている。なお、図1には省略されているが、発光源の背後に発熱を冷却させるための冷却用ファンの配置が考えられる。   FIG. 1 is a schematic cross-sectional view of a small near-infrared irradiation device in which a light source according to the present invention emits visible light as a continuous spectrum together with near-infrared rays. The small near-infrared irradiation device 2 includes a light-emitting source 4 that emits visible light as a continuous spectrum together with near-infrared light on a portable cylindrical case 3 having a cross-sectional area and a length that can be grasped and operated by fingers. A wavelength conversion material 6 arranged around the source for converting visible light into near infrared, a polarizer 8 for linearly polarizing near infrared emitted from the light source, and a polarizer 8 and the light source 4 are disposed between the polarizer 8 and the light source 4. The visible light absorbing material 10 that absorbs and attenuates visible light, and the irradiation port 12 that transmits near-infrared light through the polarizer 8 and radiates it to the outside. A sapphire glass 14 is disposed between the irradiation port 12 and the polarizer 8 in order to protect the polarizer 8. Instead of the sapphire glass 14, other light-transmitting members can be used. For example, a light-transmitting member such as glass or plastic can be used. As this translucent member, a material having high thermal conductivity is preferable, and heat generated by near infrared rays can be released to the outside of the device through the cylindrical case 3, and the small near infrared irradiation device according to the present invention can be emitted. Stability and durability can be improved. The sapphire glass 14 has particularly high thermal conductivity among glasses. A light emission controller that controls light emission of the light emission source 4 is arranged outside and connected by a connection cable 16. Although not shown in FIG. 1, a cooling fan for cooling the heat generation behind the light emitting source can be considered.

近赤外線と共に可視光線を連続スペクトルとして発光する発光源4しては、ハロゲンランプ、タングステンランプ、キセノンランプ等があるが、本発明には耐久性の観点からキセノンランプが好適である。発光源4が配置された筒状ケースの断面には、円形、楕円形、四角形等があるが、円形が反射面を構成する上で好ましい。また、近赤外線が透過する筒状ケース内を鏡面仕上にすることで照射力を増加できる。筒状ケースの形状は、掌握しやすいペン型やピストル型などがある。   Examples of the light emission source 4 that emits visible light as a continuous spectrum together with near infrared rays include a halogen lamp, a tungsten lamp, and a xenon lamp. A xenon lamp is suitable for the present invention from the viewpoint of durability. The cross-section of the cylindrical case in which the light emitting source 4 is disposed includes a circle, an ellipse, a quadrangle, and the like, but a circle is preferable for constituting a reflection surface. Moreover, irradiation power can be increased by making the inside of the cylindrical case which permeate | transmits a near-infrared mirror finish. The shape of the cylindrical case includes a pen type and a pistol type that are easy to grasp.

近赤外線を直線偏光化するポラライザ8は、偏光フィルターという偏光膜をポリカーポネートでサンドイッチして形成されている。この偏光フィルターは、横方向に格子状のスリットが入っているフイルムで、横方向の平面の光は透過するが、縦方向の平面の光は透過しないという性質を有している。従って、放射される近赤外線がポラライザを通過すれば、横方向の平面の光だけが透過して直線偏光される。直線偏光された近赤外線には前述のとおり様々な効果が知られている。 The polarizer 8 that linearly polarizes near infrared rays is formed by sandwiching a polarizing film called a polarizing filter with polycarbonate. This polarizing filter is a film having grid-like slits in the lateral direction, and has a property of transmitting light in the horizontal plane but not transmitting light in the vertical plane. Therefore, if the emitted near infrared rays pass through the polarizer, only the light in the horizontal plane is transmitted and linearly polarized. As described above, various effects are known for linearly polarized near infrared rays.

図2は、本発明に係る可視光線吸収材及び波長変換材によるキセノンランプの連続スペクトル変化図である。縦軸に強さ(Intensity)を任意単位で示し、横軸に波長(Wavelength)をnmで示す。短破線Aは、波長域が360〜1000nmの近赤外線と共に可視光線を含んだキセノンランプ光の連続スペクトルである。長破線Bは、可視光線吸収材を透過したキセノンランプ光の連続スペクトルであり、波長360〜600nm位の可視光線が可視光線吸収材により吸収されていることが分る。実線Cは、可視光線のある波長帯を波長変換材により変換させ、可視光線吸収材により可視光線を吸収させたキセノンランプ光の連続スペクトルである。長破線Bに比べ近赤外線領域で強さ(Intensity)が増加していることが分る。   FIG. 2 is a continuous spectrum change diagram of a xenon lamp by the visible light absorbing material and the wavelength converting material according to the present invention. The vertical axis represents intensity (Intensity) in arbitrary units, and the horizontal axis represents wavelength (Wavelength) in nm. A short broken line A is a continuous spectrum of xenon lamp light including visible light as well as near infrared light having a wavelength range of 360 to 1000 nm. The long broken line B is a continuous spectrum of the xenon lamp light transmitted through the visible light absorbing material, and it can be seen that visible light having a wavelength of about 360 to 600 nm is absorbed by the visible light absorbing material. A solid line C is a continuous spectrum of xenon lamp light in which a wavelength band with visible light is converted by a wavelength converting material and visible light is absorbed by a visible light absorbing material. It can be seen that the intensity is increased in the near-infrared region as compared to the long broken line B.

可視光線吸収材10は、カラーガラス板で構成され、波長約360〜600nmの可視光線を吸収し、生体深達性の高い近赤外線の純度を高める。波長変換材6は、可視光線を波長変換して近赤外線の照射力を増加させる。特に、可視光線の中でも赤色波長域の可視光線を効率的に変換できる波長変換材が望ましい。   The visible light absorber 10 is made of a color glass plate, absorbs visible light having a wavelength of about 360 to 600 nm, and enhances near-infrared purity with high biological depth. The wavelength converting material 6 converts the wavelength of visible light to increase the near infrared irradiation power. In particular, a wavelength conversion material that can efficiently convert visible light in the red wavelength region among visible light is desirable.

図3は、本発明に係る発光源が半導体発光源である小型近赤外線照射装置の模式横断面図である。この小型近赤外線照射装置20は、半導体発光源22と、半導体発光源22を構成する半導体発光素子23と、半導体発光素子23から放射される単色近赤外線を直線偏光化するポラライザ24と、この近赤外線をポラライザ24に透過させ外部へ照射させる照射口26とから構成されている。この照射口26には、ポラライザ24を保護するためにサファイヤガラス28が照射口26とポラライザ24との間に配置されている。また、半導体発光源22の発光を制御する発光制御器は外部に配置され、接続ケーブル30により接続されている。また、図1、3には明記されていないが、サファイヤガラス28の内側に集光レンズを設けて、2段に構成された筒状ケースを前後に調節することにより近赤外線の光束を絞ることができる。   FIG. 3 is a schematic cross-sectional view of a compact near-infrared irradiation device in which the light-emitting source according to the present invention is a semiconductor light-emitting source. This small near-infrared irradiation device 20 includes a semiconductor light-emitting source 22, a semiconductor light-emitting element 23 that constitutes the semiconductor light-emitting source 22, a polarizer 24 that linearly polarizes monochromatic near-infrared radiation emitted from the semiconductor light-emitting element 23, The irradiation port 26 is configured to transmit infrared rays through the polarizer 24 and irradiate the infrared rays to the outside. In the irradiation port 26, a sapphire glass 28 is disposed between the irradiation port 26 and the polarizer 24 in order to protect the polarizer 24. A light emission controller that controls the light emission of the semiconductor light emitting source 22 is arranged outside and connected by a connection cable 30. Although not clearly shown in FIGS. 1 and 3, a condensing lens is provided inside the sapphire glass 28, and a two-stage cylindrical case is adjusted forward and backward to narrow the near-infrared luminous flux. Can do.

半導体発光源22は、小電力で発光し発熱が少ないので冷却用ファンが不要で、近赤外線照射装置の小型化、軽量化ができる。また、短時間で充電でき長時間照射も可能である。半導体発光源22には、発光ダイオードや半導体レーザーなどがある。発光ダイオードには、「赤色」、「黄緑色」、「黄色」の発光ダイオードがあるが、本発明には「赤色」の赤外線発光ダイオードが好ましい。半導体レーザーも出力を調整すれば安全に使用できる。   Since the semiconductor light emitting source 22 emits light with low power and generates little heat, a cooling fan is unnecessary, and the near infrared irradiation device can be reduced in size and weight. In addition, it can be charged in a short time and can be irradiated for a long time. The semiconductor light emitting source 22 includes a light emitting diode and a semiconductor laser. Light emitting diodes include “red”, “yellow-green”, and “yellow” light emitting diodes, but “red” infrared light emitting diodes are preferred in the present invention. Semiconductor lasers can also be used safely if the output is adjusted.

図4は、波長650、700、750、800、900nmの光を発光するLEDの組合体からなる半導体発光源の近似連続スペクトル図である。縦軸に強さ(Intensity: a.u.)を示し、横軸に波長(Wavelength: nm)を示す。実線1Aは波長650nm、実線2Aは波長700nm、実線3Aは波長750nm、実線4Aは波長800、実線5Aは波長900におけるそれぞれのLEDの発光強さを示している。図4から分かるように、波長650〜900nmのLED組合体からなる半導体発光源は、LEDの数を増加すれば点線Bに示す近似連続スペクトルを形成できる。従って、使用目的に応じた有効な波長領域を有する近赤外線を形成して照射できる。   FIG. 4 is an approximate continuous spectrum diagram of a semiconductor light emitting source composed of a combination of LEDs that emit light having wavelengths of 650, 700, 750, 800, and 900 nm. The vertical axis represents intensity (Intensity: a.u.), and the horizontal axis represents wavelength (Wavelength: nm). A solid line 1A indicates the emission intensity of each LED at a wavelength of 650 nm, a solid line 2A indicates a wavelength of 700 nm, a solid line 3A indicates a wavelength of 750 nm, a solid line 4A indicates a wavelength of 800, and a solid line 5A indicates a wavelength of 900. As can be seen from FIG. 4, a semiconductor light-emitting source composed of an LED assembly having a wavelength of 650 to 900 nm can form an approximate continuous spectrum indicated by a dotted line B if the number of LEDs is increased. Therefore, it is possible to form and irradiate near infrared rays having an effective wavelength region according to the purpose of use.

図5は、本発明に係る発光源の発光時間と休止時間との関係図である。縦軸に強さ(Intensity)を任意単位で示し、横軸に時間(S)を示す。実施例では20秒間(T)発光し5秒間(T)停止する。発光時間は自在に調整でき、一定時間発光後休止して、これの繰り返しによる照射は連続照射に比べ効果的で、しかも放熱や発光効率の面から好ましい。 FIG. 5 is a graph showing the relationship between the light emission time and the pause time of the light source according to the present invention. The vertical axis represents intensity (Intensity) in arbitrary units, and the horizontal axis represents time (S). In the embodiment, light is emitted for 20 seconds (T 1 ) and stopped for 5 seconds (T 2 ). The light emission time can be freely adjusted, and after the light emission is stopped for a certain time, irradiation by repeating this is more effective than continuous irradiation and is preferable from the viewpoint of heat dissipation and light emission efficiency.

図6は、本発明に係る発光制御器が筒状ケース内に装填される小型近赤外線照射装置(一体型)の模式図である。小型近赤外線照射装置31は、筒状ケース内に発光源32と発光制御器34を配置して構成され、発光制御器34は制御回路36と蓄電池38とから構成されている。制御回路36は、時間制御回路と電圧電流制御回路とから構成されている。6、8、10、12、14については図1と同様なので記載を省略する。この小型近赤外線照射装置(一体型)は、外部に配置された充電器に接続して充電すれば、どこにでも持ち運びでき使用することができる。   FIG. 6 is a schematic view of a small near infrared irradiation device (integrated type) in which the light emission controller according to the present invention is loaded in a cylindrical case. The small near infrared irradiation device 31 is configured by arranging a light emission source 32 and a light emission controller 34 in a cylindrical case, and the light emission controller 34 includes a control circuit 36 and a storage battery 38. The control circuit 36 includes a time control circuit and a voltage / current control circuit. Since 6, 8, 10, 12, and 14 are the same as those in FIG. This small near-infrared irradiation device (integrated type) can be carried and used anywhere by connecting to an external charger and charging.

図7は、本発明に係る発光制御器が筒状ケースと接続ケーブルで接続される小型近赤外線照射装置(分離型)の模式図である。小型近赤外線照射装置40は、筒状ケース42と発光制御器44とから構成され、接続ケーブル46により接続されている。筒状ケース42と発光制御器44とを別個に位置しているのでそれぞれ小型化することができ、どこにでも持ち運びできて電源を用意すれば使用できる。   FIG. 7 is a schematic view of a small near infrared irradiation device (separated type) in which the light emission controller according to the present invention is connected to a cylindrical case by a connection cable. The small near infrared irradiation device 40 includes a cylindrical case 42 and a light emission controller 44, and is connected by a connection cable 46. Since the cylindrical case 42 and the light emission controller 44 are separately located, they can be reduced in size, and can be used anywhere if they can be carried anywhere and a power source is prepared.

図8は、本発明に係る小型近赤外線照射装置の電流制御ブロック図である。(8A)は、小型近赤外線照射装置の主要制御回路のブロック図である。発光源51の電流を制御する制御回路50は、時間制御回路52と電圧電流制御回路54とから構成されている。(8B)は、商用電源を電源とする小型近赤外線照射装置の電流制御ブロック図である。外部の商用電源56に接続して直流変換器58により交流を直流に変換し、制御回路50にて制御して発光源51の稼動電源としている。従って、商用電源56があればどこででも使用できる。(8C)は、蓄電池が筒状ケース内に装填されている小型近赤外線照射装置の電流制御ブロック図である。商用電源56に接続された外部充電器60により筒状ケース内の蓄電池62を充電し、制御回路50にて制御して発光源51の稼動電源としているので、充電すればどこででも使用できる。(8D)は、筒状ケース内に乾電池が取り外しできるように配置されている小型近赤外線照射装置の電流制御ブロック図である。乾電池64の直流を制御回路50にて制御して発光源51の稼動電源としている。   FIG. 8 is a current control block diagram of the small near infrared irradiation device according to the present invention. (8A) is a block diagram of a main control circuit of the small near infrared irradiation device. The control circuit 50 that controls the current of the light emission source 51 includes a time control circuit 52 and a voltage / current control circuit 54. (8B) is a current control block diagram of a small near-infrared irradiation device using a commercial power source as a power source. It is connected to an external commercial power source 56 to convert alternating current into direct current by a direct current converter 58 and controlled by the control circuit 50 to serve as an operating power source for the light source 51. Therefore, it can be used anywhere with the commercial power source 56. (8C) is a current control block diagram of a small near infrared irradiation device in which a storage battery is loaded in a cylindrical case. The storage battery 62 in the cylindrical case is charged by an external charger 60 connected to the commercial power source 56, and is controlled by the control circuit 50 to serve as an operating power source for the light emission source 51. Therefore, if the battery is charged, it can be used anywhere. (8D) is a current control block diagram of a small near-infrared irradiation device arranged so that a dry battery can be removed in a cylindrical case. The direct current of the dry battery 64 is controlled by the control circuit 50 to serve as an operating power source for the light source 51.

本発明の小型近赤外線照射装置は、手指で把握し操作できる程の大きさなので、どこにでも携帯でき必要な時に誰にでも利用できるので、健康器具として利用されるだけでなく、様々な利用方法が考えられる。例えば、動物の病気治療や植物の生育改善などの利用に留まらず、照射により発生する熱効果を利用できる様々な行為に使用できる。   Since the small near-infrared irradiation device of the present invention is large enough to be grasped and operated with fingers, it can be carried anywhere and used by anyone when needed, so it is not only used as a health appliance but also various usage methods Can be considered. For example, it can be used not only for animal disease treatment and plant growth improvement, but also for various actions that can use the heat effect generated by irradiation.

本発明に係る発光源が近赤外線と共に可視光線を連続スペクトルとして発光する小型近赤外線照射装置の模式横断面図である。1 is a schematic cross-sectional view of a small near infrared irradiation device in which a light source according to the present invention emits visible light as a continuous spectrum together with near infrared rays. 本発明に係る可視光線吸収材及び波長変換材によるキセノンランプの連続スペクトル変化図である。It is a continuous spectrum change figure of the xenon lamp by the visible light absorber and wavelength conversion material concerning the present invention. 本発明に係る発光源が半導体発光源である小型近赤外線照射装置の模式横断面図である。1 is a schematic cross-sectional view of a small near infrared irradiation device in which a light emission source according to the present invention is a semiconductor light emission source. 波長650〜900nmの光を発光するLEDの組合体からなる半導体発光源の連続スペクトル図である。It is a continuous spectrum figure of the semiconductor light-emitting source which consists of the combination of LED which light-emits the light of wavelength 650-900 nm. 本発明に係る発光源の発光時間と休止時間との関係図である。It is a related figure of the light emission time of the light emission source concerning this invention, and rest time. 本発明に係る発光制御器が筒状ケース内に装填される小型近赤外線照射装置(一体式)の模式図である。It is a schematic diagram of the small near-infrared irradiation apparatus (integral type) by which the light emission controller which concerns on this invention is loaded in a cylindrical case. 本発明に係る発光制御器が筒状ケースと接続ケーブルで接続される小型近赤外線照射装置(分離型)の模式図である。It is a schematic diagram of the small near-infrared irradiation apparatus (separation type) by which the light emission controller which concerns on this invention is connected with a cylindrical case with a connection cable. 本発明に係る小型近赤外線照射装置の電流制御ブロック図である。It is a current control block diagram of the small near infrared irradiation device according to the present invention.

符号の説明Explanation of symbols

2 小型近赤外線照射装置
3 筒状ケース
4 発光源
6 波長変換材
8 ポラライザ
10 可視光線吸収材
12 照射口
14 サファイヤガラス
16 接続ケーブル
20 小型近赤外線照射装置
22 半導体発光源
23 半導体発光素子
24 ポラライザ
26 照射口
28 サファイヤガラス
30 接続ケーブル
31 小型近赤外線照射装置(一体型)
32 発光源
34 発光制御器
36 制御回路
38 蓄電池
40 小型近赤外線照射装置(分離型)
42 筒状ケース
44 発光制御器
46 接続ケーブル
50 制御回路
52 時間制御回路
54 電圧電流制御回路
56 商用電源
58 直流変換器
60 充電器
62 蓄電池
64 乾電池
2 Small near infrared irradiation device 3 Cylindrical case 4 Light source 6 Wavelength conversion material 8 Polarizer 10 Visible light absorber 12 Irradiation port 14 Sapphire glass 16 Connection cable 20 Small near infrared irradiation device 22 Semiconductor light emitting source 23 Semiconductor light emitting element 24 Polarizer 26 Irradiation port 28 Sapphire glass 30 Connection cable 31 Small near-infrared irradiation device (integrated type)
32 Light emission source 34 Light emission controller 36 Control circuit 38 Battery 40 Small near infrared irradiation device (separate type)
42 cylindrical case 44 light emission controller 46 connection cable 50 control circuit 52 time control circuit 54 voltage / current control circuit 56 commercial power supply 58 DC converter 60 charger 62 storage battery 64 dry battery

Claims (8)

手指で把握操作可能な断面積と長さを有した携帯可能な筒状ケースと、前記筒状ケース内の所要位置に配置された近赤外線を放射する発光源と、前記筒状ケース内に配置され前記発光源から放射される近赤外線を直線偏光化するポラライザと、前記ポラライザを透過した直線偏光近赤外線を外部に放射する前記筒状ケース先端の照射口と、前記発光源の発光を制御する発光制御器から少なくとも構成され、前記照射口から放射される直線偏光近赤外線を被照射体に照射することを特徴とする小型近赤外線照射装置。 A portable cylindrical case having a cross-sectional area and a length that can be grasped and operated by a finger, a light emitting source that emits near-infrared rays arranged at a required position in the cylindrical case, and arranged in the cylindrical case A polarizer that linearly polarizes near infrared rays emitted from the light source, an irradiation port at the tip of the cylindrical case that radiates linearly polarized near infrared rays transmitted through the polarizer to the outside, and controls light emission of the light source. A compact near-infrared irradiation device, comprising at least a light emission controller, for irradiating an irradiated body with linearly polarized near-infrared radiation emitted from the irradiation port. 前記発光源が近赤外線と共に可視光線を連続スペクトルとして発光する請求項1に記載の小型近赤外線照射装置。 The small near infrared irradiation device according to claim 1, wherein the light emitting source emits visible light as a continuous spectrum together with near infrared rays. 前記発光源の周囲に可視光線を近赤外線に変換する波長変換材を配置し、前記ポラライザに入射する近赤外線の強度を増幅する請求項2に記載の小型近赤外線照射装置。 The small near-infrared irradiation device according to claim 2, wherein a wavelength conversion material that converts visible light into near-infrared light is disposed around the light emitting source to amplify the intensity of near-infrared light incident on the polarizer. 前記ポラライザの前又は後に可視光線を吸収減衰させる可視光線吸収材を配置し、前記照射口から放射される直線偏光近赤外線の純度を高める請求項2又は3に記載の小型近赤外線照射装置。 The small near infrared irradiation device according to claim 2 or 3, wherein a visible light absorbing material that absorbs and attenuates visible light is disposed before or after the polarizer to increase the purity of linearly polarized near infrared rays emitted from the irradiation port. 前記発光源は近赤外波長域の1つ以上の単色近赤外線を発光する半導体発光源である請求項1に記載の小型近赤外線照射装置。 2. The small near infrared irradiation device according to claim 1, wherein the light emitting source is a semiconductor light emitting source that emits one or more monochromatic near infrared rays in a near infrared wavelength region. 前記発光源はLED組合体からなり、発光波長の異なる複数のLEDの放射面が前記筒状ケースの放射方向に揃えて配置される請求項5に記載の小型近赤外線照射装置。 The small near-infrared irradiation device according to claim 5, wherein the light-emitting source is an LED combination, and the emission surfaces of a plurality of LEDs having different emission wavelengths are arranged in alignment with the emission direction of the cylindrical case. 前記発光制御器が前記筒状ケース内に装填される請求項1〜6のいずれかに記載の小型近赤外線照射装置。 The small near infrared irradiation device according to any one of claims 1 to 6, wherein the light emission controller is loaded in the cylindrical case. 前記発光制御器が前記筒状ケースと別に配置され、前記筒状ケースと前記発光制御器が接続ケーブルで接続される請求項1〜6のいずれかに記載の小型近赤外線照射装置。 The small near infrared irradiation device according to any one of claims 1 to 6, wherein the light emission controller is disposed separately from the cylindrical case, and the cylindrical case and the light emission controller are connected by a connection cable.
JP2005228908A 2005-08-05 2005-08-05 Compact apparatus for radiating near infrared ray Pending JP2007044091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005228908A JP2007044091A (en) 2005-08-05 2005-08-05 Compact apparatus for radiating near infrared ray

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005228908A JP2007044091A (en) 2005-08-05 2005-08-05 Compact apparatus for radiating near infrared ray

Publications (1)

Publication Number Publication Date
JP2007044091A true JP2007044091A (en) 2007-02-22

Family

ID=37847482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005228908A Pending JP2007044091A (en) 2005-08-05 2005-08-05 Compact apparatus for radiating near infrared ray

Country Status (1)

Country Link
JP (1) JP2007044091A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105807496A (en) * 2015-01-09 2016-07-27 优志旺电机株式会社 Polarized light illuminating device and photo-orientation device
JP2016152924A (en) * 2010-07-17 2016-08-25 メルク パテント ゲーエムベーハー Enhancement of penetration and action
KR20180108749A (en) * 2016-02-02 2018-10-04 브라운 게엠베하 Hair removal device
CN113101540A (en) * 2021-04-30 2021-07-13 国际交易株式会社 Therapeutic apparatus

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10130827B2 (en) 2010-07-17 2018-11-20 Merck Patent Gmbh Enhancement of penetration and action
JP2016152924A (en) * 2010-07-17 2016-08-25 メルク パテント ゲーエムベーハー Enhancement of penetration and action
US9597527B2 (en) 2010-07-17 2017-03-21 Merck Patent Gmbh Enhancement of penetration and action
CN105807496A (en) * 2015-01-09 2016-07-27 优志旺电机株式会社 Polarized light illuminating device and photo-orientation device
JP2019508112A (en) * 2016-02-02 2019-03-28 ブラウン ゲーエムベーハー Skin treatment device
KR20180108748A (en) * 2016-02-02 2018-10-04 브라운 게엠베하 Hair removal device
KR20180108746A (en) * 2016-02-02 2018-10-04 브라운 게엠베하 Skin treatment device
JP2019505315A (en) * 2016-02-02 2019-02-28 ブラウン ゲーエムベーハー Hair removal equipment
KR20180108749A (en) * 2016-02-02 2018-10-04 브라운 게엠베하 Hair removal device
JP2019509087A (en) * 2016-02-02 2019-04-04 ブラウン ゲーエムベーハー Hair removal equipment
US10543040B2 (en) 2016-02-02 2020-01-28 Braun Gmbh Skin treatment device
JP2021003652A (en) * 2016-02-02 2021-01-14 ブラウン ゲーエムベーハー Hair removal device
KR102256157B1 (en) * 2016-02-02 2021-05-26 브라운 게엠베하 Hair removal device
KR102257415B1 (en) * 2016-02-02 2021-05-31 브라운 게엠베하 Hair removal device
KR102257414B1 (en) * 2016-02-02 2021-05-31 브라운 게엠베하 Skin treatment device
JP7348155B2 (en) 2016-02-02 2023-09-20 ブラウン ゲーエムベーハー hair removal device
CN113101540A (en) * 2021-04-30 2021-07-13 国际交易株式会社 Therapeutic apparatus

Similar Documents

Publication Publication Date Title
EP2461868B1 (en) Handheld low-level laser therapy apparatus
US8435273B2 (en) High powered light emitting diode photobiology device
US7084389B2 (en) Hand held led device
US8938295B2 (en) LED based phototherapy device for photo-rejuvenation of cells
US8246666B2 (en) Phototherapy garment
JP2010046518A (en) Instrument and method for treating pimple
JP2006518614A (en) Acne treatment apparatus and method
JP2011098207A5 (en)
KR101433070B1 (en) light radiator For Whole body
JP2007044091A (en) Compact apparatus for radiating near infrared ray
KR20180107074A (en) Compact UVB phototherapy device for treating skin disorders
CN111790060A (en) Device for treating brain diseases based on pulse semiconductor laser external irradiation technology
KR20110118039A (en) Multi-directional light treatment apparatus
CN112546453B (en) Luminous body component and device for treating male erectile dysfunction based on laser irradiation
CN101559257A (en) Red light blood-activating device
KR20210066961A (en) Dome type heating device having LED and carbon-ceramic
US7514696B2 (en) Method for eliminating airborne microorganisms
KR20200004226A (en) Medical light diffusion implant
RU96007U1 (en) DEVICE FOR RADIATING THE SURFACE OF A BODY WITH OPTICAL RADIATION AT BURNS
CA2775529C (en) High powered light emitting diode photobiology device
Salehpour et al. Biophysical and Safety Aspects of Brain Photobiomodulation
KR200447059Y1 (en) A thermal auxiliary bedclothes with the macsumsuk ceramic including LED Lamp
Almeida et al. Construction of an array of LEDs coupled to a concentrator for phototherapy
TW200803949A (en) Medical illumination device and method
KR20110118038A (en) Portable light treatment apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100309