JP2007043792A - Motor starting device - Google Patents

Motor starting device Download PDF

Info

Publication number
JP2007043792A
JP2007043792A JP2005223673A JP2005223673A JP2007043792A JP 2007043792 A JP2007043792 A JP 2007043792A JP 2005223673 A JP2005223673 A JP 2005223673A JP 2005223673 A JP2005223673 A JP 2005223673A JP 2007043792 A JP2007043792 A JP 2007043792A
Authority
JP
Japan
Prior art keywords
temperature coefficient
coefficient thermistor
positive temperature
semiconductor switch
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005223673A
Other languages
Japanese (ja)
Inventor
Katsumi Endo
勝己 遠藤
Tatsuyuki Iizuka
辰幸 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005223673A priority Critical patent/JP2007043792A/en
Publication of JP2007043792A publication Critical patent/JP2007043792A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Motor And Converter Starters (AREA)
  • Induction Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the energy efficiency in a motor starting device. <P>SOLUTION: The motor starting device having a main winding and an auxiliary winding is provided with a first positive temperature coefficient thermistor 104, a semiconductor switch 105 connected to the first positive temperature coefficient thermistor 104 in series, and a second negative temperature coefficient thermistor 106 connected to the first positive temperature coefficient thermistor 104 and the semiconductor switch 105 in parallel and controlling turnon and turnoff of the semiconductor switch 105. A thermal loss in the second negative temperature coefficient thermistor 106 is reduced, and a power consumption in the starting device is reduced by covering at least a portion of an outer circumference of the second negative temperature coefficient thermistor 106 with a thermal insulation layer. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、正特性サーミスタを備えた単相誘導電動機からなるモータの起動装置に関するものである。   The present invention relates to a motor starting device composed of a single-phase induction motor equipped with a positive temperature coefficient thermistor.

従来、モータの起動装置として、正特性サーミスタを用いたものが広く用いられている。   Conventionally, devices using a positive temperature coefficient thermistor have been widely used as motor starting devices.

しかしながら、近年地球環境を考慮してエネルギー効率が高いことが望まれているなかで、モータが起動した後も正特性サーミスタに電源電圧が印加され続け電力を消費することに注目して、モータが起動した後に、正特性サーミスタに印加される電源電圧を遮断するものがある(例えば、特許文献1参照)。   However, in recent years, it has been desired that the energy efficiency is high considering the global environment, and attention is paid to the fact that the power supply voltage continues to be applied to the positive temperature coefficient thermistor even after the motor is started. Some have cut off the power supply voltage applied to a positive temperature coefficient thermistor after starting (for example, refer to patent documents 1).

以下、図面を参照しながら上記従来のモータの起動装置を説明する。   Hereinafter, the conventional motor starting device will be described with reference to the drawings.

図13は特許文献1に記載された従来のモータの起動装置を用いた回路図、図14は従来のモータの起動装置の要部の組立後を示す図、図15は図14のA−A線断面図である。   FIG. 13 is a circuit diagram using the conventional motor starter described in Patent Document 1, FIG. 14 is a view showing the main part of the conventional motor starter after assembly, and FIG. 15 is an AA of FIG. It is line sectional drawing.

図13において、単相誘導電動機を構成するモータ2は主巻線10および補助巻線3を備え、交流電源7に接続されている。   In FIG. 13, the motor 2 constituting the single-phase induction motor includes a main winding 10 and an auxiliary winding 3 and is connected to an AC power source 7.

起動装置1はモータ2の補助巻線3に直列に接続された第1の正特性サーミスタ4と、第1の正特性サーミスタ4と直列に接続された半導体スイッチ5と第1の正特性サーミスタ4および半導体スイッチ5と並列に電極板A13を介してモータ2の補助巻線3に接続された第2の正特性サーミスタ6で回路構成されている。   The starting device 1 includes a first positive temperature coefficient thermistor 4 connected in series to the auxiliary winding 3 of the motor 2, a semiconductor switch 5 connected in series to the first positive temperature coefficient thermistor 4, and a first positive temperature coefficient thermistor 4. The second positive characteristic thermistor 6 connected to the auxiliary winding 3 of the motor 2 via the electrode plate A13 in parallel with the semiconductor switch 5 is constituted.

第1の正特性サーミスタ4、第2の正特性サーミスタ6は、例えば、チタン酸バリウムを主成分とした酸化物半導体セラミックで構成されていて、キュリー温度をもち、このキュリー温度を超えると電気抵抗値が急激に増大する特性を有しており、電流が流れることで自己発熱し、電気抵抗値が急激に増加する。   The first positive temperature coefficient thermistor 4 and the second positive temperature coefficient thermistor 6 are made of, for example, an oxide semiconductor ceramic mainly composed of barium titanate, and have a Curie temperature. It has a characteristic that the value increases rapidly, and self-heat is generated when a current flows, and the electric resistance value increases rapidly.

半導体スイッチ5には第1の端子Ta、第2の端子Tb、ゲート端子Gがあり、ゲート端子Gは電極版B14を介して第2の正特性サーミスタ6に接続されている。   The semiconductor switch 5 has a first terminal Ta, a second terminal Tb, and a gate terminal G. The gate terminal G is connected to the second positive temperature coefficient thermistor 6 through an electrode plate B14.

半導体スイッチ5は、ゲート端子Gに一定電流が流れることで第1の端子Ta、第2の端子Tb間がONし、ゲート端子Gに電流を流れなければ第1の端子Ta、第2の端子Tb間がOFFするもので、第2の正特性サーミスタ6に電流が流れないときには第2の正特性サーミスタ6の抵抗値が小さいためゲート端子Gに一定電流が流し、第1の端子Ta、第2の端子Tb間がONとなる。   The semiconductor switch 5 is turned on between the first terminal Ta and the second terminal Tb when a constant current flows through the gate terminal G, and the first terminal Ta and the second terminal when no current flows through the gate terminal G. When Tb is OFF, when no current flows through the second positive temperature coefficient thermistor 6, the resistance value of the second positive temperature coefficient thermistor 6 is small, so a constant current flows through the gate terminal G, and the first terminal Ta, The two terminals Tb are turned on.

また、第2の正特性サーミスタ6に電流が流れたときには第2の正特性サーミスタ6の抵抗値が大きくなりゲート端子Gの電流が低下するため第1の端子Ta、第2の端子Tb間がOFFとなる。   In addition, when a current flows through the second positive characteristic thermistor 6, the resistance value of the second positive characteristic thermistor 6 increases and the current at the gate terminal G decreases, so that there is a gap between the first terminal Ta and the second terminal Tb. It becomes OFF.

図14、図15において第2の正特性サーミスタ6は、上下の面が、樹脂で成形されたケースA11とケースB12に接触した状態で保持されている。また、相対向する電極面の一方の面は電極板A13を介し補助巻線3に接続され、電極面のもう一方の面は、電極板B14を介して半導体スイッチ5のゲートGに接続されている。   14 and 15, the second positive temperature coefficient thermistor 6 is held with the upper and lower surfaces in contact with the case A11 and the case B12 formed of resin. Also, one of the opposing electrode surfaces is connected to the auxiliary winding 3 via the electrode plate A13, and the other electrode surface is connected to the gate G of the semiconductor switch 5 via the electrode plate B14. Yes.

以上のように構成されたモータの起動装置について、以下その動作、作用を説明する。   The operation and action of the motor starting device configured as described above will be described below.

交流電源7から電気が供給されると、主巻線10に起動電流が流れる。起動時には第2の正特性サーミスタ6の温度が低く抵抗値が小さいためゲート端子Gに電流が流れることで、半導体スイッチ5はONしている。   When electricity is supplied from the AC power supply 7, a starting current flows through the main winding 10. At the time of start-up, since the temperature of the second positive temperature coefficient thermistor 6 is low and the resistance value is small, a current flows through the gate terminal G, so that the semiconductor switch 5 is turned on.

また第1の正特性サーミスタ4の温度も低く抵抗値が小さいため、補助巻線3に起動電流が流れ、モータ2は運転を開始する。   Further, since the temperature of the first positive characteristic thermistor 4 is also low and the resistance value is small, a starting current flows through the auxiliary winding 3 and the motor 2 starts operation.

モータ2が起動後、第1の正特性サーミスタ4は数秒でキュリー温度以上に自己発熱するため電気抵抗値が急激に増加し補助巻線3の電流が減少し、実質的に補助巻線3は切り離される。   After the motor 2 is started, the first positive temperature coefficient thermistor 4 self-heats above the Curie temperature within a few seconds, so that the electric resistance value increases rapidly and the current of the auxiliary winding 3 decreases. Disconnected.

通常、第1の正特性サーミスタ4は、高い電気抵抗値を維持するに必要な自己発熱を維持し続けるため、モータ2の運転中は数ワットの消費電力を消費し続けることになる。   Normally, the first positive temperature coefficient thermistor 4 continues to maintain the self-heating necessary to maintain a high electric resistance value, and thus continues to consume several watts of power during the operation of the motor 2.

更に、第2の正特性サーミスタ6にも電源電圧が印加されるので自己発熱し、抵抗値が増加し抵抗値が増加するためゲート端子Gへの電流が低下し、半導体スイッチ5がOFFとなる。   Furthermore, since the power supply voltage is also applied to the second positive temperature coefficient thermistor 6, it self-heats, the resistance value increases and the resistance value increases, so the current to the gate terminal G decreases and the semiconductor switch 5 is turned OFF. .

半導体スイッチ5がOFFとなると、第1の正特性サーミスタ4への電源電圧の印加が遮断されて、第1の正特性サーミスタ4の電力消費が発生せず、節電が図れる。
特開平6−339291号公報
When the semiconductor switch 5 is turned off, the application of the power supply voltage to the first positive temperature coefficient thermistor 4 is cut off, so that the power consumption of the first positive temperature coefficient thermistor 4 does not occur and power saving can be achieved.
JP-A-6-339291

しかしながら、上記従来の構成では、第2の正特性サーミスタ6の熱が空間やケースA11、ケースB12などに熱伝導して放熱してしまい、周囲への放熱が大きく十分に温度上昇が得られず、その結果抵抗値の増加が小さくなり、消費電力が大きくなるという課題を有していた。   However, in the conventional configuration, the heat of the second positive temperature coefficient thermistor 6 is dissipated by heat conduction to the space, the case A11, the case B12, etc., and the heat dissipation to the surroundings is large and the temperature rise cannot be obtained sufficiently. As a result, there has been a problem that an increase in resistance value is reduced and power consumption is increased.

本発明は、上記従来の課題を解決するもので、エネルギー効率の高いモータの起動装置を提供することを目的とする。   The present invention solves the above-described conventional problems, and an object thereof is to provide a motor starter with high energy efficiency.

上記従来の課題を解決するために、本発明のモータの起動装置は、補助巻線に直列に接続された第1の正特性サーミスタと、第1の正特性サーミスタと直列に接続された半導体スイッチと、正特第1の性サーモスタットと並列に接続され、半導体スイッチをON/OFFする第2の正特性サーミスタとを備え、第2の正特性サーミスタの外周面の少なくとも一部を断熱層にて囲ったもので、断熱層の断熱効果により第2の正特性サーミスタと接触するケースおよびケース内雰囲気への放熱を小さく抑えることができ、第2の正特性サーミスタの消費電力を節約することができるという作用を有する。   In order to solve the above-described conventional problems, a motor starting device according to the present invention includes a first positive temperature coefficient thermistor connected in series to an auxiliary winding, and a semiconductor switch connected in series to the first positive temperature coefficient thermistor. And a second positive temperature coefficient thermistor connected in parallel with the positive first sex thermostat and turning the semiconductor switch ON / OFF, and at least a part of the outer peripheral surface of the second positive temperature coefficient thermistor is a heat insulating layer With the enclosure, the heat dissipation effect of the heat insulating layer can suppress the heat radiation to the case contacting with the second positive temperature coefficient thermistor and the atmosphere in the case, and the power consumption of the second positive temperature coefficient thermistor can be saved. It has the action.

本発明のモータの起動装置は、エネルギー効率の高いモータの起動装置を提供することができる。   The motor starter of the present invention can provide a motor starter with high energy efficiency.

請求項1に記載の発明は、主巻線および補助巻線を有するモータの起動装置であって、補助巻線に直列に接続された第1の正特性サーミスタと、第1の正特性サーミスタと直列に接続された半導体スイッチと、前記第1の正特性サーミスタおよび前記半導体スイッチと並列に接続され、前記半導体スイッチのオン及びオフを制御する第2の正特性サーミスタとを備え、第2の正特性サーミスタの外周面の少なくとも一部を断熱層にて囲ったものであり、ケースおよびケース内雰囲気への熱伝導が小さくなり、第2の正特性サーミスタの損失が低減されるため、消費電力を低減でき、起動装置の消費電力が小さく消費電力エネルギー効率の高いモータの起動装置を提供することができる。   The invention according to claim 1 is a motor starting device having a main winding and an auxiliary winding, wherein the first positive thermistor connected in series to the auxiliary winding, the first positive thermistor, A semiconductor switch connected in series; and a first positive-characteristics thermistor and a second positive-characteristics thermistor connected in parallel to the semiconductor switch and controlling on and off of the semiconductor switch. Since at least a part of the outer peripheral surface of the characteristic thermistor is surrounded by a heat insulating layer, the heat conduction to the case and the atmosphere in the case is reduced, and the loss of the second positive characteristic thermistor is reduced. It is possible to provide a motor starter that can reduce the power consumption of the starter and has high power consumption and energy efficiency.

請求項2に記載の発明は、請求項1に記載の発明において、断熱層は芯材と前記芯材を被う非通気性外被材からなる真空断熱材にて形成されたもので、真空断熱材の断熱効果により第2の正特性サーミスタの損失が低減されるので、請求項1より更に消費電力を小さくすることができ、起動装置の消費電力を低減することができる。   The invention according to claim 2 is the invention according to claim 1, wherein the heat insulating layer is formed of a vacuum heat insulating material made of a core material and a non-breathable jacket material covering the core material, Since the loss of the second positive temperature coefficient thermistor is reduced by the heat insulating effect of the heat insulating material, the power consumption can be further reduced as compared with the first aspect, and the power consumption of the starting device can be reduced.

請求項3に記載の発明は、請求項1に記載の発明において、断熱層は第2の正特性サーミスタの外周面に塗布された塗料型断熱材にて形成されたもので、第2の正特性サーミスタの表面に塗料型断熱材を塗布するだけの簡単な工程で断熱効果が得られ、第2の正特性サーミスタの損失が低減されるため、消費電力を低減でき、更に安価に起動装置の消費電力を低減することができる。   The invention according to claim 3 is the invention according to claim 1, wherein the heat insulating layer is formed of a paint-type heat insulating material applied to the outer peripheral surface of the second positive temperature coefficient thermistor. A heat insulation effect can be obtained with a simple process of simply applying a paint-type heat insulating material to the surface of the characteristic thermistor, and the loss of the second positive temperature coefficient thermistor can be reduced. Power consumption can be reduced.

請求項4に記載の発明は、請求項1に記載の発明において、断熱層は発泡樹脂にて形成されたもので、発泡樹脂内に形成された気泡の断熱効果により、第2の正特性サーミスタの損失が低減され、断熱層は樹脂成形品なので、加工、組立が容易であり、安価に製造が可能である。   The invention according to claim 4 is the invention according to claim 1, wherein the heat insulating layer is formed of a foamed resin, and the second positive temperature coefficient thermistor is formed by the heat insulating effect of the bubbles formed in the foamed resin. Since the heat-insulating layer is a resin molded product, it is easy to process and assemble, and can be manufactured at low cost.

請求項5に記載の発明は、請求項1に記載の発明において、断熱層は閉空間によって画定された空気の層にて形成されたもので、ケースの面を閉空間の空気層が形成される形状にすることにより、空気層の断熱効果で第2の正特性サーミスタの損失が低減されるので、特別な断熱材を必要とせず、組立も容易で安価に起動装置の消費電力を低減することができる。   The invention according to claim 5 is the invention according to claim 1, wherein the heat insulating layer is formed of an air layer defined by the closed space, and the air layer of the closed space is formed on the surface of the case. Since the loss of the second positive temperature coefficient thermistor is reduced by the heat insulating effect of the air layer, no special heat insulating material is required, the assembly is easy and inexpensive, and the power consumption of the starter is reduced. be able to.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1におけるモータの起動装置の回路図、図2は、本発明の実施の形態1におけるモータの起動装置の要部の組立前を示す図、図3は、図2の組立後のB−B線断面図である。
(Embodiment 1)
FIG. 1 is a circuit diagram of a motor starting device according to Embodiment 1 of the present invention, FIG. 2 is a diagram showing a main part of the motor starting device according to Embodiment 1 of the present invention before assembly, and FIG. It is the BB sectional view after the assembly of FIG.

以下、図1、図2、図3に基づいて本実施の形態について説明する。   Hereinafter, the present embodiment will be described with reference to FIGS. 1, 2, and 3.

図1において、単相誘導電動機を構成するモータ102は主巻線110および補助巻線103を備え、交流電源107に接続されている。起動装置101はモータ102の補助巻線103に直列に接続された第1の正特性サーミスタ104と、第1の正特性サーミスタ104と直列に接続された半導体スイッチ105と、第1の正特性サーミスタ104および半導体スイッチ105と並列に電極板A113を介してモータ102の補助巻線103に接続された第2の正特性サーミスタ106で回路構成されている。   In FIG. 1, a motor 102 constituting a single-phase induction motor includes a main winding 110 and an auxiliary winding 103, and is connected to an AC power source 107. The starting device 101 includes a first positive temperature coefficient thermistor 104 connected in series to the auxiliary winding 103 of the motor 102, a semiconductor switch 105 connected in series to the first positive temperature coefficient thermistor 104, and a first positive temperature coefficient thermistor. A circuit is constituted by a second positive temperature coefficient thermistor 106 connected to the auxiliary winding 103 of the motor 102 via the electrode plate A113 in parallel with the semiconductor switch 104 and the semiconductor switch 105.

第1の正特性サーミスタ104、第2の正特性サーミスタ106は、電流が流れることで自己発熱し、電気抵抗値が急激に増加する。   The first positive temperature coefficient thermistor 104 and the second positive temperature coefficient thermistor 106 self-heat when a current flows, and the electric resistance value rapidly increases.

半導体スイッチ105には第1の端子T1、第2の端子T2、ゲート端子G1があり、ゲート端子G1は電極板B114を介して第2の正特性サーミスタ106に接続されている。   The semiconductor switch 105 has a first terminal T1, a second terminal T2, and a gate terminal G1, and the gate terminal G1 is connected to the second positive temperature coefficient thermistor 106 through an electrode plate B114.

ゲート端子G1に一定電流が流れることで第1の端子T1、第2の端子T2間がONし、ゲート端子G1に電流を流れなければ第1の端子T1、第2の端子T2間がOFFするもので、第2の正特性サーミスタ106に電流が流れないときには第2の正特性サーミスタ106の抵抗値が小さいためゲート端子G1に一定電流が流し、第1の端子T1、第2の端子T2間がONとなる。   When a constant current flows through the gate terminal G1, the first terminal T1 and the second terminal T2 are turned on. When no current flows through the gate terminal G1, the first terminal T1 and the second terminal T2 are turned off. However, when no current flows through the second positive temperature coefficient thermistor 106, the resistance value of the second positive temperature coefficient thermistor 106 is small, so that a constant current flows through the gate terminal G1, and between the first terminal T1 and the second terminal T2. Is turned on.

また、第2の正特性サーミスタ106に電流が流れたときには第2の正特性サーミスタ106の抵抗値が大きくなりゲート端子G1の電流が低下するため第1の端子T1、第2の端子T2間がOFFとなる。   Also, when a current flows through the second positive temperature coefficient thermistor 106, the resistance value of the second positive temperature coefficient thermistor 106 increases and the current at the gate terminal G1 decreases, so that there is a gap between the first terminal T1 and the second terminal T2. It becomes OFF.

図2、図3において第2の正特性サーミスタ106の相対向する電極面の一方の面は電極板A113を介し補助巻線103に接続され、電極面のもう一方の面は、電極板B114を介して半導体スイッチ105のゲート端子G1に接続されている。   2 and 3, one of the opposing electrode surfaces of the second positive temperature coefficient thermistor 106 is connected to the auxiliary winding 103 via the electrode plate A113, and the other electrode surface is connected to the electrode plate B114. To the gate terminal G1 of the semiconductor switch 105.

そして第2の正特性サーミスタ106は、電極面以外が芯材と前記芯材を被う非通気性外被材からなる断熱層である真空断熱材115に囲われて、ケースA111、ケースB112に組み込まれている。非通気性外被材は、プラスチックフィルムと金属箔のラミネートフィルムで構成されている。   The second positive temperature coefficient thermistor 106 is surrounded by a case A111 and a case B112 surrounded by a vacuum heat insulating material 115 which is a heat insulating layer made of a core material and a non-breathable outer covering material covering the core material except for the electrode surface. It has been incorporated. The non-breathable outer jacket material is composed of a plastic film and a laminated film of metal foil.

以上のように構成されたモータの起動装置について、以下その動作、作用を説明する。   The operation and action of the motor starting device configured as described above will be described below.

交流電源107から電気が供給されると、主巻線110に起動電流が流れる。起動時には第2の正特性サーミスタ106の温度が低く抵抗値が小さいためゲート端子G1に電流が流れることで、半導体スイッチ105はONする。   When electricity is supplied from the AC power source 107, a starting current flows through the main winding 110. At the time of start-up, since the temperature of the second positive temperature coefficient thermistor 106 is low and the resistance value is small, a current flows through the gate terminal G1, so that the semiconductor switch 105 is turned on.

また第1の正特性サーミスタ104の温度も低く抵抗値が小さいため、補助巻線103に起動電流が流れ、モータ102は運転を開始する。   Further, since the temperature of the first positive characteristic thermistor 104 is low and the resistance value is small, a starting current flows through the auxiliary winding 103, and the motor 102 starts operation.

モータ102が起動後、第1の正特性サーミスタ104は数秒でキュリー温度以上に自己発熱するため電気抵抗値が急激に増加し、補助巻線103の電流が減少し、実質的に補助巻線103は切り離される。   After the motor 102 is started, the first positive temperature coefficient thermistor 104 self-heats above the Curie temperature within a few seconds, so that the electric resistance value increases rapidly, the current of the auxiliary winding 103 decreases, and the auxiliary winding 103 is substantially reduced. Is cut off.

更に、第2の正特性サーミスタ106にも電源電圧が印加されるので自己発熱し、抵抗値が増加するためゲート端子G1への電流が低下し、半導体スイッチ105がOFFとなる。   Furthermore, since the power supply voltage is also applied to the second positive temperature coefficient thermistor 106, it self-heats and the resistance value increases, so that the current to the gate terminal G1 decreases and the semiconductor switch 105 is turned OFF.

半導体スイッチ105がOFFとなると、第1の正特性サーミスタ104への電源電圧の印加が遮断されて、第1の正特性サーミスタ104の電力消費が発生せず、節電が図れる。   When the semiconductor switch 105 is turned off, the application of the power supply voltage to the first positive temperature coefficient thermistor 104 is cut off, so that the power consumption of the first positive temperature coefficient thermistor 104 does not occur and power saving can be achieved.

また、第2の正特性サーミスタ106は、非常に断熱性に優れた真空断熱材115に囲われているため、相対向する電極面からの放熱を除いて、第2の正特性サーミスタ106の熱がケースA111、ケースA112にはほとんど伝わらないため、第2の正特性サーミスタ106の放熱が極めて少なくなる。   In addition, since the second positive temperature coefficient thermistor 106 is surrounded by the vacuum heat insulating material 115 having excellent heat insulation properties, the heat of the second positive temperature coefficient thermistor 106 is removed except for heat radiation from the opposing electrode surfaces. However, since the heat is hardly transmitted to the case A111 and the case A112, the heat radiation of the second positive temperature coefficient thermistor 106 is extremely reduced.

また、第2の正特性サーミスタ106の抵抗値は自己発熱の温度上昇により大きくなるが、周囲への放熱が大きければ十分に温度上昇が得られず、その結果抵抗値の増加が小さくなり、消費電力が大きくなり、更にはゲート端子G1の電流が十分に低下せず半導体スイッチ105がOFFしなくなることがあるが、本実施の形態においてはこういった動作ミスを回避することができる。   In addition, the resistance value of the second positive temperature coefficient thermistor 106 increases as the temperature of self-heating increases. However, if the heat dissipation to the surroundings is large, the temperature cannot be sufficiently increased. Although the power increases and the current of the gate terminal G1 does not sufficiently decrease and the semiconductor switch 105 may not be turned off, this operation error can be avoided in this embodiment.

従って、半導体スイッチ105をOFFさせるのに必要な第2の正特性サーミスタ106の自己発熱の電力以外の、ケースA111やケースB112などへの放熱分の電力消費を極めて低く抑えることができ、その結果、極めてエネルギー効率の高いモータの起動装置を得ることができる。   Therefore, the power consumption for the heat radiation to the case A111, the case B112, etc. other than the self-heating power of the second positive temperature coefficient thermistor 106 necessary for turning off the semiconductor switch 105 can be suppressed to a very low level. An extremely energy efficient motor starting device can be obtained.

(実施の形態2)
図4は、本発明の実施の形態2におけるモータの起動装置の回路図、図5は、本発明の実施の形態2におけるモータの起動装置の要部の組立前を示す図、図6は、図5の組立後のC−C線断面図である。
(Embodiment 2)
FIG. 4 is a circuit diagram of the motor starting device according to the second embodiment of the present invention, FIG. 5 is a diagram illustrating a main part of the motor starting device according to the second embodiment of the present invention before assembly, and FIG. It is CC sectional view taken on the line after the assembly of FIG.

以下、図4、図5、図6に基づいて本実施の形態について説明する。   Hereinafter, the present embodiment will be described with reference to FIGS. 4, 5, and 6.

図4において、単相誘導電動機を構成するモータ202は主巻線210および補助巻線203を備え、交流電源207に接続されている。   In FIG. 4, a motor 202 constituting a single-phase induction motor includes a main winding 210 and an auxiliary winding 203 and is connected to an AC power source 207.

起動装置201はモータ202の補助巻線203に直列に接続された第1の正特性サーミスタ204と、第1の正特性サーミスタ204と直列に接続された半導体スイッチ205と、第1の正特性サーミスタ204および半導体スイッチ205と並列に電極板A213を介してモータ202の補助巻線203に接続された第2の正特性サーミスタ206で回路構成されている。   The starting device 201 includes a first positive temperature coefficient thermistor 204 connected in series to the auxiliary winding 203 of the motor 202, a semiconductor switch 205 connected in series to the first positive temperature coefficient thermistor 204, and a first positive temperature coefficient thermistor. A circuit is constituted by a second positive temperature coefficient thermistor 206 connected to the auxiliary winding 203 of the motor 202 via the electrode plate A 213 in parallel with 204 and the semiconductor switch 205.

第1の正特性サーミスタ204、第2の正特性サーミスタ206は、電流が流れることで自己発熱し、電気抵抗値が急激に増加する。   The first positive temperature coefficient thermistor 204 and the second positive temperature coefficient thermistor 206 self-heat when a current flows, and the electric resistance value rapidly increases.

半導体スイッチ205には第1の端子T3、第2の端子T4、ゲート端子G2があり、ゲート端子G2は電極板B214を介して第2の正特性サーミスタ206に接続されている。   The semiconductor switch 205 has a first terminal T3, a second terminal T4, and a gate terminal G2, and the gate terminal G2 is connected to the second positive temperature coefficient thermistor 206 through the electrode plate B214.

ゲート端子G2に一定電流が流れることで第1の端子T3、第2の端子T4間がONし、ゲート端子G2に電流を流れなければ第1の端子T3、第2の端子T4間がOFFするもので、第2の正特性サーミスタ206に電流が流れないときには第2の正特性サーミスタ206の抵抗値が小さいためゲート端子G2に一定電流が流し、第1の端子T3、第2の端子T4間がONとなる。   When a constant current flows through the gate terminal G2, the first terminal T3 and the second terminal T4 are turned on. When no current flows through the gate terminal G2, the first terminal T3 and the second terminal T4 are turned off. However, when no current flows through the second positive temperature coefficient thermistor 206, the resistance value of the second positive temperature coefficient thermistor 206 is small, so that a constant current flows through the gate terminal G2, and between the first terminal T3 and the second terminal T4. Is turned on.

また、第2の正特性サーミスタ206に電流が流れたときには第2の正特性サーミスタ206の抵抗値が大きくなりゲート端子G2の電流が低下するため第1の端子T3、第2の端子T4間がOFFとなる。   Also, when a current flows through the second positive temperature coefficient thermistor 206, the resistance value of the second positive temperature coefficient thermistor 206 increases and the current at the gate terminal G2 decreases, so that there is a gap between the first terminal T3 and the second terminal T4. It becomes OFF.

図5、図6において第2の正特性サーミスタ206の相対向する電極面の一方の面は電極板A213を介し補助巻線203に接続され、電極面のもう一方の面は、電極板B214を介して半導体スイッチ205のゲート端子G2に接続されている。   5 and 6, one of the opposing electrode surfaces of the second positive temperature coefficient thermistor 206 is connected to the auxiliary winding 203 via the electrode plate A 213, and the other electrode surface is connected to the electrode plate B 214. To the gate terminal G2 of the semiconductor switch 205.

そして第2の正特性サーミスタ206の電極面以外の外周面は塗料型断熱材215が塗布されており、ケースA211、ケースB212、電極板A213、電極板B214により保持されている。   The outer peripheral surface of the second positive characteristic thermistor 206 other than the electrode surface is coated with a paint-type heat insulating material 215 and is held by the case A 211, the case B 212, the electrode plate A 213, and the electrode plate B 214.

以上のように構成されたモータの起動装置について、以下その動作、作用を説明する。   The operation and action of the motor starting device configured as described above will be described below.

交流電源207から電気が供給されると、主巻線210に起動電流が流れる。起動時には第2の正特性サーミスタ206の温度が低く抵抗値が小さいためゲート端子G2に電流が流れることで、半導体スイッチ205はONする。   When electricity is supplied from the AC power supply 207, a starting current flows through the main winding 210. At the time of start-up, since the temperature of the second positive temperature coefficient thermistor 206 is low and the resistance value is small, a current flows through the gate terminal G2, so that the semiconductor switch 205 is turned on.

また第1の正特性サーミスタ204の温度も低く抵抗値が小さいため、補助巻線203に起動電流が流れ、モータ202は運転を開始する。   Further, since the temperature of the first positive characteristic thermistor 204 is low and the resistance value is small, a starting current flows through the auxiliary winding 203 and the motor 202 starts operation.

モータ202が起動後、第1の正特性サーミスタ204は数秒でキュリー温度以上に自己発熱するため電気抵抗値が急激に増加し、補助巻線203の電流が減少し、実質的に補助巻線203は切り離される。   After the motor 202 is started, the first positive temperature coefficient thermistor 204 self-heats above the Curie temperature within a few seconds, so that the electric resistance value increases rapidly, the current of the auxiliary winding 203 decreases, and the auxiliary winding 203 is substantially reduced. Is cut off.

更に、第2の正特性サーミスタ206にも電源電圧が印加されるので自己発熱し、抵抗値が増加するためゲート端子G2への電流が低下し、半導体スイッチ205がOFFとなる。   Furthermore, since the power supply voltage is also applied to the second positive characteristic thermistor 206, self-heating occurs and the resistance value increases, so that the current to the gate terminal G2 decreases, and the semiconductor switch 205 is turned OFF.

半導体スイッチ205がOFFとなると、第1の正特性サーミスタ204への電源電圧の印加が遮断されて、第1の正特性サーミスタ204の電力消費が発生せず、節電が図れる。   When the semiconductor switch 205 is turned off, the application of the power supply voltage to the first positive temperature coefficient thermistor 204 is cut off, so that the power consumption of the first positive temperature coefficient thermistor 204 does not occur and power saving can be achieved.

また、第2の正特性サーミスタ206は電極面以外の外周面に、断熱性に優れ、塗布するだけでよい塗料型断熱材215を使用しているため、相対向する電極面からの放熱を除いて、第2の正特性サーミスタ206の熱がケースA211、ケースB212に伝わりにくく、第2の正特性サーミスタ206の放熱が少なくなる。   In addition, since the second positive temperature coefficient thermistor 206 uses a paint-type heat insulating material 215 that is excellent in heat insulation and needs only to be applied to the outer peripheral surface other than the electrode surface, heat dissipation from the opposite electrode surfaces is excluded. Thus, the heat of the second positive temperature coefficient thermistor 206 is not easily transmitted to the case A 211 and the case B 212, and the heat dissipation of the second positive temperature coefficient thermistor 206 is reduced.

また、第2の正特性サーミスタ206の抵抗値は自己発熱の温度上昇により大きくなるが、周囲への放熱が大きければ十分に温度上昇が得られず、その結果抵抗値の増加が小さくなり、消費電力が大きくなり、更にはゲート端子G2の電流が十分に低下せず半導体スイッチ205がOFFしなくなることがあるが、本実施の形態においてはこういった動作ミスを回避することができる。   In addition, the resistance value of the second positive temperature coefficient thermistor 206 increases as the temperature of self-heating increases, but if the heat dissipation to the surroundings is large, the temperature cannot be sufficiently increased, resulting in a small increase in resistance value, resulting in consumption The power increases, and further, the current of the gate terminal G2 does not sufficiently decrease and the semiconductor switch 205 may not be turned off. However, in this embodiment, such an operation error can be avoided.

従って、半導体スイッチ205をOFFさせるのに必要な、第2の正特性サーミスタ206の自己発熱の電力以外の、ケースA211やケースB212などへの放熱分の電力消費を極めて低く抑えることができ、その結果、極めてエネルギー効率の高いモータの起動装置を得ることができる。   Therefore, the power consumption for the heat radiation to the case A 211, the case B 212, etc. other than the self-heating power of the second positive temperature coefficient thermistor 206 necessary for turning off the semiconductor switch 205 can be suppressed to an extremely low level. As a result, an extremely energy efficient motor starting device can be obtained.

更に第2の正特性サーミスタ206は予め電極面以外の外周面に塗料型断熱材215を塗布しておく簡単なものであり、新たな部品の追加も必要とせず、組立工数も増えないため、生産性が高く安価な起動装置を得ることができる。   Furthermore, the second positive temperature coefficient thermistor 206 is a simple one in which the paint-type heat insulating material 215 is applied in advance to the outer peripheral surface other than the electrode surface, and no additional parts are required and the number of assembly steps does not increase. A starter with high productivity and low cost can be obtained.

(実施の形態3)
図7は、本発明の実施の形態3におけるモータの起動装置の回路図、図8は、本発明の実施の形態3におけるモータの起動装置の要部の組立前を示す図、図9は、図8の組立後のD−D線断面図である。
(Embodiment 3)
FIG. 7 is a circuit diagram of a motor starting device according to the third embodiment of the present invention, FIG. 8 is a diagram showing a main part of the motor starting device according to the third embodiment of the present invention before assembly, and FIG. It is the DD sectional view taken on the line after the assembly of FIG.

以下、図7、図8、図9に基づいて本実施の形態について説明する。   Hereinafter, the present embodiment will be described with reference to FIG. 7, FIG. 8, and FIG.

図7において、単相誘導電動機を構成するモータ302は主巻線310および補助巻線303を備え、交流電源307に接続されている。起動装置301はモータ302の補助巻線303に直列に接続された第1の正特性サーミスタ304と、第1の正特性サーミスタ304と直列に接続された半導体スイッチ305と、第1の正特性サーミスタ304および半導体スイッチ305と並列に電極板A313を介してモータ302の補助巻線303に接続された第2の正特性サーミスタ306で回路構成されている。   In FIG. 7, a motor 302 constituting a single-phase induction motor includes a main winding 310 and an auxiliary winding 303 and is connected to an AC power supply 307. The starter 301 includes a first positive temperature coefficient thermistor 304 connected in series to the auxiliary winding 303 of the motor 302, a semiconductor switch 305 connected in series to the first positive temperature coefficient thermistor 304, and a first positive temperature coefficient thermistor. The second positive temperature coefficient thermistor 306 is connected to the auxiliary winding 303 of the motor 302 via the electrode plate A313 in parallel with 304 and the semiconductor switch 305.

第1の正特性サーミスタ304、第2の正特性サーミスタ306は、電流が流れることで自己発熱し、電気抵抗値が急激に増加する。   The first positive temperature coefficient thermistor 304 and the second positive temperature coefficient thermistor 306 self-heat when a current flows, and the electric resistance value rapidly increases.

半導体スイッチ305には第1の端子T5、第2の端子T6、ゲート端子G3があり、ゲート端子G3は電極板B314を介して第2の正特性サーミスタ306に接続されている。   The semiconductor switch 305 has a first terminal T5, a second terminal T6, and a gate terminal G3, and the gate terminal G3 is connected to the second positive temperature coefficient thermistor 306 via the electrode plate B314.

ゲート端子G3に一定電流が流れることで第1の端子T5、第2の端子T6間がONし、ゲート端子G3に電流を流れなければ第1の端子T5、第2の端子T6間がOFFするもので、第2の正特性サーミスタ306に電流が流れないときには第2の正特性サーミスタ306の抵抗値が小さいためゲート端子G3に一定電流が流し、第1の端子T5、第2の端子T6間がONとなる。   When a constant current flows through the gate terminal G3, the first terminal T5 and the second terminal T6 are turned on. When no current flows through the gate terminal G3, the first terminal T5 and the second terminal T6 are turned off. However, when no current flows through the second positive temperature coefficient thermistor 306, the resistance value of the second positive temperature coefficient thermistor 306 is small, so that a constant current flows through the gate terminal G3, and between the first terminal T5 and the second terminal T6. Is turned on.

また、第2の正特性サーミスタ306に電流が流れたときには第2の正特性サーミスタ306の抵抗値が大きくなりゲート端子G3の電流が低下するため第1の端子T5、第2の端子T6間がOFFとなる。   Further, when a current flows through the second positive characteristic thermistor 306, the resistance value of the second positive characteristic thermistor 306 increases and the current of the gate terminal G3 decreases, so that the first terminal T5 and the second terminal T6 are connected. It becomes OFF.

図8、図9において第2の正特性サーミスタ306の相対向する電極面の一方の面は電極板A313を介し補助巻線303に接続され、電極面のもう一方の面は、電極板B314を介して半導体スイッチ305のゲート端子G3に接続されている。   8 and 9, one of the opposing electrode surfaces of the second positive temperature coefficient thermistor 306 is connected to the auxiliary winding 303 via the electrode plate A313, and the other electrode surface is connected to the electrode plate B314. To the gate terminal G3 of the semiconductor switch 305.

そして第2の正特性サーミスタ306は発泡樹脂にて成形されたケースA311、ケースB312と電極板A313、電極板B314により保持されている。   The second positive temperature coefficient thermistor 306 is held by a case A311, a case B312, an electrode plate A313, and an electrode plate B314 formed of foamed resin.

以上のように構成されたモータの起動装置について、以下その動作、作用を説明する。   The operation and action of the motor starting device configured as described above will be described below.

交流電源307から電気が供給されると、主巻線310に起動電流が流れる。起動時には第2の正特性サーミスタ306の温度が低く抵抗値が小さいためゲート端子G3に電流が流れることで、半導体スイッチ305はONする。   When electricity is supplied from the AC power supply 307, a starting current flows through the main winding 310. At the time of start-up, since the temperature of the second positive temperature coefficient thermistor 306 is low and the resistance value is small, a current flows through the gate terminal G3, so that the semiconductor switch 305 is turned on.

また第1の正特性サーミスタ304の温度も低く抵抗値が小さいため、補助巻線303に起動電流が流れ、モータ302は運転を開始する。   Further, since the temperature of the first positive characteristic thermistor 304 is also low and the resistance value is small, a starting current flows through the auxiliary winding 303 and the motor 302 starts operation.

モータ302が起動後、第1の正特性サーミスタ304は数秒でキュリー温度以上に自己発熱するため電気抵抗値が急激に増加し、補助巻線303の電流が減少し、実質的に補助巻線303は切り離される。   After the motor 302 is started, the first positive temperature coefficient thermistor 304 self-heats above the Curie temperature in a few seconds, so that the electric resistance value increases rapidly, the current of the auxiliary winding 303 decreases, and the auxiliary winding 303 is substantially reduced. Is cut off.

更に、第2の正特性サーミスタ306にも電源電圧が印加されるので自己発熱し、抵抗値が増加するためゲート端子G3への電流が低下し、半導体スイッチ305がOFFとなる。   Further, since the power supply voltage is also applied to the second positive characteristic thermistor 306, self-heating occurs and the resistance value increases, so that the current to the gate terminal G3 decreases, and the semiconductor switch 305 is turned off.

半導体スイッチ305がOFFとなると、第1の正特性サーミスタ304への電源電圧の印加が遮断されて、第1の正特性サーミスタ304の電力消費が発生せず、節電が図れる。   When the semiconductor switch 305 is turned off, the application of the power supply voltage to the first positive temperature coefficient thermistor 304 is cut off, so that the power consumption of the first positive temperature coefficient thermistor 304 does not occur and power saving can be achieved.

また、第2の正特性サーミスタ306と接触するケースA311、ケースB312は、断熱性に優れた発泡樹脂にて成形されたものであるため、相対向する電極面からの放熱を除いて、第2の正特性サーミスタ206の熱がケースA311、ケースB312に伝わりにくく、第2の正特性サーミスタ206の放熱が少なくなる。   In addition, the case A311 and the case B312 that are in contact with the second positive temperature coefficient thermistor 306 are formed of a foamed resin having excellent heat insulating properties. The heat of the positive temperature coefficient thermistor 206 is not easily transmitted to the case A 311 and the case B 312, and the heat radiation of the second pressure characteristic thermistor 206 is reduced.

第2の正特性サーミスタ306の抵抗値は自己発熱の温度上昇により大きくなるが、周囲への放熱が大きければ十分に温度上昇が得られず、その結果抵抗値の増加が小さくなり、消費電力が大きくなり、更にはゲート端子G3の電流が十分に低下せず半導体スイッチ305がOFFしなくなることがあるが、本実施の形態においてはこういった動作ミスを回避することができる。   The resistance value of the second positive temperature coefficient thermistor 306 increases as the self-heating temperature rises. However, if the heat dissipation to the surroundings is large, the temperature rise cannot be sufficiently obtained. In addition, the semiconductor switch 305 may not be turned OFF because the current of the gate terminal G3 is not sufficiently lowered and the semiconductor switch 305 may not be turned off. In this embodiment, such an operation error can be avoided.

従って、半導体スイッチ305をOFFさせるのに必要な、第2の正特性サーミスタ306の自己発熱の電力以外の、ケースA311、ケースB312などへの放熱分の電力消費を極めて低く抑えることができ、その結果、極めてエネルギー効率の高いモータの起動装置を得ることができる。   Therefore, the power consumption for the heat radiation to the case A 311 and the case B 312 other than the self-heating power of the second positive temperature coefficient thermistor 306 necessary for turning off the semiconductor switch 305 can be suppressed to a very low level. As a result, an extremely energy efficient motor starting device can be obtained.

更に、ケースA311、ケースB312の成形を発泡樹脂成形にするだけなので、新たな部品の追加も必要とせず、組立工数も増えないため、生産性が高く安価な起動装置を得ることができる。   Furthermore, since the molding of the case A311 and the case B312 is merely foamed resin molding, no additional parts are required and the number of assembly steps is not increased, so that a highly efficient and inexpensive starting device can be obtained.

(実施の形態4)
図10は、本発明の実施の形態4におけるモータの起動装置の回路図、図11は、本発明の実施の形態4におけるモータの起動装置の要部の組立前を示す図、図12は、図11の組立後のE−E線断面図である。
(Embodiment 4)
FIG. 10 is a circuit diagram of the motor starting device according to the fourth embodiment of the present invention, FIG. 11 is a diagram showing the main parts of the motor starting device according to the fourth embodiment of the present invention before assembly, and FIG. It is the EE sectional view taken on the line after the assembly of FIG.

以下、図10、図11、図12に基づいて本実施の形態について説明する。
図10において、単相誘導電動機を構成するモータ402は主巻線410および補助巻線403を備え、交流電源407に接続されている。
Hereinafter, the present embodiment will be described based on FIG. 10, FIG. 11, and FIG.
In FIG. 10, a motor 402 constituting a single-phase induction motor includes a main winding 410 and an auxiliary winding 403, and is connected to an AC power supply 407.

起動装置401はモータ402の補助巻線403に直列に接続された第1の正特性サーミスタ404と、第1の正特性サーミスタ404と直列に接続された半導体スイッチ405と、第1の正特性サーミスタ404および半導体スイッチ405と並列に電極板I413を介してモータ402の補助巻線403に接続された第2の正特性サーミスタ406で回路構成されている。   The starter 401 includes a first positive temperature coefficient thermistor 404 connected in series to the auxiliary winding 403 of the motor 402, a semiconductor switch 405 connected in series to the first positive temperature coefficient thermistor 404, and a first positive temperature coefficient thermistor. A circuit is constituted by a second positive temperature coefficient thermistor 406 connected to the auxiliary winding 403 of the motor 402 via the electrode plate I413 in parallel with the 404 and the semiconductor switch 405.

第1の正特性サーミスタ404、第2の正特性サーミスタ406は、電流が流れることで自己発熱し、電気抵抗値が急激に増加する。   The first positive temperature coefficient thermistor 404 and the second positive temperature coefficient thermistor 406 self-heat when a current flows, and the electric resistance value rapidly increases.

半導体スイッチ405には第1の端子T7、第2の端子T8、ゲート端子G4があり、ゲート端子G4は電極板B414を介して第2の正特性サーミスタ406に接続されている。   The semiconductor switch 405 includes a first terminal T7, a second terminal T8, and a gate terminal G4, and the gate terminal G4 is connected to the second positive temperature coefficient thermistor 406 via the electrode plate B414.

ゲート端子G4に一定電流が流れることで第1の端子T7、第2の端子T8間がONし、ゲート端子G4に電流を流れなければ第1の端子T7、第2の端子T8間がOFFするもので、第2の正特性サーミスタ406に電流が流れないときには第2の正特性サーミスタ406の抵抗値が小さいためゲート端子G4に一定電流が流し、第1の端子T7、第2の端子T8間がONとなる。   When a constant current flows through the gate terminal G4, the first terminal T7 and the second terminal T8 are turned on. When no current flows through the gate terminal G4, the first terminal T7 and the second terminal T8 are turned off. However, when no current flows through the second positive temperature coefficient thermistor 406, the resistance value of the second positive temperature coefficient thermistor 406 is small, so that a constant current flows through the gate terminal G4, and between the first terminal T7 and the second terminal T8. Is turned on.

また、第2の正特性サーミスタ406に電流が流れたときには第2の正特性サーミスタ406の抵抗値が大きくなりゲート端子G4の電流が低下するため第1の端子T7、第2の端子T8間がOFFとなる。   In addition, when a current flows through the second positive characteristic thermistor 406, the resistance value of the second positive characteristic thermistor 406 increases and the current at the gate terminal G4 decreases, so that there is a gap between the first terminal T7 and the second terminal T8. It becomes OFF.

図11、図12において第2の正特性サーミスタ406の相対向する電極面の一方の面は電極板A413を介し補助巻線403に接続され、電極面のもう一方の面は、電極板B414を介して半導体スイッチ405のゲート端子G4に接続されている。   11 and 12, one of the opposing electrode surfaces of the second positive temperature coefficient thermistor 406 is connected to the auxiliary winding 403 via the electrode plate A413, and the other electrode surface is connected to the electrode plate B414. To the gate terminal G4 of the semiconductor switch 405.

そして第2の正特性サーミスタ406の電極面以外の外周面はケースA411、ケースB412によって画定された空気の層415で囲われている。
以上のように構成されたモータの起動装置について、以下その動作、作用を説明する。
The outer peripheral surface of the second positive characteristic thermistor 406 other than the electrode surface is surrounded by an air layer 415 defined by the case A411 and the case B412.
The operation and action of the motor starting device configured as described above will be described below.

交流電源407から電気が供給されると、主巻線410に起動電流が流れる。起動時には第2の正特性サーミスタ406の温度が低く抵抗値が小さいためゲート端子G4に電流が流れることで、半導体スイッチ405はONする。   When electricity is supplied from the AC power supply 407, a starting current flows through the main winding 410. At the time of start-up, since the temperature of the second positive temperature coefficient thermistor 406 is low and the resistance value is small, a current flows through the gate terminal G4, so that the semiconductor switch 405 is turned on.

また第1の正特性サーミスタ404の温度も低く抵抗値が小さいため、補助巻線403に起動電流が流れ、モータ402は運転を開始する。   Further, since the temperature of the first positive characteristic thermistor 404 is low and the resistance value is small, a starting current flows through the auxiliary winding 403 and the motor 402 starts operation.

モータ402が起動後、第1の正特性サーミスタ404は数秒でキュリー温度以上に自己発熱するため電気抵抗値が急激に増加し、補助巻線403の電流が減少し、実質的に補助巻線403は切り離される。   After the motor 402 is started, the first positive temperature coefficient thermistor 404 self-heats above the Curie temperature within a few seconds, so that the electric resistance value increases rapidly, the current of the auxiliary winding 403 decreases, and the auxiliary winding 403 is substantially reduced. Is cut off.

更に、第2の正特性サーミスタ406にも電源電圧が印加されるので自己発熱し、抵抗値が増加するためゲート端子G4への電流が低下し、半導体スイッチ405がOFFとなる。   Furthermore, since the power supply voltage is also applied to the second positive characteristic thermistor 406, self-heating occurs and the resistance value increases, so that the current to the gate terminal G4 decreases and the semiconductor switch 405 is turned OFF.

半導体スイッチ405がOFFとなると、第1の正特性サーミスタ404への電源電圧の印加が遮断されて、第1の正特性サーミスタ404の電力消費が発生せず、節電が図れる。   When the semiconductor switch 405 is turned off, the application of the power supply voltage to the first positive temperature coefficient thermistor 404 is cut off, so that the power consumption of the first positive temperature coefficient thermistor 404 does not occur and power can be saved.

また、第2の正特性サーミスタ406とケースA411、ケースB412の間は、閉空間の空気の層415が形成されているため、相対向する電極面からの放熱を除いて、第2の正特性サーミスタ406の熱がケースA411、ケースB412に伝わりにくく、第2の正特性サーミスタ406の放熱が少なくなる。   Further, since the air layer 415 in the closed space is formed between the second positive characteristic thermistor 406 and the case A411 and the case B412, the second positive characteristic is excluded except for heat radiation from the opposing electrode surfaces. The heat of the thermistor 406 is not easily transmitted to the case A 411 and the case B 412, and the heat radiation of the second positive characteristic thermistor 406 is reduced.

また、第2の正特性サーミスタ406の抵抗値は自己発熱の温度上昇により大きくなるが、周囲への放熱が大きければ十分に温度上昇が得られず、その結果抵抗値の増加が小さくなり、消費電力が大きくなり、更にはゲート端子G4の電流が十分に低下せず半導体スイッチ405がOFFしなくなることがあるが、本実施の形態においてはこういった動作ミスを回避することができる。   In addition, the resistance value of the second positive temperature coefficient thermistor 406 increases as the temperature of self-heating increases, but if the heat radiation to the surroundings is large, the temperature cannot be increased sufficiently, resulting in a small increase in resistance value and consumption. The power increases, and further, the current of the gate terminal G4 does not sufficiently decrease and the semiconductor switch 405 may not be turned off. However, in this embodiment, such an operation error can be avoided.

従って、半導体スイッチ405をOFFさせるのに必要な、第2の正特性サーミスタ406の自己発熱の電力以外の、ケースA411、ケースB412などへの放熱分の電力消費を極めて低く抑えることができ、その結果、極めてエネルギー効率の高いモータの起動装置を得ることができる。   Therefore, the power consumption for the heat radiation to the case A411, the case B412 and the like other than the self-heating power of the second positive temperature coefficient thermistor 406 necessary for turning off the semiconductor switch 405 can be suppressed to a very low level. As a result, an extremely energy efficient motor starting device can be obtained.

更に、ケースA411、ケースB412の第2の正特性サーミスタ406と接触する面を閉空間の空気の層415が形成される形状にするだけなので、新たな部品の追加も必要とせず、組立工数も増えないため、生産性が高く安価な起動装置を得ることができる。   Furthermore, since the surface contacting the second positive temperature coefficient thermistor 406 of the case A411 and the case B412 is simply formed into a shape in which the air layer 415 in the closed space is formed, no additional parts are required and the number of assembly steps is also reduced. Since it does not increase, a starter with high productivity and low cost can be obtained.

以上のように、本発明にかかるモータの起動装置は、正特性サーミスタの消費電力を低減できるので、正特性サーミスタを備えた、冷蔵庫、空気調和機器等のモータ等の用途に利用できる。   As described above, since the motor starter according to the present invention can reduce the power consumption of the positive temperature coefficient thermistor, it can be used for applications such as motors such as refrigerators and air conditioners equipped with the positive temperature coefficient thermistor.

本発明の実施の形態1におけるモータの起動装置の回路図Circuit diagram of motor starter according to Embodiment 1 of the present invention 同実施の形態のモータの起動装置の要部の組立前を示す図The figure which shows before the assembly of the principal part of the starting device of the motor of the embodiment 図2の組立後のB−B線断面図BB line sectional view after assembly of FIG. 本発明の実施の形態2におけるモータの起動装置の回路図Circuit diagram of motor starter according to Embodiment 2 of the present invention 同実施の形態のモータの起動装置の要部の組立前を示す図The figure which shows before the assembly of the principal part of the starting device of the motor of the embodiment 図5の組立後のC−C線断面図CC sectional view after assembly of FIG. 本発明の実施の形態3におけるモータの起動装置の回路図Circuit diagram of motor starter according to Embodiment 3 of the present invention 同実施の形態のモータの起動装置の要部の組立前を示す図The figure which shows before the assembly of the principal part of the starting device of the motor of the embodiment 図8の組立後のD−D線断面図DD sectional view after assembly of FIG. 本発明の実施の形態4におけるモータの起動装置の回路図Circuit diagram of motor starter according to Embodiment 4 of the present invention 同実施の形態のモータの起動装置の要部の組立前を示す図The figure which shows before the assembly of the principal part of the starting device of the motor of the embodiment 図11の組立後のE−E線断面図EE sectional view after assembly of FIG. 従来のモータの起動装置を用いた回路図Circuit diagram using conventional motor starter 従来のモータの起動装置の要部の組立後を示す図The figure which shows the assembly of the principal part of the starting device of the conventional motor 図14のA−A線断面図AA line sectional view of FIG.

符号の説明Explanation of symbols

103,203,303,403 補助巻線
104,204,304,404 第1の正特性サーミスタ
105,205,305,405 半導体スイッチ
106,206,306,406 第2の正特性サーミスタ
110,210,310,410 主巻線
115 真空断熱材
215 塗料型断熱材
311 発泡樹脂で成形されたケースA
312 発泡樹脂で成形されたケースB
415 空気の層
103, 203, 303, 403 Auxiliary winding 104, 204, 304, 404 First positive temperature coefficient thermistor 105, 205, 305, 405 Semiconductor switch 106, 206, 306, 406 Second positive temperature coefficient thermistor 110, 210, 310 , 410 Main winding 115 Vacuum heat insulating material 215 Paint type heat insulating material 311 Case A formed of foamed resin
312 Case B molded from foamed resin
415 Air Layer

Claims (5)

主巻線および補助巻線を有するモータの起動装置であって、補助巻線に直列に接続された第1の正特性サーミスタと、前記第1の正特性サーミスタと直列に接続された半導体スイッチと、前記第1の正特性サーミスタおよび前記半導体スイッチと並列に接続され前記半導体スイッチのオン及びオフを制御する第2の正特性サーミスタとを備え、前記第2の正特性サーミスタの外周面の少なくとも一部を断熱層にて囲ったモータの起動装置。   A motor starter having a main winding and an auxiliary winding, wherein the first positive temperature coefficient thermistor is connected in series to the auxiliary winding, and the semiconductor switch is connected in series to the first positive temperature coefficient thermistor. A first positive temperature coefficient thermistor and a second positive temperature coefficient thermistor connected in parallel with the semiconductor switch to control on and off of the semiconductor switch, and at least one of the outer peripheral surfaces of the second positive temperature coefficient thermistor. Motor starter with a heat insulating layer surrounded by a part. 断熱層は芯材と前記芯材を被う非通気性外被材からなる真空断熱材にて形成された請求項1に記載のモータの起動装置。   2. The motor starting device according to claim 1, wherein the heat insulating layer is formed of a vacuum heat insulating material made of a core material and a non-breathable jacket material covering the core material. 断熱層は第2の正特性サーミスタの外周面に塗布された塗料型断熱材にて形成された請求項1に記載のモータの起動装置。   2. The motor starting device according to claim 1, wherein the heat insulating layer is formed of a paint type heat insulating material applied to an outer peripheral surface of the second positive temperature coefficient thermistor. 断熱層は発泡樹脂にて形成された請求項1に記載のモータの起動装置。   The motor starter according to claim 1, wherein the heat insulating layer is formed of a foamed resin. 断熱層は閉空間によって画定された空気の層にて形成された請求項1に記載のモータの起動装置。   The motor starter according to claim 1, wherein the heat insulating layer is formed of an air layer defined by a closed space.
JP2005223673A 2005-08-02 2005-08-02 Motor starting device Pending JP2007043792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005223673A JP2007043792A (en) 2005-08-02 2005-08-02 Motor starting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005223673A JP2007043792A (en) 2005-08-02 2005-08-02 Motor starting device

Publications (1)

Publication Number Publication Date
JP2007043792A true JP2007043792A (en) 2007-02-15

Family

ID=37801261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005223673A Pending JP2007043792A (en) 2005-08-02 2005-08-02 Motor starting device

Country Status (1)

Country Link
JP (1) JP2007043792A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010136612A (en) * 2008-12-02 2010-06-17 Sensata Technologies Massachusetts Inc Starting apparatus for low-power electric motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010136612A (en) * 2008-12-02 2010-06-17 Sensata Technologies Massachusetts Inc Starting apparatus for low-power electric motor
KR101605563B1 (en) 2008-12-02 2016-03-22 센사타 테크놀로지스 매사추세츠, 인크. Low power electric motor starter

Similar Documents

Publication Publication Date Title
CN112670843B (en) Electrical component
JP2009131127A (en) Brushless motor
JPWO2013121521A1 (en) Semiconductor device
JP2007043792A (en) Motor starting device
JP2005303183A (en) Thermoelectric module
JP2007259546A (en) Starter for motor
KR101637763B1 (en) Solid-State battery pack assembly, coolant circulating system for vehicle having the same, and Method for manufactoring the same
US20170055316A1 (en) Ceramic heater having enlarged windward area
JP2000030975A (en) Cooling part
CN102655728B (en) Heat radiation control device, electronic device and heat radiation control method
JP3198101U (en) PTC ceramic heater
JP2005160208A (en) Starting device of motor
JP2006060992A (en) Starting circuit for single-phase induction motor
JP2005341714A (en) Starting device for motor
WO2019016865A1 (en) Electric motor and ventilation fan
JP2019503073A (en) Electronic device comprising at least one inductor with passive thermal management means
CN113639334A (en) Electric heating device, equipment, air conditioner, control method and storage medium
JP2011166977A (en) Molded motor
KR102119911B1 (en) Electronic control circuitry with start up capability
JPH0722159A (en) Panel heater with ptc
CN204425674U (en) Ptc ceramic heater
KR20170093453A (en) Heat generating apparatus using positive temperature coefficient thermistor elements
CN204069368U (en) A kind of heater and be provided with the volatilizer of this heater
CN111051792A (en) PTC heater
JPH04168954A (en) Stator for commutatorless motor