JP2007043546A - Antenna device - Google Patents

Antenna device Download PDF

Info

Publication number
JP2007043546A
JP2007043546A JP2005226712A JP2005226712A JP2007043546A JP 2007043546 A JP2007043546 A JP 2007043546A JP 2005226712 A JP2005226712 A JP 2005226712A JP 2005226712 A JP2005226712 A JP 2005226712A JP 2007043546 A JP2007043546 A JP 2007043546A
Authority
JP
Japan
Prior art keywords
spiral line
conductor
spiral
antenna
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005226712A
Other languages
Japanese (ja)
Other versions
JP4708114B2 (en
Inventor
Satoshi Yamaguchi
山口  聡
Hiroaki Miyashita
裕章 宮下
Yukihiro Tawara
志浩 田原
Hidemasa Ohashi
英征 大橋
Yoshitsugu Yamaguchi
喜次 山口
Kenichi Kakizaki
健一 柿崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005226712A priority Critical patent/JP4708114B2/en
Publication of JP2007043546A publication Critical patent/JP2007043546A/en
Application granted granted Critical
Publication of JP4708114B2 publication Critical patent/JP4708114B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details Of Aerials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an antenna device which has a wide-band/high-gain performance and is excellent in antenna producibility. <P>SOLUTION: Two spiral lines 1 are provided on a dielectric board 2, a feeding device is provided at the center of the spiral lines 1, and the tips of the spiral lines 1 are set open. A grounding conductor 3 is provided on the backside of the dielectric board 2 opposite to its front side where the spiral lines 1 are formed, larger than an area of the dielectric board 2 where the spiral lines 1 are formed, and provided with a cavity which is as deep as λ<SB>H</SB>/4. Small conductor pieces 6 are provided respectively near the tips of the spiral lines 1 at points further than the tips from the center of the antenna, the conductor thin film formed on the backside of the dielectric board are short-circuited to the conductor pieces 6 through through-holes, the conductor thin film is short-circuited to the grounding conductor 3, first resistors 9 are provided between the adjacent spiral lines 1, second resistors 10 are provided between the tips of the spiral lines 1 and the small conductor pieces 6 respectively, and a resistor pair composed of two resistors of 9 and 10 is provided at the two tips of the spiral lines 1, respectively. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、スパイラルアンテナ装置に関し、特に、小型で広帯域特性を有するスパイラルアンテナ装置に関するものである。   The present invention relates to a spiral antenna device, and more particularly to a small-sized spiral antenna device having broadband characteristics.

レーダ、衛星通信、移動体通信の分野において、偏波の向きに関わらず電波を送受信できるように円偏波を利用することが考えられる。低姿勢で、かつ、広帯域に亘り円偏波を放射するアンテナとしてスパイラルアンテナが挙げられる。   In the fields of radar, satellite communications, and mobile communications, it is conceivable to use circularly polarized waves so that radio waves can be transmitted and received regardless of the direction of polarization. A spiral antenna is an example of an antenna that radiates circularly polarized waves over a wide band with a low attitude.

スパイラルアンテナの動作原理は、進行波型アンテナの一種として説明できる。すなわち、複数の導体線路をらせん状に巻いて形成したスパイラル線路の中心に給電することで、給電点から線路先端に向かって波が進行し、その間に徐々に電波を放射する。   The principle of operation of the spiral antenna can be described as a kind of traveling wave antenna. That is, by feeding power to the center of a spiral line formed by spirally winding a plurality of conductor lines, a wave travels from the feed point toward the tip of the line, and gradually radiates radio waves during that time.

一方向に電波を放射するために、通常、放射方向の反対側には使用周波数の約λ/4の距離の位置に反射板あるいはキャビティなどから成る反射器が備えられる。   In order to radiate radio waves in one direction, a reflector composed of a reflector or a cavity is usually provided at a distance of about λ / 4 of the operating frequency on the opposite side of the radiation direction.

スパイラルアンテナでは、放射に寄与しない残留成分がスパイラル線路先端で反射することにより、反射波が逆旋偏波成分を放射し、その結果、円偏波性能を左右するのに重要な軸比特性が悪化してしまう。また、反射波が給電点に到達することにより、給電装置との整合が悪化してしまうという問題がある。これらの問題は、特に、波長に対してアンテナ寸法が小さくなる低周波数帯で顕著になる。   In spiral antennas, residual components that do not contribute to radiation are reflected at the tip of the spiral line, and the reflected waves radiate reverse-polarization components. As a result, axial ratio characteristics that are important for circular polarization performance are affected. It will get worse. In addition, when the reflected wave reaches the feeding point, there is a problem that the matching with the feeding device is deteriorated. These problems are particularly noticeable in a low frequency band where the antenna size is small with respect to the wavelength.

そのため、従来は、使用周波数の下限の周波数の波長をλとしたときに、スパイラル線路の最外周長を概ね1.5〜2λとすることでアンテナ使用周波数の波長に対してアンテナ寸法を大きくするといった対策や、スパイラル線路の最外周長を1λ程度に小型化したスパイラルアンテナに電波吸収体を設けて前記残留成分を吸収させるといった対策が採られている。 Therefore, conventionally, when the wavelength of the lower limit frequency of the use frequency is λ L , the outer dimension of the spiral line is approximately 1.5 to 2λ L so that the antenna size is set to the wavelength of the antenna use frequency. measures such as increasing or measures such to absorb the residual component of the wave absorber provided outermost length spiral antenna is miniaturized to about 1 [lambda L is taken of the spiral line.

さらには、電波吸収体と抵抗体を組み合わせることで前記残留成分の吸収性能を高める方法が開示されている(例えば、特許文献1参照)。   Furthermore, a method for improving the residual component absorption performance by combining a radio wave absorber and a resistor is disclosed (for example, see Patent Document 1).

特開平11−163622号公報JP 11-163622 A

しかしながら、上述した従来技術のように、波長に対してアンテナ寸法を大きくするのはアンテナ小型化の要求に反し、また、アンテナのアレー化を考えた場合、素子間隔が広くなってしまうので、高域周波数ではグレーティングローブが生じてしまうなどの問題が生じる。   However, as in the prior art described above, increasing the antenna size with respect to the wavelength is against the demand for antenna miniaturization, and when considering the antenna array, the element spacing becomes wide. There arises a problem that a grating lobe occurs at the frequency band.

一方、電波吸収体を設ける場合は、広帯域に亘り電波吸収性能を有する電波吸収体を選択するのが困難であり、また、電波吸収体の固定方法などの観点からアンテナの製造性が悪化する。さらに、電波吸収体がアンテナの主偏波成分も吸収することにより、アンテナの利得が低下してしまうといった問題もある。   On the other hand, when the radio wave absorber is provided, it is difficult to select a radio wave absorber having radio wave absorption performance over a wide band, and the manufacturability of the antenna is deteriorated from the viewpoint of the fixing method of the radio wave absorber. Furthermore, there is also a problem that the gain of the antenna is reduced by the radio wave absorber absorbing the main polarization component of the antenna.

この発明は、前記のような問題点を解決するためになされたもので、スパイラル線路の最外周長を1λ程度に小型化したスパイラルアンテナにおいて、電波吸収体を使用しなくとも広帯域・高利得な性能を有し、かつ、アンテナの製造性に優れたアンテナ装置を得ることを目的とする。 The present invention has been made to solve the above-described problems. In a spiral antenna in which the outermost peripheral length of the spiral line is reduced to about 1λ L , a wide band and high gain can be obtained without using a radio wave absorber. It is an object to obtain an antenna device having excellent performance and excellent antenna manufacturability.

この発明に係るアンテナ装置は、誘電体基板上に、2本の導体線路を互いに重なり合わないように同一方向にらせん状に巻いたスパイラル線路を有し、前記スパイラル線路の中心部に給電装置を備え、前記スパイラル線路先端は開放され、また、前記スパイラル線路を形成する面と反対側の誘電体基板の裏面側に、前記スパイラル線路が形成される範囲よりも大きな面積で、使用周波数の上限の周波数の波長をλとしたときに約λ/4の深さの空洞を有する地導体を備えた2線式スパイラルアンテナにおいて、前記スパイラル線路先端近傍のアンテナ中心から外側の位置に導体小片を形成し、かつ、前記導体小片の誘電体基板の裏側に導体薄膜を形成し、前記導体小片と前記導体薄膜をスルーホールで短絡し、前記導体薄膜を前記地導体と短絡し、前記スパイラル線路先端とその隣り合うスパイラル線路との間に第1の抵抗体を備え、かつ、前記スパイラル線路先端と導体小片の間に第2の抵抗体を備え、前記2つの抵抗体が1組のペアを形成し、前記抵抗体ペアを2箇所のスパイラル線路先端に備えたことを特徴とする。 The antenna device according to the present invention has a spiral line in which two conductor lines are spirally wound in the same direction so as not to overlap each other on a dielectric substrate, and a feeding device is provided at the center of the spiral line. The spiral line tip is open, and the upper surface of the use frequency is larger than the area where the spiral line is formed on the back side of the dielectric substrate opposite to the surface on which the spiral line is formed. In a two-wire spiral antenna having a ground conductor having a cavity with a depth of about λ H / 4 when the wavelength of the frequency is λ H , a conductor piece is placed at an outer position from the center of the antenna near the tip of the spiral line. Forming a conductor thin film on the back side of the dielectric substrate of the conductor piece, short-circuiting the conductor piece and the conductor thin film with a through hole, and connecting the conductor thin film to the ground conductor. A first resistor between the tip of the spiral line and the adjacent spiral line, and a second resistor between the tip of the spiral line and the conductor piece, the two resistors The body forms one pair, and the resistor pair is provided at the tip of two spiral lines.

この発明によれば、アンテナ素子を小型化することができるので、素子間隔を狭くして素子を配列することができる。その結果、グレーティングローブが生じる周波数を高域側へずらすことができ、アンテナの使用帯域を拡大する。また、同一周波数で見た場合、従来例に比べてビーム走査角度範囲を広げることができる。   According to the present invention, since the antenna elements can be reduced in size, the elements can be arranged with a narrower element spacing. As a result, the frequency at which the grating lobe can be generated can be shifted to the high frequency side, and the use band of the antenna is expanded. Further, when viewed at the same frequency, the beam scanning angle range can be expanded as compared with the conventional example.

実施の形態1.
図1から図3は、この発明の実施の形態1に係るスパイラルアンテナ装置を説明するための模式図である。
図1に示すスパイラルアンテナ装置は、誘電体基板2の上に、2本の導体線路を互いに重なり合うように同一方向にらせん状に巻いたスパイラル線路1を有する。スパイラル線路1の中心部には給電線4に接続された図示しない給電装置を備え、スパイラル線路1の先端は開放され、また、スパイラル線路1を形成する誘電体基板2の表面とは反対側の裏面側には、後述する空洞を有する地導体3を備える。
Embodiment 1 FIG.
1 to 3 are schematic views for explaining a spiral antenna device according to Embodiment 1 of the present invention.
The spiral antenna device shown in FIG. 1 has a spiral line 1 on a dielectric substrate 2 in which two conductor lines are spirally wound in the same direction so as to overlap each other. At the center of the spiral line 1, a power supply device (not shown) connected to the power supply line 4 is provided, the tip of the spiral line 1 is opened, and the opposite side of the surface of the dielectric substrate 2 forming the spiral line 1 is provided. On the back surface side, a ground conductor 3 having a cavity to be described later is provided.

さらに、スパイラル線路1の先端近傍のアンテナ中心から外側の位置には導体小片6が形成され、スパイラル線路1の先端と隣り合うスパイラル線路1との間には第1の抵抗体9が形成され、かつスパイラル線路1の先端と導体小片6との間には第2の抵抗体10が形成されている。   Furthermore, a conductor piece 6 is formed at a position outside the center of the antenna near the tip of the spiral line 1, and a first resistor 9 is formed between the tip of the spiral line 1 and the adjacent spiral line 1, A second resistor 10 is formed between the tip of the spiral line 1 and the conductor piece 6.

図1において、スパイラル線路1が形成されている面をxy面とし、紙面に対して手前側に向かう側を+z方向とすると、図2は、図1のA−Bの線におけるzx面断面図であり、図3は、図1のC部におけるyz面断面図を拡大したものである。図2において、5はコネクタを表し、図3において、7は導体薄膜、8はスルーホールを表す。   In FIG. 1, when the surface on which the spiral line 1 is formed is defined as the xy plane, and the side toward the near side with respect to the paper is defined as the + z direction, FIG. 2 is a zx plane cross-sectional view taken along the line AB in FIG. FIG. 3 is an enlarged view of the yz plane cross-sectional view of the portion C of FIG. In FIG. 2, 5 represents a connector, in FIG. 3, 7 represents a conductor thin film, and 8 represents a through hole.

スパイラル線路1の最外周長は、使用周波数の下限の周波数の波長をλとしたときに1λ程度に小型化した寸法とする。 The outermost circumference length of the spiral line 1 is set to a size reduced to about 1λ L when the wavelength of the lower limit frequency of the used frequency is λ L.

地導体3は、図2に示すように、誘電体基板2を支持しており、その中心部には、スパイラル線路1が占有する面積よりも大きく、使用周波数の上限周波数の波長をλとしたときに約λ/4となる深さとなる空洞(以下、キャビティと称す)を有している。キャビティは反射器の役割を果たし、これにより、単一方向(この場合+z方向)に電波を放射する。また、キャビティの深さを前記寸法にすれば、使用周波数帯域内では反射波が直接波と同相で重なり合うため、アンテナ利得が向上する。 As shown in FIG. 2, the ground conductor 3 supports the dielectric substrate 2, and the center portion thereof is larger than the area occupied by the spiral line 1, and the wavelength of the upper limit frequency of the use frequency is λ H. Then, a cavity (hereinafter referred to as a cavity) having a depth of about λ H / 4 is obtained. The cavity acts as a reflector, thereby radiating radio waves in a single direction (in this case + z direction). If the depth of the cavity is set to the above-mentioned dimension, the reflected wave overlaps with the direct wave in the use frequency band, so that the antenna gain is improved.

導体小片6は、スパイラル線路1の先端近傍に設けられ、図3に示すように、誘電体基板2の裏面側に導体薄膜7が形成される。導体小片6と導体薄膜7はスルーホール8により短絡される。さらに、導体薄膜7は地導体3と短絡するようにすることで、導体小片6も地導体3と短絡される。   The conductor piece 6 is provided in the vicinity of the tip of the spiral line 1, and a conductor thin film 7 is formed on the back surface side of the dielectric substrate 2 as shown in FIG. 3. The conductor piece 6 and the conductor thin film 7 are short-circuited by the through hole 8. Further, the conductor thin film 7 is short-circuited to the ground conductor 3, so that the conductor piece 6 is also short-circuited to the ground conductor 3.

第1の抵抗体9は、スパイラル線路1の先端とその隣り合うスパイラル線路との間に設けられる。また、第2の抵抗体10は、スパイラル線路1の先端と導体小片6との間に設けられる。これら第1の抵抗体9と第2の抵抗体10は1組のペアを形成し、2箇所あるスパイラル線路1の先端にそれぞれ設けられる。   The first resistor 9 is provided between the tip of the spiral line 1 and the adjacent spiral line. The second resistor 10 is provided between the tip of the spiral line 1 and the conductor piece 6. The first resistor 9 and the second resistor 10 form a pair and are provided at the tips of the spiral lines 1 at two locations.

次に、この発明の効果を説明する。前述した通り、波長に対して小型化したスパイラルアンテナでは、スパイラル線路1の先端での反射を抑圧する必要がある。スパイラル線路1の先端に存在する電界のモードを考えた場合、次の2つのモードが考えられる。   Next, the effects of the present invention will be described. As described above, in the spiral antenna reduced in size with respect to the wavelength, it is necessary to suppress reflection at the tip of the spiral line 1. When considering the mode of the electric field existing at the tip of the spiral line 1, the following two modes are conceivable.

一つは、スパイラル線路1の先端とその隣り合うスパイラル線路との間に立つモードであり、もう一つはスパイラル線路1の先端と地導体3の間に立つモードである。したがって、これら2つのモードをそれぞれ抑圧する必要がある。   One is a mode that stands between the tip of the spiral line 1 and the adjacent spiral line, and the other is a mode that stands between the tip of the spiral line 1 and the ground conductor 3. Therefore, it is necessary to suppress these two modes.

そこで、この発明のように、2つの抵抗体9,10を設ければ、前記第1の抵抗体9がスパイラル線路1の先端とその隣り合うスパイラル線路との間に立つモードを抑圧し、前記第2の抵抗体10がスパイラル線路1の先端と地導体3の間に立つモードを抑圧する。   Therefore, if two resistors 9 and 10 are provided as in the present invention, the mode in which the first resistor 9 stands between the tip of the spiral line 1 and the adjacent spiral line is suppressed, The mode in which the second resistor 10 stands between the tip of the spiral line 1 and the ground conductor 3 is suppressed.

第1の抵抗体9と第2の抵抗体10の抵抗値の選び方は、以下のようにして決定することができる。ここで、第1の抵抗体9の抵抗値をR、第2の抵抗体10の抵抗値をRと表現する。 How to select the resistance values of the first resistor 9 and the second resistor 10 can be determined as follows. Here, the resistance value of the first resistor 9 is expressed as R 1 , and the resistance value of the second resistor 10 is expressed as R 2 .

図1のスパイラル線路1の先端部は、等価的に図4に示す結合マイクロストリップ線路でモデル化できる。図4において、11は導体線路、12は誘電体基板、13は地導体を表す。2本の導体線路11が誘電体基板12上に形成され、導体線路11の幅はスパイラル導体1の幅と等しく、また、2本の導体線路11の間隔はスパイラル導体1同士の間隔と等しいものとする。誘電体基板12の比誘電率と基板厚さは、誘電体基板2と同一とする。さらに、誘電体基板12と地導体13の距離は、スパイラルアンテナにおける誘電体基板2と地導体3の距離(キャビティの深さ)と等しくする。   The tip of the spiral line 1 in FIG. 1 can be equivalently modeled by a coupled microstrip line shown in FIG. In FIG. 4, 11 represents a conductor line, 12 represents a dielectric substrate, and 13 represents a ground conductor. Two conductor lines 11 are formed on the dielectric substrate 12, the width of the conductor line 11 is equal to the width of the spiral conductor 1, and the distance between the two conductor lines 11 is equal to the distance between the spiral conductors 1. And The relative permittivity and the substrate thickness of the dielectric substrate 12 are the same as those of the dielectric substrate 2. Further, the distance between the dielectric substrate 12 and the ground conductor 13 is made equal to the distance (the depth of the cavity) between the dielectric substrate 2 and the ground conductor 3 in the spiral antenna.

図4の結合マイクロストリップ線路には、2本の導体線路11が同相で励振される偶モードと、2本の導体線路11が逆相で励振される奇モードの2種類のモードが存在する。偶モードは各導体線路11と地導体13の間に立つモードであり、これがスパイラル線路1の先端と地導体3の間に立つモードに対応する。一方、奇モードは2本の導体線路11の間に立つモードであり、これがスパイラル線路1の先端とその隣り合うスパイラル線路との間に立つモードに対応する。偶モード、奇モードの特性インピーダンスをそれぞれZe、Zoと表現する。   The coupled microstrip line in FIG. 4 has two types of modes, an even mode in which the two conductor lines 11 are excited in the same phase and an odd mode in which the two conductor lines 11 are excited in the opposite phase. The even mode is a mode that stands between each conductor line 11 and the ground conductor 13, and this corresponds to a mode that stands between the tip of the spiral line 1 and the ground conductor 3. On the other hand, the odd mode is a mode that stands between the two conductor lines 11 and corresponds to a mode that stands between the tip of the spiral line 1 and the adjacent spiral line. The even mode and odd mode characteristic impedances are expressed as Ze and Zo, respectively.

まず、第2の抵抗体10の抵抗値Rを結合マイクロストリップ線路の偶モードの特性インピーダンスZeと選べば、本モードに対して無反射とすることができる。このとき、次に決定する第1の抵抗体9の抵抗値Rの値がどのようなものであっても、スパイラル線路1の先端とその隣り合うスパイラル線路は同電位であるため、本モードに対して影響を受けない。 First, if the resistance value R2 of the second resistor 10 is selected as the characteristic impedance Ze of the even mode of the coupled microstrip line, it can be made non-reflective with respect to this mode. At this time, no matter what the resistance value R1 of the first resistor 9 to be determined next is, the tip of the spiral line 1 and the adjacent spiral line have the same potential. Is not affected.

続いて、第1の抵抗体9の抵抗値Rを決定する。スパイラル線路1の先端とその隣り合うスパイラル線路との間にモードが立つ場合、あるいは、結合マイクロストリップ線路の奇モードでは、線路の中間には等価的に電気壁が存在すると考えることができる。この電気壁を電位基準としたときに、スパイラル線路1の先端部には抵抗値Rを半分にしたものと、先に決定した抵抗値Rが並列に接続されていると見なすことができる。したがって、この並列接続抵抗値が結合マイクロストリップ線路の奇モードの特性インピーダンスZoと等しくなるように、以下の関係式を満たす抵抗値Rを選択する。 Subsequently, the resistance value R 1 of the first resistor 9 is determined. In the case where a mode stands between the tip of the spiral line 1 and the adjacent spiral line, or in the odd mode of the coupled microstrip line, it can be considered that an electrical wall exists equivalently in the middle of the line. The electric wall is taken as potential reference, it can be regarded as to those at the distal end portion of the spiral line 1 in which the resistance value R 1 half, the resistance value R 2 of the previously determined is connected in parallel . Therefore, the resistance value R 1 satisfying the following relational expression is selected so that the parallel connection resistance value becomes equal to the odd-mode characteristic impedance Zo of the coupled microstrip line.

Figure 2007043546
Figure 2007043546

以上により、第1の抵抗体9の抵抗値Rと、第2の抵抗体10の抵抗値Rを決定することができる。例えば、Ze=300Ω、Zo=50Ωであれば、R=120Ω、R=300Ωとなる。 Thus, it is possible to determine the resistance value R 1 of the first resistor 9, the resistance value R 2 of the second resistor 10. For example, if Ze = 300Ω and Zo = 50Ω, then R 1 = 120Ω and R 2 = 300Ω.

この発明による効果の一例として、軸比(Axial Ratio)の周波数特性の数値計算例を図5に示す。計算にはFDTD法(有限差分時間領域法)を用いた。スパイラル線路1の最外周長は0.64λで、キャビティの深さは0.06λとした。スパイラル線路1の幅と線路間隔は、結合マイクロストリップ線路でモデル化した場合に、偶モード、奇モードの特性インピーダンスがそれぞれZe=300Ω、Zo=50Ωとなる寸法を選定した。実線がこの発明での抵抗体9および抵抗体10を付けた結果であり、破線が抵抗体を付けない従来例の結果である。スパイラルアンテナの寸法は両者とも同一である。この発明により、広帯域に亘り低軸比特性が得られることがわかる。 As an example of the effect of the present invention, FIG. 5 shows a numerical calculation example of the frequency characteristic of the axial ratio (Axial Ratio). The FDTD method (finite difference time domain method) was used for the calculation. Outermost length of the spiral line 1 is 0.64λ L, the depth of the cavity was 0.06 L. The dimensions and widths of the spiral line 1 were selected so that even-mode and odd-mode characteristic impedances were Ze = 300Ω and Zo = 50Ω, respectively, when modeled with a coupled microstrip line. A solid line is a result of attaching the resistor 9 and the resistor 10 according to the present invention, and a broken line is a result of a conventional example without a resistor. Both dimensions of the spiral antenna are the same. According to the present invention, it can be seen that low axial ratio characteristics can be obtained over a wide band.

この発明で用いた抵抗体ペアは、スパイラル線路1の先端での反射を抑圧するためだけのものであり、スパイラルアンテナの動作原理からも明らかなようにアンテナの利得は減少しない。   The resistor pair used in the present invention is only for suppressing reflection at the tip of the spiral line 1, and the antenna gain does not decrease as is apparent from the principle of operation of the spiral antenna.

なお、以上の説明では、スパイラル線路1の線路幅と線路間隔の関係について特に明言しなかったが、線路幅と線路間隔が同一であってもなくてもよい。選んだ寸法に応じて、結合マイクロストリップ線路でモデル化した場合の偶モード、奇モードの特性インピーダンスを求めることができるので、特性インピーダンスの値に合わせて適宜R、Rの値を調整すればよい。また、スパイラルアンテナの形状に関しては、図1のような方形形状以外でもよく、例えば円形形状であってもよい。 In the above description, the relationship between the line width and the line interval of the spiral line 1 is not specifically stated, but the line width and the line interval may or may not be the same. Depending on the selected dimensions, the even-mode and odd-mode characteristic impedances when modeled with a coupled microstrip line can be obtained, so that the values of R 1 and R 2 can be adjusted appropriately according to the characteristic impedance values. That's fine. Further, the shape of the spiral antenna may be other than the rectangular shape as shown in FIG. 1, and may be, for example, a circular shape.

実施の形態2.
前記実施の形態1では、第1の抵抗体9と第2の抵抗体10を実現する手段について明言しなかったが、本実施の形態2のように、抵抗体としてチップ抵抗を用いてスパイラル線路1および導体小片6に半田付けすればよい。
Embodiment 2. FIG.
In the first embodiment, the means for realizing the first resistor 9 and the second resistor 10 has not been clarified. However, as in the second embodiment, a spiral line using a chip resistor as the resistor is used. 1 and the conductor piece 6 may be soldered.

抵抗値、寸法などに応じて数多くの種類のチップ抵抗が安価で市販されているので適宜選択すればよい。また、実施の形態1で述べた設計法で算出した抵抗値R、Rとなるチップ抵抗が得られない場合には、複数のチップ抵抗を直列、あるいは並列に接続することで、所望の抵抗値に近づけることができる。一般に、チップ抵抗はアンテナで使用する周波数の波長に対して微細な寸法であるので、前記のように複数のチップ抵抗を接続した場合でも波動特性に与える影響はほとんどない。また、取り付け位置の誤差の影響もほとんどない。 Many types of chip resistors are commercially available at low cost depending on the resistance value, dimensions, etc., and may be appropriately selected. In addition, when chip resistances having resistance values R 1 and R 2 calculated by the design method described in the first embodiment cannot be obtained, a plurality of chip resistors are connected in series or in parallel to obtain a desired value. It can be close to the resistance value. In general, since the chip resistance has a minute size with respect to the wavelength of the frequency used in the antenna, there is almost no influence on the wave characteristics even when a plurality of chip resistors are connected as described above. Moreover, there is almost no influence of the error of an attachment position.

実施の形態3.
図6は、この発明の実施の形態3に係るスパイラルアンテナ装置を示す模式図である。前述と同様のものについては、同一符号を付して記述を省略する。新たな符号として、14は抵抗膜付誘電体基板、15は第1の抵抗膜、16は第2の抵抗膜を表す。
Embodiment 3 FIG.
FIG. 6 is a schematic diagram showing a spiral antenna device according to Embodiment 3 of the present invention. The same components as those described above are denoted by the same reference numerals and description thereof is omitted. As new symbols, 14 represents a dielectric substrate with a resistive film, 15 represents a first resistive film, and 16 represents a second resistive film.

前記実施の形態1の第1の抵抗体9と第2の抵抗体10を実現する手段として、本実施の形態3で示すような抵抗膜付誘電体基板14を用いてもよい。ここで、第1の抵抗膜15は、前記実施の形態1で述べた第1の抵抗体9に対応し、第2の抵抗膜16は、前記実施の形態1で述べた第2の抵抗体10に対応する。   As means for realizing the first resistor 9 and the second resistor 10 of the first embodiment, a dielectric substrate 14 with a resistance film as shown in the third embodiment may be used. Here, the first resistor film 15 corresponds to the first resistor 9 described in the first embodiment, and the second resistor film 16 is the second resistor described in the first embodiment. 10 corresponds.

抵抗膜付誘電体基板14は、例えば単位面積当たり25Ω、50Ω、100Ωといった抵抗値を持つ材料が市販されている。形成する抵抗膜の長さを長くする、あるいは、幅を狭くすれば抵抗値が増加し、逆に、抵抗膜の長さを短くする、あるいは、幅を広くすれば抵抗値が低減するので、抵抗膜の形状を調整することで任意の抵抗値を実現することができる。   For the dielectric substrate 14 with a resistive film, a material having a resistance value of, for example, 25Ω, 50Ω, or 100Ω per unit area is commercially available. If the length of the resistance film to be formed is increased or the width is reduced, the resistance value is increased. Conversely, if the length of the resistance film is decreased or the width is increased, the resistance value is decreased. An arbitrary resistance value can be realized by adjusting the shape of the resistance film.

抵抗膜は、導体膜と同様にエッチングプロセスで加工することができるので、加工精度が高く、特性のばらつきが少ないアンテナを容易に製作することができる。   Since the resistance film can be processed by an etching process in the same manner as the conductor film, an antenna with high processing accuracy and little variation in characteristics can be easily manufactured.

実施の形態4.
前記実施の形態1から3では、単一のスパイラルアンテナ装置について説明したが、複数のスパイラルアンテナ装置を並べてアレーアンテナを構成してもよい。アレー化した各々のスパイラルアンテナ素子に位相差をつけて励振すれば、任意の方向にビームを走査することができるフェーズドアレーアンテナを得ることができる。
Embodiment 4 FIG.
In the first to third embodiments, a single spiral antenna device has been described, but a plurality of spiral antenna devices may be arranged to constitute an array antenna. If each arrayed spiral antenna element is excited with a phase difference, a phased array antenna capable of scanning a beam in an arbitrary direction can be obtained.

この発明の実施の形態1に係るスパイラルアンテナ装置を示す模式図である。It is a schematic diagram which shows the spiral antenna apparatus which concerns on Embodiment 1 of this invention. 図1のA−Bの線におけるzx面断面図である。It is zx plane sectional drawing in the line of AB of FIG. 図1のC部におけるyz面断面図である。It is yz surface sectional drawing in the C section of FIG. 図1のスパイラル線路1の先端部を等価的にモデル化した結合マイクロストリップ線路の模式図である。FIG. 2 is a schematic diagram of a coupled microstrip line in which the tip of the spiral line 1 of FIG. 1 is equivalently modeled. この発明による効果の一例として、軸比(Axial Ratio)の周波数特性の数値計算例を示す図である。It is a figure which shows the numerical calculation example of the frequency characteristic of an axial ratio (Axial Ratio) as an example of the effect by this invention. この発明の実施の形態3に係るスパイラルアンテナ装置を示す模式図である。It is a schematic diagram which shows the spiral antenna apparatus which concerns on Embodiment 3 of this invention.

符号の説明Explanation of symbols

1 スパイラル線路、2 誘電体基板、3 地導体、4 給電線、5 コネクタ、6 導体小片、7 導体薄膜、8 スルーホール、9 第1の抵抗体、10 第2の抵抗体、11 導体線路、12 誘電体基板、13 地導体。   DESCRIPTION OF SYMBOLS 1 Spiral line, 2 Dielectric substrate, 3 Ground conductor, 4 Feed line, 5 Connector, 6 Conductor piece, 7 Conductor thin film, 8 Through hole, 9 1st resistor, 10 2nd resistor, 11 Conductor line, 12 Dielectric substrate, 13 Ground conductor.

Claims (4)

誘電体基板上に、2本の導体線路を互いに重なり合わないように同一方向にらせん状に巻いたスパイラル線路を有し、前記スパイラル線路の中心部に給電装置を備え、前記スパイラル線路先端は開放され、また、前記スパイラル線路を形成する面と反対側の誘電体基板の裏面側に、前記スパイラル線路が形成される範囲よりも大きな面積で、使用周波数の上限の周波数の波長をλとしたときに約λ/4の深さの空洞を有する地導体を備えた2線式スパイラルアンテナにおいて、
前記スパイラル線路先端近傍のアンテナ中心から外側の位置に導体小片を形成し、かつ、前記導体小片の誘電体基板の裏側に導体薄膜を形成し、前記導体小片と前記導体薄膜をスルーホールで短絡し、前記導体薄膜を前記地導体と短絡し、前記スパイラル線路先端とその隣り合うスパイラル線路との間に第1の抵抗体を備え、かつ、前記スパイラル線路先端と導体小片の間に第2の抵抗体を備え、前記2つの抵抗体が1組のペアを形成し、前記抵抗体ペアを2箇所のスパイラル線路先端に備えた
ことを特徴とするアンテナ装置。
On the dielectric substrate, there is a spiral line in which two conductor lines are spirally wound in the same direction so as not to overlap each other, and a power feeding device is provided at the center of the spiral line, and the tip of the spiral line is open In addition, on the back surface side of the dielectric substrate opposite to the surface on which the spiral line is formed, the wavelength of the upper limit frequency of the use frequency is λ H in an area larger than the range in which the spiral line is formed. In a two-wire spiral antenna with a ground conductor sometimes having a cavity with a depth of about λ H / 4,
A conductor piece is formed at a position outside the center of the antenna near the tip of the spiral line, a conductor thin film is formed on the back side of the dielectric substrate of the conductor piece, and the conductor piece and the conductor thin film are short-circuited through a through hole. The conductor thin film is short-circuited to the ground conductor, and a first resistor is provided between the spiral line tip and the adjacent spiral line, and a second resistor is provided between the spiral line tip and the conductor piece. An antenna device, comprising: a body, wherein the two resistors form a pair, and the resistor pair is provided at two distal ends of the spiral line.
前記抵抗体として、チップ抵抗を用いた
ことを特徴とする請求項1に記載のアンテナ装置。
The antenna device according to claim 1, wherein a chip resistor is used as the resistor.
前記誘電体基板として、抵抗膜付誘電体基板を用い、当該抵抗膜付誘電体基板上に前記スパイラル線路と前記第1及び第2の抵抗体を形成する
ことを特徴とする請求項1に記載のアンテナ装置。
The dielectric substrate with a resistance film is used as the dielectric substrate, and the spiral line and the first and second resistors are formed on the dielectric substrate with a resistance film. Antenna device.
請求項1から3のいずれか1項に記載のアンテナ装置をアレー化した
ことを特徴とするアンテナ装置。
The antenna device according to any one of claims 1 to 3, wherein the antenna device is arrayed.
JP2005226712A 2005-08-04 2005-08-04 Antenna device Active JP4708114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005226712A JP4708114B2 (en) 2005-08-04 2005-08-04 Antenna device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005226712A JP4708114B2 (en) 2005-08-04 2005-08-04 Antenna device

Publications (2)

Publication Number Publication Date
JP2007043546A true JP2007043546A (en) 2007-02-15
JP4708114B2 JP4708114B2 (en) 2011-06-22

Family

ID=37801099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005226712A Active JP4708114B2 (en) 2005-08-04 2005-08-04 Antenna device

Country Status (1)

Country Link
JP (1) JP4708114B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013074409A (en) * 2011-09-27 2013-04-22 Toshiba Denpa Products Kk Spiral antenna and element termination processing method therefor
CN111293111A (en) * 2018-12-06 2020-06-16 三星电子株式会社 Antenna module

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01157102A (en) * 1988-11-07 1989-06-20 Nippon Hoso Kyokai <Nhk> Radial waveguide line
JPH0278302A (en) * 1988-09-14 1990-03-19 Nec Corp Microstrip antenna
JPH11163622A (en) * 1997-11-28 1999-06-18 Mitsubishi Electric Corp Spiral antenna
JP2000513550A (en) * 1998-04-03 2000-10-10 レイセオン・カンパニー Compact spiral antenna
JP2001060821A (en) * 1999-08-19 2001-03-06 Tokimec Inc Spiral antenna
JP2002290141A (en) * 2001-03-26 2002-10-04 Tdk Corp Surface-mounted antenna
JP2003078336A (en) * 2001-08-30 2003-03-14 Tokai Univ Laminated spiral antenna

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0278302A (en) * 1988-09-14 1990-03-19 Nec Corp Microstrip antenna
JPH01157102A (en) * 1988-11-07 1989-06-20 Nippon Hoso Kyokai <Nhk> Radial waveguide line
JPH11163622A (en) * 1997-11-28 1999-06-18 Mitsubishi Electric Corp Spiral antenna
JP2000513550A (en) * 1998-04-03 2000-10-10 レイセオン・カンパニー Compact spiral antenna
JP2001060821A (en) * 1999-08-19 2001-03-06 Tokimec Inc Spiral antenna
JP2002290141A (en) * 2001-03-26 2002-10-04 Tdk Corp Surface-mounted antenna
JP2003078336A (en) * 2001-08-30 2003-03-14 Tokai Univ Laminated spiral antenna

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013074409A (en) * 2011-09-27 2013-04-22 Toshiba Denpa Products Kk Spiral antenna and element termination processing method therefor
CN111293111A (en) * 2018-12-06 2020-06-16 三星电子株式会社 Antenna module

Also Published As

Publication number Publication date
JP4708114B2 (en) 2011-06-22

Similar Documents

Publication Publication Date Title
US7408515B2 (en) Mobile communication device and an antenna assembly for the device
US20060022891A1 (en) Quadrifilar helical antenna
JP4332494B2 (en) Antenna device
JP2007151115A (en) Monopole antenna and mimo antenna including it
WO2007015583A1 (en) Broad band antenna
JP2005252366A (en) Inverted-f antenna
WO2007021247A1 (en) Compact antennas for ultra-wideband applications
JP5104131B2 (en) Radio apparatus and antenna provided in radio apparatus
JP6456506B2 (en) Antenna device
JP4992762B2 (en) Automotive integrated antenna
JP2009194783A (en) Pattern antenna and antenna apparatus with pattern antenna mounted on master substrate
JP4772715B2 (en) Antenna device
JP6059001B2 (en) Antenna device
JP4708114B2 (en) Antenna device
JPH11284429A (en) Diffraction wave suppression type microstrip antenna
JP2009147424A (en) Antenna device
JP2008263384A (en) Wide-band antenna
JP4744371B2 (en) Antenna device
KR100643543B1 (en) Multi-band monopole antenna
JP2006270575A (en) Antenna device
JP4704973B2 (en) Broadband antenna
JP2006345038A (en) Printed antenna
JP4388415B2 (en) Antenna device
JP4409789B2 (en) Antenna device
JP2007336170A (en) Slot antenna

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110316

R150 Certificate of patent or registration of utility model

Ref document number: 4708114

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250