JP2007042883A - Soft magnetic material, its manufacturing method, and dust core containing same - Google Patents

Soft magnetic material, its manufacturing method, and dust core containing same Download PDF

Info

Publication number
JP2007042883A
JP2007042883A JP2005225700A JP2005225700A JP2007042883A JP 2007042883 A JP2007042883 A JP 2007042883A JP 2005225700 A JP2005225700 A JP 2005225700A JP 2005225700 A JP2005225700 A JP 2005225700A JP 2007042883 A JP2007042883 A JP 2007042883A
Authority
JP
Japan
Prior art keywords
soft magnetic
magnetic material
particle powder
inorganic compound
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005225700A
Other languages
Japanese (ja)
Other versions
JP4803353B2 (en
Inventor
Seiji Ishitani
誠治 石谷
Hiroko Morii
弘子 森井
Kazuyuki Hayashi
一之 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2005225700A priority Critical patent/JP4803353B2/en
Publication of JP2007042883A publication Critical patent/JP2007042883A/en
Application granted granted Critical
Publication of JP4803353B2 publication Critical patent/JP4803353B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a soft magnetic material having excellent oxidation resistance, compressibility and fluidity while reducing the change of an electric resistance value even when baked at a high temperature, and a dust core containing the soft magnetic material and having a superior magnetic stability and the high electric resistance value. <P>SOLUTION: The soft magnetic material is composed of composite particle powder in which an inorganic compound consisting of silicon, the inorganic compound consisting of phosphorus, and the inorganic compound consisting of aluminum as required, are attached or coated on the particle surfaces of soft-magnetic particle powder. The soft magnetic material is obtained in such a manner that silicon alcoxide is added into a suspension in which soft-magnetic particle powder is dispersed in an organic solvent, and a phosphoric-acid solution is added, mixed/agitated and dried at 30 to 120°C. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、耐酸化性、圧縮性及び流動性に優れると共に、高温で焼成した場合においても電気抵抗値の変化が少ない軟磁性材料、及び該軟磁性材料を含有する磁気的安定性に優れた高い電気抵抗値を有する圧粉磁心を提供する。   The present invention is excellent in oxidation resistance, compressibility, and fluidity, and has excellent magnetic stability including a soft magnetic material having little change in electrical resistance even when baked at a high temperature, and the magnetic stability containing the soft magnetic material. A dust core having a high electric resistance value is provided.

近年、家電及び電子機器の省エネルギー化及び小型化に伴い、これらに使用される磁心材料に対しても、小型で高出力、且つ電力変換効率の高効率化の要求が強まっている。機器サイズの小型化、高出力化及び電力変換効率の高効率化には動作周波数の高周波化が有効であることが知られており、高周波領域においても高い磁束密度と透磁率及び低鉄損を有する磁心材料が強く求められている。   In recent years, along with energy saving and miniaturization of home appliances and electronic devices, there is an increasing demand for miniaturization, high output, and high efficiency of power conversion efficiency for magnetic core materials used for these. Higher operating frequency is known to be effective in reducing the size of equipment, increasing output, and increasing power conversion efficiency. Even in the high frequency range, high magnetic flux density, magnetic permeability, and low iron loss. There is a strong need for magnetic core materials.

従来、このような磁心材料としては、ケイ素鋼板を用いた積層型磁心等が使用されているが、積層型磁心は、動作周波数が高くなるに従って磁心内部で発生する渦電流損失が増大するという欠点を有している。   Conventionally, as such a magnetic core material, a laminated magnetic core using a silicon steel plate or the like has been used. However, a laminated magnetic core has a disadvantage that eddy current loss generated inside the magnetic core increases as the operating frequency increases. have.

そのため、近年では、積層型磁心に比べて高周波領域での鉄損が低いと共に、成形性に優れた、軟磁性粉末をフェノール樹脂やエポキシ樹脂等の絶縁性樹脂で被覆し圧縮成形した圧粉磁心が、積層型磁心の代替品として広く用いられている。   For this reason, in recent years, a powder core in which a soft magnetic powder is coated with an insulating resin such as a phenol resin or an epoxy resin and is compression-molded has a low iron loss in a high frequency region as compared with a laminated magnetic core and has excellent moldability. However, it is widely used as a substitute for a laminated magnetic core.

一方、圧粉磁心に対して、更なる小型化及び高性能化、即ち、高磁束密度化が望まれており、このような高磁束密度化のために、軟磁性粉末の充填密度を増大させることが行われている。   On the other hand, further miniaturization and higher performance, that is, higher magnetic flux density is desired for the powder magnetic core. For such higher magnetic flux density, the packing density of the soft magnetic powder is increased. Things have been done.

しかしながら、軟磁性粉末を高充填するために高圧で圧縮成形を行うため、軟磁性粉末には歪みが残り、ヒステリシス損失の増大を招くことが知られている。そのため、歪みによるヒステリシス損失を低減するために、通常、成形品に対して焼鈍しが行われている。   However, it is known that since compression molding is performed at a high pressure in order to highly fill the soft magnetic powder, strain remains in the soft magnetic powder, leading to an increase in hysteresis loss. Therefore, in order to reduce the hysteresis loss due to strain, the molded product is usually annealed.

ところで、一般に、圧粉磁心の鉄損の主要因として、ヒステリシス損失と渦電流損失が知られている。ヒステリシス損失の低減方法としては、先に述べた通り、焼鈍しによる歪みの除去が有効であることが知られており、一方、渦電流損失の低減方法としては、粒子間を絶縁性樹脂等で絶縁することにより行われている。   By the way, in general, hysteresis loss and eddy current loss are known as main causes of iron loss of a dust core. As described above, it is known that the removal of strain due to annealing is effective as a method for reducing hysteresis loss. On the other hand, as a method for reducing eddy current loss, an insulating resin or the like is used between particles. It is done by insulating.

しかしながら、焼鈍しは、一般には500℃以上、好ましくは600℃、もしくはそれ以上の温度が効果的であるとされているが、軟磁性粒子粉末のバインダーとしての結合樹脂や上記粒子間の絶縁のために絶縁性樹脂を使用した場合、高温で焼鈍しを行うと、樹脂が分解して成形体が脆くなったり、絶縁性が低下してしまうため、高温での焼鈍しは困難であり、従って、ヒステリシス損失と渦電流損失の両方を同時に低減することは困難であった。   However, annealing is generally effective at a temperature of 500 ° C. or higher, preferably 600 ° C. or higher. However, the bonding resin as a binder of the soft magnetic particle powder and the insulation between the particles are not effective. Therefore, when an insulating resin is used, annealing at a high temperature will cause the resin to decompose and the molded body will become brittle, or the insulation will be degraded, so annealing at a high temperature is difficult. It was difficult to reduce both hysteresis loss and eddy current loss at the same time.

また、軟磁性金属粉末は空気及び空気中の水分に触れると酸化・腐食し易く、粒子表面の金属部分が徐々に酸化されて磁気特性が劣化するため粒子表面を酸化物等で被覆する必要があるが、十分な酸化防止効果を得ようとすると被膜が厚くなるため、圧粉磁心を形成した際に圧粉磁心における軟磁性粒子粉末の割合が減少するため、高磁束密度化が困難となる。   Soft magnetic metal powder is easily oxidized and corroded when exposed to air and moisture in the air, and the metal part of the particle surface is gradually oxidized to deteriorate the magnetic properties. Therefore, it is necessary to coat the particle surface with an oxide or the like. However, if a sufficient antioxidation effect is obtained, the coating becomes thick, and when the powder magnetic core is formed, the proportion of the soft magnetic particle powder in the powder magnetic core is reduced, which makes it difficult to increase the magnetic flux density. .

これまで、金属磁性粒子の表面に、リン酸金属塩及び酸化物の少なくともいずれか一方を含む絶縁被膜と、前記絶縁被膜の表面を取り囲む金属石鹸を含む潤滑剤被膜とを有する複合磁性粒子(特許文献1)を圧粉磁心用粉末として用いる技術が開示されている。   Conventionally, a composite magnetic particle having an insulating coating containing at least one of a metal phosphate and an oxide and a lubricant coating containing a metal soap surrounding the surface of the insulating coating on the surface of the metal magnetic particle (patent) A technique using Document 1) as a powder for a dust core is disclosed.

また、軟磁性金属粉末の表面に、リン酸塩の被膜及びケイ酸ナトリウムの被膜を形成した軟磁性金属粉末(特許文献2及び特許文献3)又は、磁性粉表面をシリカ系ゾルの膜で被覆した磁性粉(特許文献4)を圧粉磁心用粉末として用いる技術が開示されている。   Also, a soft magnetic metal powder (Patent Document 2 and Patent Document 3) in which a phosphate film and a sodium silicate film are formed on the surface of the soft magnetic metal powder, or the surface of the magnetic powder is coated with a silica-based sol film. A technique of using the magnetic powder (Patent Document 4) as a powder for a powder magnetic core is disclosed.

また、強磁性体金属粉末の表面をアルミニウムを含有するリン酸塩又はリン化合物で被覆した圧粉磁心用被覆金属粉末(特許文献5)が開示されている。   Further, a coated metal powder for dust core (Patent Document 5) in which the surface of a ferromagnetic metal powder is coated with a phosphate or a phosphorus compound containing aluminum is disclosed.

一方、圧粉磁心の電気抵抗値は高い方が好ましく、圧粉磁心の電気抵抗が高ければ、高い周波数領域でも透磁率はほとんど変化しないが、電気抵抗値が低ければ、高い周波数領域では透磁率が急激に低下する傾向にある。   On the other hand, it is preferable that the electric resistance value of the dust core is high. If the electric resistance of the dust core is high, the permeability hardly changes even in a high frequency range, but if the electric resistance value is low, the permeability is high in the high frequency range. Tend to drop sharply.

電気抵抗値を高める手段として、金属アルコキシドを加水分解させて金属粉末表面に水酸化物を吸着させた磁性材料粉末(特許文献6)が開示されている。   As means for increasing the electrical resistance value, a magnetic material powder (Patent Document 6) is disclosed in which a metal alkoxide is hydrolyzed and a hydroxide is adsorbed on the surface of the metal powder.

特開2005−129716号公報JP 2005-129716 A 特開2002−170707号公報JP 2002-170707 A 特開2003−197416号公報JP 2003-197416 A 特開2001−196217号公報JP 2001-196217 A 特開2005−113258号公報JP 2005-113258 A 特開平9−125111号公報JP-A-9-125111

耐酸化性、圧縮性及び流動性に優れると共に、高温で焼成した場合においても電気抵抗値の変化が少ない圧粉磁心軟磁性材料は、現在最も要求されているところであるが、未だ得られていない。   A powder magnetic core soft magnetic material that is excellent in oxidation resistance, compressibility and fluidity and has little change in electrical resistance even when fired at high temperature is currently the most demanded, but has not yet been obtained. .

即ち、特許文献1には、金属磁性粒子の表面に、リン酸金属塩及び酸化物の少なくともいずれか一方を含む絶縁被膜と、前記絶縁被膜の表面を取り囲む金属石鹸を含む潤滑剤被膜とを有する複合磁性粒子を圧粉磁心用粉末として用いることが記載されているが、絶縁被膜もしくは潤滑剤粒子として用いられているのは酸化シリコンであり、シラノール基を有するケイ素からなる無機化合物の被膜と比べると水との親和性が低く、水分や酸素をトラップする能力が劣るため、高い耐酸化性を得ることが困難である。   That is, Patent Document 1 has an insulating coating containing at least one of a metal phosphate and an oxide and a lubricant coating containing metal soap surrounding the surface of the insulating coating on the surface of the metal magnetic particles. Although it is described that composite magnetic particles are used as powders for powder magnetic cores, silicon oxide is used as insulating coatings or lubricant particles, compared with coatings of inorganic compounds made of silicon having silanol groups. Since the affinity between water and water is low and the ability to trap moisture and oxygen is poor, it is difficult to obtain high oxidation resistance.

また、特許文献2乃至4には、軟磁性金属粉末の表面に、リン酸塩の被膜及びケイ酸ナトリウムの被膜、又は、シリカ系ゾル被膜を形成した軟磁性金属粉末磁性粉を圧粉磁心用粉末として用いることが記載されているが、圧縮性については考慮されておらず、後出比較例に示す通り、圧縮性を示す圧縮密度の変化率が5.3%と悪いものであった。   In Patent Documents 2 to 4, a soft magnetic metal powder magnetic powder in which a phosphate film and a sodium silicate film or a silica-based sol film are formed on the surface of the soft magnetic metal powder is used for a dust core. Although it is described that it is used as a powder, compressibility is not taken into consideration, and as shown in a later-described comparative example, the rate of change in compression density indicating compressibility is as bad as 5.3%.

特許文献5には、強磁性体金属粉末の表面をアルミニウムを含有するリン酸塩又はリン化合物で被覆した圧粉磁心用被覆金属粉末が記載されているが、アルミニウムを含有するリン酸塩又はリン化合物では空気中の酸素や水分をトラップする能力が低いため、高い耐酸化性を得ることが困難である。   Patent Document 5 discloses a coated metal powder for a dust core in which the surface of a ferromagnetic metal powder is coated with a phosphate or a phosphorus compound containing aluminum. Since a compound has a low ability to trap oxygen and moisture in the air, it is difficult to obtain high oxidation resistance.

また、特許文献6には、金属アルコキシドを加水分解させて金属粉末表面に水酸化物を吸着させた磁性材料粉末が記載されているが、金属アルコキシドに蒸留水を添加しているために加水分解が急激に進み、生じる水酸化物の粒子が粗大となり、緻密な被覆が困難となるため、良好な圧縮性を得ることが困難である。   Patent Document 6 describes a magnetic material powder in which a metal alkoxide is hydrolyzed and a hydroxide is adsorbed on the surface of the metal powder, but hydrolysis is caused by adding distilled water to the metal alkoxide. Advances rapidly, and the resulting hydroxide particles become coarse and it becomes difficult to provide a dense coating, so it is difficult to obtain good compressibility.

そこで、本発明は、耐酸化性及び流動性に優れると共に、低い圧力で圧縮成形が可能であり、且つ、高温で焼成した場合においても体積固有抵抗値の変化が少ない軟磁性材料を得ることを技術的課題とする。   Therefore, the present invention is to obtain a soft magnetic material that is excellent in oxidation resistance and fluidity, can be compression-molded at a low pressure, and has a small volume resistivity change even when fired at a high temperature. Technical issue.

本発明者らは、前記課題を解決すべく鋭意研究を重ねた結果、粒子表面にケイ素からなる無機化合物及びリンからなる無機化合物が付着もしくは被覆している軟磁性粒子粉末は、耐酸化性及び流動性に優れると共に、低い圧力で圧縮成形が可能であり、且つ、高温で焼成した場合においても電気抵抗値の変化が少なく、また、該軟磁性粒子粉末を圧粉磁心用軟磁性材料として用いることにより、高い電気抵抗値を有する圧粉磁心が得られることを見いだし、本発明をなすに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that the soft magnetic particle powder having an inorganic compound composed of silicon and phosphorus adhered or coated on the particle surface is resistant to oxidation and Excellent fluidity, compression molding is possible at low pressure, and there is little change in electrical resistance value even when fired at high temperature, and the soft magnetic particle powder is used as a soft magnetic material for a dust core. As a result, it was found that a dust core having a high electric resistance value was obtained, and the present invention was achieved.

即ち、本発明は、軟磁性粒子粉末の粒子表面にケイ素からなる無機化合物及びリンからなる無機化合物、又は前記無機化合物の複合体が付着もしくは被覆している複合粒子粉末からなることを特徴とする軟磁性材料である(本発明1)。   That is, the present invention is characterized in that the soft magnetic particle powder is composed of an inorganic compound made of silicon and an inorganic compound made of phosphorus, or a composite particle powder in which a composite of the inorganic compound is adhered or coated. It is a soft magnetic material (Invention 1).

また、本発明は、軟磁性粒子粉末の粒子表面にアルミニウムからなる無機化合物、ケイ素からなる無機化合物及びリンからなる無機化合物、又は前記無機化合物の複合体が付着もしくは被覆している複合粒子粉末からなることを特徴とする軟磁性材料である(本発明2)。   The present invention also provides an inorganic compound composed of aluminum, an inorganic compound composed of silicon and an inorganic compound composed of phosphorus, or a composite particle powder in which a composite of the inorganic compound is attached to or coated on the particle surface of the soft magnetic particle powder. A soft magnetic material characterized in that (Invention 2).

また、本発明は、前記ケイ素からなる無機化合物がシラノール基を含有していることを特徴とする本発明1乃至2の軟磁性材料である(本発明3)。   The present invention is the soft magnetic material according to any one of the first and second aspects, wherein the inorganic compound comprising silicon contains a silanol group (the third aspect).

また、本発明は、複合粒子粉末の耐酸化性が10%以下であることを特徴とする本発明1乃至3のいずれかの軟磁性材料である(本発明4)。   Further, the present invention is the soft magnetic material according to any one of the present inventions 1 to 3, wherein the oxidation resistance of the composite particle powder is 10% or less (the present invention 4).

また、本発明は、複合粒子粉末の圧縮密度の変化率が5%未満であることを特徴とする本発明1乃至4のいずれかの軟磁性材料である(本発明5)。   Further, the present invention is the soft magnetic material according to any one of the present inventions 1 to 4, wherein the change rate of the compression density of the composite particle powder is less than 5% (Invention 5).

また、本発明は、複合粒子粉末の加熱前後の体積固有抵抗値の変化率が20%以下であることを特徴とする本発明1乃至5のいずれかの軟磁性材料である(本発明6)。   Further, the present invention is the soft magnetic material according to any one of the present inventions 1 to 5, wherein the change rate of the volume resistivity before and after the heating of the composite particle powder is 20% or less (the present invention 6). .

また、本発明は、軟磁性粒子粉末を有機溶剤に分散した懸濁液中にシリコンアルコキシドを加えた後、リン酸溶液を加え、混合・攪拌後、30〜120℃で乾燥させることを特徴とする本発明1又は本発明3乃至6のいずれかの軟磁性材料の製造法である(本発明7)。   Further, the present invention is characterized in that after adding silicon alkoxide to a suspension in which soft magnetic particle powder is dispersed in an organic solvent, a phosphoric acid solution is added, and after mixing and stirring, drying is performed at 30 to 120 ° C. This is a method for producing a soft magnetic material according to any one of Invention 1 or Inventions 3 to 6 (Invention 7).

また、本発明は、軟磁性粒子粉末に、アルミニウムアルコキシドを有機溶剤に分散、もしくは溶解させた溶液を加えた後、シリコンアルコキシドを加え、次いで、リン酸溶液を加え、混合・攪拌後、30〜120℃で乾燥させることを特徴とする本発明2乃至6のいずれかの軟磁性材料の製造法である(本発明8)。   In the present invention, after adding a solution in which aluminum alkoxide is dispersed or dissolved in an organic solvent to soft magnetic particle powder, silicon alkoxide is added, then a phosphoric acid solution is added, and after mixing and stirring, 30 to A method for producing a soft magnetic material according to any one of the present inventions 2 to 6, wherein the soft magnetic material is dried at 120 ° C. (Invention 8).

また、本発明は、本発明1乃至6のいずれかの軟磁性材料を圧縮成形してなる圧粉磁心である(本発明9)。   In addition, the present invention is a dust core formed by compression molding the soft magnetic material according to any one of the first to sixth aspects (Invention 9).

本発明に係る軟磁性材料は、耐酸化性及び流動性に優れると共に、低い圧力で圧縮成形が可能であり、且つ、高温で焼成した場合においても電気抵抗値の変化が少ないので圧粉磁心用軟磁性材料として好適である。   The soft magnetic material according to the present invention is excellent in oxidation resistance and fluidity, can be compression-molded at a low pressure, and has a small change in electric resistance even when fired at a high temperature. It is suitable as a soft magnetic material.

本発明に係る圧粉磁心は、前記軟磁性材料を用いたことにより、酸化による磁気特性の劣化が少ないと共に、電気抵抗値が高く、且つ、高温で焼成した場合においても電気抵抗値の変化が少ないので、高性能圧粉磁心として好適である   The dust core according to the present invention uses the soft magnetic material, so that there is little deterioration in the magnetic properties due to oxidation, the electrical resistance value is high, and the electrical resistance value changes even when fired at a high temperature. Because there are few, it is suitable as a high-performance dust core.

本発明の構成をより詳しく説明すれば次の通りである。   The configuration of the present invention will be described in more detail as follows.

先ず、本発明に係る軟磁性材料について述べる。   First, the soft magnetic material according to the present invention will be described.

本発明に係る軟磁性材料は、軟磁性粒子粉末の粒子表面に、ケイ素からなる無機化合物及びリンからなる無機化合物若しくはそれら無機化合物の複合体、又はアルミニウムからなる無機化合物、ケイ素からなる無機化合物及びリンからなる無機化合物若しくはそれら無機化合物の複合体が付着もしくは被覆している複合粒子粉末からなる。   The soft magnetic material according to the present invention includes an inorganic compound composed of silicon and an inorganic compound composed of phosphorus or a composite of these inorganic compounds, an inorganic compound composed of aluminum, an inorganic compound composed of silicon, and the surface of the soft magnetic particle powder. It consists of a composite particle powder to which an inorganic compound comprising phosphorus or a composite of these inorganic compounds adheres or is coated.

本発明に係る軟磁性材料のシリコンアルコキシドから生成する無機化合物の被覆量は、被処理粒子である軟磁性粒子粉末の比表面積にもよるが、Si換算で0.0005〜5.0重量%が好ましい。0.0005重量%未満の場合には、付着もしくは被覆処理されるケイ素からなる無機化合物が少なすぎるため、本発明の目的とする耐酸化性、圧縮性及び流動性の改善効果が得られない。5.0重量%を超える場合には、磁性に関与しない無機化合物が増加することにより磁気特性が低下するため好ましくない。得られる軟磁性材料の耐酸化性、圧縮性、流動性及び磁気特性を考慮した場合、0.00075〜2.5重量%がより好ましく、更により好ましくは0.001〜1.0重量%である。   The coating amount of the inorganic compound generated from the silicon alkoxide of the soft magnetic material according to the present invention depends on the specific surface area of the soft magnetic particle powder as the particles to be treated, but is 0.0005 to 5.0% by weight in terms of Si. preferable. When the amount is less than 0.0005% by weight, the amount of the inorganic compound composed of silicon to be attached or coated is too small, so that the effect of improving the oxidation resistance, compressibility and fluidity which is the object of the present invention cannot be obtained. When the amount exceeds 5.0% by weight, the number of inorganic compounds not involved in magnetism increases, and thus magnetic characteristics are deteriorated. When considering the oxidation resistance, compressibility, fluidity and magnetic properties of the obtained soft magnetic material, 0.00075 to 2.5 wt% is more preferable, and still more preferably 0.001 to 1.0 wt%. is there.

本発明に係る軟磁性材料のリン化合物の被覆量は、被処理粒子である軟磁性粒子粉末の比表面積にもよるが、P換算で0.0005〜10.0重量%が好ましい。0.0005重量%未満の場合には、付着もしくは被覆処理されるリンからなる無機化合物が少なすぎるため、本発明の目的とする圧縮性及び流動性の改善効果が得られない。10.0重量%を超える場合には、磁性に関与しない無機化合物が増加することにより磁気特性が低下するため好ましくない。得られる軟磁性材料の圧縮性、流動性及び磁気特性を考慮した場合、0.00075〜7.5重量%がより好ましく、更により好ましくは0.001〜5.0重量%である。   The coating amount of the phosphorus compound of the soft magnetic material according to the present invention is preferably 0.0005 to 10.0% by weight in terms of P, although it depends on the specific surface area of the soft magnetic particle powder that is the particle to be treated. When the amount is less than 0.0005% by weight, the amount of the inorganic compound composed of phosphorus to be adhered or coated is too small, so that the effect of improving the compressibility and fluidity of the present invention cannot be obtained. When the content exceeds 10.0% by weight, the number of inorganic compounds not involved in magnetism increases, and thus magnetic characteristics deteriorate, which is not preferable. When considering the compressibility, fluidity and magnetic properties of the resulting soft magnetic material, it is more preferably 0.00075 to 7.5% by weight, still more preferably 0.001 to 5.0% by weight.

本発明に係る軟磁性材料のアルミニウムアルコキシドから生成するアルミニウムからなる無機化合物の被覆量は、被処理粒子である軟磁性粒子粉末の比表面積にもよるが、Al換算で0.0005〜5.0重量%が好ましい。ケイ素からなる無機化合物、リンからなる無機化合物に加えてアルミニウムからなる無機化合物をAl換算で0.0005〜5.0重量%の範囲で付着もしくは被覆することにより、圧縮性及び流動性のより優れた改善効果が得られる。5.0重量%を超える場合には、磁性に関与しない無機化合物が増加する事により磁気特性が低下するため好ましくない。得られる軟磁性材料の圧縮性、流動性及び磁気特性を考慮した場合、0.0075〜4.0重量%がより好ましく、更により好ましくは0.001〜3.0重量%である。   The coating amount of the inorganic compound made of aluminum generated from the aluminum alkoxide of the soft magnetic material according to the present invention depends on the specific surface area of the soft magnetic particle powder as the particles to be treated, but is 0.0005 to 5.0 in terms of Al. % By weight is preferred. It is superior in compressibility and fluidity by adhering or coating an inorganic compound made of silicon in addition to an inorganic compound made of silicon and an inorganic compound made of aluminum in the range of 0.0005 to 5.0% by weight in terms of Al. Improvement effect is obtained. When the amount exceeds 5.0% by weight, the increase in the number of inorganic compounds not involved in magnetism decreases the magnetic properties, which is not preferable. When considering the compressibility, fluidity and magnetic properties of the resulting soft magnetic material, the amount is more preferably 0.0075 to 4.0% by weight, and still more preferably 0.001 to 3.0% by weight.

本発明に係る軟磁性材料の平均粒子径は、用途や特性に応じて選べばよいが、1.0〜500.0μmの範囲が好ましい。平均粒子径が500.0μmを超える場合には、粒子径が大きすぎ、圧粉磁心に用いた場合、充填密度が下がるため好ましくない。平均粒子径が1.0μm未満の場合には、粒子径が小さすぎ、流動性が低下するため好ましくない。より好ましくは5.0〜400.0μm、更により好ましくは10.0〜300.0μmである。   The average particle size of the soft magnetic material according to the present invention may be selected according to the application and characteristics, but is preferably in the range of 1.0 to 500.0 μm. When the average particle diameter exceeds 500.0 μm, the particle diameter is too large, and when used in a dust core, the packing density is lowered, which is not preferable. An average particle size of less than 1.0 μm is not preferable because the particle size is too small and fluidity is lowered. More preferably, it is 5.0-400.0 micrometers, More preferably, it is 10.0-300.0 micrometers.

本発明に係る軟磁性材料の圧縮性は、後述する評価方法において、圧縮密度の変化率は5%未満が好ましい。圧縮密度の変化率は5.0%以上の場合には、圧粉磁心を作製する際に高い圧力が必要となるため好ましくない。より好ましくは4.0%以下、更により好ましくは3.0%以下である。   Regarding the compressibility of the soft magnetic material according to the present invention, the rate of change in compression density is preferably less than 5% in the evaluation method described later. When the change rate of the compression density is 5.0% or more, a high pressure is required when producing a dust core, which is not preferable. More preferably, it is 4.0% or less, More preferably, it is 3.0% or less.

本発明に係る軟磁性材料の流動性は、流動性指数70以上が好ましい。流動性指数が70未満の場合には、圧粉磁心の作製時に、金型への充填性が上がらず、そのため、圧粉磁心の軟磁性粒子粉末の充填率は悪いものとなる。より好ましくは75〜95である。   The fluidity of the soft magnetic material according to the present invention is preferably a fluidity index of 70 or more. When the fluidity index is less than 70, the filling property to the mold is not improved during the production of the dust core, and therefore the filling rate of the soft magnetic particle powder in the dust core is poor. More preferably, it is 75-95.

本発明に係る軟磁性材料の体積固有抵抗値は、1.0mΩ・cm以上であることが好ましく、より好ましくは2.0mΩ・cm以上である。また、500℃×1時間加熱前後の体積固有抵抗値の変化率は、20%以下が好ましく、より好ましくは15%以下、更により好ましくは10%以下である。加熱前後の体積固有抵抗値の変化率が20%を超える場合は、これを用いて得られる圧粉磁心の比抵抗値が焼鈍しによって低下しやすくなるため好ましくない。   The volume resistivity value of the soft magnetic material according to the present invention is preferably 1.0 mΩ · cm or more, more preferably 2.0 mΩ · cm or more. Further, the rate of change in volume resistivity value before and after heating at 500 ° C. for 1 hour is preferably 20% or less, more preferably 15% or less, and even more preferably 10% or less. When the rate of change of the volume resistivity value before and after heating exceeds 20%, the specific resistance value of the dust core obtained by using this tends to be lowered by annealing, which is not preferable.

本発明に係る軟磁性材料は、ケイ素からなる無機化合物がシラノール基を含有している。シラノール基を含有していることにより、空気中の水分や酸素との親和性が高まり、水分や酸素を効果的にトラップすることができるため、水分や酸素による軟磁性粒子粉末の腐食を抑制することができる。   In the soft magnetic material according to the present invention, the inorganic compound made of silicon contains a silanol group. By containing silanol groups, the affinity with moisture and oxygen in the air is increased, and moisture and oxygen can be trapped effectively, thereby suppressing the corrosion of soft magnetic particle powder caused by moisture and oxygen. be able to.

本発明に係る軟磁性材料の耐酸化性は、後述する評価方法において、10.0%以下が好ましい。耐酸化性が10.0%を超える場合には、経時による磁気特性の劣化が大きすぎるため好ましくない。より好ましくは9.0%以下であり、更により好ましくは8.0%以下である。   The oxidation resistance of the soft magnetic material according to the present invention is preferably 10.0% or less in the evaluation method described later. When the oxidation resistance exceeds 10.0%, the deterioration of the magnetic characteristics over time is too large, which is not preferable. More preferably, it is 9.0% or less, More preferably, it is 8.0% or less.

次に、本発明に係る軟磁性材料の製造法について述べる。   Next, a method for producing a soft magnetic material according to the present invention will be described.

本発明1に係る軟磁性材料は、被処理粒子粉末である軟磁性粒子粉末を有機溶剤に分散した懸濁液中にシリコンアルコキシドを加えた後、リン酸溶液を加え、混合・攪拌後、30〜120℃で乾燥させることにより得ることができる。シリコンアルコキシドの添加方法としては、上記添加方法の他に、軟磁性粒子粉末に対し、有機溶剤に分散、もしくは溶解させたシリコンアルコキシド溶液を加えてもよい。   The soft magnetic material according to the first aspect of the present invention is obtained by adding silicon alkoxide to a suspension obtained by dispersing soft magnetic particle powder, which is a particle powder to be treated, in an organic solvent, adding a phosphoric acid solution, mixing and stirring, and then adding 30 It can be obtained by drying at ~ 120 ° C. As a method for adding silicon alkoxide, in addition to the above addition method, a silicon alkoxide solution dispersed or dissolved in an organic solvent may be added to the soft magnetic particle powder.

また、本発明2に係る軟磁性材料は、被処理粒子粉末である軟磁性粒子粉末に、アルミニウムアルコキシドを有機溶剤に分散、もしくは溶解させた溶液を加えた後、シリコンアルコキシドを加え、次いで、リン酸溶液を加え、混合・攪拌後、30〜120℃で乾燥させることにより得ることができる。アルミニウムアルコキシド及びシリコンアルコキシドの添加方法としては、上記添加方法の他に、軟磁性粒子粉末を有機溶剤に分散した懸濁液中にアルミニウムアルコキシドを有機溶剤に分散、もしくは溶解させた溶液を加えてもよいし、アルミニウムアルコキシドを有機溶剤に分散、もしくは溶解させた溶液にシリコンアルコキシドを添加したものを同時に加えてもよい。   In addition, the soft magnetic material according to the second aspect of the present invention includes adding a solution in which an aluminum alkoxide is dispersed or dissolved in an organic solvent to a soft magnetic particle powder that is a particle to be treated, then adding a silicon alkoxide, It can be obtained by adding an acid solution, mixing and stirring, and drying at 30 to 120 ° C. As a method for adding aluminum alkoxide and silicon alkoxide, in addition to the above addition method, a solution in which aluminum alkoxide is dispersed or dissolved in an organic solvent may be added to a suspension obtained by dispersing soft magnetic particle powder in an organic solvent. Alternatively, a solution obtained by adding silicon alkoxide to a solution in which aluminum alkoxide is dispersed or dissolved in an organic solvent may be added simultaneously.

本発明における軟磁性粒子粉末としては、アトマイズ鉄粉、還元鉄粉、カルボニル鉄粉等の各種製法による鉄粉、フェライト粉、センダスト粉、パーマロイ粉等を用いることができる。得られる圧粉磁心の透磁率と磁束密度を考慮すれば、鉄粉が好ましい。軟磁性粒子粉末の平均粒子径は1.0〜500.0μmが好ましく、より好ましくは5.0〜400.0μm、更により好ましくは10.0〜300.0μmである。   As the soft magnetic particle powder in the present invention, iron powder, ferrite powder, sendust powder, permalloy powder, and the like by various production methods such as atomized iron powder, reduced iron powder, and carbonyl iron powder can be used. Considering the permeability and magnetic flux density of the obtained dust core, iron powder is preferred. The average particle size of the soft magnetic particle powder is preferably 1.0 to 500.0 μm, more preferably 5.0 to 400.0 μm, and still more preferably 10.0 to 300.0 μm.

本発明における軟磁性粒子粉末の圧縮性は、後述する評価方法において、通常、圧縮密度の変化率が5%を超える値を有している。   In the evaluation method described later, the compressibility of the soft magnetic particle powder in the present invention usually has a value at which the rate of change in compression density exceeds 5%.

本発明における軟磁性粒子粉末の流動性は、通常、流動性指数50以上を有しており、好ましくは50〜80である。   The fluidity of the soft magnetic particle powder in the present invention usually has a fluidity index of 50 or more, preferably 50-80.

本発明における軟磁性粒子粉末の体積固有抵抗値は、通常、0.1mΩ・cm以上であることが好ましく、より好ましくは0.5mΩ・cm以上である。また、500℃で1時間加熱前後の体積固有抵抗値の変化率は、通常、25%以上である。   In general, the volume resistivity value of the soft magnetic particle powder in the present invention is preferably 0.1 mΩ · cm or more, more preferably 0.5 mΩ · cm or more. Moreover, the change rate of the volume resistivity value before and after heating for 1 hour at 500 ° C. is usually 25% or more.

本発明における軟磁性粒子粉末の耐酸化性は、後述する評価方法において、通常10%を超える値を有している。   The oxidation resistance of the soft magnetic particle powder in the present invention usually has a value exceeding 10% in the evaluation method described later.

本発明に用いる有機溶剤としては、一般的に用いられているものであれば何を用いてもよいが、好ましくは水溶性の有機溶剤である。具体的には、エチルアルコール、プロピルアルコール又はブチルアルコール等のアルコール系溶剤、アセトン又はメチルエチルケトン等のケトン系溶剤、メチルセロソルブ、エチルセロソルブ、プロピルセロソルブ又はブチルセロソルブ等のグリコールエーテル系溶剤、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ジプロピレングリコール又はトリプロピレングリコール、ポリプロピレングリコール等のオキシエチレン、オキシプロピレン付加重合体、エチレングリコール、プロピレングリコール又は1,2,6−ヘキサントリオール等のアルキレングリコール、グリセリン、2−ピロリドン等を好適に用いることができるが、より好ましくは、エチルアルコール、プロピルアルコール、ブチルアルコール等のアルコール系溶剤、アセトン、メチルエチルケトン等のケトン系溶剤である。   Any organic solvent may be used as long as it is generally used, but a water-soluble organic solvent is preferable. Specifically, alcohol solvents such as ethyl alcohol, propyl alcohol or butyl alcohol, ketone solvents such as acetone or methyl ethyl ketone, glycol ether solvents such as methyl cellosolve, ethyl cellosolve, propyl cellosolve or butyl cellosolve, diethylene glycol, triethylene glycol , Oxyethylene such as polyethylene glycol, dipropylene glycol or tripropylene glycol, polypropylene glycol, oxypropylene addition polymer, alkylene glycol such as ethylene glycol, propylene glycol or 1,2,6-hexanetriol, glycerin, 2-pyrrolidone, etc. Can be preferably used, but more preferably ethyl alcohol, propyl alcohol, butyl alcohol, etc. Alcohol solvents, acetone, ketone solvents such as methyl ethyl ketone.

本発明に用いるシリコンアルコキシドを構成するアルコキシドの種類としては、メトキシド、エトキシド、プロポキシド、イソプロポキシド、オキシイソプロポキシド、ブトキシド等を用いることができる。また、テトラエトキシシラン又はテトラメトキシシランを部分的に加水分解・縮合することにより得られるエチルシリケート及びメチルシリケートを用いることができる。処理の均一性及び処理効果を考慮すれば、シリコンアルコキシドとしては、テトラエトキシシラン、テトラメトキシシラン、メチルシリケート等が好ましい。   As the kind of alkoxide constituting the silicon alkoxide used in the present invention, methoxide, ethoxide, propoxide, isopropoxide, oxyisopropoxide, butoxide and the like can be used. Further, ethyl silicate and methyl silicate obtained by partially hydrolyzing and condensing tetraethoxysilane or tetramethoxysilane can be used. Considering the uniformity of treatment and treatment effect, the silicon alkoxide is preferably tetraethoxysilane, tetramethoxysilane, methyl silicate or the like.

本発明に用いるアルミニウムアルコキシドを構成するアルコキシドの種類としては、メトキシド、エトキシド、プロポキシド、イソプロポキシド、オキシイソプロポキシド、ブトキシド等を用いることができる。処理の均一性及び処理効果を考慮すれば、アルミニウムアルコキシドとしては、アルミニウムトリイソプロポキシド、アルミニウムトリブトキシド等が好ましい。   As the kind of alkoxide constituting the aluminum alkoxide used in the present invention, methoxide, ethoxide, propoxide, isopropoxide, oxyisopropoxide, butoxide and the like can be used. Considering the uniformity of treatment and the treatment effect, the aluminum alkoxide is preferably aluminum triisopropoxide, aluminum tributoxide or the like.

また、上記シリコンアルコキシド及びアルミニウムアルコキシドは、固体の場合、より均一な処理を行うために、前述の有機溶剤に予め分散又は溶解させて用いることが好ましい。   Moreover, when the said silicon alkoxide and aluminum alkoxide are solid, in order to perform a more uniform process, it is preferable to disperse | distribute or dissolve in the above-mentioned organic solvent beforehand, and to use.

また、上記シリコンアルコキシド及びアルミニウムアルコキシドの加水分解は、より微細な無機化合物を軟磁性粒子の粒子表面に付着もしくは被覆させるために、特に水分を添加する必要はなく、有機溶剤中の水分及び軟磁性粒子が有する水分により加水分解を行うことが好ましい。   In addition, hydrolysis of the silicon alkoxide and aluminum alkoxide does not require any particular addition of water in order to attach or coat a finer inorganic compound to the surface of the soft magnetic particles. It is preferable to carry out hydrolysis with moisture contained in the particles.

シリコンアルコキシドの添加量は、軟磁性粒子粉末の比表面積によって異なるが、通常、軟磁性粒子粉末100重量部当たり、Si換算で0.0005〜5.0重量部であり、好ましくは0.00075〜2.5重量部、より好ましくは0.001〜1.0重量部である。   The amount of silicon alkoxide added varies depending on the specific surface area of the soft magnetic particle powder, but is usually 0.0005 to 5.0 parts by weight in terms of Si per 100 parts by weight of the soft magnetic particle powder, preferably 0.00075 to 2.5 parts by weight, more preferably 0.001 to 1.0 parts by weight.

アルミニウムアルコキシドの添加量は、軟磁性粒子粉末の比表面積によって異なるが、通常、軟磁性粒子粉末100重量部当たり、Al換算で0.0005〜5.0重量部であり、好ましくは0.0075〜4.0重量部、より好ましくは0.001〜3.0重量部である。   The amount of aluminum alkoxide added varies depending on the specific surface area of the soft magnetic particle powder, but is usually 0.0005 to 5.0 parts by weight in terms of Al per 100 parts by weight of the soft magnetic particle powder, preferably 0.0075 to 4.0 parts by weight, more preferably 0.001 to 3.0 parts by weight.

本発明に用いるリン酸としては、五酸化二リンが水和してできる酸であり、メタリン酸、ピロリン酸、オルトリン酸、三リン酸、四リン酸を用いることができ、好ましくはオルトリン酸である。   The phosphoric acid used in the present invention is an acid formed by hydrating diphosphorus pentoxide, and metaphosphoric acid, pyrophosphoric acid, orthophosphoric acid, triphosphoric acid, and tetraphosphoric acid can be used, preferably orthophosphoric acid. is there.

本発明におけるリン酸の添加量は、軟磁性粒子粉末の比表面積によって異なるが、通常、軟磁性粒子粉末100重量部当たり、P換算で0.0005〜10.0重量部であり、好ましくは0.00075〜7.5重量部、より好ましくは0.001〜5.0重量部である。   The addition amount of phosphoric acid in the present invention varies depending on the specific surface area of the soft magnetic particle powder, but is usually 0.0005 to 10.0 parts by weight in terms of P per 100 parts by weight of the soft magnetic particle powder, preferably 0. 0.005 to 7.5 parts by weight, more preferably 0.001 to 5.0 parts by weight.

軟磁性粒子粉末とシリコンアルコキシド溶液、アルミニウムアルコキシド溶液及びリン酸溶液とを混合するための機器としては、高速アジテート型ミキサー、具体的にはヘンシェルミキサー、スピードミキサー、ボールカッター、パワーミキサー、ハイブリッドミキサー、コーンブレンダー等を使用すればよい。   As equipment for mixing soft magnetic particle powder with silicon alkoxide solution, aluminum alkoxide solution and phosphoric acid solution, there are high-speed agitate type mixers, specifically Henschel mixer, speed mixer, ball cutter, power mixer, hybrid mixer, A cone blender or the like may be used.

リン酸を水溶液として添加する場合は、加水分解が急激に進行するのを防ぐため、極少量ずつ添加することが好ましい。   When phosphoric acid is added as an aqueous solution, it is preferably added in small amounts in order to prevent hydrolysis from proceeding rapidly.

軟磁性粒子粉末とシリコンアルコキシド溶液、アルミニウムアルコキシド溶液及びリン酸溶液との混合・攪拌は、室温〜用いる有機溶剤の沸点以下で行うことが好ましい。また、軟磁性粒子粉末の酸化防止の観点から、Nガスなどの不活性ガス雰囲気下で反応を行うことが好ましい。 The mixing / stirring of the soft magnetic particle powder with the silicon alkoxide solution, the aluminum alkoxide solution and the phosphoric acid solution is preferably performed at room temperature to the boiling point of the organic solvent used. From the viewpoint of preventing oxidation of the soft magnetic particles, it is preferable to perform the reactions under an inert gas atmosphere such as N 2 gas.

得られた軟磁性粒子粉末は、室温下、ドラフト中で3〜24時間乾燥させた後、60〜120℃の温度範囲で乾燥させるか、もしくは30〜80℃の温度範囲で減圧乾燥を行うことにより得ることができる。上記温度範囲を超える場合には、 ケイ素からなる無機化合物が有するシラノール基が減少するため、水分や酸素による軟磁性粒子粉末の腐食を抑制することが困難となり、耐酸化性が低下するため好ましくない。乾燥は、空気中及びNガスなどの不活性ガス雰囲気下のいずれでも行うことができるが、前述と同様の観点から、好ましくはNガス等の不活性ガス雰囲気下である。 The obtained soft magnetic particle powder is dried in a draft at room temperature for 3 to 24 hours, and then dried in a temperature range of 60 to 120 ° C, or dried under reduced pressure in a temperature range of 30 to 80 ° C. Can be obtained. When the above temperature range is exceeded, silanol groups of the inorganic compound made of silicon decrease, which makes it difficult to suppress corrosion of the soft magnetic particle powder due to moisture and oxygen, and is not preferable because the oxidation resistance decreases. . Drying can be performed in air or in an inert gas atmosphere such as N 2 gas, but from the same viewpoint as described above, it is preferably in an inert gas atmosphere such as N 2 gas.

次に、本発明に係る圧粉磁心について述べる。   Next, the dust core according to the present invention will be described.

本発明に係る圧粉磁心は、本発明に係る軟磁性材料に、必要により、結合剤樹脂や潤滑剤等の添加剤を混合し、該混合粒子粉末を圧縮成形した後、加熱処理することによって得ることができる。   The powder magnetic core according to the present invention is obtained by mixing the soft magnetic material according to the present invention with additives such as a binder resin and a lubricant, if necessary, and compression-molding the mixed particle powder, followed by heat treatment. Obtainable.

結合剤樹脂としては、エポキシ樹脂、イミド樹脂、フェノール樹脂、又はシリコーン樹脂等を単独又は混合して用いることができる。   As the binder resin, an epoxy resin, an imide resin, a phenol resin, a silicone resin, or the like can be used alone or in combination.

圧縮成形は、通常行われている、金型を用いた圧縮成形法で行うことができる。なお、成形圧は、用途に応じて適宜選べばよい。   The compression molding can be performed by a compression molding method using a mold that is usually performed. In addition, what is necessary is just to select a shaping | molding pressure suitably according to a use.

圧縮成形後の熱処理温度は、結合剤樹脂の種類と要求される特性に応じて適宜調整すればよく、熱処理温度の上限は、無機化合物被膜の分解温度以下である。   The heat treatment temperature after compression molding may be appropriately adjusted according to the type of binder resin and the required properties, and the upper limit of the heat treatment temperature is not higher than the decomposition temperature of the inorganic compound coating.

本発明に係る圧粉磁心における軟磁性粒子粉末の体積占有率(vol%)は、90.0%以上であり、好ましくは91.0%、より好ましくは92.0%以上である。   The volume occupancy (vol%) of the soft magnetic particle powder in the dust core according to the present invention is 90.0% or more, preferably 91.0%, more preferably 92.0% or more.

本発明に係る圧粉磁心の比抵抗値は、2.0mΩ・cm以上であり、好ましくは3.0mΩ・cm以上、より好ましくは4.0mΩ・cm以上である。また、熱処理前後の比抵抗値の変化率は、30%未満が好ましく、より好ましくは20%未満、更により好ましくは10%未満である。   The specific resistance value of the dust core according to the present invention is 2.0 mΩ · cm or more, preferably 3.0 mΩ · cm or more, more preferably 4.0 mΩ · cm or more. Further, the change rate of the specific resistance value before and after the heat treatment is preferably less than 30%, more preferably less than 20%, and still more preferably less than 10%.

本発明に係る圧粉磁心の磁束密度の変化率(%)は、2.0%以下が好ましく、より好ましくは1.5%以下であり、更により好ましくは1.0%以下である。   The change rate (%) of the magnetic flux density of the dust core according to the present invention is preferably 2.0% or less, more preferably 1.5% or less, and even more preferably 1.0% or less.

<作用>
本発明における最も重要な点は、軟磁性粒子粉末の粒子表面にケイ素からなる無機化合物及びリンからなる無機化合物もしくはアルミニウムからなる無機化合物、ケイ素からなる無機化合物及びリンからなる無機化合物が付着もしくは被覆している複合粒子粉末からなる軟磁性材料は、耐酸化性、圧縮性及び流動性に優れると共に、高温で焼成した場合においても体積固有抵抗値の変化が少ないという事実である。
<Action>
The most important point in the present invention is that the surface of the soft magnetic particle powder is adhered or coated with an inorganic compound composed of silicon and an inorganic compound composed of phosphorus or an inorganic compound composed of aluminum, an inorganic compound composed of silicon, and an inorganic compound composed of phosphorus. This is the fact that the soft magnetic material comprising the composite particle powder is excellent in oxidation resistance, compressibility and fluidity, and has little change in volume resistivity even when fired at high temperature.

本発明に係る軟磁性材料の流動性が優れている理由として、本発明者は、軟磁性粒子粉末の粒子表面に付着もしくは被覆しているケイ素からなる無機化合物及びアルミニウムからなる無機化合物を有機溶剤を用いて金属アルコキシドから生成させることにより、粒子表面に非常に微細な突起が生じたためと推定している。   As the reason why the fluidity of the soft magnetic material according to the present invention is excellent, the present inventor considered that the inorganic compound composed of silicon and the inorganic compound composed of aluminum attached to or coated on the surface of the soft magnetic particle powder are organic solvents. It is presumed that very fine protrusions were produced on the surface of the particles by forming from metal alkoxide using.

本発明に係る軟磁性材料の圧縮性が優れている理由として、本発明者は、前記理由により、軟磁性材料の流動性が向上したために充填性が向上し、その結果、低い圧力でも十分な圧縮密度を得ることが可能になったものと推定している。   As a reason why the compressibility of the soft magnetic material according to the present invention is excellent, the present inventors have improved the fluidity of the soft magnetic material for the above reasons, so that the filling property is improved. As a result, even a low pressure is sufficient. It is presumed that compression density can be obtained.

本発明に係る軟磁性材料の体積固有抵抗値が高温で焼成した場合でも変化が少ない理由として、本発明者は、軟磁性粒子粉末の粒子表面に付着もしくは被覆しているケイ素からなる無機化合物及びアルミニウムからなる無機化合物を有機溶剤を用いて金属アルコキシドから生成させることにより、緻密、且つ、微細な粒子による付着もしくは被覆が可能となり、被処理粒子粉末である軟磁性粒子粉末が熱による影響を受け難くなったためと推定している。   As the reason why the volume resistivity of the soft magnetic material according to the present invention is small even when fired at a high temperature, the present inventor said that the inorganic compound comprising silicon adhering to or covering the particle surface of the soft magnetic particle powder and By forming an inorganic compound made of aluminum from a metal alkoxide using an organic solvent, it becomes possible to attach or coat with fine and fine particles, and the soft magnetic particle powder, which is a particle to be treated, is affected by heat. It is estimated that it became difficult.

本発明に係る軟磁性材料の耐酸化性が優れている理由として、本発明者は、ケイ素からなる無機化合物がシラノール基を含有していることにより、空気中の水分や酸素との親和性が高まり、水分や酸素を効果的にトラップすることができるため、水分や酸素による軟磁性粒子粉末の腐食を抑制することができたものと推定している。また、製造時にリン酸を添加することによって、リンと軟磁性粒子の表面が反応してリン酸鉄等のリンからなる無機化合物を形成したりすることにより、シラノール基を含有するケイ素からなる無機化合物の付着もしくは被覆層からトラップされた水分が軟磁性粒子内部に浸入しにくくなり、その相乗効果によって酸化されにくくなっているものと思われる。   The reason for the superior oxidation resistance of the soft magnetic material according to the present invention is that the present inventor has an affinity for moisture and oxygen in the air because the silicon-containing inorganic compound contains a silanol group. It is presumed that the corrosion of the soft magnetic particle powder due to moisture and oxygen could be suppressed because the moisture and oxygen can be effectively trapped. Further, by adding phosphoric acid during production, the surface of the soft magnetic particles reacts with phosphorus to form an inorganic compound composed of phosphorus such as iron phosphate, thereby forming an inorganic composed of silicon containing a silanol group. It is considered that the moisture adhering to the compound or trapped from the coating layer is less likely to enter the soft magnetic particles and is less likely to be oxidized due to its synergistic effect.

また、本発明に係る軟磁性材料を用いて得られた圧粉磁心は、磁気的安定性に優れると共に、高い比抵抗値を有するという事実である。   Moreover, it is the fact that the dust core obtained by using the soft magnetic material according to the present invention is excellent in magnetic stability and has a high specific resistance value.

本発明に係る圧粉磁心が高い比抵抗値を有する理由として、本発明者は、軟磁性材料として、体積固有抵抗値が高温で焼成した場合でも変化が少ない本発明に係る軟磁性材料を用いたことにより、通常、加熱処理を行うことにより大幅に減少する比抵抗値を、加熱処理前とほぼ同じ値に維持できたことによるものと考えている。   The reason why the powder magnetic core according to the present invention has a high specific resistance value is that the present inventor used the soft magnetic material according to the present invention as a soft magnetic material, which has little change even when the volume resistivity value is fired at a high temperature. Therefore, it is considered that the specific resistance value, which is largely reduced by performing the heat treatment, can be maintained at substantially the same value as before the heat treatment.

本発明に係る圧粉磁心が磁気的安定性に優れる理由として、本発明者は、軟磁性材料として、耐酸化性に優れた本発明に係る軟磁性材料を用いたことにより、空気中の水分や酸素による腐食を効果的に抑制できたためと考えている。   As the reason why the dust core according to the present invention is excellent in magnetic stability, the present inventor used the soft magnetic material according to the present invention having excellent oxidation resistance as a soft magnetic material, so that moisture in the air This is thought to be because corrosion due to oxygen and oxygen could be effectively suppressed.

以下、本発明における実施例を示し、本発明を具体的に説明する。   Hereinafter, the present invention will be described in detail with reference to examples.

各粒子粉末の平均粒子径は、いずれも電子顕微鏡写真に示される粒子350個の粒子径をそれぞれ測定し、その平均値で示した。   The average particle diameter of each particle powder was measured by measuring the particle diameter of 350 particles shown in the electron micrograph, and the average value was shown.

軟磁性粒子粉末の粒子表面に付着もしくは被覆されているアルミニウムからなる無機化合物、ケイ素からなる無機化合物及びリンからなる無機化合物の被覆量は、「蛍光X線分析装置3063M型」(理学電機工業株式会社製)を使用し、JIS K0119の「けい光X線分析通則」に従って測定した。   The coating amount of the inorganic compound made of aluminum, the inorganic compound made of silicon, and the inorganic compound made of phosphorus adhered or coated on the surface of the soft magnetic particle powder is “X-ray fluorescence analyzer 3063M type” (Rigaku Denki Kogyo Co., Ltd.) Measured in accordance with JIS K0119 “General Rules for Fluorescence X-ray Analysis”.

軟磁性粒子材料のケイ素からなる無機化合物が含有するシラノール基は、「赤外吸収スペクトル FTIR−8700」(島津製作所株式会社製)を用い、3250cm−1付近にみられるシラノール基(Si−OH)のSi−OH伸縮振動の吸収の有無を確認することにより行った。 Silanol groups inorganic compound consisting of silicon soft magnetic particulate material is contained, "Infrared absorption spectrum FTIR-8700" used (manufactured by Shimadzu Corporation), silanol groups found in the vicinity of 3250cm -1 (Si-OH) This was performed by confirming the presence or absence of absorption of Si-OH stretching vibration.

各粒子粉末の圧縮密度の変化率は、まず、試料粉体0.3gを測り取り、φ13mmの円筒形の金型に入れ、KBr錠剤成形器(株式会社島津製作所)を用いて、9.8×10Pa及び4.9×10Paの圧力で加圧成形を行い、得られた粉体層の厚みから、それぞれの圧力における圧縮密度CD(g/cm)及びCD(g/cm)を求め、下記数1にそれぞれの測定値を挿入して、圧縮密度の変化率(%)を求めた。 The rate of change in the compression density of each particle powder was determined by first measuring 0.3 g of the sample powder, placing it in a cylindrical mold having a diameter of 13 mm, and using a KBr tablet molding machine (Shimadzu Corporation), 9.8. From the thickness of the powder layer obtained by pressure molding at pressures of × 10 7 Pa and 4.9 × 10 8 Pa, the compression densities CD 1 (g / cm 3 ) and CD 5 (g / Cm 3 ) and the respective measured values were inserted into the following formula 1 to determine the rate of change (%) in compression density.

<数1>
圧縮密度の変化率(%)={(CD−CD)/CD)}×100
<Equation 1>
Change rate of compression density (%) = {(CD 5 −CD 1 ) / CD 5 )} × 100

各粒子粉末の流動性は、パウダテスタ(商品名、ホソカワミクロン株式会社製)を用いて、安息角(度)、圧縮度(%)、スパチュラ角(度)、凝集度の各粉体特性値を測定し、該各測定値を同一基準の数値に置き換えた各々の指数を求め、各々の指数を合計した流動性指数で示した。流動性指数が100に近いほど、流動性が優れていることを意味する。   The fluidity of each particle powder is measured using powder testers (trade name, manufactured by Hosokawa Micron Co., Ltd.) by measuring the powder characteristic values of angle of repose (degree), degree of compression (%), spatula angle (degree), and degree of aggregation. Then, each index obtained by replacing each measured value with a numerical value of the same standard was obtained, and each index was indicated as a total liquidity index. The closer the fluidity index is to 100, the better the fluidity.

各粒子粉末の体積固有抵抗値は、まず、粒子粉末0.5gを測り取り、KBr錠剤成形器(株式会社島津製作所)を用いて、1.372×10Paの圧力で加圧成形を行い、円柱状の被測定試料を作製した。 For the volume resistivity of each particle powder, first, 0.5 g of the particle powder was measured and subjected to pressure molding at a pressure of 1.372 × 10 7 Pa using a KBr tablet molding machine (Shimadzu Corporation). A cylindrical sample to be measured was prepared.

次いで、被測定試料を温度25℃、相対温度60%の環境下に12時間以上暴露した後、この被測定試料をステンレス電極の間にセットし、電気抵抗測定装置(model 4329A 横河北辰電気株式会社製)で15Vの電圧を印加して抵抗値R(mΩ)を測定した。   Next, after the sample to be measured was exposed to an environment of 25 ° C. and a relative temperature of 60% for 12 hours or more, the sample to be measured was set between stainless steel electrodes, and an electric resistance measuring device (model 4329A Yokogawa Hokushin Electric Co., Ltd.) The resistance value R (mΩ) was measured by applying a voltage of 15V.

次いで、被測定(円柱状)試料の上面の面積A(cm)と厚みt(cm)を測定し、下記数2にそれぞれの測定値を挿入して、体積固有抵抗値(mΩ・cm)を求めた。 Next, the area A (cm 2 ) and the thickness t 0 (cm) of the upper surface of the sample to be measured (cylindrical) are measured, and each measured value is inserted into the following equation 2 to obtain a volume resistivity (mΩ · cm )

<数2>
体積固有抵抗値(mΩ・cm)=R×(A/t
<Equation 2>
Volume resistivity (mΩ · cm) = R × (A / t 0 )

各粒子粉末の加熱前後における体積固有抵抗値の変化率(%)は、前記で作製した体積固有抵抗値測定用の円柱状の被測定試料を500℃にて1時間加熱した後、前記と同様にして体積固有抵抗値を測定し、下記数3に加熱前後の体積固有抵抗値を挿入して、体積固有抵抗値の変化率を求めた。   The rate of change (%) in volume resistivity before and after heating of each particle powder is the same as described above after heating the column-shaped sample for volume resistivity measurement prepared above at 500 ° C. for 1 hour. Then, the volume resistivity value was measured, and the volume resistivity value before and after heating was inserted into the following Equation 3 to obtain the rate of change of the volume resistivity value.

<数3>
加熱前後の体積固有抵抗値の変化率(%)={体積固有抵抗値(加熱前)−体積固有抵抗値(加熱後)}/体積固有抵抗値(加熱前)×100
<Equation 3>
Change rate (%) of volume resistivity before and after heating = {volume resistivity (before heating) −volume resistivity (after heating)} / volume resistivity (before heating) × 100

各粒子粉末の耐酸化性(%)は、まず、被測定試料を温度60℃、相対温度90%の環境下に14日間暴露した後、前記体積固有抵抗測定と同様の方法で加圧成形を行い、円柱状の被測定試料を作製した。曝露する前の被測定使用についても同様の円柱状の試料を作製し、曝露前後の各体積固有抵抗値を測定し、下記数4により耐酸化性を求めた。   The oxidation resistance (%) of each particle powder is determined by first subjecting the sample to be measured to an environment of 60 ° C. and a relative temperature of 90% for 14 days, and then performing pressure molding in the same manner as the volume resistivity measurement. A cylindrical sample to be measured was prepared. A similar columnar sample was prepared for the measured use before exposure, and each volume specific resistance value before and after exposure was measured.

<数4>
耐酸化性(%)={体積固有抵抗値(曝露前)−体積固有抵抗値(曝露後)}/体積固有抵抗値(曝露前)×100
<Equation 4>
Oxidation resistance (%) = {volume specific resistance value (before exposure) −volume specific resistance value (after exposure)} / volume specific resistance value (before exposure) × 100

圧粉磁心に含有される軟磁性粒子粉末の体積占有率は、まず、各試料粉体の真比重と圧縮成形に用いる各試料粉体の重量から、圧粉磁心に含有される試料粉体の体積を求めた。次いで、後述する圧粉磁心用の混合粉を成形圧4.9×10Paで円柱状(φ23×5mm)に圧縮成形し、圧粉磁心に含有される試料粉体の体積と圧縮成形後の円柱の体積から求めた。 The volume occupancy of the soft magnetic particle powder contained in the powder magnetic core is determined from the true specific gravity of each sample powder and the weight of each sample powder used for compression molding. The volume was determined. Subsequently, the powder mixture for the dust core described later is compression-molded into a cylindrical shape (φ23 × 5 mm) at a molding pressure of 4.9 × 10 8 Pa, and the volume of the sample powder contained in the dust core and after the compression molding It was obtained from the volume of the cylinder.

圧粉磁心の比抵抗値は、後述する方法によって作製した圧粉磁心を用い、前述の各粒子粉末の体積固有抵抗値を測定したのと同様にして、電気抵抗測定装置(model 4329A 横河北辰電気株式会社製)を用いて熱処理前と熱処理後の比抵抗値の測定を行った。また、熱処理前後の比抵抗値の変化率は、加熱処理前の比抵抗値R(mΩ・cm)及び加熱処理後の比抵抗値R(mΩ・cm)を用いて、下記数5にそれぞれの測定値を挿入して、比抵抗値の変化率(%)を求めた。 The specific resistance value of the powder magnetic core was measured using an electric resistance measurement device (model 4329A Kita Yokogawa) in the same manner as the volume resistivity of each particle powder was measured using a powder magnetic core produced by the method described later. Electric resistivity) was used to measure the specific resistance value before and after the heat treatment. Further, the rate of change of specific resistance values before and after heat treatment using the heat treatment before the specific resistance R 0 (mΩ · cm), and after heat treatment of the specific resistance R 1 (mΩ · cm), the following Expression 5 Each measurement value was inserted, and the change rate (%) of the specific resistance value was obtained.

<数5>
比抵抗値の変化率(%)={(R−R)/R)}×100
<Equation 5>
Specific resistance change rate (%) = {(R 0 −R 1 ) / R 0 )} × 100

圧粉磁心の磁束密度の変化率(%)は、温度60℃、相対温度90%の環境下に14日間暴露した軟磁性材料と曝露前の軟磁性材料を、後述する方法によって各々圧粉磁心を作製し、曝露する前後の磁束密度を磁界Hが10kA/mにおいて測定し、下記数6により磁束密度の変化率を求めた。   The rate of change (%) in the magnetic flux density of the dust core is determined by the method described later for the soft magnetic material exposed for 14 days in an environment at a temperature of 60 ° C. and a relative temperature of 90%, and before the exposure. The magnetic flux density before and after exposure was measured at a magnetic field H of 10 kA / m, and the rate of change of the magnetic flux density was determined by the following equation (6).

<数6>
磁束密度の変化率(%)={磁束密度(曝露前)−磁束密度(曝露後)}/磁束密度(曝露前)×100
<Equation 6>
Change rate of magnetic flux density (%) = {magnetic flux density (before exposure) −magnetic flux density (after exposure)} / magnetic flux density (before exposure) × 100

<実施例1−1:軟磁性材料の製造>
鉄粉(粒子形状:粒状、平均粒子径65.4μm、圧縮密度の変化率5.9%、流動性53、体積固有抵抗値183.2mΩ・cm、加熱前後の体積固有抵抗値の変化率36.3%、耐酸化性16.6%)10kgに、アルミニウムイソプロポキシド2.6gを分散させたアセトン溶液を加えた後、テトラエトキシシラン0.9gを加え、次いで、前記混合溶液中に、リン酸水溶液(リン酸含有量85重量%)3.7gを滴下し、N気流下、反応温度45℃において、20分間攪拌・混合を行った。
<Example 1-1: Production of soft magnetic material>
Iron powder (particle shape: granular, average particle diameter 65.4 μm, rate of change in compression density 5.9%, fluidity 53, volume resistivity 183.2 mΩ · cm, rate of change in volume resistivity 36 before and after heating 36 .3%, oxidation resistance 16.6%) To 10 kg, an acetone solution in which 2.6 g of aluminum isopropoxide is dispersed was added, 0.9 g of tetraethoxysilane was added, and then, into the mixed solution, 3.7 g of an aqueous phosphoric acid solution (phosphoric acid content: 85 wt%) was added dropwise, and the mixture was stirred and mixed for 20 minutes at a reaction temperature of 45 ° C. under a N 2 stream.

得られた混合溶液を45℃において減圧乾燥を行い、軟磁性材料を得た。   The obtained mixed solution was dried under reduced pressure at 45 ° C. to obtain a soft magnetic material.

得られた軟磁性材料は、平均粒子径が65.5μmの粒状粒子であった。圧縮密度の変化率は2.5%、流動性は79、体積固有抵抗値は219.5mΩ・cm、加熱前後の体積固有抵抗値の変化率は6.7%、耐酸化性は7.6%であった。付着もしくは被覆している表面処理物はAl換算で0.003重量%、Si換算で0.001重量%、P換算で0.010重量%であった。得られた軟磁性材料について赤外吸収スペクトルを測定すると、3250cm−1付近に吸収が見られ、シラノール基が存在することが確認された。 The obtained soft magnetic material was granular particles having an average particle diameter of 65.5 μm. The rate of change in compression density is 2.5%, the fluidity is 79, the volume resistivity is 219.5 mΩ · cm, the rate of change in volume resistivity before and after heating is 6.7%, and the oxidation resistance is 7.6. %Met. The surface treated product adhered or coated was 0.003% by weight in terms of Al, 0.001% by weight in terms of Si, and 0.010% by weight in terms of P. When an infrared absorption spectrum of the obtained soft magnetic material was measured, absorption was observed in the vicinity of 3250 cm −1 , and it was confirmed that a silanol group was present.

<実施例2−1:圧粉磁心の製造>
前記軟磁性材料100重量部とエポキシ樹脂0.6重量部を混合し、ステアリン酸亜鉛を塗布した金型を用い、混合粉を成形圧4.9×10Paでリング状(10×φ23×5mm)に圧縮成形した。成形体は、空気中、200℃で30分間加熱した後、冷却することにより圧粉磁心を得た。
<Example 2-1: Production of dust core>
Using a mold in which 100 parts by weight of the soft magnetic material and 0.6 parts by weight of an epoxy resin are mixed and zinc stearate is applied, the mixed powder is ring-shaped (10 × φ23 × at a molding pressure of 4.9 × 10 8 Pa). 5 mm). The compact was heated in air at 200 ° C. for 30 minutes and then cooled to obtain a dust core.

得られた圧粉磁心の軟磁性粒子粉末の体積占有率は、92.7vol%であり、熱処理前の比抵抗値は247.7mΩ・cm、熱処理後の比抵抗値は225.2mΩ・cm、比抵抗値の変化率は8.1%、磁束密度の変化率は0.6%であった。   The volume occupancy of the soft magnetic particle powder of the obtained dust core is 92.7 vol%, the specific resistance value before heat treatment is 247.7 mΩ · cm, the specific resistance value after heat treatment is 225.2 mΩ · cm, The change rate of the specific resistance value was 8.1%, and the change rate of the magnetic flux density was 0.6%.

前記実施例1−1及び2−1に従って軟磁性材料及び圧粉磁心を作製した。各製造条件及び得られた軟磁性材料及び圧粉磁心の諸特性を示す。   A soft magnetic material and a dust core were prepared according to Examples 1-1 and 2-1. Various characteristics of each manufacturing condition and the obtained soft magnetic material and dust core are shown.

軟磁性粒子A〜E:
被処理粒子粉末として表1に示す特性を有する軟磁性粒子粉末を用意した。
Soft magnetic particles A to E:
A soft magnetic particle powder having the characteristics shown in Table 1 was prepared as a particle to be treated.

Figure 2007042883
Figure 2007042883

実施例1−2〜1−7、比較例1〜3:
軟磁性粒子粉末の種類、表面処理工程における有機溶剤の種類、表面処理剤の種類及び添加量を種々変化させた以外は、前記実施例1−1と同様にして圧粉磁心用軟磁性材料を得た。
Examples 1-2 to 1-7, Comparative Examples 1-3:
A soft magnetic material for a dust core was prepared in the same manner as in Example 1-1 except that the type of soft magnetic particle powder, the type of organic solvent in the surface treatment step, the type of surface treatment agent, and the amount added were varied. Obtained.

このときの製造条件を表2に、得られた軟磁性粒子粉末の諸特性を表3に示す。実施例1−2〜1−7で得られた各軟磁性材料について赤外吸収スペクトルを測定すると、3250cm−1付近に吸収が見られ、いずれの軟磁性材料においてもシラノール基が存在することが確認された。 The production conditions at this time are shown in Table 2, and the characteristics of the obtained soft magnetic particle powder are shown in Table 3. When the infrared absorption spectrum of each soft magnetic material obtained in Examples 1-2 to 1-7 was measured, absorption was observed in the vicinity of 3250 cm −1 , and a silanol group may be present in any soft magnetic material. confirmed.

なお、比較例2は、市販のシリカゾル(平均粒子径10〜20nm、SiO含有量20重量%)をエタノール中に分散させたものを処理に用いた。 In Comparative Example 2, a commercially available silica sol (average particle size 10 to 20 nm, SiO 2 content 20% by weight) dispersed in ethanol was used for the treatment.

比較例3(特開2001−196217号公報 実施例 追試実験)
平均粒子径65.4μmの鉄粉(表1 軟磁性粒子A)100重量部に対し、変性アルミニウムシリケートゾル(有機溶剤:メタノール、固形分50重量%)30重量部をミキサに投入し、約1時間混合した。次いで、温度100℃で加熱して約1時間混合した後、濾過して鉄粉を得た。
Comparative example 3 (JP 2001-196217 A Example additional test)
30 parts by weight of modified aluminum silicate sol (organic solvent: methanol, solid content: 50% by weight) is charged into a mixer with respect to 100 parts by weight of iron powder having an average particle size of 65.4 μm (Table 1 soft magnetic particles A). Mixed for hours. Next, the mixture was heated at 100 ° C. and mixed for about 1 hour, and then filtered to obtain iron powder.

得られた鉄粉の諸特性を表3に示す。比較例2、3で得られた各軟磁性材料について赤外吸収スペクトルを測定すると、3250cm−1付近に吸収が見られず、いずれの軟磁性材料においてもシラノール基の存在は確認されなかった。 Table 3 shows various properties of the obtained iron powder. When the infrared absorption spectrum of each soft magnetic material obtained in Comparative Examples 2 and 3 was measured, no absorption was observed in the vicinity of 3250 cm −1 , and the presence of silanol groups was not confirmed in any soft magnetic material.

Figure 2007042883
Figure 2007042883

Figure 2007042883
Figure 2007042883

実施例2−2〜2−9、比較例4〜11:
軟磁性材料の種類を種々変化させた以外は、前記実施例2−1と同様にして圧粉磁心を得た。
Examples 2-2 to 2-9, comparative examples 4 to 11:
A dust core was obtained in the same manner as in Example 2-1, except that the type of the soft magnetic material was variously changed.

得られた圧粉磁心の諸特性を表4に示す。   Table 4 shows various characteristics of the obtained dust core.

Figure 2007042883
Figure 2007042883

本発明に係る軟磁性材料は、耐酸化性及び流動性に優れると共に、低い圧力で圧縮成形が可能であり、且つ、高温で焼成した場合においても電気抵抗値の変化が少ないので圧粉磁心用軟磁性材料として好適である。   The soft magnetic material according to the present invention is excellent in oxidation resistance and fluidity, can be compression-molded at a low pressure, and has a small change in electric resistance even when fired at a high temperature. It is suitable as a soft magnetic material.

本発明に係る圧粉磁心は、前記軟磁性材料を用いたことにより、酸化による磁気特性の劣化が少ないと共に、電気抵抗値が高く、且つ、高温で焼成した場合においても電気抵抗値の変化が少ないので、高性能圧粉磁心として好適である。
The dust core according to the present invention uses the soft magnetic material, so that there is little deterioration in the magnetic properties due to oxidation, the electrical resistance value is high, and the electrical resistance value changes even when fired at a high temperature. Since there are few, it is suitable as a high performance dust core.

Claims (9)

軟磁性粒子粉末の粒子表面にケイ素からなる無機化合物及びリンからなる無機化合物、又は前記無機化合物の複合体が付着もしくは被覆している複合粒子粉末からなることを特徴とする軟磁性材料。 A soft magnetic material comprising: an inorganic compound comprising silicon and an inorganic compound comprising phosphorus, or a composite particle powder having a composite of the inorganic compound attached or coated on the surface of the soft magnetic particle powder. 軟磁性粒子粉末の粒子表面にアルミニウムからなる無機化合物、ケイ素からなる無機化合物及びリンからなる無機化合物、又は前記無機化合物の複合体が付着もしくは被覆している複合粒子粉末からなることを特徴とする軟磁性材料。 The surface of the soft magnetic particle powder is composed of an inorganic compound composed of aluminum, an inorganic compound composed of silicon and an inorganic compound composed of phosphorus, or a composite particle powder in which a composite of the inorganic compound is attached or coated. Soft magnetic material. 前記ケイ素からなる無機化合物がシラノール基を含有していることを特徴とする請求項1乃至請求項2記載の軟磁性材料。 3. The soft magnetic material according to claim 1, wherein the inorganic compound made of silicon contains a silanol group. 複合粒子粉末の耐酸化性が10%以下であることを特徴とする請求項1乃至請求項3のいずれかに記載の軟磁性材料。 The soft magnetic material according to any one of claims 1 to 3, wherein the oxidation resistance of the composite particle powder is 10% or less. 複合粒子粉末の圧縮密度の変化率が5%未満であることを特徴とする請求項1乃至請求項4のいずれかに記載の軟磁性材料。 The soft magnetic material according to any one of claims 1 to 4, wherein a rate of change in compression density of the composite particle powder is less than 5%. 複合粒子粉末の加熱前後の体積固有抵抗値の変化率が20%以下であることを特徴とする請求項1乃至請求項5のいずれかに記載の軟磁性材料。 The soft magnetic material according to any one of claims 1 to 5, wherein a rate of change of the volume resistivity value before and after the heating of the composite particle powder is 20% or less. 軟磁性粒子粉末を有機溶剤に分散した懸濁液中にシリコンアルコキシドを加えた後、リン酸溶液を加え、混合・攪拌後、30〜120℃で乾燥させることを特徴とする請求項1又は請求項3乃至請求項6のいずれかに記載の軟磁性材料の製造法。 The silicon alkoxide is added to a suspension in which soft magnetic particle powder is dispersed in an organic solvent, and then a phosphoric acid solution is added thereto, followed by mixing and stirring, followed by drying at 30 to 120 ° C. A method for producing a soft magnetic material according to any one of claims 3 to 6. 軟磁性粒子粉末に、アルミニウムアルコキシドを有機溶剤に分散、もしくは溶解させた溶液を加えた後、シリコンアルコキシドを加え、次いで、リン酸溶液を加え、混合・攪拌後、30〜120℃で乾燥させることを特徴とする請求項2乃至請求項6のいずれかに記載の軟磁性材料の製造法。 After adding a solution in which aluminum alkoxide is dispersed or dissolved in an organic solvent to soft magnetic particle powder, add silicon alkoxide, then add a phosphoric acid solution, and after mixing and stirring, drying at 30 to 120 ° C. The method for producing a soft magnetic material according to claim 2, wherein: 請求項1乃至請求項6のいずれかに記載の軟磁性材料を圧縮成形してなる圧粉磁心。
A dust core formed by compression-molding the soft magnetic material according to any one of claims 1 to 6.
JP2005225700A 2005-08-03 2005-08-03 SOFT MAGNETIC MATERIAL, ITS MANUFACTURING METHOD, AND DUST MAGNETIC CORE CONTAINING THE SOFT MAGNETIC MATERIAL Active JP4803353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005225700A JP4803353B2 (en) 2005-08-03 2005-08-03 SOFT MAGNETIC MATERIAL, ITS MANUFACTURING METHOD, AND DUST MAGNETIC CORE CONTAINING THE SOFT MAGNETIC MATERIAL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005225700A JP4803353B2 (en) 2005-08-03 2005-08-03 SOFT MAGNETIC MATERIAL, ITS MANUFACTURING METHOD, AND DUST MAGNETIC CORE CONTAINING THE SOFT MAGNETIC MATERIAL

Publications (2)

Publication Number Publication Date
JP2007042883A true JP2007042883A (en) 2007-02-15
JP4803353B2 JP4803353B2 (en) 2011-10-26

Family

ID=37800585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005225700A Active JP4803353B2 (en) 2005-08-03 2005-08-03 SOFT MAGNETIC MATERIAL, ITS MANUFACTURING METHOD, AND DUST MAGNETIC CORE CONTAINING THE SOFT MAGNETIC MATERIAL

Country Status (1)

Country Link
JP (1) JP4803353B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009088362A (en) * 2007-10-01 2009-04-23 Toyota Central R&D Labs Inc Powder magnetic core and manufacturing method thereof
JP2010062217A (en) * 2008-09-01 2010-03-18 Toda Kogyo Corp Soft magnetic particle powder, method for manufacturing the same, and powder magnetic core containing soft magnetic particle powder
JP4851470B2 (en) * 2006-01-04 2012-01-11 住友電気工業株式会社 Powder magnetic core and manufacturing method thereof
JP2012151502A (en) * 2007-04-17 2012-08-09 Hitachi High-Technologies Corp Composite filler for mixing resin
CN112185640A (en) * 2020-09-23 2021-01-05 江西艾特磁材有限公司 Method for coating magnetic powder core with sodium silicate
WO2023190373A1 (en) * 2022-03-29 2023-10-05 住友ベークライト株式会社 Soft magnetic material, molded article, and production method for molded article

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196217A (en) * 2000-01-17 2001-07-19 Sanshin:Kk Method of manufacturing dust core
JP2003086411A (en) * 2001-09-13 2003-03-20 Sumitomo Metal Mining Co Ltd Composition for resin-bonded magnet and method of manufacturing resin-bonded magnet using the same
JP2003209010A (en) * 2001-11-07 2003-07-25 Mate Co Ltd Soft magnetic resin composition, its manufacturing method and molded body
JP2003303711A (en) * 2001-03-27 2003-10-24 Jfe Steel Kk Iron base powder and dust core using the same, and method of manufacturing iron base powder
JP2005142547A (en) * 2003-10-15 2005-06-02 Sumitomo Electric Ind Ltd Soft magnetic material and dust core
JP2006128663A (en) * 2004-09-30 2006-05-18 Sumitomo Electric Ind Ltd Soft magnetic material, dust core and method of producing soft magnetic material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196217A (en) * 2000-01-17 2001-07-19 Sanshin:Kk Method of manufacturing dust core
JP2003303711A (en) * 2001-03-27 2003-10-24 Jfe Steel Kk Iron base powder and dust core using the same, and method of manufacturing iron base powder
JP2003086411A (en) * 2001-09-13 2003-03-20 Sumitomo Metal Mining Co Ltd Composition for resin-bonded magnet and method of manufacturing resin-bonded magnet using the same
JP2003209010A (en) * 2001-11-07 2003-07-25 Mate Co Ltd Soft magnetic resin composition, its manufacturing method and molded body
JP2005142547A (en) * 2003-10-15 2005-06-02 Sumitomo Electric Ind Ltd Soft magnetic material and dust core
JP2006128663A (en) * 2004-09-30 2006-05-18 Sumitomo Electric Ind Ltd Soft magnetic material, dust core and method of producing soft magnetic material

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4851470B2 (en) * 2006-01-04 2012-01-11 住友電気工業株式会社 Powder magnetic core and manufacturing method thereof
US8153256B2 (en) 2006-01-04 2012-04-10 Sumitomo Electric Industries, Ltd. Soft magnetic material comprising an insulating layer containing aluminum, silicon, phosphorous and oxygen; dust magnetic core; process for producing soft magnetic material; and process for producing dust magnetic core
US8557330B2 (en) 2006-01-04 2013-10-15 Sumitomo Electric Industries, Ltd. Manufacturing method of soft magnetic material and manufacturing method of dust core
JP2012151502A (en) * 2007-04-17 2012-08-09 Hitachi High-Technologies Corp Composite filler for mixing resin
JP2009088362A (en) * 2007-10-01 2009-04-23 Toyota Central R&D Labs Inc Powder magnetic core and manufacturing method thereof
JP4733790B2 (en) * 2007-10-01 2011-07-27 株式会社豊田中央研究所 Powder magnetic core and method for manufacturing the same
JP2010062217A (en) * 2008-09-01 2010-03-18 Toda Kogyo Corp Soft magnetic particle powder, method for manufacturing the same, and powder magnetic core containing soft magnetic particle powder
CN112185640A (en) * 2020-09-23 2021-01-05 江西艾特磁材有限公司 Method for coating magnetic powder core with sodium silicate
CN112185640B (en) * 2020-09-23 2023-01-24 江西艾特磁材有限公司 Method for coating magnetic powder core with sodium silicate
WO2023190373A1 (en) * 2022-03-29 2023-10-05 住友ベークライト株式会社 Soft magnetic material, molded article, and production method for molded article

Also Published As

Publication number Publication date
JP4803353B2 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
JP4044591B1 (en) Iron-based soft magnetic powder for dust core, method for producing the same, and dust core
CA2708830C (en) Powder and method for producing the same
JP5022999B2 (en) Powder magnetic core and manufacturing method thereof
TWI406305B (en) Iron-based soft magnetic powder and dust core for powder core
WO2011126120A1 (en) Coated metal powder, dust core and method for producing same
JP5202382B2 (en) Iron-based soft magnetic powder for dust core, method for producing the same, and dust core
JP5580725B2 (en) Manufacturing method of dust core and dust core obtained by the manufacturing method
JP2009228107A (en) Iron-based soft magnetic powder for dust core, method for manufacturing the same, and dust core
JP2007088156A (en) Soft magnetic material, manufacturing method thereof, powder magnetic core, and manufacturing method thereof
JP2013138159A (en) Composite soft magnetic material and production method therefor
JP4803353B2 (en) SOFT MAGNETIC MATERIAL, ITS MANUFACTURING METHOD, AND DUST MAGNETIC CORE CONTAINING THE SOFT MAGNETIC MATERIAL
US20150050178A1 (en) Soft Magnetic Composite Materials
JP6042792B2 (en) Soft magnetic powder, core, low-noise reactor, and core manufacturing method
JP5071671B2 (en) SOFT MAGNETIC PARTICLE POWDER AND PROCESS FOR PRODUCING THE SAME, DUST MAGNETIC CORE CONTAINING THE SOFT MAGNETIC PARTICLE POWDER
JP4400728B2 (en) SOFT MAGNETIC MATERIAL AND PROCESS FOR PRODUCING THE SAME
WO2012124032A1 (en) Iron base soft magnetic powder for powder magnetic core, fabrication method for same, and powder magnetic core
JP4847553B2 (en) Powder magnetic core and manufacturing method thereof
JP6437200B2 (en) Low noise reactor, dust core and manufacturing method thereof
JP5682741B2 (en) SOFT MAGNETIC PARTICLE POWDER AND PROCESS FOR PRODUCING THE SAME,
JP5023041B2 (en) Powder magnetic core and manufacturing method thereof
JP6300362B2 (en) Soft magnetic powder, core, reactor, and manufacturing method thereof
JP5513922B2 (en) Iron-based soft magnetic powder for dust core, method for producing iron-based soft magnetic powder for dust core, and dust core
JP6617867B2 (en) Soft magnetic particle powder and powder magnetic core containing the soft magnetic particle powder
JP4790224B2 (en) SOFT MAGNETIC MATERIAL, ITS MANUFACTURING METHOD, AND DUST MAGNETIC CORE CONTAINING THE SOFT MAGNETIC MATERIAL
JP2007273929A (en) Insulation coating soft magnetic metallic powder, pressed powder core, and their manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110726

R150 Certificate of patent or registration of utility model

Ref document number: 4803353

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250