JP2007042526A - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
JP2007042526A
JP2007042526A JP2005227463A JP2005227463A JP2007042526A JP 2007042526 A JP2007042526 A JP 2007042526A JP 2005227463 A JP2005227463 A JP 2005227463A JP 2005227463 A JP2005227463 A JP 2005227463A JP 2007042526 A JP2007042526 A JP 2007042526A
Authority
JP
Japan
Prior art keywords
negative electrode
battery
secondary battery
potential
lead plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005227463A
Other languages
Japanese (ja)
Inventor
Yoshimasa Koishikawa
佳正 小石川
Akinori Tada
明徳 多田
Tsunemi Aiba
恒美 相羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vehicle Energy Japan Inc
Original Assignee
Hitachi Vehicle Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Vehicle Energy Ltd filed Critical Hitachi Vehicle Energy Ltd
Priority to JP2005227463A priority Critical patent/JP2007042526A/en
Publication of JP2007042526A publication Critical patent/JP2007042526A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium secondary battery which can secure safety by controlling an electric corrosion of a battery case even at a time of over-discharge and a short circuit. <P>SOLUTION: A lithium ion secondary battery is composed of a battery can which is served as a negative electrode outer terminal and made of a nickel plated carbon steel and a group of electrodes of which positive/negative electrode plates are wound around a separator are housed in the above battery can. A negative electrode tab extended from the negative electrode plate is welded with an outer circumference of a negative electrode current collector ring placed below the group of electrodes. Below the negative electrode current collector ring, a negative electrode lead plate made of zinc which connects electrically the negative electrode plate with a battery can is welded and the negative lead plate is fixed with an inner bottom of the battery can by a resistance welding. An oxidation reduction potential of the negative electrode lead plate is set lower than that of the battery can. Even if a battery voltage becomes 0V due to a melting of the negative electrode lead plate, a negative electrode potential becomes lower than the oxidation reduction potential of the battery can. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明はリチウム二次電池に係り、特に、負極外部端子を兼ねる電池容器に正負極板が収容されており、電池容器に鋼材が用いられたリチウム二次電池に関する。   The present invention relates to a lithium secondary battery, and more particularly to a lithium secondary battery in which a positive and negative electrode plate is accommodated in a battery container that also serves as a negative electrode external terminal, and a steel material is used for the battery container.

従来、再充電可能な二次電池の分野では、鉛電池、ニッケル−カドミウム電池、ニッケル−水素電池等の水溶液系電池が主流であった。しかしながら、電気機器の小型化、軽量化が進むにつれて高エネルギー密度を有するリチウム二次電池が着目され、研究・開発・商品化が進み、現在では、携帯電話やノートパソコン向けの小型民生用にリチウム二次電池が広く普及している。   Conventionally, in the field of rechargeable secondary batteries, aqueous batteries such as lead batteries, nickel-cadmium batteries, and nickel-hydrogen batteries have been mainstream. However, as electric devices have become smaller and lighter, lithium secondary batteries with high energy density have attracted attention, and research, development, and commercialization have progressed. At present, lithium secondary batteries for mobile phones and laptop computers are being used for small consumer applications. Secondary batteries are widely used.

一方、地球温暖化や燃料枯渇の問題から、駆動源を電気モータのみとした電気自動車(EV)や駆動の一部を電気モータで補助するハイブリッド電気自動車(HEV)が各自動車メーカで開発され、その電源に用いられる電池には、より高容量で高出力な電池が求められるようになってきた。このような要求に合致する電源として、高電圧を有する非水溶液系のリチウム二次電池が注目されている。   On the other hand, due to the problems of global warming and fuel depletion, each automobile manufacturer has developed an electric vehicle (EV) whose driving source is only an electric motor and a hybrid electric vehicle (HEV) where a part of driving is assisted by the electric motor. As a battery used for the power source, a battery having a higher capacity and a higher output has been demanded. As a power source that meets such requirements, a non-aqueous lithium secondary battery having a high voltage has attracted attention.

一般に、EVやHEV等の電源に用いられる大型のリチウム二次電池では、セルコントローラと呼ばれる電圧監視(制御)装置が装備されており、充放電電圧が制御されている。万一、セルコントローラが故障し過充電状態に至ったとしても、リチウム二次電池にはガス排出機構や電流遮断機構が備えられているため、安全性が保たれるようになっている。また、過放電や正負極板間の短絡等が生じた場合は、放電によりエネルギーが放出されているため、発熱量やガス発生量は極僅かであり、外観上の変化も見られない。すなわち、過放電や短絡等で電池電圧が極端に低くなったとしても、その時点では何ら危険な状態に至ることはなく、電池に特殊な機構を設けていなくとも十分な安全性が確保されている。ここでいう電池の安全性は、電池が異常な状態にさらされたときの電池挙動が、人体に損害を与えないことは当然のことながら、周辺機器や車両等への損害を最小限に抑えることを意味する。   In general, a large-sized lithium secondary battery used for a power source such as an EV or HEV is equipped with a voltage monitoring (control) device called a cell controller, and the charge / discharge voltage is controlled. Even if the cell controller breaks down and reaches an overcharged state, the lithium secondary battery is provided with a gas discharge mechanism and a current interruption mechanism, so that safety is maintained. In addition, when an overdischarge or a short circuit between positive and negative plates occurs, energy is released by the discharge, so that the amount of generated heat and the amount of gas generated are negligible, and no change in appearance is observed. In other words, even if the battery voltage becomes extremely low due to overdischarge, short circuit, etc., no dangerous state will be reached at that time, and sufficient safety is ensured even if a special mechanism is not provided for the battery. Yes. The safety of the battery here means that the battery behavior when the battery is exposed to an abnormal state does not cause damage to the human body, while minimizing damage to peripheral devices and vehicles. Means that.

ところが、リチウム二次電池の電池容器には、通常、鋼材が使用されている。このため、過放電や短絡等が生じ電池電圧が0V付近の極端に低い状態のまま数日間、数週間と長期に亘り放置しておくと、電池容器に電気的腐食が生じ、電池容器が破損して非水電解液の漏液に至る可能性がある。このときの腐食量は電池容量と関係があり、EVやHEV等の電源用途向けの大型電池になるほど電気的腐食の可能性が高くなる。これを解決するために、電池容器の材質に合成樹脂で被覆したアルミニウム合金を用いる技術が開示されている(例えば、特許文献1参照)。また、鉄製の電池容器の表面に、耐腐食性に優れるフッ素樹脂微粉末を含有させたニッケルメッキ層を形成する技術が開示されている(例えば、特許文献2参照)。   However, steel materials are usually used for battery containers of lithium secondary batteries. For this reason, if the battery is left for several days or weeks with the battery voltage extremely low at around 0V due to overdischarge or short circuit, the battery container will be electrically corroded and damaged. This may lead to leakage of the non-aqueous electrolyte. The amount of corrosion at this time is related to the battery capacity, and the possibility of electrical corrosion increases as the size of the battery increases for a power supply such as EV or HEV. In order to solve this, a technique using an aluminum alloy coated with a synthetic resin as a material of a battery container is disclosed (for example, see Patent Document 1). Further, a technique for forming a nickel plating layer containing a fluororesin fine powder having excellent corrosion resistance on the surface of an iron battery container is disclosed (for example, see Patent Document 2).

特開平8−167401号公報JP-A-8-167401 特開2002−231195号公報JP 2002-231195 A

しかしながら、特許文献1の技術では、アルミニウム合金が合成樹脂で被覆されているものの、合成樹脂の被覆が不十分でアルミニウム合金の露出部分があるとその部分で電気的腐食が生じることがある。また、合成樹脂で被覆するため、材料がコスト高となり、電池容器の封口がしにくい、という問題もある。また、特許文献2の技術でも、ニッケルメッキ層のひび割れ等で鉄の露出部分があると電気的腐食が生じることとなる。電池の安全性を確保するためには、過放電や短絡等の電池異常時に、電池容器の電気的腐食、延いては、非水電解液の漏液を抑制することが重要である。また、過放電状態では、外観上の変化がなく非水電解液の漏液には到らなくても電気的腐食が生じている可能性があり、正負極の活物質の劣化も考えられるため、このような異常電池の再使用を防止することも必要である。   However, in the technique of Patent Document 1, although an aluminum alloy is coated with a synthetic resin, if the synthetic resin is not sufficiently coated and there is an exposed portion of the aluminum alloy, electrical corrosion may occur at that portion. Moreover, since it coat | covers with a synthetic resin, there exists a problem that material becomes expensive and it is hard to seal a battery container. Further, even in the technique of Patent Document 2, if there is an exposed portion of iron due to a crack or the like of the nickel plating layer, electrical corrosion will occur. In order to ensure the safety of the battery, it is important to suppress the electrical corrosion of the battery container and the leakage of the non-aqueous electrolyte when the battery is abnormal such as overdischarge or short circuit. Also, in the overdischarged state, there is no change in appearance and there is a possibility that electrical corrosion has occurred even if the leakage of the non-aqueous electrolyte does not reach, and the active material of the positive and negative electrodes may be deteriorated. It is also necessary to prevent such abnormal batteries from being reused.

本発明は上記事案に鑑み、過放電や短絡時でも電池容器の電気的腐食を抑制し安全性を確保することができるリチウム二次電池を提供することを課題とする。   An object of the present invention is to provide a lithium secondary battery that can suppress electrical corrosion of a battery container and ensure safety even during overdischarge or short circuit.

上記課題を解決するために、本発明は、負極外部端子を兼ねる電池容器に正負極板が収容されており、前記電池容器に鋼材が用いられたリチウム二次電池において、前記負極板と前記電池容器とを電気的に接続する金属製の通電リードを具備しており、前記通電リードの酸化還元電位が、前記負極板の電極反応電位より高く、前記電池容器の酸化還元電位より低いことを特徴とする。   In order to solve the above-described problems, the present invention provides a lithium secondary battery in which a positive and negative electrode plate is accommodated in a battery container that also serves as a negative electrode external terminal, and a steel material is used for the battery container. A conductive lead made of metal that electrically connects the container, and the oxidation-reduction potential of the conductive lead is higher than the electrode reaction potential of the negative electrode plate and lower than the oxidation-reduction potential of the battery container. And

鋼材が用いられた電池容器から負極電力を取出すことが可能なリチウム二次電池では、過放電や短絡等の電池異常が生じると、負極板中のリチウムイオンを放出し尽くし負極電位が正極電位まで上昇することから、負極電位が電池容器の酸化還元電位に達することで電池容器の電気的腐食が生じる。本発明のリチウム二次電池では、負極板と電池容器とを電気的に接続する金属製の通電リードの酸化還元電位が電池容器より低いため、電池異常で負極電位が上昇しても通電リードの酸化還元電位で通電リードが溶解し始めるので、負極電位の上昇が止まり電池容器の電気的腐食を抑制することができると共に、通電リードの溶解で負極板と電池容器との通電経路が切断され電池機能が失われるので、異常電池の安全性を確保することができる。   In a lithium secondary battery capable of taking out negative electrode power from a battery container using steel, when a battery abnormality such as overdischarge or short circuit occurs, the lithium ion in the negative electrode plate is exhausted and the negative electrode potential reaches the positive electrode potential. Since the negative electrode potential reaches the oxidation-reduction potential of the battery container, the battery container is electrically corroded. In the lithium secondary battery of the present invention, since the oxidation-reduction potential of the metal energizing lead that electrically connects the negative electrode plate and the battery container is lower than that of the battery container, Since the current-carrying lead starts to melt at the oxidation-reduction potential, the negative electrode potential stops rising and the electrical corrosion of the battery container can be suppressed, and the current-carrying path between the negative electrode plate and the battery container is cut by melting the current-carrying lead. Since the function is lost, the safety of the abnormal battery can be ensured.

この場合において、通電リード及び電池容器が抵抗溶接で接合されていれば、抵抗溶接に伴う熱履歴を受けた接合部分の通電リードが過放電等により溶解し易くなるため、負極板及び電池容器の通電経路を確実に切断することができる。また、電池容器の材質をニッケルメッキ鋼、ニッケル合金メッキ鋼、ニッケルクラッド鋼及びニッケル合金クラッド鋼から選択される1種としてもよい。このとき、通電リードの材質を亜鉛又は亜鉛合金とすることが好ましい。   In this case, if the current-carrying lead and the battery container are joined by resistance welding, the current-carrying lead of the joined part that has received the thermal history associated with resistance welding is likely to be dissolved by overdischarge or the like. The energization path can be cut reliably. Moreover, it is good also considering the material of a battery container as 1 type selected from nickel plating steel, nickel alloy plating steel, nickel clad steel, and nickel alloy clad steel. At this time, it is preferable that the material of the current-carrying lead is zinc or a zinc alloy.

本発明によれば、通電リードの酸化還元電位が電池容器より低いため、電池異常で負極電位が上昇しても通電リードの酸化還元電位で通電リードが溶解し始めるので、電池容器の電気的腐食を抑制することができると共に、通電リードの溶解で負極板と電池容器との通電経路が切断され電池機能が失われるので、異常電池の安全性を確保することができる、という効果を得ることができる。   According to the present invention, since the oxidation-reduction potential of the current-carrying lead is lower than that of the battery container, even if the negative electrode potential increases due to battery abnormality, the current-carrying lead starts to dissolve at the oxidation-reduction potential of the current-carrying lead. In addition, the current path between the negative electrode plate and the battery container is cut by melting the current-carrying leads and the battery function is lost, so that the effect of ensuring the safety of abnormal batteries can be obtained. it can.

以下、図面を参照して、本発明を円筒型リチウムイオン二次電池に適用した実施の形態について説明する。   Embodiments in which the present invention is applied to a cylindrical lithium ion secondary battery will be described below with reference to the drawings.

(構成)
図1に示すように、本実施形態の円筒型リチウムイオン二次電池20は、有底円筒状の電池缶16を有している。電池缶16には、本例では、ニッケルメッキが施された厚さ0.5mmの炭素鋼が用いられており、寸法は、外径40mm、高さ100mmに設定されている。
(Constitution)
As shown in FIG. 1, the cylindrical lithium ion secondary battery 20 of the present embodiment has a bottomed cylindrical battery can 16. In the present example, the battery can 16 is made of nickel-plated carbon steel with a thickness of 0.5 mm, and the dimensions are set to an outer diameter of 40 mm and a height of 100 mm.

電池缶16の内部には、ポリプロピレン製で中空円筒状の軸芯14に帯状の正負極板がセパレータを介して断面渦巻状に捲回された電極群15が収容されている。電極群15の上側には、軸芯14のほぼ延長線上に正極板からの電位を集電するための正極集電リング13が配置されている。正極集電リング13は、軸芯14の上端部に固定されている。正極集電リング13の周囲から一体に張り出している鍔部周縁には、正極板から導出された正極タブ2の端部が超音波溶接で接合されている。正極集電リング13の上方には、正極外部端子を兼ねる円盤状の上蓋12が配置されている。上蓋12は、電池内部の圧力が所定圧力に達するとガスを放出する内圧低減機構の安全弁11を有して構成されている。安全弁11の破断(開放)圧は1MPa程度に設定されている。正極集電リング13の上部にはアルミニウム製でリボン状の正極リードの一端が固定されており、正極リードの他端は上蓋12の下面に溶接で接合されている。   Inside the battery can 16 is accommodated an electrode group 15 in which a strip-shaped positive and negative electrode plate is wound around a spiral cylindrical cross-section through a separator on a hollow cylindrical shaft core 14 made of polypropylene. On the upper side of the electrode group 15, a positive electrode current collection ring 13 for collecting a potential from the positive electrode plate is disposed on a substantially extension line of the shaft core 14. The positive electrode current collecting ring 13 is fixed to the upper end portion of the shaft core 14. The edge of the positive electrode tab 2 led out from the positive electrode plate is joined to the periphery of the flange that integrally extends from the periphery of the positive electrode current collecting ring 13 by ultrasonic welding. A disc-shaped upper lid 12 that also serves as a positive electrode external terminal is disposed above the positive electrode current collecting ring 13. The upper lid 12 includes a safety valve 11 of an internal pressure reduction mechanism that releases gas when the pressure inside the battery reaches a predetermined pressure. The breaking (opening) pressure of the safety valve 11 is set to about 1 MPa. One end of a ribbon-like positive electrode lead made of aluminum is fixed to the upper portion of the positive electrode current collecting ring 13, and the other end of the positive electrode lead is joined to the lower surface of the upper lid 12 by welding.

一方、電極群15の下側には負極板からの電位を集電するための負極集電リング17が配置されている。負極集電リング17の内周面には軸芯1の下端部外周面が固定されている。負極集電リング17の外周縁には、負極板から導出された負極タブ3の端部が超音波溶接で接合されている。負極集電リング17の下側には、負極板と電池缶16とを電気的に接続する通電リードとしての負極リード板18が配置されている。   On the other hand, a negative electrode current collecting ring 17 for collecting a potential from the negative electrode plate is disposed below the electrode group 15. The outer peripheral surface of the lower end portion of the shaft core 1 is fixed to the inner peripheral surface of the negative electrode current collecting ring 17. The edge of the negative electrode tab 3 led out from the negative electrode plate is joined to the outer peripheral edge of the negative electrode current collecting ring 17 by ultrasonic welding. A negative electrode lead plate 18 serving as an energization lead for electrically connecting the negative electrode plate and the battery can 16 is disposed below the negative electrode current collecting ring 17.

負極リード板18は、円盤状で略中央部に軸芯14の下端部を固定可能な窪みが形成されており、材質には亜鉛又は亜鉛メッキ鋼が使用されている。負極リード板18に用いられる亜鉛、亜鉛メッキ鋼の酸化還元電位は、それぞれ2.30V(vs.Li)、2.35V(vs.Li)である。電池缶16に用いられる炭素鋼の主体である鉄の酸化還元電位が約2.7V(vs.Li)であることから、負極リード板18の酸化還元電位は電池缶16より低く設定されている。リチウムイオン二次電池20では、負極板の電極反応電位は0.1〜1.0V(vs.Li)であることから、負極リード板18の酸化還元電位は負極板の電極反応電位より高く設定されている。負極リード板18は、上面が負極集電リング17の下面に抵抗溶接で接合されており、窪み部の下面が電池缶16の内底面に抵抗溶接で接合されている。このため、電池缶16は負極リード板18及び負極集電リング17を介して負極板と電気的に接続されることから、負極外部端子を兼ね、電池缶16から負極電力を取出すことが可能である。   The negative electrode lead plate 18 has a disc shape and is formed with a recess capable of fixing the lower end portion of the shaft core 14 at a substantially central portion, and the material thereof is zinc or galvanized steel. The oxidation-reduction potentials of zinc and galvanized steel used for the negative electrode lead plate 18 are 2.30 V (vs. Li) and 2.35 V (vs. Li), respectively. Since the redox potential of iron, which is the main component of carbon steel used for the battery can 16, is about 2.7 V (vs. Li), the redox potential of the negative electrode lead plate 18 is set lower than that of the battery can 16. . In the lithium ion secondary battery 20, since the electrode reaction potential of the negative electrode plate is 0.1 to 1.0 V (vs. Li), the oxidation-reduction potential of the negative electrode lead plate 18 is set higher than the electrode reaction potential of the negative electrode plate. Has been. The upper surface of the negative electrode lead plate 18 is joined to the lower surface of the negative electrode current collecting ring 17 by resistance welding, and the lower surface of the recess is joined to the inner bottom surface of the battery can 16 by resistance welding. For this reason, since the battery can 16 is electrically connected to the negative electrode plate via the negative electrode lead plate 18 and the negative electrode current collecting ring 17, the negative electrode power can be taken out from the battery can 16 also serving as the negative electrode external terminal. is there.

上蓋12は、絶縁性及び耐熱性で樹脂製のガスケットを介して電池缶16の上部にカシメ固定されている。正極リードは電池缶16内に折りたたむようにして収容されており、リチウムイオン二次電池20は密封されている。また、電池缶16内には、図示しない非水電解液が注液されている。非水電解液には、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とジエチルカーボネート(DEC)との体積比1:1:1の混合有機溶媒中にリチウム塩(電解質)として6フッ化リン酸リチウム(LiPF)を1モル/リットル溶解したものが用いられている。 The upper lid 12 is caulked and fixed to the upper part of the battery can 16 via an insulating and heat resistant resin gasket. The positive electrode lead is accommodated in a battery can 16 so as to be folded, and the lithium ion secondary battery 20 is sealed. Further, a non-aqueous electrolyte (not shown) is injected into the battery can 16. Non-aqueous electrolyte includes hexafluorophosphoric acid as lithium salt (electrolyte) in a mixed organic solvent of ethylene carbonate (EC), dimethyl carbonate (DMC) and diethyl carbonate (DEC) in a volume ratio of 1: 1: 1. lithium (LiPF 6) which was dissolved 1 mol / l is used.

電極群15は、正極板と負極板とがこれら両極板が直接接触しないように、厚さ40μmでポリエチレン製微多孔膜のセパレータを介して軸芯14の周囲に捲回されている。正極リード片2及び負極リード片3は、それぞれ電極群15の互いに反対側の両端面に配置されている。電極群15及び正極集電リング13の鍔部周面全周には、絶縁被覆が施されている。   In the electrode group 15, the positive electrode plate and the negative electrode plate are wound around the shaft core 14 with a separator of a microporous polyethylene film having a thickness of 40 μm so that the two electrode plates do not directly contact each other. The positive electrode lead piece 2 and the negative electrode lead piece 3 are arranged on both end surfaces of the electrode group 15 opposite to each other. Insulation coating is applied to the entire circumference of the collar surface of the electrode group 15 and the positive electrode current collector ring 13.

電極群15を構成する正極板は、正極活物質にリチウムマンガン複酸化物として代表的なマンガン酸リチウム(LiMn)が用いられている。マンガン酸リチウムを含む正極合剤がアルミニウム箔(正極集電体)の両面に略均一に塗着されている。アルミニウム箔の厚さは、本例では、20μmに設定されている。正極合剤には、例えば、マンガン酸リチウムの90重量部に対して、導電材として鱗片状黒鉛の10重量部及びバインダ(結着材)としてポリフッ化ビニリデン(以下、PVDFと略記する。)の5重量部が配合されている。アルミニウム箔に正極合剤を塗着するときは、分散溶媒のN−メチルピロリドン(以下、NMPと略記する。)で粘度調整される。正極板は、乾燥後、プレス加工され、裁断されている。 The positive electrode plate constituting the electrode group 15 uses lithium manganate (LiMn 2 O 4 ), which is a typical lithium manganese complex oxide, as the positive electrode active material. A positive electrode mixture containing lithium manganate is applied substantially uniformly on both surfaces of an aluminum foil (positive electrode current collector). The thickness of the aluminum foil is set to 20 μm in this example. In the positive electrode mixture, for example, 10 parts by weight of scaly graphite as a conductive material and polyvinylidene fluoride (hereinafter abbreviated as PVDF) as a binder (binder) with respect to 90 parts by weight of lithium manganate. 5 parts by weight is blended. When the positive electrode mixture is applied to the aluminum foil, the viscosity is adjusted with N-methylpyrrolidone (hereinafter abbreviated as NMP) as a dispersion solvent. The positive electrode plate is dried and then pressed and cut.

一方、負極板は、負極活物質に炭素材の非晶質炭素粉末が用いられている。非晶質炭素粉末を含む負極合剤が圧延銅箔(負極集電体)の両面に略均一に塗着されている。圧延銅箔の厚さは、本例では、10μmに設定されている。負極合剤には、例えば、非晶質炭素粉末の90重量部に対して、バインダのPVDFの10重量部が配合されている。圧延銅箔に負極合剤を塗着するときは、分散溶媒のNMPで粘度調整される。負極板は、乾燥後、プレス加工され、裁断されている。   On the other hand, the negative electrode plate uses an amorphous carbon powder of a carbon material as a negative electrode active material. A negative electrode mixture containing amorphous carbon powder is applied substantially uniformly on both sides of a rolled copper foil (negative electrode current collector). In this example, the thickness of the rolled copper foil is set to 10 μm. For example, 10 parts by weight of PVDF as a binder is blended with 90 parts by weight of amorphous carbon powder in the negative electrode mixture. When the negative electrode mixture is applied to the rolled copper foil, the viscosity is adjusted with the dispersion solvent NMP. The negative electrode plate is pressed and cut after being dried.

アルミニウム箔及び圧延銅箔の長寸方向一側の側縁には、それぞれ正極合剤及び負極合剤の未塗着部が形成されている。未塗着部は等間隔かつ矩形状(櫛状)に切り欠かれており、切り欠き残部で短冊状の正極タブ2及び負極タブ3がそれぞれ形成されている。なお、負極板は正極板に比べ若干幅長とされている。   Uncoated portions of the positive electrode mixture and the negative electrode mixture are formed on the side edges on one side in the longitudinal direction of the aluminum foil and the rolled copper foil, respectively. Uncoated portions are cut out at equal intervals and in a rectangular shape (comb shape), and strip-like positive electrode tabs 2 and negative electrode tabs 3 are formed at the remaining portions of the cutouts. The negative electrode plate is slightly wider than the positive electrode plate.

(作用等)
本実施形態のリチウムイオン二次電池20の作用等について説明する。
(Action etc.)
The operation and the like of the lithium ion secondary battery 20 of the present embodiment will be described.

一般に、リチウムイオン二次電池における負極の電極反応電位は0.1〜1.0V(vs.Li)である。ところが、過放電や短絡等で電池電圧が0V近くまで低下すると、負極電位は3V(vs.Li)程度にまで上昇することがある。すなわち、リチウムイオン二次電池の放電反応では、負極活物質である炭素材の中からリチウムがイオンとして非水電解液中に放出され、非水電解液中のリチウムイオンが正極活物質内に取りこまれる。正負極に用いる活物質により多少異なるが、過放電状態では、負極板中のリチウムイオン量が先に尽き、正極電位まで上昇する(正極電位はほとんど変化しない)。このため、電池缶に鉄を主体とする鋼材を用いた場合、鉄の酸化還元電位が約2.7V(vs.Li)であることから、鉄が溶解して電池缶の電気的腐食が生じる。ニッケル等で表面をメッキした鋼材や、鋼材とニッケル材とのクラッド材を用いた場合でも、鉄表面を確実に覆っていれば良いが、マイクロポア(微孔)やクラック(ひび割れ)などで鉄が露出している部分が存在するとそこから腐食が生じる可能性がある。腐食が大きくなると、電池缶が破損して非水電解液が漏液することとなる。本実施形態のリチウムイオン二次電池20は、これらの問題を解決するものである。   Generally, the electrode reaction potential of the negative electrode in a lithium ion secondary battery is 0.1 to 1.0 V (vs. Li). However, when the battery voltage decreases to near 0V due to overdischarge or short circuit, the negative electrode potential may increase to about 3V (vs. Li). That is, in the discharge reaction of the lithium ion secondary battery, lithium is released as ions from the carbon material, which is the negative electrode active material, into the non-aqueous electrolyte, and the lithium ions in the non-aqueous electrolyte are taken into the positive electrode active material. I'm stuck. Although slightly different depending on the active material used for the positive and negative electrodes, in the overdischarged state, the amount of lithium ions in the negative electrode plate is exhausted first and rises to the positive electrode potential (the positive electrode potential hardly changes). For this reason, when a steel material mainly composed of iron is used for the battery can, since the iron redox potential is about 2.7 V (vs. Li), the iron is dissolved and the electric corrosion of the battery can occurs. . Even when using steel materials whose surfaces are plated with nickel, or clad materials of steel materials and nickel materials, it is only necessary to cover the iron surface reliably. If there is an exposed part, corrosion may occur. When corrosion increases, the battery can is damaged and the non-aqueous electrolyte leaks. The lithium ion secondary battery 20 of the present embodiment solves these problems.

本実施形態のリチウムイオン二次電池20では、電池缶16の材質にニッケルメッキが施された炭素鋼が用いられており、負極板と電池缶16とを電気的に接続する負極リード板18の材質に亜鉛、亜鉛メッキ鋼が用いられている。亜鉛、亜鉛メッキ鋼の酸化還元電位がそれぞれ2.30、2.35V(vs.Li)であることから、負極リード板18の酸化還元電位が炭素鋼の主成分である鉄の酸化還元電位2.7V(vs.Li)より低く設定されている。このため、過放電等で負極電位が上昇し負極リード板18の酸化還元電位に達すると、負極リード板18が溶解し始める。この結果、負極リード板18の酸化還元電位で負極電位の上昇が止まり、負極リード板18の溶解量に相当する分、非水電解液中に含有されているリチウムイオンが正極活物質中に取りこまれるため、正極電位が低下して負極リード板18の酸化還元電位(溶解電位)で電池電圧が0Vとなる。従って、負極リード板18の溶解により、電池電圧が0Vとなっても負極電位が2.7V(vs.Li)より低くなるので、過放電や短絡等の電池異常時でも電池缶16の電気的腐食を抑制することができる。   In the lithium ion secondary battery 20 of the present embodiment, carbon steel with nickel plating applied to the material of the battery can 16 is used, and the negative electrode lead plate 18 that electrically connects the negative electrode plate and the battery can 16 is used. Zinc and galvanized steel are used as the material. Since the oxidation-reduction potentials of zinc and galvanized steel are 2.30 and 2.35 V (vs. Li), respectively, the oxidation-reduction potential of the negative electrode lead plate 18 is the oxidation-reduction potential 2 of iron, which is the main component of carbon steel. It is set lower than 0.7V (vs. Li). For this reason, when the negative electrode potential rises due to overdischarge or the like and reaches the oxidation-reduction potential of the negative electrode lead plate 18, the negative electrode lead plate 18 starts to dissolve. As a result, the increase in the negative electrode potential stops at the oxidation-reduction potential of the negative electrode lead plate 18, and lithium ions contained in the non-aqueous electrolyte take up in the positive electrode active material by the amount corresponding to the dissolved amount of the negative electrode lead plate 18. Therefore, the positive electrode potential is lowered, and the battery voltage becomes 0 V at the redox potential (dissolution potential) of the negative electrode lead plate 18. Therefore, even if the battery voltage becomes 0V due to the dissolution of the negative electrode lead plate 18, the negative electrode potential becomes lower than 2.7V (vs. Li). Corrosion can be suppressed.

また、負極リード板18の溶解により負極板と電池缶16との接続が切断されるため、電池缶16が電気的に中立になり、電気的腐食が生じなくなるだけでなく電池として使用不能となる。このため、過放電や短絡等の生じた異常な電池の再使用を防止することができ、電池の安全性を確保することができる。   Further, since the connection between the negative electrode plate and the battery can 16 is cut by the dissolution of the negative electrode lead plate 18, the battery can 16 becomes electrically neutral, not only causing no electrical corrosion but also being unusable as a battery. . For this reason, it is possible to prevent an abnormal battery that has been overdischarged or short-circuited from being reused, and to ensure the safety of the battery.

更に、本実施形態のリチウムイオン二次電池20では、負極リード板18が抵抗溶接で電池缶16の内底面に接合されている。抵抗溶接では、金属を接触させて電流を流すことで生じる金属間の抵抗による発熱で溶接することから、負極リード板18が接合時に熱履歴を受ける。このため、熱履歴を受けた部分が選択的に溶解し易くなるので、電池異常時に負極板及び電池缶16間が速やかに切断されることとなり、安全性を確保することができる。   Furthermore, in the lithium ion secondary battery 20 of the present embodiment, the negative electrode lead plate 18 is joined to the inner bottom surface of the battery can 16 by resistance welding. In resistance welding, since welding is performed by heat generated by resistance between metals generated by bringing a metal into contact with each other and flowing current, the negative electrode lead plate 18 receives a thermal history during joining. For this reason, since the part which received the thermal history becomes easy to selectively melt | dissolve, between a negative electrode plate and the battery can 16 will be cut | disconnected rapidly at the time of battery abnormality, and safety | security can be ensured.

また更に、本実施形態のリチウムイオン二次電池20では、負極リード板18の酸化還元電位が負極板の電極反応電位0.1〜1.0V(vs.Li)より高く設定されている。このため、通常の充放電時には、負極電位が負極リード板18の酸化還元電位に達することがないので、負極リード板18が溶解することなく充放電が可能であり電池性能を発揮することができる。   Furthermore, in the lithium ion secondary battery 20 of the present embodiment, the redox potential of the negative electrode lead plate 18 is set higher than the electrode reaction potential of the negative electrode plate of 0.1 to 1.0 V (vs. Li). For this reason, since the negative electrode potential does not reach the oxidation-reduction potential of the negative electrode lead plate 18 during normal charge / discharge, the negative electrode lead plate 18 can be charged / discharged without melting, and battery performance can be exhibited. .

なお、本実施形態では、電池缶16の材質にニッケルメッキを施した炭素鋼を例示したが、本発明はこれに限定されるものではなく、例えば、炭素鋼自体やクロム等の元素を含む特殊鋼等の鉄を主体とする鋼材を電池缶16に用いたリチウムイオン二次電池に適用可能である。また、ニッケルと炭素鋼とのクラッド材を用いた場合においても同様の効果があることを確認しており、ニッケルに代えて、ニッケル合金を用いてもその効果に何ら違いが生じるものではない。ニッケルメッキ鋼、ニッケル合金メッキ鋼、ニッケル/鋼のクラッド材及びニッケル合金/鋼のクラッド材から選択される1種を用いることで、炭素鋼単独の場合と比較して材質自体の耐腐食性が高くなるので、電池缶の電気的腐食を抑制し易くすることができる。更に、電池缶16の形状が円筒状の例を示したが、本発明は電池缶の形状に制限されるものではなく、例えば、角形等の形状としてもよい。また、本実施形態では、正負極板を捲回した電極群15を例示したが、正負極板を積層した電極群でも本発明が適用可能なことはもちろんである。   In the present embodiment, carbon steel in which the material of the battery can 16 is nickel-plated is exemplified, but the present invention is not limited to this, and for example, carbon steel itself or a special material containing elements such as chromium The present invention can be applied to a lithium ion secondary battery in which a steel material mainly composed of iron such as steel is used for the battery can 16. Further, it has been confirmed that the same effect is obtained when a clad material of nickel and carbon steel is used, and even if a nickel alloy is used instead of nickel, there is no difference in the effect. By using one kind selected from nickel-plated steel, nickel alloy-plated steel, nickel / steel clad material and nickel alloy / steel clad material, the corrosion resistance of the material itself is higher than that of carbon steel alone. Since it becomes high, it can make it easy to suppress the electrical corrosion of a battery can. Furthermore, although the example where the shape of the battery can 16 is cylindrical has been shown, the present invention is not limited to the shape of the battery can, and may be a shape such as a square. In the present embodiment, the electrode group 15 in which the positive and negative electrode plates are wound is illustrated, but the present invention can be applied to an electrode group in which the positive and negative electrode plates are laminated.

また、本実施形態では、負極リード板18の材質に亜鉛、亜鉛メッキ鋼を例示したが、本発明はこれに限定されるものではない。負極リード板18の材質としては、酸化還元電位が負極板の電極反応電位より高く、電池缶16の酸化還元電位より低いものであればよく、負極板を構成する負極活物質や電池缶16の材質に応じて選定すればよい。更に、負極リード板18の大きさについては、特に制限されないが、過放電で生じる電池缶の電気的腐食量は電池容量が大きくなるほど増加することから、電池容量を考慮して設定すればよい。また、本実施形態では、負極側の電気的接続を負極板→負極集電リング17→負極リード板18→電池缶16とする例を示している。これは、本実施形態のリチウムイオン二次電池20が、例えば、電気自動車の動力源に使用された場合、電気自動車の始動時や加速時に大電流通電されても負極側の電気的接続で電圧低下(IRドロップ)が生じることを回避するために負極集電リング17を接続したものである。   In the present embodiment, zinc and galvanized steel are exemplified as the material of the negative electrode lead plate 18, but the present invention is not limited to this. The material of the negative electrode lead plate 18 may be any material as long as the oxidation-reduction potential is higher than the electrode reaction potential of the negative electrode plate and lower than the oxidation-reduction potential of the battery can 16. What is necessary is just to select according to a material. Furthermore, the size of the negative electrode lead plate 18 is not particularly limited. However, the amount of electrical corrosion of the battery can caused by overdischarge increases as the battery capacity increases, and therefore, it may be set in consideration of the battery capacity. Further, in the present embodiment, an example in which the negative electrode side electrical connection is as follows: negative electrode plate → negative electrode current collecting ring 17 → negative electrode lead plate 18 → battery can 16 is shown. This is because when the lithium ion secondary battery 20 of the present embodiment is used, for example, as a power source for an electric vehicle, even if a large current is applied at the time of starting or accelerating the electric vehicle, In order to avoid the occurrence of a drop (IR drop), the negative electrode current collecting ring 17 is connected.

更に、本実施形態では、非水電解液に、LiPFをリチウム塩(電解質)とし有機溶媒としてエチレンカーボネートとジメチルカーボネートとジエチルカーボネートとの混合有機溶媒を用いた例を示したが、リチウム塩や有機溶媒としては特に制限されるものではなく、通常用いられるいずれの非水電解液を用いてもよい。また、正極活物質にマンガン酸リチウムを、負極活物質に非晶質炭素をそれぞれ用いる例を示したが、これらの材料についても、特に制限されるものではない。 Furthermore, in the present embodiment, an example in which LiPF 6 is a lithium salt (electrolyte) and a mixed organic solvent of ethylene carbonate, dimethyl carbonate, and diethyl carbonate is used as the organic solvent in the nonaqueous electrolytic solution is described. The organic solvent is not particularly limited, and any commonly used nonaqueous electrolytic solution may be used. In addition, although examples in which lithium manganate is used as the positive electrode active material and amorphous carbon is used as the negative electrode active material have been shown, these materials are not particularly limited.

次に、本実施形態に従い作製したリチウムイオン二次電池20の実施例について説明する。なお、比較のために作製した比較例のリチウムイオン二次電池についても併記する。   Next, examples of the lithium ion secondary battery 20 manufactured according to the present embodiment will be described. In addition, it describes together about the lithium ion secondary battery of the comparative example produced for the comparison.

(実施例1)
下表1に示すように、実施例1では、負極リード板18の材質に酸化還元電位2.30V(vs.Li)の亜鉛を用い、容量4.0Ahのリチウムイオン二次電池20を作製した。
Example 1
As shown in Table 1 below, in Example 1, the negative electrode lead plate 18 was made of zinc having a redox potential of 2.30 V (vs. Li), and a lithium ion secondary battery 20 having a capacity of 4.0 Ah was produced. .

Figure 2007042526
Figure 2007042526

(実施例2)
表1に示すように、実施例2では、負極リード板18の材質に酸化還元電位2.35V(vs.Li)の亜鉛メッキ鋼を用い、容量4.0Ahのリチウムイオン二次電池20を作製した。
(Example 2)
As shown in Table 1, in Example 2, the negative electrode lead plate 18 was made of galvanized steel having a redox potential of 2.35 V (vs. Li), and a lithium ion secondary battery 20 having a capacity of 4.0 Ah was produced. did.

(比較例1)
表1に示すように、比較例1では、負極リード板の材質に酸化還元電位3.90V(vs.Li)のニッケルを用い、容量4.0Ahのリチウムイオン二次電池を作製した。
(Comparative Example 1)
As shown in Table 1, in Comparative Example 1, a lithium ion secondary battery having a capacity of 4.0 Ah was manufactured using nickel having a redox potential of 3.90 V (vs. Li) as the material of the negative electrode lead plate.

<試験・評価>
実施例及び比較例の各電池について、0Vまで過放電した状態で30日間放置した後、電池を分解して負極電位を測定し、電池缶16の腐食状況を目視にて観察した。表1に負極電位の測定結果及び腐食状況の観察結果を合わせて示している。
<Test and evaluation>
About each battery of an Example and a comparative example, after leaving for 30 days in the state over-discharged to 0V, the battery was decomposed | disassembled, the negative electrode potential was measured, and the corrosion condition of the battery can 16 was observed visually. Table 1 also shows the measurement results of the negative electrode potential and the observation results of the corrosion status.

表1に示すように、負極リード板18に酸化還元電位2.30V(vs.Li)の亜鉛を用いた実施例1、酸化還元電位2.35V(vs.Li)の亜鉛メッキ鋼を用いた実施例2のリチウムイオン二次電池20では、電池電圧が0Vの状態でも負極電位は鉄の溶解電位2.70Vより低くなり、電池缶16の腐食は観察されなかった。一方、負極リード板に酸化還元電位3.90V(vs.Li)のニッケルを用いた比較例1のリチウムイオン二次電池では、負極電位が2.70Vに達しており、電池缶の腐食が一部観察された。また、実施例1、実施例2のリチウムイオン二次電池20では、負極リード板18が溶解したため、負極板と電池缶16との電気的接続が切断されていることが確認された。これに対して、比較例1のリチウムイオン二次電池では、負極リード板18の溶解は認められなかった。   As shown in Table 1, Example 1 using zinc with a redox potential of 2.30 V (vs. Li) for the negative electrode lead plate 18 and galvanized steel with a redox potential of 2.35 V (vs. Li) were used. In the lithium ion secondary battery 20 of Example 2, even when the battery voltage was 0 V, the negative electrode potential was lower than the dissolution potential of iron 2.70 V, and corrosion of the battery can 16 was not observed. On the other hand, in the lithium ion secondary battery of Comparative Example 1 using nickel having a redox potential of 3.90 V (vs. Li) for the negative electrode lead plate, the negative electrode potential reached 2.70 V, and the corrosion of the battery can was reduced. Was observed. Moreover, in the lithium ion secondary battery 20 of Example 1 and Example 2, since the negative electrode lead plate 18 melt | dissolved, it was confirmed that the electrical connection of a negative electrode plate and the battery can 16 is cut | disconnected. In contrast, in the lithium ion secondary battery of Comparative Example 1, dissolution of the negative electrode lead plate 18 was not observed.

以上の結果から、電池缶の材質に用いたニッケルメッキ鋼より酸化還元電位の低い亜鉛、亜鉛メッキ鋼をそれぞれ用いた負極リード板18で負極板と電池缶16とを電気的に接続した実施例1、実施例2の場合、電池電圧が0Vとなっても電池缶16の腐食を抑制することが可能となることが判った。また、リチウムイオン二次電池20の通常の充放電時には負極リード板18が溶解しないことを確認している。これは、通常の充放電時には、負極の電極反応電位が0.1〜1.0V(vs.Li)であることから、負極リード板18の酸化還元電位が負極の電極反応電位より高いためと考えられる。   From the above results, the negative electrode plate and the battery can 16 were electrically connected to each other by the negative electrode lead plate 18 using zinc and zinc-plated steel each having a lower oxidation-reduction potential than the nickel-plated steel used as the material of the battery can. In the case of Example 1 and Example 2, it was found that the corrosion of the battery can 16 can be suppressed even when the battery voltage becomes 0V. Further, it has been confirmed that the negative electrode lead plate 18 does not melt during normal charging / discharging of the lithium ion secondary battery 20. This is because the electrode reaction potential of the negative electrode is 0.1 to 1.0 V (vs. Li) during normal charge and discharge, and thus the oxidation-reduction potential of the negative electrode lead plate 18 is higher than the electrode reaction potential of the negative electrode. Conceivable.

また、電池缶の腐食が観察された比較例1のリチウムイオン二次電池でも、非水電解液の漏液が観察されなかったため、外観上の変化はなく、充電すれば再使用は可能である。しかしながら、実際には、電池缶に腐食が生じており、負極活物質が劣化していると考えられるので、安全性を考慮すれば再使用を回避することが好ましいが外観では判断できない。これに対して、実施例1、実施例2のリチウムイオン二次電池20では、負極リード板18の溶解により負極板と電池缶16との電気的接続が切断されたため、充電することができず再使用はできなかった。従って、実施例1、実施例2のリチウムイオン二次電池20では、非水電解液の漏液もなく、異常電池の再使用を回避することができ、安全性に優れた電池であることが判明した。   Further, even in the lithium ion secondary battery of Comparative Example 1 in which the corrosion of the battery can was observed, no leakage of the non-aqueous electrolyte was observed, so there was no change in appearance and the battery could be reused if charged. . However, in reality, the battery can is corroded, and the negative electrode active material is considered to be deteriorated. Therefore, it is preferable to avoid reuse in consideration of safety, but the appearance cannot be determined. On the other hand, in the lithium ion secondary battery 20 of Example 1 and Example 2, since the electrical connection between the negative electrode plate and the battery can 16 was cut by the dissolution of the negative electrode lead plate 18, it could not be charged. It could not be reused. Therefore, in the lithium ion secondary battery 20 of Example 1 and Example 2, there is no leakage of the non-aqueous electrolyte, the reuse of the abnormal battery can be avoided, and the battery is excellent in safety. found.

本発明は過放電や短絡時でも電池容器の電気的腐食を抑制し安全性を確保することができるリチウム二次電池を提供するため、リチウム二次電池の製造、販売に寄与するので、産業上の利用可能性を有する。   Since the present invention contributes to the manufacture and sale of lithium secondary batteries in order to provide a lithium secondary battery that can prevent electrical corrosion of the battery container and ensure safety even during overdischarge or short circuit, With the availability of

本発明を適用した実施形態の円筒型リチウムイオン二次電池の断面図である。It is sectional drawing of the cylindrical lithium ion secondary battery of embodiment to which this invention is applied.

符号の説明Explanation of symbols

3 負極タブ
12 上蓋
15 電極群
16 電池缶(電池容器)
17 負極集電リング
18 負極リード板(通電リード)
20 リチウム二次電池
3 Negative electrode tab 12 Upper lid 15 Electrode group 16 Battery can (battery container)
17 Negative current collector ring 18 Negative electrode lead plate (conductive lead)
20 Lithium secondary battery

Claims (4)

負極外部端子を兼ねる電池容器に正負極板が収容されており、前記電池容器に鋼材が用いられたリチウム二次電池において、前記負極板と前記電池容器とを電気的に接続する金属製の通電リードを具備しており、前記通電リードの酸化還元電位が、前記負極板の電極反応電位より高く、前記電池容器の酸化還元電位より低いことを特徴とするリチウム二次電池。   In a lithium secondary battery in which a positive and negative electrode plate is housed in a battery container that also serves as a negative electrode external terminal, and a steel material is used for the battery container, a metal energization that electrically connects the negative electrode plate and the battery container A lithium secondary battery comprising a lead, wherein a redox potential of the conducting lead is higher than an electrode reaction potential of the negative electrode plate and lower than a redox potential of the battery container. 前記通電リード及び前記電池容器は、抵抗溶接で接合されていることを特徴とする請求項1に記載のリチウム二次電池。   The lithium secondary battery according to claim 1, wherein the energization lead and the battery container are joined by resistance welding. 前記電池容器の材質は、ニッケルメッキ鋼、ニッケル合金メッキ鋼、ニッケルクラッド鋼及びニッケル合金クラッド鋼から選択される1種であることを特徴とする請求項1又は請求項2に記載のリチウム二次電池。   3. The lithium secondary according to claim 1, wherein a material of the battery container is one selected from nickel plated steel, nickel alloy plated steel, nickel clad steel, and nickel alloy clad steel. battery. 前記通電リードの材質は、亜鉛又は亜鉛合金であることを特徴とする請求項3に記載のリチウム二次電池   The lithium secondary battery according to claim 3, wherein a material of the energization lead is zinc or a zinc alloy.
JP2005227463A 2005-08-05 2005-08-05 Lithium secondary battery Withdrawn JP2007042526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005227463A JP2007042526A (en) 2005-08-05 2005-08-05 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005227463A JP2007042526A (en) 2005-08-05 2005-08-05 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2007042526A true JP2007042526A (en) 2007-02-15

Family

ID=37800314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005227463A Withdrawn JP2007042526A (en) 2005-08-05 2005-08-05 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2007042526A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012118050A1 (en) * 2011-03-02 2012-09-07 株式会社フジクラ Dye-sensitized solar cell and process of manufacturing same, and dye-sensitized solar cell module and process of manufacturing same
JP2012216653A (en) * 2011-03-31 2012-11-08 Shin Kobe Electric Mach Co Ltd Power storage device
WO2013024542A1 (en) * 2011-08-18 2013-02-21 日立ビークルエナジー株式会社 Cylindrical secondary battery
CN103413975A (en) * 2013-07-30 2013-11-27 河南比得力高新能源科技有限公司 Lithium nickel cobalt manganate cylindrical high-rate battery and preparation method thereof
CN104347838A (en) * 2013-07-30 2015-02-11 广东银通投资控股集团有限公司 Rapid electric connector, lithium ion battery apparatus and lithium ion battery pack
CN113871808A (en) * 2021-10-25 2021-12-31 珠海冠宇电池股份有限公司 Soft package lithium ion battery and electronic device
US11217845B2 (en) 2017-08-25 2022-01-04 Murata Manufacturing Co., Ltd. Battery, battery pack, electronic device, electric vehicle, power storage device, and electric power system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012118050A1 (en) * 2011-03-02 2012-09-07 株式会社フジクラ Dye-sensitized solar cell and process of manufacturing same, and dye-sensitized solar cell module and process of manufacturing same
US9330854B2 (en) 2011-03-02 2016-05-03 Fujikura Ltd. Dye-sensitized solar cell and process of manufacturing same, dye-sensitized solar cell module and process of manufacturing same
JP2012216653A (en) * 2011-03-31 2012-11-08 Shin Kobe Electric Mach Co Ltd Power storage device
WO2013024542A1 (en) * 2011-08-18 2013-02-21 日立ビークルエナジー株式会社 Cylindrical secondary battery
CN103413975A (en) * 2013-07-30 2013-11-27 河南比得力高新能源科技有限公司 Lithium nickel cobalt manganate cylindrical high-rate battery and preparation method thereof
CN104347838A (en) * 2013-07-30 2015-02-11 广东银通投资控股集团有限公司 Rapid electric connector, lithium ion battery apparatus and lithium ion battery pack
US11217845B2 (en) 2017-08-25 2022-01-04 Murata Manufacturing Co., Ltd. Battery, battery pack, electronic device, electric vehicle, power storage device, and electric power system
CN113871808A (en) * 2021-10-25 2021-12-31 珠海冠宇电池股份有限公司 Soft package lithium ion battery and electronic device
CN113871808B (en) * 2021-10-25 2024-03-26 珠海冠宇电池股份有限公司 Soft package lithium ion battery and electronic device

Similar Documents

Publication Publication Date Title
JP6791030B2 (en) Batteries, battery packs, electronic devices, electric vehicles, power storage devices and power systems
KR100973173B1 (en) Assembled battery
JP6250567B2 (en) Sealed battery
JP6254102B2 (en) Sealed battery
JPWO2015146078A1 (en) Cylindrical sealed battery and battery pack
JP5899495B2 (en) Cylindrical lithium-ion battery
JP5344235B2 (en) Non-aqueous secondary battery
JP2008103302A (en) Battery module
JP2007042526A (en) Lithium secondary battery
JP7251686B2 (en) Secondary batteries, electronic devices and power tools
JP2004273139A (en) Lithium secondary battery
JP5571318B2 (en) Cylindrical battery
JP5704414B2 (en) Non-aqueous secondary battery
US20090148753A1 (en) Cap assembly and secondary battery having the same
JP2023115135A (en) secondary battery
US9337468B2 (en) Secondary battery
WO2013094207A1 (en) Sealed battery
JP2006338979A (en) Cylindrical lithium secondary battery
WO2022168623A1 (en) Secondary battery, electronic device, and electric tool
JP7380825B2 (en) Secondary batteries, electronic equipment and power tools
JP2003077448A (en) Non-aqueous electrolyte battery
US9806324B2 (en) Secondary battery
JP2006040772A (en) Lithium ion battery
JP4026587B2 (en) Lithium ion battery
WO2018230058A1 (en) Secondary battery

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081007