JP2007042436A - Fuel cell system and its operation method - Google Patents

Fuel cell system and its operation method Download PDF

Info

Publication number
JP2007042436A
JP2007042436A JP2005225351A JP2005225351A JP2007042436A JP 2007042436 A JP2007042436 A JP 2007042436A JP 2005225351 A JP2005225351 A JP 2005225351A JP 2005225351 A JP2005225351 A JP 2005225351A JP 2007042436 A JP2007042436 A JP 2007042436A
Authority
JP
Japan
Prior art keywords
fuel cell
output
fluctuation
cell system
operation history
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005225351A
Other languages
Japanese (ja)
Inventor
Atsushi Ogino
温 荻野
Yasuo Kuwabara
保雄 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Toyota Motor Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2005225351A priority Critical patent/JP2007042436A/en
Publication of JP2007042436A publication Critical patent/JP2007042436A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To restrain degradation of a fuel cell due to output fluctuation, and aim at improvement of durability of the fuel cell. <P>SOLUTION: In the fuel cell system provided with a fuel cell receiving fuel supply and oxidant supply and outputting power and a control unit 50 controlling an output of the fuel cell, the control unit 50 limits the number of fluctuation of output voltage based on an operation history of the fuel cell. That is, the control unit is provided with an operation history storage means 52 storing operation histories of the fuel cell, a fluctuation number limiting means 53 limiting the number of fluctuation of output voltage in accordance with the operation histories stored in the operation history storage means 52, and an output setting part 51 controlling an output of the fuel cell based on the number of fluctuation limited by the fluctuation number limiting means 53 and the requested output from outside. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、燃料電池システムとその運転方法に関し、特に、燃料電池の耐久性を向上するための技術に関する。   The present invention relates to a fuel cell system and a method for operating the same, and more particularly to a technique for improving the durability of a fuel cell.

燃料電池において、出力電圧の変動、例えば定格出力と1/2〜1/4定格出力との切り替え(出力変動)を頻繁に行うと、燃料電池の耐久寿命が低下する。この耐久寿命の低下は、燃料電池が備える膜‐電極アッセンブリ(以下MEA;Membrane Electrode Assemblyと呼ぶ。)における電解質膜の含水量が変化し、電解質膜が膨張と収縮を繰返すことにより化学的に劣化するために生ずる。また、触媒の活性低下(溶出、凝集)が生じ、これによっても耐久性が低下する。
特開2004−103397号公報
In a fuel cell, if the output voltage changes, for example, switching between the rated output and 1/2 to 1/4 rated output (output fluctuation) is frequently performed, the durable life of the fuel cell is reduced. This decrease in durability life is caused by chemical deterioration due to changes in the water content of the electrolyte membrane in the membrane-electrode assembly (hereinafter referred to as MEA; Membrane Electrode Assembly) provided in the fuel cell, and the electrolyte membrane repeatedly expands and contracts. To occur. In addition, the activity of the catalyst is reduced (elution and aggregation), which also reduces the durability.
JP 2004-103397 A

本発明の発明者らによる研究の結果、燃料電池の上記耐久寿命の低下は、累積運転時間と出力変動の回数とに依存することが分かっている。これは、一定出力による定常運転での累積運転時間の増加に伴う性能低下に、出力変動による性能低下が上乗せされるからである。特許文献1には、燃料電池の出力に固定的な上限値を設ける技術が記載されているが、当該技術においては上限値が固定であるため、劣化が進んだ場合でも、そのままのスピードで劣化が進むおそれがある。   As a result of studies by the inventors of the present invention, it has been found that the decrease in the durable life of the fuel cell depends on the cumulative operation time and the number of output fluctuations. This is because the performance degradation due to the output fluctuation is added to the performance degradation accompanying the increase in the cumulative operation time in the steady operation with the constant output. Patent Document 1 describes a technique for providing a fixed upper limit value for the output of a fuel cell. However, since the upper limit value is fixed in this technique, even when the deterioration has progressed, it deteriorates at the same speed. May go on.

本発明は、上記事情に鑑みて成されたものであり、出力変動による燃料電池の劣化を抑制することができ、燃料電池の耐久性を向上することができる燃料電池システムとその運転方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides a fuel cell system capable of suppressing deterioration of the fuel cell due to output fluctuation and improving the durability of the fuel cell, and an operating method thereof. The purpose is to do.

本発明においては、上記の課題を解決するために以下の手段を採用した。すなわち、燃料供給と酸化剤供給とを受けて発電する燃料電池と、該燃料電池の出力を制御する制御装置と、を備えた燃料電池システムにおいて、前記制御装置は、前記燃料電池の運転履歴に基づいて、前記出力の単位時間あたりの変動回数を制限することを特徴とする。   In the present invention, the following means are employed in order to solve the above problems. That is, in a fuel cell system including a fuel cell that generates power upon receipt of a fuel supply and an oxidant supply, and a control device that controls the output of the fuel cell, the control device includes an operation history of the fuel cell. Based on this, the number of fluctuations per unit time of the output is limited.

このような構成によれば、燃料電池の出力に固定的な上限値が設けられるのではなく、出力変動を許可される回数に制限が設けられる。よって、出力変動による燃料電池の劣化を抑制することができる。「単位時間あたり」とは、例えば1日あたり、所定時間あたり等、適宜の時間間隔に設定することが可能である。   According to such a configuration, a fixed upper limit value is not provided for the output of the fuel cell, but a limit is imposed on the number of times that output fluctuation is permitted. Therefore, deterioration of the fuel cell due to output fluctuation can be suppressed. “Per unit time” can be set to an appropriate time interval such as per day or per predetermined time.

前記制御装置は、出力電圧の変動回数を制限するようにしてもよい。   The control device may limit the number of output voltage fluctuations.

前記制御装置は、前記燃料電池の運転履歴が記憶される運転履歴記憶手段と、該運転履歴記憶手段に記憶された運転履歴に応じて前記出力の変動回数を制限する変動回数制限手段と、該変動回数制限手段により制限される前記変動回数と外部からの要求出力とに基づいて前記燃料電池の出力目標値を設定する出力設定部と、を備えた構成としてもよい。   The control device includes an operation history storage unit that stores an operation history of the fuel cell, a fluctuation number limiting unit that limits the number of fluctuations of the output according to the operation history stored in the operation history storage unit, It is good also as a structure provided with the output setting part which sets the output target value of the said fuel cell based on the said frequency | count of fluctuation | variation restrict | limited by the fluctuation | variation frequency limiting means and the request | requirement from the outside.

このような構成によれば、燃料電池の運転履歴、例えば出力の累積変動回数に基づいて、耐久寿命を判定する。耐久寿命が基準よりも短い場合に、変動回数制限手段により燃料電池の変動回数を制限し、これにより耐久寿命を確保する。   According to such a configuration, the durable life is determined based on the operation history of the fuel cell, for example, the cumulative number of output fluctuations. When the durable life is shorter than the standard, the number of fluctuations of the fuel cell is restricted by the fluctuation number limiting means, thereby ensuring the durable life.

前記運転履歴記憶手段に記憶される運転履歴は、少なくとも前記出力の累積変動回数を含むものであり、前記変動回数制限手段は、前記累積変動回数が大きくなるほど、前記変動回数の制限値(言い換えれば、上限値)を小さくする構成としてもよい。   The operation history stored in the operation history storage means includes at least the cumulative fluctuation count of the output, and the fluctuation count limit means increases the cumulative fluctuation count, so that the fluctuation count limit value (in other words, The upper limit value) may be reduced.

燃料電池の運転を続けるにしたがって、出力の累積変動回数は増加し、これによって燃料電池の劣化が進んで寿命が低下するところ、上記構成によれば、累積変動回数が増加するに従い、単位時間あたりに許容される出力の変動回数が減る。例えば、出力の変動回数を一日あたり2回から1回に減らす。   As the fuel cell continues to operate, the number of cumulative fluctuations in output increases, and as a result, the deterioration of the fuel cell progresses and the service life decreases. According to the above configuration, as the number of cumulative fluctuations increases, per unit time The number of output fluctuations allowed is reduced. For example, the number of output fluctuations is reduced from 2 to 1 per day.

なお、燃料電池の運転条件にもよるが、累積変動回数と累積運転時間との間に所定の相関(複合的な関係)を有する場合があるので、累積変動回数に応じて小さくした制限値を累積運転時間に応じて補正してもよい。   Depending on the operating conditions of the fuel cell, there may be a predetermined correlation (composite relationship) between the cumulative number of fluctuations and the cumulative operating time. You may correct | amend according to accumulated operation time.

所定の場合に、前記累積変動回数を所定の値に変更する変動回数変更手段を備えてもよい。   In a predetermined case, a fluctuation number changing means for changing the cumulative fluctuation number to a predetermined value may be provided.

例えば燃料電池のメンテナンスを行った場合(所定の場合)は耐久寿命が延びるため、上記構成によれば、運転履歴記憶手段に記憶された出力の累積変動回数を初期化する(所定の値に戻す)ことにより、不要な出力制限が回避される。また、累積変動回数を初期化するだけでなく、累積変動回数に応じて所定の値に戻してもよい。   For example, when the maintenance of the fuel cell is performed (predetermined case), the durability life is extended. Therefore, according to the above configuration, the accumulated fluctuation number of the output stored in the operation history storage unit is initialized (returned to a predetermined value). This avoids unnecessary output restrictions. In addition to initializing the cumulative fluctuation count, the cumulative fluctuation count may be returned to a predetermined value according to the cumulative fluctuation count.

なお、運転履歴記憶手段が累積変動回数だけでなく累積運転時間をも記憶可能に構成されている場合には、累積変動回数を累積変動回数又は/及び累積運転時間に応じて所定の値に戻すようにしてもよい。   When the operation history storage means is configured to be able to store not only the cumulative fluctuation count but also the cumulative operation time, the cumulative fluctuation count is returned to a predetermined value according to the cumulative fluctuation count and / or the cumulative operation time. You may do it.

前記変動回数制限手段は、外部からの要求出力が所定値よりも高くなる時間帯にのみ前記出力の上昇変動を許可し、他の時間帯では前記出力の変動を制限する構成としてもよい。   The fluctuation number limiting means may be configured to permit the increase in the output only during a time zone in which the externally requested output is higher than a predetermined value and to limit the output fluctuation in other time zones.

このような構成によれば、例えば計時手段を設け、例えば朝夕などのように消費電力が大きくなるために、定格発電が必要な時間帯を過去の運転履歴に基づいて判定する。これにより、燃料電池システムの使用環境に応じて最適な制限パターンを得ることができる。   According to such a configuration, for example, a time measuring unit is provided, and power consumption is increased, for example, in the morning and evening, so that a time zone in which rated power generation is necessary is determined based on the past operation history. Thereby, an optimal restriction pattern can be obtained according to the use environment of the fuel cell system.

この場合、出力要求が高い時間帯に優先順位を高く設定し、出力の累積変動回数が大きくなるほど、前記優先順位に従って変動回数の制限を厳しくしてもよい。すなわち、寿命が低下した場合は、優先順位が低い時間帯においても出力の上昇変動を制限するようにしてもよい。   In this case, the priority order may be set higher in a time zone in which the output request is high, and the limit on the number of fluctuations may be tightened according to the priority order as the cumulative number of output fluctuations increases. That is, when the service life is reduced, the increase in output may be limited even in a time zone with a low priority.

本発明に係る燃料電池システムの運転方法は、燃料供給と酸化剤供給とを受けて発電する燃料電池と、該燃料電池の出力を制御する制御装置と、を備えた燃料電池システムの運転方法において、前記燃料電池の運転履歴に基づいて前記出力の単位時間あたりの変動回数を制限することを特徴とする。   An operation method of a fuel cell system according to the present invention is a fuel cell system operation method comprising: a fuel cell that generates power by receiving fuel supply and oxidant supply; and a control device that controls the output of the fuel cell. The number of fluctuations per unit time of the output is limited based on the operation history of the fuel cell.

このような構成によれば、燃料電池の耐久寿命が短くなる可能性がある場合や劣化が進んだ場合に、単位時間あたりの出力変動を所定回数までに制限することが可能となる。「単位時間あたり」とは、例えば1日あたり、所定時間あたり等、適宜の時間間隔に設定することが可能である。   According to such a configuration, it is possible to limit the output fluctuation per unit time to a predetermined number of times when there is a possibility that the durable life of the fuel cell is shortened or when the deterioration is advanced. “Per unit time” can be set to an appropriate time interval such as per day or per predetermined time.

本発明によれば、出力変動による燃料電池の劣化を抑制することができ、燃料電池の耐久性を向上することができる。また、燃料電池の劣化が進んだ場合には、出力変動の制限を厳しくすることにより、より一層効果的に耐久性を向上させることができる。   According to the present invention, deterioration of the fuel cell due to output fluctuation can be suppressed, and the durability of the fuel cell can be improved. Further, when the deterioration of the fuel cell is advanced, the durability can be further effectively improved by tightening the restriction on the output fluctuation.

次に、本発明に係る燃料電池システムの一実施の形態を説明する。本実施形態における燃料電池システムは、例えば燃料電池が建物(住宅、ビル等)用の発電設備として用いられる定置用発電システムとして適用された例である。ただし、本発明の燃料電池システムは、このような適用例に限らず、車両、船舶,航空機,電車、歩行ロボット等のあらゆる移動体への適用が可能である。
また、本実施形態では、酸化剤、燃料として、それぞれガス状態の酸化ガス、燃料ガスを使用しているが、これに限定されない。例えば、燃料としてメタノール等の液体状態のものも使用できる。さらにまた、本実施形態では、酸化ガスとして空気を使用しており、燃料ガスとして改質ガスを使用しているが、これに限定されない。例えば、燃料ガスとして水素ガス、水素含有ガス等を使用してもよい。
Next, an embodiment of a fuel cell system according to the present invention will be described. The fuel cell system in the present embodiment is an example in which the fuel cell is applied as a stationary power generation system that is used as a power generation facility for buildings (housing, buildings, etc.). However, the fuel cell system of the present invention is not limited to such an application example, but can be applied to any moving body such as a vehicle, a ship, an aircraft, a train, and a walking robot.
In the present embodiment, the oxidizing gas and the fuel gas are used as the oxidant and the fuel, respectively, but the present invention is not limited to this. For example, liquid fuel such as methanol can be used as the fuel. Furthermore, in the present embodiment, air is used as the oxidizing gas and the reformed gas is used as the fuel gas, but the present invention is not limited to this. For example, hydrogen gas or hydrogen-containing gas may be used as the fuel gas.

図1に示すように、酸化ガスとしての空気(外気)は、エアポンプ,エアフィルタ等からなるスタックエアー供給系1から加湿器2により加湿された後、燃料電池(FCスタック)20に供給される。燃料電池20から排出される空気オフガス(残エアー)は、第1凝縮器11により水回収された後、排気される。   As shown in FIG. 1, air (outside air) as an oxidizing gas is humidified by a humidifier 2 from a stack air supply system 1 including an air pump, an air filter, and the like, and then supplied to a fuel cell (FC stack) 20. . The air off-gas (remaining air) discharged from the fuel cell 20 is exhausted after being recovered by the first condenser 11.

他方、燃料電池20に供給される燃料ガスとしての改質ガス(水素含有ガス)は、改質器30の改質部32に原燃料ガスとして供給される都市ガス(13A等)が該改質部32にて水素を含むガスに変換された後、同改質器30のシフト部33とCO浄化部34を経て生成される。燃料電池20からの改質ガスオフガス(残ガス)は、第2凝縮器12で水回収された後、改質器30の燃焼部31に導入されて燃焼し、改質反応の熱源として利用される。この燃焼排ガスは、第3凝縮器13で水回収された後、排気される。   On the other hand, the reformed gas (hydrogen-containing gas) as the fuel gas supplied to the fuel cell 20 is the city gas (such as 13A) supplied as the raw fuel gas to the reformer 32 of the reformer 30. After being converted to hydrogen-containing gas in the unit 32, the gas is generated through the shift unit 33 and the CO purification unit 34 of the reformer 30. The reformed gas off-gas (residual gas) from the fuel cell 20 is recovered by the second condenser 12 and then introduced into the combustion section 31 of the reformer 30 and combusted to be used as a heat source for the reforming reaction. . The combustion exhaust gas is exhausted after being recovered by the third condenser 13.

また燃料電池20には、スタック冷却水が循環され、このスタック冷却水が発電に伴う熱を吸収し、吸収された熱が熱交換器40に伝えられる。   In addition, the stack cooling water is circulated in the fuel cell 20, and the stack cooling water absorbs heat accompanying power generation, and the absorbed heat is transmitted to the heat exchanger 40.

第1凝縮器11〜第3凝縮器13および熱交換器40には、貯湯タンク15からの貯湯水が循環され、それぞれからの熱量を吸収し、貯湯タンク15内に貯湯水が貯められる。この貯湯水は、給湯に利用される。第1凝縮器11〜第3凝縮器13で得られる回収水は、図1中の破線で示すように、改質水供給系36に戻されて改質器30での改質反応に利用される。   Hot water from the hot water storage tank 15 is circulated in the first condenser 11 to the third condenser 13 and the heat exchanger 40, absorbs the amount of heat from each, and the hot water is stored in the hot water storage tank 15. This hot water is used for hot water supply. The recovered water obtained by the first condenser 11 to the third condenser 13 is returned to the reforming water supply system 36 and used for the reforming reaction in the reformer 30 as shown by the broken line in FIG. The

燃料電池20で発電された電気出力は直流である為、インバータ21で交流に変換されて出力される。燃料電池20は、単セルを所要数積層した燃料電池スタック(FCスタック)として構成されている。単セルは、MEAと、MEAを挟持する一対のセパレータとで構成され、全体として積層形態を有している。セパレータは、ガス不透過の導電性材料よりなり、MEA側に対向する面には、酸化ガスまたは燃料ガスのガス流路が形成されている。   Since the electric output generated by the fuel cell 20 is a direct current, it is converted into an alternating current by the inverter 21 and output. The fuel cell 20 is configured as a fuel cell stack (FC stack) in which a required number of single cells are stacked. The single cell is composed of an MEA and a pair of separators that sandwich the MEA, and has a laminated form as a whole. The separator is made of a gas-impermeable conductive material, and a gas flow path for oxidizing gas or fuel gas is formed on the surface facing the MEA side.

MEAは、高分子材料のイオン交換膜からなる電解質膜と、電解質膜を両面から挟んだ一対の電極とで構成されている。電極は、白金などの触媒を結着した例えば多孔質のカーボン素材で構成されている。一方の電極には、空気などの酸化ガスが供給され、他方の電極には、改質ガスなどの燃料ガスが供給される。   The MEA includes an electrolyte membrane made of an ion exchange membrane made of a polymer material and a pair of electrodes sandwiching the electrolyte membrane from both sides. The electrode is made of, for example, a porous carbon material bound with a catalyst such as platinum. One electrode is supplied with an oxidizing gas such as air, and the other electrode is supplied with a fuel gas such as a reformed gas.

この二つのガスによってMEA11内で電気化学反応が生じ、燃料電池20が発生した電力は、建物(住宅、ビル等)に対して給電される。   The two gases cause an electrochemical reaction in the MEA 11 and the electric power generated by the fuel cell 20 is supplied to a building (house, building, etc.).

制御ユニット50は、図示しない外部からの要求負荷や燃料電池システムの各部のセンサ(図示略)から制御情報を受け取り、システム各部の運転を制御する。なお、制御ユニット50は、図示しない制御コンピュータシステムによって構成される。この制御コンピュータシステムは、CPU、ROM、RAM、HDD、入出力インタフェース及びディスプレイなどの公知構成から成り、市販されている制御用コンピュータシステムによって構成される。   The control unit 50 receives control information from an external request load (not shown) and sensors (not shown) in each part of the fuel cell system, and controls the operation of each part in the system. The control unit 50 is configured by a control computer system (not shown). This control computer system has a known configuration such as a CPU, ROM, RAM, HDD, input / output interface, and display, and is configured by a commercially available control computer system.

図2に制御ユニット50のブロック図を示した。制御ユニット50は、燃料電池20に対する出力目標値を設定する出力設定部51と、燃料電池20の運転履歴が記憶される運転履歴記憶手段52と、運転履歴記憶手段52に記憶された燃料電池20の運転履歴に応じて、出力電圧の変動回数を制限する変動回数制限手段53と、出力電圧の累積変動回数を所定の値に変更する変動回数変更手段54と、外部からの要求出力が高くなる時間帯を推定する高負荷時間帯推定手段55と、を備える。   A block diagram of the control unit 50 is shown in FIG. The control unit 50 includes an output setting unit 51 that sets an output target value for the fuel cell 20, an operation history storage unit 52 that stores an operation history of the fuel cell 20, and the fuel cell 20 stored in the operation history storage unit 52. The fluctuation number limiting means 53 for limiting the number of fluctuations of the output voltage, the fluctuation number changing means 54 for changing the cumulative fluctuation number of the output voltage to a predetermined value, and the required output from the outside increase. High load time zone estimating means 55 for estimating the time zone.

出力設定部51は、変動回数制限手段53により制限される変動回数と、外部からの要求出力とに基づいて、燃料電池20の出力目標値を設定する。具体的には、燃料電池20の発電量を第1所定出力と、これより低い第2所定出力のいずれかに切り替える。この切り替えを出力変動と呼ぶ。例えば、第1所定出力を1kWの定格出力とし、第2所定出力を1/2〜1/4定格出力とすることができる。   The output setting unit 51 sets the output target value of the fuel cell 20 based on the number of fluctuations restricted by the fluctuation number restriction means 53 and the output requested from the outside. Specifically, the power generation amount of the fuel cell 20 is switched between a first predetermined output and a second predetermined output lower than the first predetermined output. This switching is called output fluctuation. For example, the first predetermined output can be a rated output of 1 kW, and the second predetermined output can be a 1/2 to 1/4 rated output.

運転履歴記憶手段52は、燃料電池20の出力電圧の累積変動回数、すなわち第2所定出力から第1所定出力への切り替え、あるいはその逆の切り替え回数の累計、及び累積運転時間が記憶される。   The operation history storage means 52 stores the cumulative fluctuation number of the output voltage of the fuel cell 20, that is, the cumulative number of times of switching from the second predetermined output to the first predetermined output or vice versa, and the cumulative operating time.

変動回数制限手段53は、運転履歴記憶手段52によって記憶された累積変動回数に基づいて、一日あたりに許容する出力電圧の変動回数を求める。図3に示した一日あたりの変動回数と耐久寿命との相関関係に基づいて、耐久寿命を算出する。なお、図3に示した相関は、予め変動回数制限手段53に与えられている。   The fluctuation number limiting means 53 obtains the number of fluctuations of the output voltage allowed per day based on the cumulative fluctuation number stored in the operation history storage means 52. The durable life is calculated based on the correlation between the number of fluctuations per day and the durable life shown in FIG. It should be noted that the correlation shown in FIG.

耐久寿命が基準よりも短い(例えば10,000時間以下)と判定された場合、1日あたりの変動回数を抑えた制御(制限モード)に切り替え、最終的な寿命が長くなるようにする。例えば、25,000時間程度の寿命となるようにする。詳細には、変動回数制限手段53が出力設定部51による燃料電池20の発電を以下のような制限モードに切り替える。   When it is determined that the durable life is shorter than the standard (for example, 10,000 hours or less), the control is switched to the control (restriction mode) in which the number of fluctuations per day is suppressed, so that the final life is lengthened. For example, the lifetime is set to about 25,000 hours. Specifically, the fluctuation number limiting means 53 switches the power generation of the fuel cell 20 by the output setting unit 51 to the following limiting mode.

制限モード時には、例えば1kw定格出力(第1所定出力)への出力変動を、朝に一回、夜に一回に制限した制限パターンで出力電圧が制御される。これを図4に示した。図の例では、符号Aで示したものが燃料電池を設置された住宅における消費電力の一例、符号Bが制限パターンである。   In the limit mode, for example, the output voltage is controlled with a limit pattern in which output fluctuation to a 1 kW rated output (first predetermined output) is limited to once in the morning and once in the night. This is shown in FIG. In the example of the figure, what is indicated by a symbol A is an example of power consumption in a house where a fuel cell is installed, and a symbol B is a restriction pattern.

制限パターンでは、消費電力が大きくなる時間帯である朝と夜に、それぞれ一度だけ1kW(第1所定出力)の定格発電を行い、それ以外の時間では第2所定出力である1/2〜1/4定格出力(250〜500W)で発電を行う。なお、夜間は停止状態とする。この制限パターンは、予め設定されたパターンでもよいが、以下のように、運転パターンの履歴に基づいて自動的に設定することができる。   In the limit pattern, the rated power generation of 1 kW (first predetermined output) is performed only once each morning and night, which is a time zone in which power consumption increases, and the second predetermined output is 1/2 to 1 at other times. Electric power is generated at / 4 rated output (250 to 500 W). In addition, it will be in a stop state at night. The restriction pattern may be a preset pattern, but can be automatically set based on the driving pattern history as follows.

計時手段を備える高負荷時間帯推定手段55が、消費電力が大きくなり、定格発電が必要な時間帯(高出力要求時間帯)を過去の発電履歴または消費電力に基づいて判定する。図4の例では朝と夜に消費電力が増加しているが、設置環境によっては図4の消費電力パターンと異なる場合がある。本例のように高負荷時間帯推定手段55が高出力要求時間帯を推定することにより、燃料電池システムの使用環境に応じて最適な制御パターンを得ることができる。   The high load time zone estimation means 55 provided with a time measuring means determines a time zone (high output request time zone) in which the power consumption increases and the rated power generation is necessary based on the past power generation history or power consumption. In the example of FIG. 4, power consumption increases in the morning and at night, but may differ from the power consumption pattern of FIG. 4 depending on the installation environment. As in this example, the high load time zone estimation means 55 estimates the high output request time zone, so that an optimal control pattern can be obtained according to the use environment of the fuel cell system.

運転を続けるにしたがって出力電圧の累積変動回数または燃料電池20の累積運転時間は増加し、これによって燃料電池20の劣化が進み、寿命が低下する。このため、変動回数制限手段53は、寿命が低下した場合に更に変動回数の制限を厳しくする。例えば図4の制限パターンでは、定格出力は一日あたり2回許可されるが、これを1回に減らす。   As the operation is continued, the cumulative number of fluctuations of the output voltage or the cumulative operation time of the fuel cell 20 increases, whereby the deterioration of the fuel cell 20 progresses and the life is shortened. For this reason, the fluctuation number limiting means 53 further restricts the fluctuation number when the life is reduced. For example, in the limiting pattern of FIG. 4, the rated output is allowed twice per day, but this is reduced to one.

これを実現するために、上記高負荷時間帯推定手段55は、高出力が要求される高出力要求時間帯に優先順位を高く設定し、寿命が低下した場合は、定格出力の優先順位が低い高出力要求時間帯についても定格出力を制限する。なお、制限パターンを超える電力(制限パターンの斜線部を超える消費電力部分)は、別途給電される商用電力により賄われる。   In order to realize this, the high load time zone estimation means 55 sets a high priority in the high output request time zone in which a high output is required, and the rated output priority is low when the life is reduced. The rated output is limited even during the high output demand period. Note that the power exceeding the limit pattern (power consumption exceeding the shaded portion of the limit pattern) is covered by separately supplied commercial power.

燃料電池20のメンテナンスを行った場合は、燃料電池20の耐久寿命が延びるため、運転履歴記憶手段52に記憶された出力電圧の累積変動回数および累積運転時間を変動回数変更手段54によって初期化する、または所定の値に戻す。かかる初期化を実施する、または所定値に戻すことにより、不要な出力電圧の制限は回避される。なお、累積変動回数は、累積変動回数又は/及び累積運転時間に応じて所定の値に戻すようにしてもよい。   When the maintenance of the fuel cell 20 is performed, the endurance life of the fuel cell 20 is extended. Therefore, the accumulated number of fluctuations and the accumulated operation time of the output voltage stored in the operation history storage unit 52 are initialized by the variation number changing unit 54. Or return to a predetermined value. By performing such initialization or returning it to a predetermined value, unnecessary output voltage limitation is avoided. Note that the cumulative fluctuation count may be returned to a predetermined value according to the cumulative fluctuation count or / and the cumulative operation time.

以上のように、本実施形態の燃料電池システムによれば、出力変動による燃料電池20の劣化を抑制することができ、燃料電池20の耐久性を向上することができる。特に、燃料電池20の劣化が進んだ場合には、変動回数の制限を厳しくすることにより、より一層効果的に耐久性を向上させることができる。   As described above, according to the fuel cell system of the present embodiment, deterioration of the fuel cell 20 due to output fluctuation can be suppressed, and the durability of the fuel cell 20 can be improved. Particularly, when the deterioration of the fuel cell 20 has progressed, the durability can be further effectively improved by tightening the restriction on the number of fluctuations.

本発明に係る燃料電池システムの一実施形態を概略的に示したシステム構成図である。1 is a system configuration diagram schematically illustrating an embodiment of a fuel cell system according to the present invention. 同燃料電池システムが備える制御ユニットの構成を示したブロック図である。It is the block diagram which showed the structure of the control unit with which the fuel cell system is provided. 一日あたりの出力電圧の変動回数と耐久寿命との相関関係を示した図である。It is the figure which showed correlation with the frequency | count of fluctuation | variation of the output voltage per day, and a durable life. 燃料電池が設置された家庭における消費電力の一例及び燃料電池の発電パターン(制限パターン)について示した図である。It is the figure shown about an example of the power consumption in the household in which the fuel cell was installed, and the power generation pattern (limitation pattern) of a fuel cell.

符号の説明Explanation of symbols

20…燃料電池、50…制御ユニット、51…出力設定部、52…運転履歴記憶手段、53…変動回数制限手段、54…変動回数変更手段、55…高負荷時間帯推定手段、

DESCRIPTION OF SYMBOLS 20 ... Fuel cell, 50 ... Control unit, 51 ... Output setting part, 52 ... Operation history memory | storage means, 53 ... Variation frequency limit means, 54 ... Variation frequency change means, 55 ... High load time zone estimation means,

Claims (7)

燃料供給と酸化剤供給とを受けて発電する燃料電池と、該燃料電池の出力を制御する制御装置と、を備えた燃料電池システムにおいて、
前記制御装置は、前記燃料電池の運転履歴に基づいて、前記出力の単位時間あたりの変動回数を制限することを特徴とする燃料電池システム。
In a fuel cell system comprising: a fuel cell that generates power by receiving fuel supply and oxidant supply; and a control device that controls the output of the fuel cell.
The control device limits the number of fluctuations per unit time of the output based on an operation history of the fuel cell.
前記制御装置は、出力電圧の変動回数を制限することを特徴とする請求項1に記載の燃料電池システム。   The fuel cell system according to claim 1, wherein the control device limits the number of times the output voltage fluctuates. 前記制御装置は、前記燃料電池の運転履歴が記憶される運転履歴記憶手段と、該運転履歴記憶手段に記憶された運転履歴に応じて前記出力の変動回数を制限する変動回数制限手段と、該変動回数制限手段により制限される前記変動回数と外部からの要求出力とに基づいて前記燃料電池の出力目標値を設定する出力設定部と、を備えたことを特徴とする請求項1又は2に記載の燃料電池システム。   The control device includes an operation history storage unit that stores an operation history of the fuel cell, a fluctuation number limiting unit that limits the number of fluctuations of the output according to the operation history stored in the operation history storage unit, 3. An output setting unit that sets an output target value of the fuel cell based on the number of fluctuations limited by a fluctuation number limiting means and an externally requested output. The fuel cell system described. 前記運転履歴記憶手段に記憶される運転履歴は、少なくとも前記出力の累積変動回数を含むものであり、
前記変動回数制限手段は、前記累積変動回数が大きくなるほど、前記変動回数の制限値を小さくすることを特徴とする請求項3に記載の燃料電池システム。
The driving history stored in the driving history storage means includes at least the cumulative number of fluctuations of the output,
4. The fuel cell system according to claim 3, wherein the fluctuation number limiting means decreases the limit value of the fluctuation number as the cumulative fluctuation number increases.
所定の場合に、前記累積変動回数を所定の値に変更する変動回数変更手段を備えたことを特徴とする請求項4に記載の燃料電池システム。   5. The fuel cell system according to claim 4, further comprising a fluctuation number changing means for changing the cumulative number of fluctuations to a predetermined value in a predetermined case. 前記変動回数制限手段は、外部からの要求出力が所定値よりも高くなる時間帯にのみ前記出力の上昇変動を許可し、他の時間帯では前記出力の変動を制限することを特徴とする請求項3〜5のいずれかに記載の燃料電池システム。   The fluctuation number limiting means permits an increase in the output only during a time zone in which a request output from the outside is higher than a predetermined value, and limits the output fluctuation in other time zones. Item 6. The fuel cell system according to any one of Items 3 to 5. 燃料供給と酸化剤供給とを受けて発電する燃料電池と、該燃料電池の出力を制御する制御装置と、を備えた燃料電池システムの運転方法において、
前記燃料電池の運転履歴に基づいて、前記出力の単位時間あたりの変動回数を制限することを特徴とする燃料電池システムの運転方法。


In a method of operating a fuel cell system comprising: a fuel cell that generates power upon receipt of a fuel supply and an oxidant supply; and a control device that controls the output of the fuel cell.
An operation method of a fuel cell system, wherein the number of fluctuations per unit time of the output is limited based on an operation history of the fuel cell.


JP2005225351A 2005-08-03 2005-08-03 Fuel cell system and its operation method Pending JP2007042436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005225351A JP2007042436A (en) 2005-08-03 2005-08-03 Fuel cell system and its operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005225351A JP2007042436A (en) 2005-08-03 2005-08-03 Fuel cell system and its operation method

Publications (1)

Publication Number Publication Date
JP2007042436A true JP2007042436A (en) 2007-02-15

Family

ID=37800230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005225351A Pending JP2007042436A (en) 2005-08-03 2005-08-03 Fuel cell system and its operation method

Country Status (1)

Country Link
JP (1) JP2007042436A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011102147A1 (en) * 2010-02-22 2011-08-25 パナソニック株式会社 Fuel cell operating method and fuel cell system
JP2011181198A (en) * 2010-02-26 2011-09-15 Panasonic Corp Fuel cell power generation system
JP2012129069A (en) * 2010-12-15 2012-07-05 Toyota Motor Corp Fuel cell system and control method thereof
EP2544285A1 (en) * 2010-03-01 2013-01-09 Panasonic Corporation Fuel-cell power generating system
JP2021012821A (en) * 2019-07-08 2021-02-04 株式会社豊田自動織機 Automated transfer system and automated guided vehicle

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03195327A (en) * 1989-12-15 1991-08-26 Hitachi Ltd Power plant control unit
JP2001258293A (en) * 2000-03-08 2001-09-21 Osaka Gas Co Ltd Power generating equipment
JP2002291161A (en) * 2001-03-28 2002-10-04 Osaka Gas Co Ltd Output control method for household fuel cell
JP2004103397A (en) * 2002-09-10 2004-04-02 Matsushita Electric Ind Co Ltd Control device of fuel cell system
JP2004214133A (en) * 2003-01-08 2004-07-29 Matsushita Electric Ind Co Ltd Fuel cell maintenance operation processing system
JP2004349082A (en) * 2003-05-21 2004-12-09 Sekisui Chem Co Ltd Cogeneration system
JP2005009846A (en) * 2003-05-26 2005-01-13 Tokyo Gas Co Ltd Cogeneration system
JP2005333701A (en) * 2004-05-18 2005-12-02 Nippon Telegr & Teleph Corp <Ntt> Operation scheduling method, system and program of distributed energy community system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03195327A (en) * 1989-12-15 1991-08-26 Hitachi Ltd Power plant control unit
JP2001258293A (en) * 2000-03-08 2001-09-21 Osaka Gas Co Ltd Power generating equipment
JP2002291161A (en) * 2001-03-28 2002-10-04 Osaka Gas Co Ltd Output control method for household fuel cell
JP2004103397A (en) * 2002-09-10 2004-04-02 Matsushita Electric Ind Co Ltd Control device of fuel cell system
JP2004214133A (en) * 2003-01-08 2004-07-29 Matsushita Electric Ind Co Ltd Fuel cell maintenance operation processing system
JP2004349082A (en) * 2003-05-21 2004-12-09 Sekisui Chem Co Ltd Cogeneration system
JP2005009846A (en) * 2003-05-26 2005-01-13 Tokyo Gas Co Ltd Cogeneration system
JP2005333701A (en) * 2004-05-18 2005-12-02 Nippon Telegr & Teleph Corp <Ntt> Operation scheduling method, system and program of distributed energy community system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011102147A1 (en) * 2010-02-22 2011-08-25 パナソニック株式会社 Fuel cell operating method and fuel cell system
CN102770997A (en) * 2010-02-22 2012-11-07 松下电器产业株式会社 Fuel cell operating method and fuel cell system
JP5107480B2 (en) * 2010-02-22 2012-12-26 パナソニック株式会社 Fuel cell operating method and fuel cell system
US8859155B2 (en) 2010-02-22 2014-10-14 Panasonic Corporation Fuel cell operating method and fuel cell system
JP2011181198A (en) * 2010-02-26 2011-09-15 Panasonic Corp Fuel cell power generation system
EP2544285A1 (en) * 2010-03-01 2013-01-09 Panasonic Corporation Fuel-cell power generating system
EP2544285A4 (en) * 2010-03-01 2013-12-25 Panasonic Corp Fuel-cell power generating system
JP2012129069A (en) * 2010-12-15 2012-07-05 Toyota Motor Corp Fuel cell system and control method thereof
JP2021012821A (en) * 2019-07-08 2021-02-04 株式会社豊田自動織機 Automated transfer system and automated guided vehicle
JP7151040B2 (en) 2019-07-08 2022-10-12 株式会社豊田自動織機 Automated Guided Vehicles and Automated Guided Vehicles

Similar Documents

Publication Publication Date Title
JP4649308B2 (en) Fuel cell system
JP2007035509A (en) Fuel cell system
JP5081574B2 (en) Operation method when load of fuel cell system increases
JP5668755B2 (en) FUEL CELL DEVICE AND FUEL CELL SYSTEM INCLUDING THE SAME
WO2009113304A1 (en) Fuel cell system
KR100724017B1 (en) Fuel Cell System and Method for Operating the Same
JP5145630B2 (en) Fuel cell system
JP2007042436A (en) Fuel cell system and its operation method
JP5023447B2 (en) Fuel cell system
JP5071254B2 (en) Fuel cell power generation system and operation method thereof
EP2639869B1 (en) Operation method of polymer electrolyte fuel cell system and polymer electrolyte fuel cell system
EP2311123A1 (en) Fuel cell system and method of controlling the fuel cell system
JP2007227162A (en) Fuel cell system
JP4739938B2 (en) Fuel cell system
JP4727642B2 (en) Operation method of hydrogen production power generation system
EP2139060B1 (en) Fuel battery system and its operating method
JP5482108B2 (en) Fuel cell system and operation method thereof
JP5052756B2 (en) Operation method of fuel cell power generation system, fuel cell power generation system
JP2006302578A (en) Operation method of fuel cell and fuel cell system
JP2009117170A (en) Hydrogen and power generating system, and load following power generation method therein
JP2007157604A (en) Fuel cell system and movable body
JP2008027606A (en) Fuel cell system
JP5218555B2 (en) Fuel cell system
JP2008192541A (en) Operation control system of fuel cell
JP2008004426A (en) Fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120913