JP2007040760A - Hydrogen phosphate ion sensor and concentration measuring method of hydrogen phosphate ions - Google Patents

Hydrogen phosphate ion sensor and concentration measuring method of hydrogen phosphate ions Download PDF

Info

Publication number
JP2007040760A
JP2007040760A JP2005223352A JP2005223352A JP2007040760A JP 2007040760 A JP2007040760 A JP 2007040760A JP 2005223352 A JP2005223352 A JP 2005223352A JP 2005223352 A JP2005223352 A JP 2005223352A JP 2007040760 A JP2007040760 A JP 2007040760A
Authority
JP
Japan
Prior art keywords
formula
hydrogen phosphate
hpo
chemical formula
phosphate ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005223352A
Other languages
Japanese (ja)
Inventor
Kazuya Kohiro
和哉 小廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kochi University of Technology
Original Assignee
Kochi University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kochi University of Technology filed Critical Kochi University of Technology
Priority to JP2005223352A priority Critical patent/JP2007040760A/en
Publication of JP2007040760A publication Critical patent/JP2007040760A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an anion recognizing sensor having a low detection limit, recognizing hydrogen phosphate ions (HPO<SB>4</SB><SP>2-</SP>) in a highly selective manner, easy to acquire and capable of recognizing hydrogen phosphate ions even in an aqueous solution, and to provide a concentration measuring method of hydrogen phosphate ions in the aqueous solution. <P>SOLUTION: The hydrogen phosphate ion (HPO<SB>4</SB><SP>-2</SP>) sensor comprises at least one kind of a compound selected from an aromatic acid and/or an aromatic acid derivative. In the concentration measuring method of hydrogen phosphate ions, at least one of the aromatic acid and the aromatic acid derivative is brought into contact with hydrogen phosphate ions in a solution containing acetonitrile and the solution is subjected to spectral analysis selected from at least one of fluorometric-phosphorimetric emission analysis and nuclear resonance analysis to measure the concentration of hydrogen phosphate ions. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、アニオンを認識するための技術分野に属し、詳細には、リン酸水素イオン(HPO 2−)を、高感度・高選択的に認識するセンサー及びリン酸水素イオン濃度の測定方法に関する。 The present invention belongs to the technical field for recognizing anions, and more specifically, a sensor for recognizing hydrogen phosphate ion (HPO 4 2− ) with high sensitivity and high selectivity, and a method for measuring hydrogen phosphate ion concentration About.

リン酸アニオンは生体内において重要な役割を果たしている。例えば生体内のシグナル伝達系では、リン酸化タンパク質やリン脂質のリン酸基を介し、種々の情報伝達の制御が行なわれている。したがって、リン酸アニオンを検出するセンシングシステムが確立されれば、それに基づき新しい薬剤や試薬の開発に資することができるものと期待される。一方、生活廃水や工業廃水に含まれるリン酸イオンは、河川や湖沼の富栄養化及び近海領域の赤潮の発生に大きく影響を与えており、分離除去することが望まれている。   Phosphate anions play an important role in vivo. For example, in an in vivo signal transmission system, various information transmissions are controlled through phosphoric acid proteins or phospholipid phosphate groups. Therefore, if a sensing system for detecting phosphate anions is established, it is expected that it will contribute to the development of new drugs and reagents. On the other hand, phosphate ions contained in domestic wastewater and industrial wastewater greatly affect the eutrophication of rivers and lakes and the occurrence of red tides in the near sea region, and it is desired to separate and remove them.

一般的に、アニオン種の定量はイオンクロマトグラフィー、イオン選択性電極または比色分析等で行われているが、例えば、イオンクロマトグラフィーは、装置が高価なため広く使用される方法ではなかった。また、金属イオンに代表されるカチオンを検出するための認識センサーは多く開発されているのに対し、アニオンを検出するため認識センサーに関しては、複雑な化合物を用いるシステムが研究室レベルでは種々提案されているが(非特許文献1〜5)、実用的で経済的なセンサーの例は極めて少ない。単純な構造のプローブ化合物を用いる唯一の例として芳香族アミドを用いる例を挙げることができる(非特許文献6)。   In general, anion species are quantified by ion chromatography, ion-selective electrodes, colorimetric analysis, or the like. For example, ion chromatography has not been a widely used method because of its expensive equipment. While many recognition sensors for detecting cations such as metal ions have been developed, various systems using complicated compounds have been proposed at the laboratory level for recognition sensors for detecting anions. However, there are very few practical and economical sensors. The only example using a probe compound with a simple structure is an example using an aromatic amide (Non-patent Document 6).

例えば、特許文献1には有機ボロン酸ジエステル化合物を、特許文献2には亜鉛錯体を、特許文献3には環状ポリアミンのカドミウム錯体を、特許文献4にはシッフ塩基を、リン酸イオンのアニオン検出用蛍光プローブとして使用する例が開示されているが、これらの蛍光プローブ化合物は、化学合成により得られるものであり、入手容易であるとは言い難い。従って、生化学的又は生理学的な実験に使用することができる、即ち水溶液中でのアニオン認識が可能であり、且つアニオンを高選択的に認識するとともに、検出限界が極めて低い、また入手が容易なアニオン認識センサーの創出が望まれている。   For example, Patent Document 1 discloses an organic boronic acid diester compound, Patent Document 2 discloses a zinc complex, Patent Document 3 discloses a cadmium complex of a cyclic polyamine, Patent Document 4 discloses a Schiff base, and anion detection of phosphate ions. However, these fluorescent probe compounds are obtained by chemical synthesis and are not readily available. Therefore, it can be used for biochemical or physiological experiments, that is, it can recognize anions in an aqueous solution, recognizes anions with high selectivity, has a very low detection limit, and is easily available. Creation of a unique anion recognition sensor is desired.

Schmidtchen, F. P.; Berger, M. Chem. Rev, 1997, 97, 1609-1646.Schmidtchen, F. P .; Berger, M. Chem. Rev, 1997, 97, 1609-1646. Gale, P. A. Coord. Chem. Rev. 2000, 199, 181-233.Gale, P. A. Coord. Chem. Rev. 2000, 199, 181-233. Gale, P. A. Coord. Chem. Rev. 2001, 213, 79-128.Gale, P. A. Coord. Chem. Rev. 2001, 213, 79-128. Beer, P. D.; Gale, P. A. Angew. Chem., Int. Ed. 2001, 40, 486-516.Beer, P. D .; Gale, P. A. Angew. Chem., Int. Ed. 2001, 40, 486-516. Martinez-Manez, R.; Sancenon, F. Chem. Rev, 2003, 103, 4419-4476.Martinez-Manez, R .; Sancenon, F. Chem. Rev, 2003, 103, 4419-4476. Fang-Ying Wu, Yun-Bao Jiang, Chemical Physics Letters, 355 (2002)438-444Fang-Ying Wu, Yun-Bao Jiang, Chemical Physics Letters, 355 (2002) 438-444 特開2001−133407号公報JP 2001-133407 A 特開2003−246788号公報JP 2003-246788 A 特開2003−254909号公報JP 2003-254909 A 特開2004−10560号公報JP 2004-10560 A

本発明の課題は、上述したような従来技術の問題点を解決するべく、低い検出限界を有するとともに高選択的にリン酸水素イオン(HPO 2−)を認識し、さらに、入手が容易であり且つ水溶液中においてもリン酸水素イオンの認識が可能であるアニオン認識センサーを提供することにある。
本発明のさらなる課題は、低い検出限界を有するとともに高選択的にリン酸水素イオン(HPO 2−)を認識し、さらに、水溶液中のリン酸水素イオン(HPO 2−)濃度を測定する方法を提供することにある。
An object of the present invention is to solve the problems of the prior art as described above, have a low detection limit, recognize hydrogen phosphate ions (HPO 4 2− ) with high selectivity, and are easily available. Another object is to provide an anion recognition sensor capable of recognizing hydrogen phosphate ions even in an aqueous solution.
A further object of the present invention is to recognize a hydrogen phosphate ion (HPO 4 2− ) with a low detection limit and highly selectively, and further measure the concentration of hydrogen phosphate ion (HPO 4 2− ) in an aqueous solution. It is to provide a method.

請求項1に係る発明は、次式(化1)又は式(化2)で表される芳香族酸及び/又は芳香族酸誘導体から選択される少なくとも一種からなるリン酸水素イオン(HPO 2−)センサーに関する。
(尚、(化1)の式中Rは、COH、SOH、SONH、イミド基又はPOであり、
(化1)及び(化2)の式中Rは、H、炭素数1〜18のアルキル基、F、Cl、Br、I、N(CH、N(C、NHC、NHCCH、NO、炭素数1〜18のアルコキシル基、炭素数6〜24のアリール基、CHO、ケトン基又はCNであり、
(化2)の式中Rは、COH、CONH、SOH、SONH、イミド基又はPOであり、
(化2)の式中Arは、ベンゼン環が2〜7個縮合した多環芳香族炭化水素基を示す。)
The invention according to claim 1 is a hydrogen phosphate ion (HPO 4 2) comprising at least one selected from an aromatic acid and / or an aromatic acid derivative represented by the following formula (Formula 1) or Formula (Formula 2). - ) Regarding sensors.
(In the formula of (Chemical Formula 1), R 1 is CO 2 H, SO 3 H, SO 2 NH 2 , an imide group or PO 3 H 2 ,
In the formulas of (Chemical Formula 1) and (Chemical Formula 2), R 2 is H, an alkyl group having 1 to 18 carbon atoms, F, Cl, Br, I, N (CH 3 ) 2 , or N (C 2 H 5 ) 2. , NHC 6 H 5 , NHC 6 H 4 CH 3 , NO 2 , an alkoxyl group having 1 to 18 carbon atoms, an aryl group having 6 to 24 carbon atoms, CHO, a ketone group or CN,
In the formula of (Chemical Formula 2), R 3 is CO 2 H, CONH 2 , SO 3 H, SO 2 NH 2 , an imide group or PO 3 H 2 ,
In the formula of (Chemical Formula 2), Ar represents a polycyclic aromatic hydrocarbon group in which 2 to 7 benzene rings are condensed. )

Figure 2007040760
Figure 2007040760

Figure 2007040760
Figure 2007040760

請求項2に係る発明は、前記芳香族酸誘導体が次式(化3)で表される4−(N,N−ジメチルアミノ)安息香酸であることを特徴とする請求項1に記載のリン酸水素イオン(HPO 2−)センサーに関する。 The invention according to claim 2 is characterized in that the aromatic acid derivative is 4- (N, N-dimethylamino) benzoic acid represented by the following formula (Formula 3). The present invention relates to an oxyhydrogen ion (HPO 4 2− ) sensor.

Figure 2007040760
Figure 2007040760

請求項3に係る発明は、次式(化4)又は式(化5)で表される芳香族酸及び/又は芳香族酸誘導体のうち少なくとも一種とリン酸水素イオン(HPO 2−)を、アセトニトリルを含む溶液中で接触させた後、該溶液を紫外‐可視吸収、蛍光‐りん光発光及び核磁気共鳴分析から選択される少なくとも一つから得られるスペクトル分析により該リン酸水素イオン(HPO 2−)濃度を測定する方法に関する。
(尚、(化4)の式中Rは、COH、SOH、SONH、イミド基又はPOであり、
(化4)及び(化5)の式中Rは、H、炭素数1〜18のアルキル基、F、Cl、Br、I、N(CH、N(C、NHC、NHCCH、NO、炭素数1〜18のアルコキシル基、炭素数6〜24のアリール基、CHO、ケトン基又はCNであり、
(化5)の式中Rは、COH、CONH、SOH、SONH、イミド基又はPOであり、
(化5)の式中Arは、ベンゼン環が2〜7個縮合した多環芳香族炭化水素基を示す。)
The invention according to claim 3 includes at least one aromatic acid and / or aromatic acid derivative represented by the following formula (Formula 4) or Formula (Formula 5) and a hydrogen phosphate ion (HPO 4 2− ). After contacting in a solution containing acetonitrile, the hydrogen phosphate ion (HPO) is analyzed by spectral analysis obtained from at least one selected from ultraviolet-visible absorption, fluorescence-phosphorescence and nuclear magnetic resonance analysis. 4 2- ) It relates to a method for measuring concentration.
(In the formula (4), R 1 is CO 2 H, SO 3 H, SO 2 NH 2 , an imide group or PO 3 H 2 ,
In the formulas of (Chemical Formula 4) and (Chemical Formula 5), R 2 is H, an alkyl group having 1 to 18 carbon atoms, F, Cl, Br, I, N (CH 3 ) 2 , N (C 2 H 5 ) 2. , NHC 6 H 5 , NHC 6 H 4 CH 3 , NO 2 , an alkoxyl group having 1 to 18 carbon atoms, an aryl group having 6 to 24 carbon atoms, CHO, a ketone group or CN,
In the formula of (Chemical Formula 5), R 3 is CO 2 H, CONH 2 , SO 3 H, SO 2 NH 2 , an imide group or PO 3 H 2 ,
In the formula of (Chemical Formula 5), Ar represents a polycyclic aromatic hydrocarbon group in which 2 to 7 benzene rings are condensed. )

Figure 2007040760
Figure 2007040760

Figure 2007040760
Figure 2007040760

請求項4に係る発明は、前記芳香族酸誘導体が次式(化6)で表される4−(N,N−ジメチルアミノ)安息香酸であることを特徴とする請求項3に記載のリン酸水素イオン(HPO 2−)濃度を測定する方法に関する。 The invention according to claim 4 is characterized in that the aromatic acid derivative is 4- (N, N-dimethylamino) benzoic acid represented by the following formula (Formula 6). The present invention relates to a method for measuring an oxyhydrogen ion (HPO 4 2− ) concentration.

Figure 2007040760
Figure 2007040760

請求項5に係る発明は、前記アセトニトリルを含む溶液中に水を含むことを特徴とする請求項3又は4記載のリン酸水素イオン(HPO 2−)濃度を測定する方法に関する。 The invention according to claim 5 relates to the method for measuring the hydrogen phosphate ion (HPO 4 2− ) concentration according to claim 3 or 4, wherein water is contained in the solution containing acetonitrile.

本発明のリン酸水素イオン(HPO 2−)センサーは、極めて低い検出限界を有するとともに高選択的にリン酸水素イオンを認識し、さらに、入手が容易であり、且つ水溶液中においてもリン酸水素イオンの認識が可能である。
本発明のリン酸水素イオン(HPO 2−)濃度の測定方法は、低い検出限界を有するとともに高選択的にリン酸水素イオンを認識するリン酸水素イオンセンサーにより水溶液中のリン酸水素イオン濃度の測定が可能である。
The hydrogen phosphate ion (HPO 4 2− ) sensor of the present invention has an extremely low detection limit, recognizes hydrogen phosphate ions with high selectivity, is easily available, and is also available in an aqueous solution. Recognition of hydrogen ions is possible.
The method for measuring the hydrogen phosphate ion (HPO 4 2− ) concentration of the present invention has a low detection limit and a hydrogen phosphate ion concentration in an aqueous solution by a hydrogen phosphate ion sensor that recognizes hydrogen phosphate ions with high selectivity. Can be measured.

例えば、本発明に係る芳香族酸及び/又は芳香族酸誘導体中の、芳香族環部分、酸性官能基、電子放出性或いは電子吸引性置換基などの種類と位置を組み合わせることにより、分析対象アニオン、吸収波長、発光波長、検出感度などを広範囲に変化させることが可能である。また、紫外光のみならず、可視光領域の光を用い、肉眼で変化を観測することも可能である。   For example, by combining the type and position of the aromatic ring moiety, acidic functional group, electron-emitting or electron-withdrawing substituent in the aromatic acid and / or aromatic acid derivative according to the present invention, the anion to be analyzed It is possible to change the absorption wavelength, emission wavelength, detection sensitivity, etc. over a wide range. It is also possible to observe changes with the naked eye using not only ultraviolet light but also light in the visible light region.

本発明のリン酸水素イオン(HPO 2−)センサーは、リン酸水素イオンを高感度・高選択的に認識する。前記リン酸水素イオンセンサーは、式(化7)又は式(化8)で表される芳香族酸及び/又は芳香族酸誘導体から選択される少なくとも一種からなる。(尚、(化7)の式中Rは、COH、SOH、SONH、イミド基又はPOであり、(化7)及び(化8)の式中Rは、H、炭素数1〜18のアルキル基、F、Cl、Br、I、N(CH、N(C、NHC、NHCCH、NO、炭素数1〜18のアルコキシル基、炭素数6〜24のアリール基、CHO、ケトン基又はCNであり、(化8)の式中Rは、COH、CONH、SOH、SONH、イミド基又はPOであり、(化8)の式中Arは、ベンゼン環が2〜7個縮合した多環芳香族炭化水素基を示す。) The hydrogen phosphate ion (HPO 4 2− ) sensor of the present invention recognizes hydrogen phosphate ions with high sensitivity and high selectivity. The hydrogen phosphate ion sensor comprises at least one selected from an aromatic acid and / or an aromatic acid derivative represented by the formula (Formula 7) or the formula (Formula 8). (In the formula of (Chemical Formula 7), R 1 is CO 2 H, SO 3 H, SO 2 NH 2 , an imide group or PO 3 H 2 , and R in the formulas of (Chemical Formula 7) and (Chemical Formula 8) 2 is H, an alkyl group having 1 to 18 carbon atoms, F, Cl, Br, I, N (CH 3 ) 2 , N (C 2 H 5 ) 2 , NHC 6 H 5 , NHC 6 H 4 CH 3 , NO 2 , an alkoxyl group having 1 to 18 carbon atoms, an aryl group having 6 to 24 carbon atoms, CHO, a ketone group or CN, wherein R 3 is CO 2 H, CONH 2 , SO 3 H, SO 2 NH 2 , an imide group or PO 3 H 2 , wherein Ar represents a polycyclic aromatic hydrocarbon group in which 2 to 7 benzene rings are condensed.

Figure 2007040760
Figure 2007040760

Figure 2007040760
Figure 2007040760

前記式(化7)中R及びRは互いに、オルト位、メタ位又はパラ位のいずれであってもよく、特に限定されない。
本発明において、前記式(化7)中Rとしては、COH、SOH、イミド基が好ましく用いられる。本発明のリン酸水素イオンセンサーは、前記置換基を有することにより、リン酸水素イオンを高い選択性で認識することができるため好ましい。
本発明において、前記式(化7)及び(化8)中Rとしては、N(CH、N(C、NHC、NHCCHが好ましく用いられる。これは、これら置換基を有するリン酸水素イオンセンサーは、吸光係数が大きく発光効率も高いため好ましい。
本発明において、前記式(化8)中Rとしては、COH、CONH、SOH、イミド基が好ましく用いられる。本発明のリン酸水素イオンセンサーは、前記置換基を有することにより、リン酸水素イオンを高い選択性で認識することができるため好ましい。
In the formula (Chemical Formula 7), R 1 and R 2 may be in the ortho position, the meta position, or the para position, and are not particularly limited.
In the present invention, CO 2 H, SO 3 H, and an imide group are preferably used as R 1 in the formula (Formula 7). The hydrogen phosphate ion sensor of the present invention is preferable because it can recognize hydrogen phosphate ions with high selectivity by having the substituent.
In the present invention, R 2 in the formulas (Chemical Formula 7) and (Chemical Formula 8) is preferably N (CH 3 ) 2 , N (C 2 H 5 ) 2 , NHC 6 H 5 , NHC 6 H 4 CH 3. Used. This is preferable because the hydrogen phosphate ion sensor having these substituents has a large extinction coefficient and high luminous efficiency.
In the present invention, CO 2 H, CONH 2 , SO 3 H, and an imide group are preferably used as R 3 in the formula (Formula 8). The hydrogen phosphate ion sensor of the present invention is preferable because it can recognize hydrogen phosphate ions with high selectivity by having the substituent.

本発明において、前記式(化8)中Arは、好ましくは、ベンゼン環が2〜7個縮合した多環芳香族炭化水素基であり、より好ましくは、ベンゼン環が2〜4個縮合した多環芳香族炭化水素基である。また、ベンゼン環がどのように縮合されていてもよく、RとRは、Ar中の任意のベンゼン環に置換され、該ベンゼン環に置換される位置もまた限定されない。本発明において、(化8)中で表される芳香族酸誘導体としては、例えば、以下(化9)及び(化10)のようにベンゼン環が縮合したものが挙げられる。 In the present invention, Ar in the formula (Formula 8) is preferably a polycyclic aromatic hydrocarbon group in which 2 to 7 benzene rings are condensed, and more preferably a polycyclic aromatic group in which 2 to 4 benzene rings are condensed. It is a ring aromatic hydrocarbon group. Further, the benzene ring may be condensed in any way, and R 2 and R 3 are substituted with any benzene ring in Ar, and the position where the benzene ring is substituted is not limited. In the present invention, examples of the aromatic acid derivative represented by (Chemical Formula 8) include those in which a benzene ring is condensed as in (Chemical Formula 9) and (Chemical Formula 10) below.

Figure 2007040760
Figure 2007040760

Figure 2007040760
Figure 2007040760

前記芳香族酸誘導体のうち、本発明のリン酸水素イオン(HPO 2−)センサーは、好ましくは、次式(化11)で表される4−(N,N−ジメチルアミノ)安息香酸からなる。 Among the aromatic acid derivatives, the hydrogen phosphate ion (HPO 4 2− ) sensor of the present invention is preferably made from 4- (N, N-dimethylamino) benzoic acid represented by the following formula (Formula 11). Become.

Figure 2007040760
Figure 2007040760

前記式(化11)で表される4−(N,N−ジメチルアミノ)安息香酸からなる本発明のリン酸水素イオン(HPO 2−)センサーは、合成によっても得られるが、市販品として流通しており、安価で入手することができる。例えば、日焼け止めクリームの原料として市販されていることからも、人体に対しても安全とされるものである。この前記式(化11)で表される4−(N,N−ジメチルアミノ)安息香酸からなる本発明のリン酸水素イオン(HPO 2−)センサーは、リン酸水素イオン(HPO 2−)に対して高い感度と選択性とを兼備する。 The hydrogen phosphate ion (HPO 4 2− ) sensor of the present invention consisting of 4- (N, N-dimethylamino) benzoic acid represented by the above formula (Chemical Formula 11) can be obtained by synthesis, but is a commercially available product. It is distributed and can be obtained at low cost. For example, since it is marketed as a raw material for sunscreen, it is safe for the human body. This represented by the above formula (Formula 11) 4-(N, N-dimethylamino) hydrogen phosphate ions (HPO 4 2-) sensor of the present invention consisting of benzoic acid, hydrogen phosphate ions (HPO 4 2- ) With high sensitivity and selectivity.

本発明のリン酸水素イオン濃度の測定方法とは、次式(化12)又は式(化13)で表される芳香族酸及び/又は芳香族酸誘導体のうち少なくとも一種とリン酸水素イオン(HPO 2−)を、アセトニトリルを含む溶液中で接触させた後、該溶液を紫外‐可視吸収、蛍光‐りん光発光及び核磁気共鳴分析から選択される少なくとも一つから得られるスペクトル分析により該リン酸水素イオン(HPO 2−)濃度を測定する方法である。(尚、(化12)の式中Rは、COH、SOH、SONH、イミド基又はPOであり、(化12)及び(化13)の式中Rは、H、炭素数1〜18のアルキル基、F、Cl、Br、I、N(CH、N(C、NHC、NHCCH、NO、炭素数1〜18のアルコキシル基、炭素数6〜24のアリール基、CHO、ケトン基又はCNであり、(化13)の式中Rは、COH、CONH、SOH、SONH、イミド基又はPOであり、(化13)の式中Arは、ベンゼン環が2〜7個縮合した多環芳香族炭化水素基を示す。) The method for measuring the hydrogen phosphate ion concentration of the present invention includes at least one of aromatic acids and / or aromatic acid derivatives represented by the following formula (Chemical Formula 12) or Formula (Chemical Formula 13) and hydrogen phosphate ions ( After contacting HPO 4 2− ) in a solution containing acetonitrile, the solution is subjected to spectral analysis obtained from at least one selected from ultraviolet-visible absorption, fluorescence-phosphorescence and nuclear magnetic resonance analysis. This is a method for measuring the hydrogen phosphate ion (HPO 4 2− ) concentration. In the formula of (Chemical Formula 12), R 1 is CO 2 H, SO 3 H, SO 2 NH 2 , an imide group or PO 3 H 2 , and R in the formulas of (Chemical Formula 12) and (Chemical Formula 13) 2 is H, an alkyl group having 1 to 18 carbon atoms, F, Cl, Br, I, N (CH 3 ) 2 , N (C 2 H 5 ) 2 , NHC 6 H 5 , NHC 6 H 4 CH 3 , NO 2 , an alkoxyl group having 1 to 18 carbon atoms, an aryl group having 6 to 24 carbon atoms, CHO, a ketone group, or CN, in which R 3 is CO 2 H, CONH 2 , SO 3 H, SO 2 NH 2 , an imide group or PO 3 H 2 , wherein Ar represents a polycyclic aromatic hydrocarbon group in which 2 to 7 benzene rings are condensed.

Figure 2007040760
Figure 2007040760

Figure 2007040760
Figure 2007040760

前記式(化12)中R及びRは互いに、オルト位、メタ位又はパラ位のいずれであってもよく限定されない。
本発明のリン酸水素イオン濃度の測定方法において、前記式(化12)中Rとしては、COH、SOH、イミド基が好ましく用いられ、前記置換基を有することにより、リン酸水素イオンを高い選択性で認識することができるため好ましい。
本発明のリン酸水素イオン濃度の測定方法において、前記式(化12)及び(化13)中Rとしては、N(CH、N(C、NHC、NHCCHが好ましく用いられる。これは、これら置換基を有するリン酸水素イオンセンサーは、吸光係数が大きく発光効率も高いため好ましい。
本発明のリン酸水素イオン濃度の測定方法において、前記式(化13)中Rとしては、COH、CONH、SOH、イミド基が好ましく用いられ、前記置換基を有することにより、リン酸水素イオンを高い選択性で認識することができるため好ましい。
In the formula (Chemical Formula 12), R 1 and R 2 may be any of the ortho, meta, and para positions, and are not limited.
In the method for measuring the hydrogen phosphate ion concentration of the present invention, CO 2 H, SO 3 H, and an imide group are preferably used as R 1 in the formula (Chemical Formula 12). It is preferable because hydrogen ions can be recognized with high selectivity.
In the method for measuring hydrogen phosphate ion concentration of the present invention, R 2 in the above formulas (Chemical Formula 12) and (Chemical Formula 13) is N (CH 3 ) 2 , N (C 2 H 5 ) 2 , NHC 6 H 5. NHC 6 H 4 CH 3 is preferably used. This is preferable because the hydrogen phosphate ion sensor having these substituents has a large extinction coefficient and high luminous efficiency.
In the method for measuring the hydrogen phosphate ion concentration of the present invention, CO 2 H, CONH 2 , SO 3 H, and an imide group are preferably used as R 3 in the above formula (Chemical Formula 13). It is preferable because hydrogen phosphate ions can be recognized with high selectivity.

本発明のリン酸水素イオン濃度の測定方法において、前記式(化13)中Arは、好ましくは、ベンゼン環が2〜7個縮合した多環芳香族炭化水素基であり、より好ましくは、ベンゼン環が2〜4個縮合した多環芳香族炭化水素基である。また、ベンゼン環がどのように縮合されていてもよく、RとRは、Ar中の任意のベンゼン環に置換され、該ベンゼン環に置換される位置もまた限定されない。 In the method for measuring hydrogen phosphate ion concentration of the present invention, Ar in the formula (Formula 13) is preferably a polycyclic aromatic hydrocarbon group having 2 to 7 condensed benzene rings, more preferably benzene. It is a polycyclic aromatic hydrocarbon group in which 2 to 4 rings are condensed. Further, the benzene ring may be condensed in any way, and R 2 and R 3 are substituted with any benzene ring in Ar, and the position where the benzene ring is substituted is not limited.

前記芳香族酸誘導体のうち、本発明のリン酸水素イオン濃度の測定方法には、前記芳香族酸誘導体として、次式(化14)で表される4−(N,N−ジメチルアミノ)安息香酸が好ましく用いられる。   Among the aromatic acid derivatives, in the method for measuring the hydrogen phosphate ion concentration of the present invention, 4- (N, N-dimethylamino) benzoate represented by the following formula (Formula 14) is used as the aromatic acid derivative. An acid is preferably used.

Figure 2007040760
Figure 2007040760

本発明のリン酸水素イオン(HPO 2−)濃度の測定方法は、まず、リン酸水素イオンと前記式(化13)又は式(化14)のいずれかで表される芳香族酸及び/又は芳香族酸誘導体とを、溶液内で接触させ、この芳香族酸誘導体と溶液中に存在するリン酸水素イオンとを反応させることにより認識させる必要があるが、この接触・反応させるために用いられる器具、装置等は特に限定されない。前記反応後、紫外‐可視吸収、蛍光‐りん光発光及び核磁気共鳴分析から選択される少なくとも一つを測定することにより、リン酸水素イオンの存在を認識し、また、測定スペクトルによる読み取り値を利用してリン酸水素イオン濃度が推定され、即ちリン酸水素イオン濃度が測定される。 In the method for measuring the hydrogen phosphate ion (HPO 4 2− ) concentration of the present invention, first, the hydrogen phosphate ion and the aromatic acid represented by either the above formula (Chem. 13) or the formula (Chem. 14) and / or Or, it is necessary to make the aromatic acid derivative come into contact with each other in the solution and to react by reacting the aromatic acid derivative with hydrogen phosphate ions present in the solution. The instrument, apparatus, etc. used are not specifically limited. After the reaction, the presence of hydrogen phosphate ion is recognized by measuring at least one selected from ultraviolet-visible absorption, fluorescence-phosphorescence emission, and nuclear magnetic resonance analysis, and the reading by the measurement spectrum is taken. Utilizing this, the hydrogen phosphate ion concentration is estimated, that is, the hydrogen phosphate ion concentration is measured.

本発明に係るリン酸水素イオン(HPO 2−)と芳香族酸誘導体を接触させる溶液としては、好ましくは、アセトニトリルを含む溶液が用いられるが、特に限定されない。例えば、アセトニトリル単独を含む溶液、或いはアセトニトリル、水、メタノール、エタノール、アセトン又はシクロデキストリンから選択される一種以上を混合して含む溶液を使用することもできる。好ましい溶液としては、例えば、アセトニトリル単独、シクロデキストリン及び水の混合溶液、アセトニトリル及び水の混合溶液が挙げられる。例えば、本発明に係る芳香族酸誘導体を含むアセトニトリル溶液に、海、川、湖沼などの水サンプルを、前処理なしに添加し、リン酸水素イオンを測定することも可能である。 As the solution for bringing the hydrogen phosphate ion (HPO 4 2− ) and the aromatic acid derivative into contact with each other according to the present invention, a solution containing acetonitrile is preferably used, but is not particularly limited. For example, a solution containing acetonitrile alone or a mixture containing one or more selected from acetonitrile, water, methanol, ethanol, acetone, or cyclodextrin may be used. Examples of preferable solutions include acetonitrile alone, a mixed solution of cyclodextrin and water, and a mixed solution of acetonitrile and water. For example, it is also possible to add a water sample such as sea, river or lake to an acetonitrile solution containing the aromatic acid derivative according to the present invention without pretreatment, and measure hydrogen phosphate ions.

本発明のリン酸水素イオン(HPO 2−)センサーによるリン酸水素イオンの検出限界は、アセトニトリル溶液中において、10−8mol/Lである。 The detection limit of hydrogen phosphate ions by the hydrogen phosphate ion (HPO 4 2− ) sensor of the present invention is 10 −8 mol / L in an acetonitrile solution.

本発明のリン酸水素イオンセンサー及びリン酸水素イオン濃度の測定方法は、生体内の反応機構を解明するための有力な研究手段を提供することができ、また、本発明を利用して新しい薬剤、試薬、機能素子等の開発に資するものである。或いは、河川、海等の水環境中の低濃度の富栄養化成分を除去する目的等で用いることができる。   The hydrogen phosphate ion sensor and the method for measuring the hydrogen phosphate ion concentration of the present invention can provide a powerful research means for elucidating the reaction mechanism in the living body. It contributes to the development of reagents and functional elements. Alternatively, it can be used for the purpose of removing low-concentration eutrophication components in water environments such as rivers and seas.

(試験例1)紫外−可視吸収スペクトル変化
次式(化17)で表される4−(N,N−ジメチルアミノ)安息香酸のアセトニトリル溶液(4.56×10-6 mol/L, 3.00mL)を石英セルに入れ、ここに各種アニオンのアセトニトリル溶液(2.68×10-4 mol/L)を加えた。次式(化17)で表される4−(N,N−ジメチルアミノ)安息香酸(ホスト:H)に対するリン酸水素イオン(HPO 2−)(ゲスト:G)のモル比(G/H)を横軸に,吸光度の変化量を縦軸にプロットした。正の変化は吸光度増加を,負の変化は吸光度減少を意味している.図中のグラフの凡例は次のアニオンを意味する。
(Test Example 1) Ultraviolet-visible absorption spectrum change 4- (N, N-dimethylamino) benzoic acid acetonitrile solution (4.56 × 10 −6 mol / L, 3.00 mL) represented by the following formula (Formula 17) It put into the quartz cell and the acetonitrile solution (2.68 * 10 < -4 > mol / L) of various anions was added here. Molar ratio (G / H) of hydrogen phosphate ion (HPO 4 2− ) (guest: G) to 4- (N, N-dimethylamino) benzoic acid (host: H) represented by the following formula (Formula 17) ) On the horizontal axis and the change in absorbance on the vertical axis. A positive change means an increase in absorbance and a negative change means a decrease in absorbance. The legend of the graph in the figure means the following anions.

(SO42-:SO4 2-,HPO42-:HPO4 2-,H2P2O72-:H2P2O7 2-,H2PO4-:H2PO4 -,HSO4-:HSO4 -,ClO4-:ClO4 -,BF4-:BF4 -,PF6-:PF6 -,NO3-:NO3 -,CH3COO-:CH3COO-,C6H5COO-:C6H5COO- (SO42-: SO 4 2-, HPO42- : HPO 4 2-, H2P2O72-: H 2 P 2 O 7 2-, H2PO4-: H 2 PO 4 -, HSO4-: HSO 4 -, ClO4-: ClO 4 -, BF4-: BF 4 -, PF6-: PF 6 -, NO3-: NO 3 -, CH3COO-: CH 3 COO -, C6H5COO-: C 6 H 5 COO -)

Figure 2007040760
Figure 2007040760

結果を図1及び図2に示す。図1は、309nmにおける測定結果、図2は、275nmにおける測定結果である。309nmにおける測定結果ではアニオン濃度の増加とともに吸光度の減少が、275nmにおける測定結果では吸光度の増加が観測された。これら減少量と増加量の両者を組み合わせることにより、より正確なリン酸水素イオンの濃度の測定が可能となる。   The results are shown in FIGS. FIG. 1 shows the measurement results at 309 nm, and FIG. 2 shows the measurement results at 275 nm. In the measurement result at 309 nm, a decrease in absorbance was observed as the anion concentration increased, and in the measurement result at 275 nm, an increase in absorbance was observed. By combining both the decrease amount and the increase amount, the hydrogen phosphate ion concentration can be measured more accurately.

(試験例2)蛍光発光スペクトル変化(励起波長285nm)
試験例1と同様の方法で行った。即ち、前記式(化17)で表される4−(N,N−ジメチルアミノ)安息香酸のアセトニトリル溶液(4.56×10-6 mol/L, 3.00mL)を石英セルに入れ、ここに各種アニオンのアセトニトリル溶液(2.68×10-4 mol/L)を加えた。前記式(化17)で表される4−(N,N−ジメチルアミノ)安息香酸(ホスト:H)に対するリン酸水素イオン(HPO 2−)(ゲスト:G)のモル比(G/H)を横軸に,蛍光発光強度の変化量を縦軸にプロットした。正の変化は発光強度増加を,負の変化は発光強度減少を意味している.図中のグラフの凡例は次のアニオンを意味する。
(Test Example 2) Fluorescence emission spectrum change (excitation wavelength: 285 nm)
The same method as in Test Example 1 was performed. That is, 4- (N, N-dimethylamino) benzoic acid acetonitrile solution (4.56 × 10 −6 mol / L, 3.00 mL) represented by the above formula (Chemical Formula 17) was placed in a quartz cell, and various anions were added thereto. Acetonitrile solution (2.68 × 10 −4 mol / L) was added. Molar ratio (G / H) of hydrogen phosphate ion (HPO 4 2− ) (guest: G) to 4- (N, N-dimethylamino) benzoic acid (host: H) represented by the formula (Chemical Formula 17) ) On the horizontal axis and the amount of change in fluorescence emission intensity on the vertical axis. A positive change means an increase in emission intensity, and a negative change means a decrease in emission intensity. The legend of the graph in the figure means the following anions.

(SO42-:SO4 2-,HPO42-:HPO4 2-,H2P2O72-:H2P2O7 2-,H2PO4-:H2PO4 -,HSO4-:HSO4 -,ClO4-:ClO4 -,BF4-:BF4 -,PF6-:PF6 -,NO3-:NO3 -,CH3COO-:CH3COO-,C6H5COO-:C6H5COO-
結果を図3及び図4に示す。
(SO42-: SO 4 2-, HPO42- : HPO 4 2-, H2P2O72-: H 2 P 2 O 7 2-, H2PO4-: H 2 PO 4 -, HSO4-: HSO 4 -, ClO4-: ClO 4 -, BF4-: BF 4 -, PF6-: PF 6 -, NO3-: NO 3 -, CH3COO-: CH 3 COO -, C6H5COO-: C 6 H 5 COO -)
The results are shown in FIGS.

試験例1及び2の結果(図1〜4)より、4−(N,N−ジメチルアミノ)安息香酸(ホスト)はHPO4 2-およびSO4 2-に対し強度変化を示すが、その他の1価アニオンに対してはG/H比が0から0.5の領域ではほとんど強度変化を示さなかったことからも、極めてHPO4 2-に選択的であることがわかる。また、滴定グラフが示すように、ホストを用いてHPO4 2-の濃度を測定する際には、SO4 2-が妨害イオンとなる可能性があるが、G/H比が0.5までの領域を測定に用いることにより、その妨害をおよそ10%程度に抑えることが可能となる。 From the results of Test Examples 1 and 2 (FIGS. 1 to 4), 4- (N, N-dimethylamino) benzoic acid (host) shows a change in strength relative to HPO 4 2− and SO 4 2− , For the monovalent anion, the intensity change was hardly observed in the region where the G / H ratio was from 0 to 0.5, indicating that it was extremely selective for HPO 4 2− . Further, as shown in the titration graph, when measuring the concentration of HPO 4 2− using a host, SO 4 2− may be an interfering ion, but the G / H ratio is up to 0.5. By using this region for measurement, the disturbance can be suppressed to about 10%.

試験例1における紫外−可視吸収スペクトル変化を示すグラフであり、309nmでの測定結果である。It is a graph which shows the ultraviolet-visible absorption spectrum change in Test Example 1, and is a measurement result in 309 nm. 試験例1における紫外−可視吸収スペクトル変化を示すグラフであり、275nmでの測定結果である。It is a graph which shows the ultraviolet-visible absorption spectrum change in Test example 1, and is a measurement result in 275 nm. 試験例2における蛍光発光スペクトル変化(励起波長285nm)を示すグラフであり、LE343nmでの測定結果である。It is a graph which shows the fluorescence emission spectrum change (excitation wavelength 285nm) in the test example 2, and is a measurement result in LE343nm. 試験例2における蛍光発光スペクトル変化(励起波長285nm)を示すグラフであり、TICT491nmでの測定結果である。It is a graph which shows the fluorescence emission spectrum change (excitation wavelength 285nm) in Test example 2, and is a measurement result in TICT491nm.

Claims (5)

次式(化1)又は式(化2)で表される芳香族酸及び/又は芳香族酸誘導体から選択される少なくとも一種からなるリン酸水素イオン(HPO 2−)センサー。
(尚、(化1)の式中Rは、COH、SOH、SONH、イミド基又はPOであり、
(化1)及び(化2)の式中Rは、H、炭素数1〜18のアルキル基、F、Cl、Br、I、N(CH、N(C、NHC、NHCCH、NO、炭素数1〜18のアルコキシル基、炭素数6〜24のアリール基、CHO、ケトン基又はCNであり、
(化2)の式中Rは、COH、CONH、SOH、SONH、イミド基又はPOであり、
(化2)の式中Arは、ベンゼン環が2〜7個縮合した多環芳香族炭化水素基を示す。)
Figure 2007040760

Figure 2007040760
A hydrogen phosphate ion (HPO 4 2− ) sensor comprising at least one selected from an aromatic acid and / or an aromatic acid derivative represented by the following formula (Formula 1) or Formula (Formula 2 ):
(In the formula of (Chemical Formula 1), R 1 is CO 2 H, SO 3 H, SO 2 NH 2 , an imide group or PO 3 H 2 ,
In the formulas of (Chemical Formula 1) and (Chemical Formula 2), R 2 is H, an alkyl group having 1 to 18 carbon atoms, F, Cl, Br, I, N (CH 3 ) 2 , or N (C 2 H 5 ) 2. , NHC 6 H 5 , NHC 6 H 4 CH 3 , NO 2 , an alkoxyl group having 1 to 18 carbon atoms, an aryl group having 6 to 24 carbon atoms, CHO, a ketone group or CN,
In the formula of (Chemical Formula 2), R 3 is CO 2 H, CONH 2 , SO 3 H, SO 2 NH 2 , an imide group or PO 3 H 2 ,
In the formula of (Chemical Formula 2), Ar represents a polycyclic aromatic hydrocarbon group in which 2 to 7 benzene rings are condensed. )
Figure 2007040760

Figure 2007040760
前記芳香族酸誘導体が次式(化3)で表される4−(N,N−ジメチルアミノ)安息香酸であることを特徴とする請求項1に記載のリン酸水素イオン(HPO 2−)センサー。
Figure 2007040760
2. The hydrogen phosphate ion (HPO 4 2− ) according to claim 1, wherein the aromatic acid derivative is 4- (N, N-dimethylamino) benzoic acid represented by the following formula (Formula 3): )sensor.
Figure 2007040760
次式(化4)又は式(化5)で表される芳香族酸及び/又は芳香族酸誘導体のうち少なくとも一種とリン酸水素イオン(HPO 2−)を、アセトニトリルを含む溶液中で接触させた後、該溶液を紫外‐可視吸収、蛍光‐りん光発光及び核磁気共鳴分析から選択される少なくとも一つから得られるスペクトル分析により該リン酸水素イオン(HPO 2−)濃度を測定する方法。
(尚、(化4)の式中Rは、COH、SOH、SONH、イミド基又はPOであり、
(化4)及び(化5)の式中Rは、H、炭素数1〜18のアルキル基、F、Cl、Br、I、N(CH、N(C、NHC、NHCCH、NO、炭素数1〜18のアルコキシル基、炭素数6〜24のアリール基、CHO、ケトン基又はCNであり、
(化5)の式中Rは、COH、CONH、SOH、SONH、イミド基又はPOであり、
(化5)の式中Arは、ベンゼン環が2〜7個縮合した多環芳香族炭化水素基を示す。)
Figure 2007040760

Figure 2007040760
Contacting at least one aromatic acid and / or aromatic acid derivative represented by the following formula (Chemical Formula 4) or Formula (Chemical Formula 5) with hydrogen phosphate ion (HPO 4 2− ) in a solution containing acetonitrile. Then, the hydrogen phosphate ion (HPO 4 2− ) concentration is measured by spectral analysis obtained from at least one selected from ultraviolet-visible absorption, fluorescence-phosphorescence emission, and nuclear magnetic resonance analysis. Method.
(In the formula (4), R 1 is CO 2 H, SO 3 H, SO 2 NH 2 , an imide group or PO 3 H 2 ,
In the formulas of (Chemical Formula 4) and (Chemical Formula 5), R 2 is H, an alkyl group having 1 to 18 carbon atoms, F, Cl, Br, I, N (CH 3 ) 2 , N (C 2 H 5 ) 2. , NHC 6 H 5 , NHC 6 H 4 CH 3 , NO 2 , an alkoxyl group having 1 to 18 carbon atoms, an aryl group having 6 to 24 carbon atoms, CHO, a ketone group or CN,
In the formula of (Chemical Formula 5), R 3 is CO 2 H, CONH 2 , SO 3 H, SO 2 NH 2 , an imide group or PO 3 H 2 ,
In the formula of (Chemical Formula 5), Ar represents a polycyclic aromatic hydrocarbon group in which 2 to 7 benzene rings are condensed. )
Figure 2007040760

Figure 2007040760
前記芳香族酸誘導体が次式(化6)で表される4−(N,N−ジメチルアミノ)安息香酸であることを特徴とする請求項3に記載のリン酸水素イオン(HPO 2−)濃度を測定する方法。
Figure 2007040760
4. The hydrogen phosphate ion (HPO 4 2− according to claim 3), wherein the aromatic acid derivative is 4- (N, N-dimethylamino) benzoic acid represented by the following formula (Formula 6). ) Method of measuring concentration.
Figure 2007040760
前記アセトニトリルを含む溶液中に水を含むことを特徴とする請求項3又は4記載のリン酸水素イオン(HPO 2−)濃度を測定する方法。
The method for measuring a hydrogen phosphate ion (HPO 4 2− ) concentration according to claim 3 or 4, wherein the solution containing acetonitrile contains water.
JP2005223352A 2005-08-01 2005-08-01 Hydrogen phosphate ion sensor and concentration measuring method of hydrogen phosphate ions Pending JP2007040760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005223352A JP2007040760A (en) 2005-08-01 2005-08-01 Hydrogen phosphate ion sensor and concentration measuring method of hydrogen phosphate ions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005223352A JP2007040760A (en) 2005-08-01 2005-08-01 Hydrogen phosphate ion sensor and concentration measuring method of hydrogen phosphate ions

Publications (1)

Publication Number Publication Date
JP2007040760A true JP2007040760A (en) 2007-02-15

Family

ID=37798898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005223352A Pending JP2007040760A (en) 2005-08-01 2005-08-01 Hydrogen phosphate ion sensor and concentration measuring method of hydrogen phosphate ions

Country Status (1)

Country Link
JP (1) JP2007040760A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3312601A1 (en) 2014-02-12 2018-04-25 The Doshisha Hydrogen phosphate ion sensor comprising a mixed oxide catalyst of ruthenium oxide and tantalum oxide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3312601A1 (en) 2014-02-12 2018-04-25 The Doshisha Hydrogen phosphate ion sensor comprising a mixed oxide catalyst of ruthenium oxide and tantalum oxide

Similar Documents

Publication Publication Date Title
Zhu et al. A highly selective and instantaneously responsive Schiff base fluorescent sensor for the “turn-off” detection of iron (III), iron (II), and copper (II) ions
Cimerman et al. Schiff bases derived from aminopyridines as spectrofluorimetric analytical reagents
Angupillai et al. Efficient rhodamine-thiosemicarbazide-based colorimetric/fluorescent ‘turn-on’chemodosimeters for the detection of Hg2+ in aqueous samples
Tian et al. A novel turn-on Schiff-base fluorescent sensor for aluminum (III) ions in living cells
Tang et al. A highly selective and ratiometric fluorescent sensor for relay recognition of zinc (II) and sulfide ions based on modulation of excited-state intramolecular proton transfer
Saleh et al. A novel, highly sensitive, selective, reversible and turn-on chemi-sensor based on Schiff base for rapid detection of Cu (II)
He et al. A new rhodamine-thiourea/Al3+ complex sensor for the fast visual detection of arginine in aqueous media
Huo et al. The synthesis, characterization of three isomers of rhodamine derivative and their application in copper (II) ion recognition
Li et al. Ratiometric and colorimetric fluorescent chemosensor for Ag+ based on tricarbocyanine
Elabd et al. Spectroflourimetric assessment of UO22+ by the quenching of the fluorescence intensity of Clopidogrel embedded in PMMA matrix
Balamurugan et al. Single molecular probe for multiple analyte sensing: Efficient and selective detection of mercury and fluoride ions
Babayeva et al. A novel spectrophotometric method for the determination of copper ion by using a salophen ligand, N, N′-disalicylidene-2, 3-diaminopyridine
Yong et al. A naked-eye chemosensor for fluoride ions: a selective easy-to-prepare test paper
Bai et al. An efficient water-soluble fluorescent chemosensor based on furan Schiff base functionalized PEG for the sensitive detection of Al 3+ in pure aqueous solution
Aziz et al. Design of a highly sensitive and selective bulk optode based on fluorescence enhancement of N, N′-bis-(1-hydroxyphenylimine) 2, 2′-pyridil Schiff base: Monitoring of zinc (II) ion in real samples and DFT calculation
Ozturk et al. Fluorescence emission studies of 4-(2-furylmethylene)-2-phenyl-5-oxazolone embedded in polymer thin film and detection of Fe3+ ion
Xie et al. A pyrenyl-appended C3v-symmetric hexahomotrioxacalix [3] arene for selective fluorescence sensing of iodide
Abdel Aziz et al. A Novel Fluorimetric Bulk Optode Membrane Based on NOS Tridentate Schiff Base for Selective Optical Sensing of Al 3+ Ions
Karakuş et al. Fluorescein based three-channel probe for the selective and sensitive detection of CO32− ions in an aqueous environment and real water samples
Jothi et al. Benzothiazole appended 2, 2′-(1, 4-phenylene) diacetonitrile for the colorimetric and fluorescence detection of cyanide ions
Xiong et al. Recyclable fluorescent chemodosimeters based on 8-hydroxyquinoline derivatives for highly sensitive and selective detection of mercury (II) in aqueous media and test strips
Dutta et al. Schiff base compounds as fluorimetric pH sensor: a review
Balasubramanian et al. A novel Schiff base derived quinoline moieties as a selective fluorophore for Sn2+ ion sensing
Zhou et al. Nucleophilic Addition‐Triggered Lanthanide Luminescence Allows Detection of Amines by Eu (thenoyltrifluoroacetone) 3
Li et al. Several fluorescent probes based on hemicyanine for the detection of SO 2 derivatives