JP2007039765A - Method for producing metal particulate - Google Patents

Method for producing metal particulate Download PDF

Info

Publication number
JP2007039765A
JP2007039765A JP2005226966A JP2005226966A JP2007039765A JP 2007039765 A JP2007039765 A JP 2007039765A JP 2005226966 A JP2005226966 A JP 2005226966A JP 2005226966 A JP2005226966 A JP 2005226966A JP 2007039765 A JP2007039765 A JP 2007039765A
Authority
JP
Japan
Prior art keywords
protective colloid
metal
fine particles
particles
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005226966A
Other languages
Japanese (ja)
Inventor
Masanori Tomonari
雅則 友成
Masatoshi Honma
昌利 本間
Yoshiyuki Kunifusa
義之 國房
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP2005226966A priority Critical patent/JP2007039765A/en
Publication of JP2007039765A publication Critical patent/JP2007039765A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method which solves the problem that, when a metallic compound is reduced in a solvent liquid in the presence of protective colloid to produce metal particulate having the protective colloid on the surfaces of the particles, since the metal particulate produced in the presence of the protective colloid are highly dispersed, filtering is hardly performed, and can easily recover the metal particulate. <P>SOLUTION: A protective colloid removal agent of decomposing or dissolving protective colloid is added to a dispersion liquid obtained by reducing a metallic compound in a solvent liquid in the presence of protective colloid, the protective colloid is removed to flocculate metal particulate, and next, filtering is performed using a pressure filtering machine, a vacuum filtering machine, a suction filtering machine or the like. For example, in the case protein such as gelatine is used as protective colloid, proteinase is used as the protective colloid removal agent. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、金属微粒子の製造方法に関し、特に積層セラミックスコンデンサーや、プリント配線基板に形成される電極を製造する際に好適に用いられる金属微粒子の製造方法に関する。   The present invention relates to a method for producing metal fine particles, and more particularly to a method for producing metal fine particles suitably used for producing a multilayer ceramic capacitor or an electrode formed on a printed wiring board.

金属微粒子は電気伝導性、熱伝導性などに優れた特性を示し、また、金属光沢を有するなど独特の性質を有することから種々の用途に利用されている。例えば、銀、パラジウム、ニッケル、銅などの微粒子は、良好な電気伝導性を有する材料であり、プリント配線板の回路等の電極部材、各種電気的接点部材などの電気的導通を確保するための材料として幅広く用いられている。特に、銅、ニッケルは廉価な材料であることから、近年、積層セラミックスコンデンサーの内部電極にも用いられている。   The metal fine particles are excellent in electric conductivity, heat conductivity and the like, and have unique properties such as having a metallic luster, so that they are used in various applications. For example, fine particles such as silver, palladium, nickel, and copper are materials having good electrical conductivity, and ensure electrical continuity of electrode members such as circuits of printed wiring boards and various electrical contact members. Widely used as a material. In particular, since copper and nickel are inexpensive materials, they have recently been used for internal electrodes of multilayer ceramic capacitors.

このような金属微粒子の製造方法としては、アラビアゴム等の保護コロイドを含む水性媒液中で、ヒドラジン系還元剤により酸化銅を還元して銅微粒子を得る方法(特許文献1参照)、貴金属化合物を水と低級アルコールの混合媒液に溶解した第1の溶液と、還元剤とポリアクリル酸、ポリビニルピロリドン等の保護コロイドとを混合した第2の溶液とを混合し、還元反応を行い、金、銀、白金、パラジウム等の貴金属微粒子を得る方法(特許文献2)が知られている。また、本出願人は、銅酸化物を硫黄化合物とゼラチン等の保護コロイドの存在下で還元して銅微粒子を得る方法(特許文献3参照)を提案している。   As a method for producing such metal fine particles, a method of obtaining copper fine particles by reducing copper oxide with a hydrazine-based reducing agent in an aqueous medium containing a protective colloid such as gum arabic (see Patent Document 1), a noble metal compound A first solution in which water and a lower alcohol are mixed with a second solution in which a reducing agent is mixed with a protective colloid such as polyacrylic acid or polyvinylpyrrolidone is mixed, and a reduction reaction is performed. A method of obtaining noble metal fine particles such as silver, platinum and palladium (Patent Document 2) is known. Further, the present applicant has proposed a method of obtaining copper fine particles by reducing copper oxide in the presence of a protective compound colloid such as a sulfur compound and gelatin (see Patent Document 3).

特公昭61−55562号公報Japanese Patent Publication No. 61-55562 特開2004−43892号公報JP 2004-43892 A 特開2004−315853号公報JP 2004-315853 A

前記の特許文献1〜3記載の方法では、保護コロイドの存在下、金属化合物を媒液中で還元して、保護コロイドを粒子表面に有する金属微粒子を生成させている。この理由は、生成する金属微粒子の粒子径が小さい故に表面エネルギーが大きいので、金属微粒子を凝集させずに単分散の状態で得るには、保護コロイドを分散安定化剤として用い、粒子表面に保護コロイドを被着(または吸着)させることが必要不可欠であるためである。しかしながら、保護コロイドの存在により、生成した金属微粒子が高度に分散しているため凝集剤を添加したとしても、還元反応時に使用した金属化合物、還元剤の残分、保護コロイドのほかpH調整剤などの添加剤に由来する陰イオンや陽イオンが多量に存在する分散液から金属微粒子を固液分離し難く、大量生産に不向きな限外濾過を行わなければならないという問題がある。   In the methods described in Patent Documents 1 to 3, a metal compound is reduced in a liquid medium in the presence of a protective colloid to generate metal fine particles having the protective colloid on the particle surface. The reason for this is that, since the surface energy is large due to the small particle size of the generated metal particles, protective colloid is used as a dispersion stabilizer to protect the particle surface in order to obtain a monodispersed state without agglomerating the metal particles. This is because it is essential to deposit (or adsorb) the colloid. However, due to the presence of protective colloids, the resulting metal fine particles are highly dispersed, so even if flocculants are added, the metal compound used during the reduction reaction, the remainder of the reducing agent, the protective colloid, pH adjuster, etc. There is a problem that it is difficult to solid-liquid-separate metal fine particles from a dispersion containing a large amount of anions and cations derived from these additives, and ultrafiltration unsuitable for mass production must be performed.

本発明者らは、これらの問題点を解決すべく鋭意研究を重ねた結果、保護コロイドと金属微粒子を含有した分散液に保護コロイド除去剤を添加して保護コロイドを除去すると、金属微粒子が凝集し易くなって、通常の手段でも濾過できること、金属粒子生成後に保護コロイドを除去して金属微粒子を凝集させてもその後に容易に一次粒子にまで再分散できること、しかも、濾過漏れも少なく金属微粒子の収率が向上し、濾過・洗浄時間を短縮できることを見出し、本発明を完成した。   As a result of intensive research to solve these problems, the present inventors have added a protective colloid remover to a dispersion containing protective colloid and metal fine particles to remove the protective colloid, so that the metal fine particles are aggregated. It is easy to filter, it can be filtered by ordinary means, the protective colloid can be removed after the metal particles are generated and the metal fine particles can be aggregated, and then it can be easily re-dispersed to the primary particles. The present invention was completed by finding that the yield was improved and the filtration and washing time could be shortened.

即ち、本発明は、保護コロイドと金属微粒子を含有した分散液に保護コロイド除去剤を添加して金属微粒子を凝集させ、次いで、分別することを特徴とする金属微粒子の製造方法である。   That is, the present invention is a method for producing metal fine particles, comprising adding a protective colloid remover to a dispersion containing protective colloid and metal fine particles to agglomerate the metal fine particles, followed by fractionation.

本発明により、金属微粒子を含有する分散液を工業的に有利に濾過して金属微粒子を固液分離することができる。濾過して得られた金属微粒子の固形物は十分洗浄して不純物を取り除くことができ、純度の高い金属微粒子固形物やそれを乾燥して金属微粒子乾燥物を得ることができる。このような金属微粒子固形物や金属微粒子乾燥物は保護コロイドの含有量が少なくても凝集粒子が生じ難く、水や有機溶媒に再度分散し易いために、金属ペースト・塗料・インキ等の流動性組成物にして、例えば、積層セラミックスコンデンサーの内部電極、プリント配線基板の回路、その他の電極等に用いると、薄膜で高密度の電極等が得られる。   According to the present invention, the dispersion containing the metal fine particles can be advantageously filtered industrially to separate the metal fine particles into solid and liquid. The solid metal fine particles obtained by filtration can be sufficiently washed to remove impurities, and high purity metal fine particle solids and dried metal fine particles can be obtained. Such solid metal fine particles and dried metal fine particles are less likely to form agglomerated particles even if the content of protective colloid is small, and are easy to disperse again in water or organic solvents, so fluidity of metal pastes, paints, inks, etc. When the composition is used for, for example, an internal electrode of a multilayer ceramic capacitor, a circuit of a printed wiring board, other electrodes, etc., a thin film and a high-density electrode can be obtained.

本発明は、保護コロイドと金属微粒子を含有した分散液に保護コロイド除去剤を添加して金属微粒子を凝集させ、次いで、分別する。本発明において、金属微粒子を構成する金属種には特に制限はなく、遷移金属元素、典型金属元素などを対象とすることができ、特に、周期表VIII族(鉄、コバルト、ニッケル、ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金)、IB族(銅、銀、金)であれば、多くの用途に用いることができる。その中でも、金、銀、白金、パラジウム、銅、ニッケルは導電性が優れているので好ましく、銅、銀、ニッケルがより好ましく、廉価な銅が特に好ましい。金属種はこれから1種を選択して用いても、2種以上を合金にしたり、積層するなどして組み合わせて用いても良い。また、金属微粒子はどのような大きさのものでも本発明を適用できるが、微細なものほど濾過がし難いために本発明の効果が大きく、例えば、一次平均粒子径が2.0μm以下の範囲が好ましく適用され、より好ましくは0.005〜1.0μmの範囲であり、更に好ましくは0.01〜0.75μmの範囲である。前記の一次平均粒子径は電子顕微鏡法により測定した累積50%径で表す。   In the present invention, a protective colloid remover is added to a dispersion containing protective colloid and metal fine particles to aggregate the metal fine particles, and then fractionated. In the present invention, the metal species constituting the metal fine particles are not particularly limited, and can be transition metal elements, typical metal elements, etc., and in particular, Group VIII of the periodic table (iron, cobalt, nickel, ruthenium, rhodium) , Palladium, osmium, iridium, platinum) and group IB (copper, silver, gold) can be used for many applications. Among them, gold, silver, platinum, palladium, copper, and nickel are preferable because of their excellent conductivity, copper, silver, and nickel are more preferable, and inexpensive copper is particularly preferable. One kind of metal may be selected and used, or two or more kinds may be used as an alloy or laminated. In addition, the present invention can be applied to any fine metal particles, but the finer the particles, the more difficult the filtration, so the effect of the present invention is great. For example, the primary average particle diameter is in the range of 2.0 μm or less. Is preferably applied, more preferably in the range of 0.005 to 1.0 μm, still more preferably in the range of 0.01 to 0.75 μm. The primary average particle diameter is expressed as a cumulative 50% diameter measured by electron microscopy.

保護コロイドと金属微粒子を含有した分散液は、公知の方法を用いて製造することができる。例えば、保護コロイドの存在下、金属化合物と還元剤とを媒液中で反応させる方法が挙げられる。また、保護コロイド及び錯化剤の存在下で、同様に媒液中で金属化合物と還元剤とを反応させると、粒子形状が整い、凝集粒子を含まない微細な金属微粒子が、いっそう得られ易くなるので好ましい。それぞれの原材料の添加順序は、金属化合物と還元剤との反応時に、保護コロイド、あるいは保護コロイドと錯化剤が存在していれば、特に制限はない。例えば、(1)保護コロイドを含む媒液に、金属化合物と還元剤とを同時並行的に添加する方法、(2)保護コロイド、金属化合物を含む媒液に、還元剤を添加する方法、等が挙げられる。また、錯化剤を保護コロイドと併用するのであれば、例えば、(3)保護コロイド及び錯化剤を含む媒液に、金属化合物と還元剤とを同時並行的に添加する方法、(4)保護コロイド、錯化剤、金属化合物を含む媒液に、還元剤を添加する方法、(5)保護コロイド、金属化合物を含む媒液に、錯化剤と還元剤とを同時並行的に添加する方法、(6)保護コロイド、金属化合物を含む媒液に、錯化剤と還元剤の混合液を添加する方法、等も挙げられる。中でも(5)、(6)の方法が反応を制御し易いので好ましく、(6)の方法が特に好ましい。尚、「同時並行的添加」とは、反応期間中において金属化合物と還元剤あるいは錯化剤と還元剤とをそれぞれ別々に同時期に添加する方法をいい、両者を反応期間中継続して添加する他に、一方あるいは両者を間欠的に添加することも含む。   The dispersion containing the protective colloid and the metal fine particles can be produced using a known method. For example, a method of reacting a metal compound and a reducing agent in a liquid medium in the presence of a protective colloid can be mentioned. Similarly, when a metal compound and a reducing agent are reacted in the medium in the presence of a protective colloid and a complexing agent, the shape of the particles is uniform, and fine metal particles that do not contain aggregated particles are more easily obtained. This is preferable. The order of adding each raw material is not particularly limited as long as a protective colloid or a protective colloid and a complexing agent are present during the reaction between the metal compound and the reducing agent. For example, (1) a method in which a metal compound and a reducing agent are simultaneously added to a medium containing a protective colloid, (2) a method in which a reducing agent is added to a medium containing a protective colloid and a metal compound, etc. Is mentioned. Further, if the complexing agent is used in combination with the protective colloid, for example, (3) a method of simultaneously adding a metal compound and a reducing agent to a medium containing the protective colloid and the complexing agent, (4) A method of adding a reducing agent to a medium containing a protective colloid, a complexing agent and a metal compound. (5) A complexing agent and a reducing agent are added simultaneously to a medium containing a protective colloid and a metal compound. Examples thereof include (6) a method of adding a mixed solution of a complexing agent and a reducing agent to a medium containing a protective colloid and a metal compound. Among these, the methods (5) and (6) are preferable because the reaction is easily controlled, and the method (6) is particularly preferable. “Simultaneous parallel addition” refers to a method in which a metal compound and a reducing agent or a complexing agent and a reducing agent are added separately at the same time during the reaction period, and both are continuously added during the reaction period. In addition to this, it includes adding one or both intermittently.

「金属化合物」としては、前記の金、銀、白金、パラジウム、銅、ニッケル等の金属の硫酸塩、硝酸塩、炭酸塩、塩化物、酸化物等を用いることができる。金属化合物を溶解する媒液には、例えば水系またはアルコール等の有機溶媒系媒液を、好ましくは水系媒液を用いる。還元反応温度は、10℃〜用いた媒液の沸点の範囲であれば、反応が進み易いので好ましく、40〜95℃の範囲であれば更に好ましい。反応液のpHを酸またはアルカリで3〜12の範囲に予め調整すると、金属化合物の沈降を防ぎ、均一に反応させることができるので好ましい。反応時間は、還元剤等の原材料の添加時間などで制御して設定することができ、例えば、10分〜6時間程度が適当である。   As the “metal compound”, sulfates, nitrates, carbonates, chlorides, oxides, and the like of the metals such as gold, silver, platinum, palladium, copper, and nickel can be used. As the medium solution for dissolving the metal compound, for example, an aqueous solvent or an organic solvent medium such as alcohol, preferably an aqueous medium is used. The reduction reaction temperature is preferably in the range of 10 ° C. to the boiling point of the liquid medium used, because the reaction easily proceeds, and more preferably in the range of 40 to 95 ° C. It is preferable to adjust the pH of the reaction solution in the range of 3 to 12 in advance with an acid or an alkali because precipitation of the metal compound can be prevented and the reaction can be performed uniformly. The reaction time can be set by controlling the addition time of raw materials such as a reducing agent. For example, about 10 minutes to 6 hours is appropriate.

「還元剤」は公知のものを用いることができ、例えば、ヒドラジンや、塩酸ヒドラジン、硫酸ヒドラジン、抱水ヒドラジン等のヒドラジン化合物等のヒドラジン系還元剤、水素化ホウ素ナトリウム、亜硫酸ナトリウム、亜硫酸水素ナトリウム、チオ硫酸ナトリウム、亜硝酸ナトリウム、次亜硝酸ナトリウム、亜リン酸及び亜リン酸ナトリウム等のその塩、次亜リン酸及び次亜リン酸ナトリウム等のその塩、アルデヒド類、アルコール類、アミン類、糖類等が挙げられ、これらを1種または2種以上を用いても良い。特に、ヒドラジン系還元剤は還元力が強く好ましい。還元剤の使用量は、金属化合物から金属微粒子を生成できる量であれば適宜設定することができ、金属化合物中に含まれる金属1モルに対し0.2〜5モルの範囲にあるのが好ましい。   As the “reducing agent”, known ones can be used. For example, hydrazine reducing agents such as hydrazine, hydrazine hydrochloride, hydrazine sulfate, hydrazine hydrate and the like, sodium borohydride, sodium sulfite, sodium hydrogen sulfite Sodium thiosulfate, sodium nitrite, sodium hyponitrite, phosphorous acid and its salts such as sodium phosphite, hypophosphorous acid and its salts such as sodium hypophosphite, aldehydes, alcohols, amines , Saccharides and the like, and one or more of these may be used. In particular, hydrazine-based reducing agents are preferred because of their strong reducing power. The amount of the reducing agent used can be appropriately set as long as it can generate metal fine particles from the metal compound, and is preferably in the range of 0.2 to 5 mol with respect to 1 mol of the metal contained in the metal compound. .

「保護コロイド」は、生成した金属微粒子の分散安定化剤として作用するものである。本発明では保護コロイドとして公知のものを用いることができ、例えば、ゼラチン、アラビアゴム、カゼイン、カゼイン酸ソーダ、カゼイン酸アンモニウム等のタンパク質系、デンプン、デキストリン、寒天、アルギン酸ソーダ等の天然高分子や、ヒドロキシエチルセルロース、カルボキシメチルセルロース、メチルセルロース、エチルセルロース等のセルロース系、ポリビニルアルコール、ポリビニルピロリドン等のビニル系、ポリアクリル酸ソーダ、ポリアクリル酸アンモニウム等のアクリル酸系、ポリエチレングリコール等の合成高分子等が挙げられ、これらを1種または2種以上を用いても良い。高分子の保護コロイドは分散安定化の効果が高いので、これを用いるのが好ましく、水系媒液中で反応させる場合、水溶性のものを用いるのが好ましく、特にゼラチン、ポリビニルアルコール、ポリビニルピロリドン、ポリエチレングリコールが好ましい。保護コロイドの使用量は適宜設定でき、金属化合物100重量部に対し1〜100重量部の範囲であると、生成した金属微粒子が分散安定化し易いので好ましい。   The “protective colloid” acts as a dispersion stabilizer for the generated metal fine particles. In the present invention, known colloids can be used, such as gelatin, gum arabic, casein, sodium caseinate, ammonium caseinate, and other natural polymers such as starch, dextrin, agar, sodium alginate, and the like. , Celluloses such as hydroxyethylcellulose, carboxymethylcellulose, methylcellulose, and ethylcellulose; vinyls such as polyvinyl alcohol and polyvinylpyrrolidone; acrylic acids such as sodium polyacrylate and ammonium polyacrylate; and synthetic polymers such as polyethylene glycol. These may be used alone or in combination of two or more. Since the protective colloid of a polymer has a high effect of dispersion stabilization, it is preferable to use this, and when reacting in an aqueous medium, it is preferable to use a water-soluble one, particularly gelatin, polyvinyl alcohol, polyvinyl pyrrolidone, Polyethylene glycol is preferred. The amount of the protective colloid used can be appropriately set, and it is preferably in the range of 1 to 100 parts by weight with respect to 100 parts by weight of the metal compound because the generated metal fine particles can be easily dispersed and stabilized.

「錯化剤」は、金属化合物から金属イオンが溶出するか、または金属化合物が還元されて金属が生成する過程で作用すると考えられ、これが有する配位子のドナー原子と金属イオンまたは金属と結合して金属錯体化合物を形成し得る化合物を言い、ドナー原子としては、例えば、窒素、酸素、硫黄等が挙げられる。具体的には、
(1)窒素がドナー原子である錯化剤としては、(a)アミン類(例えば、ブチルアミン、エチルアミン、プロピルアミン、エチレンジアミン等の1級アミン類、ジブチルアミン、ジエチルアミン、ジプロピルアミン、及び、ピペリジン、ピロリジン等のイミン類等の2級アミン類、トリブチルアミン、トリエチルアミン、トリプロピルアミン等の3級アミン類、ジエチレントリアミン、トリエチレンテトラミンの1分子内に1〜3級アミンを2種以上有するもの等)、(b)窒素含有複素環式化合物(例えば、イミダゾール、ピリジン、ビピリジン等)、(c)ニトリル類(例えば、アセトニトリル、ベンゾニトリル等)及びシアン化合物、(d)アンモニア及びアンモニウム化合物(例えば、塩化アンモニウム、硫酸アンモニウム等)、(e)オキシム類等が挙げられる。
(2)酸素がドナー原子である錯化剤としては、(a)カルボン酸類(例えば、クエン酸、リンゴ酸、酒石酸、乳酸等のオキシカルボン酸類、酢酸、ギ酸等のモノカルボン酸類、シュウ酸、マロン酸等のジカルボン酸類、安息香酸等の芳香族カルボン酸類等)、(b)ケトン類(例えば、アセトン等のモノケトン類、アセチルアセトン、ベンゾイルアセトン等のジケトン類等)、(c)アルデヒド類、(d)アルコール類(1価アルコール類、グリコール類、グリセリン類等)、(e)キノン類、(f)エーテル類、(g)リン酸(正リン酸)及びリン酸系化合物(例えば、ヘキサメタリン酸、ピロリン酸、亜リン酸、次亜リン酸等)、(h)スルホン酸またはスルホン酸系化合物等が挙げられる。
(3)硫黄がドナー原子である錯化剤としては、(a)脂肪族チオール類(例えば、メチルメルカプタン、エチルメルカプタン、プロピルメルカプタン、イソプロピルメルカプタン、n−ブチルメルカプタン、アリルメルカプタン、ジメチルメルカプタン等)、(b)脂環式チオール類(シクロヘキシルチオール等)、(c)芳香族チオール類(チオフェノール等)、(d)チオケトン類、(e)チオエーテル類、(f)ポリチオール類、(g)チオ炭酸類(トリチオ炭酸類)、 (h)硫黄含有複素環式化合物(例えば、ジチオール、チオフェン、チオピラン等)、(i)チオシアナート類及びイソチオシアナート類、(j)無機硫黄化合物(例えば、硫化ナトリウム、硫化カリウム、硫化水素等)等が挙げられる。
(4)2種以上のドナー原子を有する錯化剤としては、(a)アミノ酸類(ドナー原子が窒素及び酸素:例えば、グリシン、アラニン等の中性アミノ酸類、ヒスチジン、アルギニン等の塩基性アミノ酸類、アスパラギン酸、グルタミン酸等の酸性アミノ酸類)、(b)アミノポリカルボン酸類(ドナー原子が窒素及び酸素:例えば、エチレンジアミンテトラ酢酸(EDTA)、ニトリロトリ酢酸(NTA)、イミノジ酢酸(IDA)、エチレンジアミンジ酢酸(EDDA)、エチレングリコールジエチルエーテルジアミンテトラ酢酸(GEDA)等)、(c)アルカノールアミン類(ドナー原子が窒素及び酸素:例えば、エタノールアミン、ジエタノールアミン、トリエタノールアミン等)、(d)ニトロソ化合物及びニトロシル化合物(ドナー原子が窒素及び酸素)、(e)メルカプトカルボン酸類(ドナーが硫黄及び酸素:例えば、メルカプトプロピオン酸、メルカプト酢酸、チオジプロピオン酸、メルカプトコハク酸、ジメルカプトコハク酸、チオ酢酸、チオジグリコール酸等)、(f)チオグリコール類(ドナーが硫黄及び酸素:例えば、メルカプトエタノール、チオジエチレングリコール等)、(g)チオン酸類(ドナーが硫黄及び酸素)、(h)チオ炭酸類(ドナー原子が硫黄及び酸素:例えば、モノチオ炭酸、ジチオ炭酸、チオン炭酸)、(i)アミノチオール類(ドナーが硫黄及び窒素:アミノエチルメルカプタン、チオジエチルアミン等)、(j)チオアミド類(ドナー原子が硫黄及び窒素:例えば、チオホルムアミド等)、(k)チオ尿素類(ドナー原子が硫黄及び窒素)、(l)チアゾール類(ドナー原子が硫黄及び窒素:例えばチアゾール、ベンゾチアゾール等)、(m)含硫黄アミノ酸類(ドナーが硫黄、窒素及び酸素:システイン、メチオニン等)等が挙げられる。
(5)上記の化合物の塩や誘導体としては、例えば、クエン酸トリナトリウム、酒石酸ナトリウム・カリウム、次亜リン酸ナトリウム、エチレンジアミンテトラ酢酸ジナトリウム等のそれらのアルカリ金属塩や、カルボン酸、リン酸、スルホン酸等のエステル等が挙げられる。
このような錯化剤のうち、少なくとも1種を用いることができる。錯化剤の使用量は適宜設定でき、金属化合物1000重量部に対し錯化剤を0.01〜200重量部の範囲に設定すると本発明の効果が得られ易いので好ましい。
A “complexing agent” is considered to act in the process of elution of metal ions from a metal compound or formation of a metal by reduction of the metal compound, which binds to the donor atom of the ligand it has and the metal ion or metal And a compound capable of forming a metal complex compound, and examples of the donor atom include nitrogen, oxygen, sulfur and the like. In particular,
(1) As complexing agents in which nitrogen is a donor atom, (a) amines (for example, primary amines such as butylamine, ethylamine, propylamine, ethylenediamine, dibutylamine, diethylamine, dipropylamine, and piperidine Secondary amines such as imines such as pyrrolidine, tertiary amines such as tributylamine, triethylamine, and tripropylamine, and those having two or more primary to tertiary amines in one molecule of diethylenetriamine and triethylenetetramine ), (B) nitrogen-containing heterocyclic compounds (eg, imidazole, pyridine, bipyridine, etc.), (c) nitriles (eg, acetonitrile, benzonitrile, etc.) and cyanide compounds, (d) ammonia and ammonium compounds (eg, Ammonium chloride, ammonium sulfate, etc.), (e) oximes, etc. It is below.
(2) Complexing agents in which oxygen is a donor atom include (a) carboxylic acids (for example, oxycarboxylic acids such as citric acid, malic acid, tartaric acid and lactic acid, monocarboxylic acids such as acetic acid and formic acid, oxalic acid, Dicarboxylic acids such as malonic acid, aromatic carboxylic acids such as benzoic acid, etc.), (b) ketones (eg, monoketones such as acetone, diketones such as acetylacetone and benzoylacetone), (c) aldehydes, ( d) Alcohols (monohydric alcohols, glycols, glycerins, etc.), (e) quinones, (f) ethers, (g) phosphoric acid (normal phosphoric acid) and phosphoric acid compounds (eg hexametaphosphoric acid) , Pyrophosphoric acid, phosphorous acid, hypophosphorous acid, etc.), (h) sulfonic acid or sulfonic acid compounds.
(3) As a complexing agent in which sulfur is a donor atom, (a) aliphatic thiols (for example, methyl mercaptan, ethyl mercaptan, propyl mercaptan, isopropyl mercaptan, n-butyl mercaptan, allyl mercaptan, dimethyl mercaptan, etc.), (b) Alicyclic thiols (such as cyclohexylthiol), (c) Aromatic thiols (such as thiophenol), (d) Thioketones, (e) Thioethers, (f) Polythiols, (g) Thiocarbonic acid (H) sulfur-containing heterocyclic compounds (eg, dithiol, thiophene, thiopyran, etc.), (i) thiocyanates and isothiocyanates, (j) inorganic sulfur compounds (eg, sodium sulfide, Potassium sulfide, hydrogen sulfide, etc.).
(4) Complexing agents having two or more types of donor atoms include (a) amino acids (donor atoms are nitrogen and oxygen: neutral amino acids such as glycine and alanine, basic amino acids such as histidine and arginine) , Acidic amino acids such as aspartic acid and glutamic acid), (b) aminopolycarboxylic acids (the donor atom is nitrogen and oxygen: for example, ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), iminodiacetic acid (IDA), ethylenediamine Diacetic acid (EDDA), ethylene glycol diethyl ether diamine tetraacetic acid (GEDA), etc.), (c) alkanolamines (donor atoms are nitrogen and oxygen, such as ethanolamine, diethanolamine, triethanolamine, etc.), (d) nitroso Compounds and nitrosyl compounds (donor atom is nitrogen and Oxygen), (e) mercaptocarboxylic acids (donor is sulfur and oxygen: for example, mercaptopropionic acid, mercaptoacetic acid, thiodipropionic acid, mercaptosuccinic acid, dimercaptosuccinic acid, thioacetic acid, thiodiglycolic acid, etc.), f) Thioglycols (donor is sulfur and oxygen: e.g. mercaptoethanol, thiodiethylene glycol, etc.), (g) thioic acids (donor is sulfur and oxygen), (h) thiocarbonates (donor atoms are sulfur and oxygen: e.g. , Monothiocarbonate, dithiocarbonate, thiocarbonate), (i) aminothiols (donor is sulfur and nitrogen: aminoethyl mercaptan, thiodiethylamine, etc.), (j) thioamides (donor atoms are sulfur and nitrogen: thioformamide, for example) Etc.), (k) thioureas (donor atoms are sulfur and nitrogen), (l) thiazoles (donor atoms are sulfur And nitrogen: for example thiazole, benzothiazole, etc.), (m) sulfur-containing amino acids (the donor sulfur, nitrogen and oxygen: cysteine, methionine, etc.) and the like.
(5) Examples of salts and derivatives of the above compounds include alkali metal salts such as trisodium citrate, sodium / potassium tartrate, sodium hypophosphite, disodium ethylenediaminetetraacetate, carboxylic acids, and phosphoric acids. And esters such as sulfonic acid.
Among such complexing agents, at least one kind can be used. The amount of the complexing agent used can be appropriately set, and it is preferable to set the complexing agent in the range of 0.01 to 200 parts by weight with respect to 1000 parts by weight of the metal compound because the effects of the present invention can be easily obtained.

銅微粒子を以上に述べた方法で得るのであれば、銅化合物には銅酸化物を用いると、還元反応がいっそう制御し易いので好ましい。「銅酸化物」は、通常の銅の酸化物の他に、銅の含水酸化物、銅の水酸化物を包含する意味で用いており、銅の酸化物としては亜酸化銅(または酸化第一銅)、酸化銅(または酸化第二銅)等を用いることができる。酸化物の製造方法には特に制限はなく、例えば、電解法、化成法、加熱酸化法、熱分解法、間接湿式法等で工業的に製造されたものを用いることができ、銅酸化物の粒子径が、生成する銅微粒子の粒子径に関与することが考えられるため、銅酸化物の粒子径を適宜設定して、目標とする粒子径を有する銅微粒子が得られるようにすることもできる。   If the copper fine particles are obtained by the method described above, it is preferable to use a copper oxide as the copper compound because the reduction reaction is more easily controlled. “Copper oxide” is used to include copper hydrated oxides and copper hydroxides in addition to ordinary copper oxides. Copper oxides include cuprous oxide (or oxidized oxides). Monocopper), copper oxide (or cupric oxide), or the like can be used. There is no particular limitation on the method for producing the oxide, and for example, an electrolytically produced method, a chemical conversion method, a heat oxidation method, a thermal decomposition method, an indirect wet method, or the like can be used. Since it is considered that the particle diameter is related to the particle diameter of the copper fine particles to be generated, the copper oxide particle diameter can be appropriately set to obtain copper fine particles having a target particle diameter. .

銅酸化物を用いて銅微粒子を得る場合、保護コロイドの使用量は、銅酸化物100重量部に対し1〜100重量部の範囲であると、生成した銅微粒子が分散安定化し易いので好ましく、2〜50重量部の範囲が更に好ましい。保護コロイドと錯化剤を併用するのであれば、銅酸化物1000重量部に対し錯化剤を0.01〜200重量部の範囲に設定すると、本発明の効果が得られ易いので好ましく、0.1〜200重量部の範囲がより好ましく、0.5〜150重量部の範囲が更に好ましい。還元剤の使用量は、銅酸化物から銅微粒子を生成できる量であれば適宜設定することができ、銅酸化物中に含まれる銅1モルに対し0.2〜5モルの範囲にあるのが好ましい。還元剤が前記範囲より少ないと反応が進み難く、銅微粒子が十分に生成せず、前記範囲より多いと反応が進みすぎ、所望の銅微粒子が得られ難いため好ましくない。更に好ましい還元剤の使用量は、0.3〜2モルの範囲である。   When copper fine particles are obtained using copper oxide, the amount of protective colloid used is preferably in the range of 1 to 100 parts by weight with respect to 100 parts by weight of copper oxide because the produced copper fine particles are easily dispersed and stabilized. The range of 2 to 50 parts by weight is more preferable. If the protective colloid and the complexing agent are used in combination, it is preferable to set the complexing agent in the range of 0.01 to 200 parts by weight with respect to 1000 parts by weight of the copper oxide because the effect of the present invention can be easily obtained. The range of 0.1 to 200 parts by weight is more preferable, and the range of 0.5 to 150 parts by weight is even more preferable. The amount of the reducing agent used can be appropriately set as long as it is an amount capable of producing copper fine particles from the copper oxide, and is in the range of 0.2 to 5 mol with respect to 1 mol of copper contained in the copper oxide. Is preferred. If the reducing agent is less than the above range, the reaction is difficult to proceed, and copper fine particles are not sufficiently formed. Furthermore, the usage-amount of a preferable reducing agent is the range of 0.3-2 mol.

次に、前記のようにして製造した保護コロイドと金属微粒子を含有した分散液に保護コロイド除去剤を添加して金属微粒子を凝集させ、次いで、分別する。「保護コロイド除去剤」は、保護コロイドを分解または溶解して保護コロイドの作用を抑制する化合物であり、分散液から保護コロイドを完全に除去できなくても一部でも除去できるのであれば、本発明の効果が得られる。保護コロイド除去剤の種類は、用いる保護コロイドに応じて適宜選択する。具体的には、タンパク質系の保護コロイドに対しては、セリンプロテアーゼ(例えば、トリプシン、キモトリプシン等)、チオールプロテアーゼ(例えば、パパイン等)、酸性プロテアーゼ(例えば、ペプシン等)、金属プロテアーゼ等のタンパク質分解酵素を、デンプン系に対しては、アミラーゼ、マルターゼ等のデンプン分解酵素を、セルロース系にはセルラーゼ、セロビアーゼ等のセルロース分解酵素を用いることができる。ビニル系、アクリル酸系、ポリエチレングリコール等の保護コロイドには、ホルムアミド、グリセリン、グリコール等の有機溶剤や、酸、アルカリ等を用いることができる。保護コロイド除去剤の添加量は金属微粒子を凝集させ分別できる程度に保護コロイドを除去できる量であれば良く、その種類によって異なるが、タンパク質分解酵素であれば、タンパク質系保護コロイド1000重量部に対し0.001〜1000重量部の範囲が好ましく、0.01〜200重量部がより好ましく、0.01〜100重量部が更に好ましい。保護コロイド除去剤を添加する際の分散液の温度は適宜設定することができ、還元反応温度を保持した状態でも良く、あるいは、10℃〜用いた媒液の沸点の範囲であれば、保護コロイドの除去が進み易いので好ましく、40〜95℃の範囲であれば更に好ましい。保護コロイド除去剤を添加した後、その状態を適宜保持すれば保護コロイドを分解することができ、例えば10分〜10時間程度が適当である。保護コロイドを除去して金属微粒子を凝集させた後、通常の方法で分別する。分別手段は特に制限はなく、重力濾過、加圧濾過、真空濾過、吸引濾過、遠心濾過、自然沈降などの手段をとり得るが、工業的には加圧濾過、真空濾過、吸引濾過が好ましく、脱水能力が高く大量に処理できるので、フィルタープレス、ロールプレス等の濾過機を用いるのが好ましい。   Next, the protective colloid remover is added to the dispersion containing the protective colloid and the metal fine particles produced as described above to aggregate the metal fine particles, and then fractionated. “Protective colloid remover” is a compound that decomposes or dissolves the protective colloid to suppress the action of the protective colloid. If the protective colloid cannot be completely removed from the dispersion, it can be removed. The effects of the invention can be obtained. The kind of protective colloid remover is appropriately selected according to the protective colloid used. Specifically, for protein-based protective colloids, proteolysis such as serine protease (eg, trypsin, chymotrypsin), thiol protease (eg, papain), acidic protease (eg, pepsin), metalloprotease, etc. As the enzyme, starch-degrading enzymes such as amylase and maltase can be used for starch, and cellulose-degrading enzymes such as cellulase and cellobiase can be used for cellulose. For protective colloids such as vinyl, acrylic acid, and polyethylene glycol, organic solvents such as formamide, glycerin, and glycol, acids, alkalis, and the like can be used. The addition amount of the protective colloid remover may be an amount that can remove the protective colloid to such an extent that the fine metal particles can be aggregated and separated, and varies depending on the type of the protective colloid removal agent. The range of 0.001-1000 weight part is preferable, 0.01-200 weight part is more preferable, 0.01-100 weight part is still more preferable. The temperature of the dispersion at the time of adding the protective colloid remover can be set as appropriate, and may be in a state where the reduction reaction temperature is maintained, or as long as it is in the range of 10 ° C. to the boiling point of the medium used, the protective colloid. Is preferable because it is easy to proceed, and more preferably in the range of 40 to 95 ° C. After the protective colloid removing agent is added, the protective colloid can be decomposed by appropriately maintaining the state, and for example, about 10 minutes to 10 hours is appropriate. After the protective colloid is removed and the metal fine particles are aggregated, they are separated by a usual method. The separation means is not particularly limited, and may be gravity filtration, pressure filtration, vacuum filtration, suction filtration, centrifugal filtration, natural sedimentation, etc., but industrially pressure filtration, vacuum filtration, and suction filtration are preferable. It is preferable to use a filter such as a filter press or a roll press because it has a high dewatering capability and can be processed in large quantities.

保護コロイド除去剤を添加した後、更に凝集剤を添加すると、収率がよりいっそう向上するので好ましい。凝集剤としては公知のものを用いることができ、具体的には、アニオン系凝集剤(例えば、ポリアクリルアミドの部分加水分解生成物、アクリルアミド・アクリル酸ナトリウム共重合体、アルギン酸ソーダ等)、カチオン系凝集剤(例えば、ポリアクリルアミド、ジメチルアミノエチルメタクリレート、ジメチルアミノエチルアクリレート、ポリアミジン、キトサン等)、両性凝集剤(例えば、アクリルアミド・ジメチルアミノエチルアクリレート・アクリル酸共重合体等)等が挙げられる。凝集剤の添加量は必要に応じた量を適宜設定することができ、金属微粒子1000重量部に対し、0.5〜100重量部の範囲が好ましく、1〜50重量部の範囲が更に好ましい。   It is preferable to add a flocculant after adding the protective colloid remover because the yield is further improved. As the flocculant, known ones can be used. Specifically, anionic flocculants (for example, polyacrylamide partial hydrolysis products, acrylamide / sodium acrylate copolymers, sodium alginate, etc.), cationic ones Examples include flocculants (for example, polyacrylamide, dimethylaminoethyl methacrylate, dimethylaminoethyl acrylate, polyamidine, chitosan, etc.), amphoteric flocculants (for example, acrylamide / dimethylaminoethyl acrylate / acrylic acid copolymer). The amount of the flocculant added can be appropriately set according to need, and is preferably in the range of 0.5 to 100 parts by weight, more preferably in the range of 1 to 50 parts by weight with respect to 1000 parts by weight of the metal fine particles.

あるいは、凝集剤の使用に替えて、保護コロイド除去剤を添加後、酸を用いて分散液のpHを6以下の範囲に調整しても、同様の収率の改良効果が得られる。pHが3より低いと、金属微粒子を構成する金属種によっては、例えば、銅などは腐食したり、溶解するので、3〜6の範囲が好ましいpH領域であり、4〜6の範囲とすると酸の使用量を減らせるので更に好ましい。   Alternatively, even if the protective colloid remover is added instead of using a flocculant, and the pH of the dispersion is adjusted to a range of 6 or less using an acid, the same yield improving effect can be obtained. When the pH is lower than 3, depending on the metal species constituting the metal fine particles, for example, copper or the like corrodes or dissolves. Therefore, the range of 3 to 6 is a preferable pH range, and the range of 4 to 6 is an acid. This is more preferable because the amount of use can be reduced.

金属微粒子を固液分離した後、得られた金属微粒子の固形物を例えば水系またはアルコール等の有機溶媒系媒液に、好ましくは水系媒液に分散して用いることができる。あるいは、金属微粒子の固形物を通常の方法により乾燥することもできる。銅微粒子のように酸化され易いものであれば、酸化を抑制するために、乾燥は窒素、アルゴン等の不活性ガスの雰囲気下で行うのが好ましい。乾燥後は、必要に応じて粉砕を行っても良い。   After solid-liquid separation of the metal fine particles, the obtained solid matter of the metal fine particles can be used, for example, by dispersing it in an organic solvent medium such as aqueous or alcohol, preferably in an aqueous medium. Alternatively, the solid metal fine particles can be dried by a usual method. If it is easy to oxidize like a copper fine particle, in order to suppress oxidation, it is preferable to perform drying in the atmosphere of inert gas, such as nitrogen and argon. After drying, you may grind | pulverize as needed.

以下に実施例を挙げて、本発明を更に詳細に説明するが、本発明はこれらの実施例により制限されるものではない。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

実施例1〜3
工業用酸化銅(N−120:エヌシーテック社製)24g、保護コロイドとしてゼラチン9.6gを300ミリリットルの純水に添加、混合し、15%のアンモニア水を用いて混合液のpHを11に調整した後、20分かけて室温から90℃まで昇温した。昇温後、撹拌しながら、錯化剤(用いた錯化剤の種類及び添加量を表1に示す)の溶液と、80%のヒドラジン一水和物28gとを150ミリリットルの純水に混合した液を添加し、1時間かけて酸化銅と反応させ、銅微粒子を生成させた。銅微粒子の生成後、保護コロイド除去剤としてセリンプロテアーゼ(プロテナーゼK:ワシントン・バイオ・ケミカル社製)5ミリリットルを添加して1時間保持した。セリンプロテアーゼの添加量は、ゼラチン1000重量部に対し100重量部であった。
Examples 1-3
24 g of industrial copper oxide (N-120: manufactured by NC Tech Co., Ltd.) and 9.6 g of gelatin as a protective colloid were added to 300 ml of pure water, mixed, and the pH of the mixture was adjusted to 11 using 15% aqueous ammonia. After the adjustment, the temperature was raised from room temperature to 90 ° C. over 20 minutes. After the temperature rise, with stirring, a solution of a complexing agent (type and amount of complexing agent shown in Table 1) and 28 g of 80% hydrazine monohydrate were mixed in 150 ml of pure water. The solution was added and reacted with copper oxide for 1 hour to produce copper fine particles. After the formation of the copper fine particles, 5 ml of serine protease (Proteenase K: manufactured by Washington Biochemical Co.) was added as a protective colloid remover and held for 1 hour. The amount of serine protease added was 100 parts by weight with respect to 1000 parts by weight of gelatin.

実施例4〜6
実施例1〜3において、タンパク質分解酵素を添加して1時間保持し、更に凝集剤としてポリアミジン系高分子凝集剤(SC−700:ハイモ社製)を添加した。ポリアミジン系高分子凝集剤の添加量は金属微粒子1000重量部に対して30重量部であった。
Examples 4-6
In Examples 1 to 3, a proteolytic enzyme was added and held for 1 hour, and a polyamidine polymer flocculant (SC-700: manufactured by Hymo) was further added as a flocculant. The addition amount of the polyamidine polymer flocculant was 30 parts by weight with respect to 1000 parts by weight of the metal fine particles.

実施例7〜9
実施例1〜3において、タンパク質分解酵素を添加して1時間保持した後、硫酸を用いてpHを5に調整した。
Examples 7-9
In Examples 1 to 3, after adding a proteolytic enzyme and keeping it for 1 hour, the pH was adjusted to 5 using sulfuric acid.

比較例1〜3
実施例1〜3において、タンパク質分解酵素を添加しなかったこと以外は実施例1〜3と同じ操作を行った。
Comparative Examples 1-3
In Examples 1 to 3, the same operation as in Examples 1 to 3 was performed except that no proteolytic enzyme was added.

評価1:収率、濾過・洗浄時間の評価
実施例1〜9、比較例1〜3について、ブフナーロートを用いて吸引濾過により固液分離し、濾過中に純水で洗浄を行って、濾液比導電率が100μS/cm以下になるまでに要する時間を測定した。また、回収した銅微粒子の重量を測定し、収率((銅微粒子の回収量/酸化銅から算出した金属銅換算の仕込み量)×100)を算出した。結果を表1に示す。保護コロイド除去剤の使用、及び、保護コロイド除去剤と凝集剤またはpH調整との併用により、収率及び濾過洗浄性が向上していることが判る。
Evaluation 1: Evaluation of Yield and Filtration / Washing Time Examples 1 to 9 and Comparative Examples 1 to 3 were subjected to solid-liquid separation by suction filtration using a Buchner funnel, washed with pure water during filtration, and filtrated. The time required for the specific conductivity to reach 100 μS / cm or less was measured. Further, the weight of the collected copper fine particles was measured, and the yield ((recovered amount of copper fine particles / prepared amount of metal copper calculated from copper oxide) × 100) was calculated. The results are shown in Table 1. It can be seen that the yield and filtration cleaning properties are improved by the use of the protective colloid remover and the combined use of the protective colloid remover and the flocculant or pH adjustment.

Figure 2007039765
Figure 2007039765

評価2:一次粒子及び二次粒子の平均粒子径の測定
実施例1〜9、比較例1〜3において、固液分離後、窒素ガスの雰囲気下で60℃の温度で10時間かけて乾燥し、銅微粒子を得た。それぞれを、試料A〜Lとする。試料A〜Lの一次粒子の平均粒子径(D)を、電子顕微鏡法により測定し、二次粒子の平均粒子径(d)を、動的光散乱式粒度分布測定装置(マイクロトラックUPA型:日機装社製)を用いて測定し、d/Dを算出した。二次粒子の測定には、試料を超音波分散機を用いて水中に十分に分散させ、レーザーの信号強度が0.6〜0.8になるように濃度調整した水系スラリーを用いた。結果を表2に示す。d/Dが1に近似するほど分散性に優れ、凝集の程度が低いことを示しており、本発明の製造方法により、保護コロイドを除去しても、凝集粒子をほとんど含まない銅微粒子が得られることが判る。
Evaluation 2: Measurement of average particle diameter of primary particles and secondary particles In Examples 1 to 9 and Comparative Examples 1 to 3, after solid-liquid separation, drying was performed at a temperature of 60 ° C. for 10 hours in an atmosphere of nitrogen gas. Copper fine particles were obtained. Each is designated as Samples A-L. The average particle diameter (D) of the primary particles of samples A to L is measured by electron microscopy, and the average particle diameter (d) of the secondary particles is measured using a dynamic light scattering particle size distribution analyzer (Microtrack UPA type: D / D was calculated using Nikkiso Co., Ltd. For measurement of secondary particles, an aqueous slurry was used in which the sample was sufficiently dispersed in water using an ultrasonic disperser and the concentration was adjusted so that the signal intensity of the laser was 0.6 to 0.8. The results are shown in Table 2. The closer the d / D is to 1, the better the dispersibility and the lower the degree of aggregation. By the production method of the present invention, copper fine particles containing almost no aggregated particles can be obtained even if the protective colloid is removed. You can see that

Figure 2007039765
Figure 2007039765

本発明により得られる金属微粒子、特に銅微粒子は、電子機器の電極材料等として有用であり、金属ペースト・塗料・インキ等の流動性組成物にして用いると、積層セラミックスコンデンサーの内部電極、プリント配線基板の回路、その他の電極等に有用である。

Metal fine particles obtained by the present invention, especially copper fine particles, are useful as electrode materials for electronic devices, etc. When used as fluid compositions such as metal pastes, paints, and inks, internal electrodes of multilayer ceramic capacitors, printed wiring It is useful for circuit boards and other electrodes.

Claims (8)

保護コロイドと金属微粒子を含有した分散液に保護コロイド除去剤を添加して金属微粒子を凝集させ、次いで、分別することを特徴とする金属微粒子の製造方法。 A method for producing fine metal particles, comprising adding a protective colloid remover to a dispersion containing protective colloid and fine metal particles to aggregate the fine metal particles, followed by fractionation. 保護コロイドとしてタンパク質系保護剤を用い、保護コロイド除去剤としてタンパク質分解酵素を用いることを特徴とする請求項1記載の金属微粒子の製造方法。 The method for producing fine metal particles according to claim 1, wherein a protein-based protective agent is used as the protective colloid, and a proteolytic enzyme is used as the protective colloid removing agent. タンパク質系保護コロイド1000重量部に対し0.001〜1000重量部の範囲のタンパク質分解酵素を用いることを特徴とする請求項2記載の金属微粒子の製造方法。 The method for producing fine metal particles according to claim 2, wherein a proteolytic enzyme in the range of 0.001 to 1000 parts by weight is used with respect to 1000 parts by weight of the protein-based protective colloid. 保護コロイド除去剤添加後に、更に凝集剤を添加して金属微粒子を凝集させることを特徴とする請求項1記載の金属微粒子の製造方法。 The method for producing metal fine particles according to claim 1, wherein after the protective colloid removing agent is added, a flocculant is further added to agglomerate the metal fine particles. 保護コロイド除去剤添加後に、更に分散液のpHを6以下に調整して金属微粒子を凝集させることを特徴とする請求項1記載の金属微粒子の製造方法。 2. The method for producing metal fine particles according to claim 1, wherein after adding the protective colloid remover, the pH of the dispersion is further adjusted to 6 or less to aggregate the metal fine particles. 保護コロイドの存在下、金属化合物と還元剤とを媒液中で反応させて保護コロイドと金属微粒子を含有した分散液を製造することを特徴とする請求項1記載の金属微粒子の製造方法。 2. The method for producing metal fine particles according to claim 1, wherein a dispersion containing the protective colloid and the metal fine particles is produced by reacting the metal compound and the reducing agent in a medium in the presence of the protective colloid. 保護コロイド及び錯化剤の存在下、金属化合物と還元剤との反応を行うことを特徴とする請求項6記載の金属微粒子の製造方法。 7. The method for producing fine metal particles according to claim 6, wherein the reaction between the metal compound and the reducing agent is carried out in the presence of the protective colloid and the complexing agent. 金属化合物が銅酸化物であり、得られる金属微粒子が銅微粒子であることを特徴とする請求項6または7のいずれか一項に記載の金属微粒子の製造方法。

The method for producing fine metal particles according to any one of claims 6 and 7, wherein the metal compound is copper oxide, and the obtained fine metal particles are copper fine particles.

JP2005226966A 2005-08-04 2005-08-04 Method for producing metal particulate Pending JP2007039765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005226966A JP2007039765A (en) 2005-08-04 2005-08-04 Method for producing metal particulate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005226966A JP2007039765A (en) 2005-08-04 2005-08-04 Method for producing metal particulate

Publications (1)

Publication Number Publication Date
JP2007039765A true JP2007039765A (en) 2007-02-15

Family

ID=37798029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005226966A Pending JP2007039765A (en) 2005-08-04 2005-08-04 Method for producing metal particulate

Country Status (1)

Country Link
JP (1) JP2007039765A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011052284A (en) * 2009-09-02 2011-03-17 Hokkaido Univ Method for producing metal fine particle
JP2011052296A (en) * 2009-09-03 2011-03-17 Mazda Motor Corp Surface treatment method for metallic member
WO2011155134A1 (en) 2010-06-11 2011-12-15 日本板硝子株式会社 Fine noble metal particles, method for collecting fine noble metal particles, and method for producing fine noble metal particle dispersion using collected fine noble metal particles
EP2302096A3 (en) * 2009-09-03 2012-06-13 Mazda Motor Corporation Method for treatment of a metallic surface
JP2012246449A (en) * 2011-05-31 2012-12-13 Kansai Univ Method for producing metal nanoparticle-containing phosphor composition, and metal sensor and fluorescent film using the phosphor composition
JP2014129609A (en) * 2014-03-07 2014-07-10 Hokkaido Univ Method for producing copper fine particle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004241294A (en) * 2003-02-07 2004-08-26 Toppan Forms Co Ltd Conductive coating liquid containing metal nano fine particle and conductive metal foil
JP2004317899A (en) * 2003-04-18 2004-11-11 Fuji Photo Film Co Ltd Photosensitive transfer material
JP2005036258A (en) * 2003-07-17 2005-02-10 Sumitomo Metal Mining Co Ltd Method for recovering noble metal particulate from dispersion of noble metal particulate
JP2005089597A (en) * 2003-09-17 2005-04-07 Matsushita Electric Ind Co Ltd Conductive ink

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004241294A (en) * 2003-02-07 2004-08-26 Toppan Forms Co Ltd Conductive coating liquid containing metal nano fine particle and conductive metal foil
JP2004317899A (en) * 2003-04-18 2004-11-11 Fuji Photo Film Co Ltd Photosensitive transfer material
JP2005036258A (en) * 2003-07-17 2005-02-10 Sumitomo Metal Mining Co Ltd Method for recovering noble metal particulate from dispersion of noble metal particulate
JP2005089597A (en) * 2003-09-17 2005-04-07 Matsushita Electric Ind Co Ltd Conductive ink

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011052284A (en) * 2009-09-02 2011-03-17 Hokkaido Univ Method for producing metal fine particle
JP2011052296A (en) * 2009-09-03 2011-03-17 Mazda Motor Corp Surface treatment method for metallic member
US8506728B2 (en) 2009-09-03 2013-08-13 Mazda Motor Corporation Surface treatment method of metal material
EP2302096A3 (en) * 2009-09-03 2012-06-13 Mazda Motor Corporation Method for treatment of a metallic surface
US20130069017A1 (en) * 2010-06-11 2013-03-21 Nippon Sheet Glass Company, Limited Noble metal fine particle, method for withdrawing noble metal fine particles, and method for producing noble metal fine particle dispersed material using withdrawn noble metal fine particles
CN102933336A (en) * 2010-06-11 2013-02-13 日本板硝子株式会社 Fine noble metal particles, method for collecting fine noble metal particles, and method for producing fine noble metal particle dispersion using collected fine noble metal particles
EP2581153A1 (en) * 2010-06-11 2013-04-17 Nippon Sheet Glass Company, Limited Fine noble metal particles, method for collecting fine noble metal particles, and method for producing fine noble metal particle dispersion using collected fine noble metal particles
WO2011155134A1 (en) 2010-06-11 2011-12-15 日本板硝子株式会社 Fine noble metal particles, method for collecting fine noble metal particles, and method for producing fine noble metal particle dispersion using collected fine noble metal particles
EP2581153A4 (en) * 2010-06-11 2014-02-19 Nippon Sheet Glass Co Ltd Fine noble metal particles, method for collecting fine noble metal particles, and method for producing fine noble metal particle dispersion using collected fine noble metal particles
JP5663013B2 (en) * 2010-06-11 2015-02-04 日本板硝子株式会社 Noble metal fine particles, method for collecting noble metal fine particles, and method for producing noble metal fine particle dispersion using the collected noble metal fine particles
US9034215B2 (en) 2010-06-11 2015-05-19 Nippon Sheet Glass Company, Limited Noble metal fine particle, method for withdrawing noble metal fine particles, and method for producing noble metal fine particle dispersed material using withdrawn noble metal fine particles
JP2012246449A (en) * 2011-05-31 2012-12-13 Kansai Univ Method for producing metal nanoparticle-containing phosphor composition, and metal sensor and fluorescent film using the phosphor composition
JP2014129609A (en) * 2014-03-07 2014-07-10 Hokkaido Univ Method for producing copper fine particle

Similar Documents

Publication Publication Date Title
JP5373032B2 (en) Copper fine particles and method for producing the same
JP5294851B2 (en) Method for producing nickel fine particles
TWI658156B (en) Metallic copper particles and method for production of same
JP2007039765A (en) Method for producing metal particulate
JP5003895B2 (en) Silver fine particles and method for producing the same, and method for producing a conductive film
JP5537873B2 (en) Method for producing copper fine particles
JP5211911B2 (en) Silver powder manufacturing method
WO2021020522A1 (en) Nickel powder and method for producing nickel powder
JP7183504B2 (en) Coarse particle reduction method for wet nickel powder
JP4578996B2 (en) Method for refining ultrafine metal powder
JP2006307330A (en) Silver particulate having high dispersibility, method for producing the same, and its use
JP2023001435A (en) Manufacturing method of nickel powder
JP7006337B2 (en) Nickel powder manufacturing method
JP2020100858A (en) Nickel powder and method for producing the same
JP2011052283A (en) Method for producing copper fine particle
JP2005179754A (en) Metal colloidal particle, production method therefor, fluid composition blended therewith, and electrode formed by using the fluid composition
TWI386490B (en) A method for synthesizing a metal product from a metal-containing article
JP2014129609A (en) Method for producing copper fine particle
JP2023079721A (en) Method for producing nickel powder
JP2021066905A (en) Method for producing nickel powder slurry

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080514

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Written amendment

Effective date: 20100721

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110524