JP2007039603A - Catalyst composition for olefin polymerization - Google Patents

Catalyst composition for olefin polymerization Download PDF

Info

Publication number
JP2007039603A
JP2007039603A JP2005227556A JP2005227556A JP2007039603A JP 2007039603 A JP2007039603 A JP 2007039603A JP 2005227556 A JP2005227556 A JP 2005227556A JP 2005227556 A JP2005227556 A JP 2005227556A JP 2007039603 A JP2007039603 A JP 2007039603A
Authority
JP
Japan
Prior art keywords
component
catalyst
compound
olefin polymerization
catalyst composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005227556A
Other languages
Japanese (ja)
Other versions
JP4759339B2 (en
Inventor
Tsutomu Sakuragi
努 櫻木
Yoshiyuki Ishihama
由之 石濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Polyethylene Corp
Original Assignee
Japan Polyethylene Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Polyethylene Corp filed Critical Japan Polyethylene Corp
Priority to JP2005227556A priority Critical patent/JP4759339B2/en
Publication of JP2007039603A publication Critical patent/JP2007039603A/en
Application granted granted Critical
Publication of JP4759339B2 publication Critical patent/JP4759339B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst for olefin polymerization having high activity, having good bulk density and particle properties of catalyst powder, suppressing adhesion to polymerization reactor wall, etc., in a catalyst feed step and a polymerization step and capable of continuing stable polymerization operation. <P>SOLUTION: The catalyst composition for olefin polymerization is obtained by mixing a solid catalyst component [A] for olefin polymerization containing a transition metal compound (component [a]) of group III to X of the periodic table and a cocatalyst support (component [b]) with inorganic oxide fine particles (component [B]) having ≥35% hydrophobization degree in a weight ratio of 0.0001-0.1. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、オレフィン重合用触媒組成物に関し、詳しくは、高活性であり、かつ、流動性、付着性等の粉体性状に優れたオレフィン重合用触媒組成物に関する。   The present invention relates to a catalyst composition for olefin polymerization, and more particularly to a catalyst composition for olefin polymerization that is highly active and excellent in powder properties such as fluidity and adhesion.

オレフィンを触媒の存在下に重合させてオレフィン重合体を製造するにあたり、メタロセン化合物およびアルミノキサンからなる触媒を用いる方法は既に知られている(例えば、特許文献1、2参照。)。これらの触媒を用いた重合法は、従来のいわゆるチーグラー・ナッタ触媒を用いる方法と比較して、遷移金属当たりの重合活性が高く、また分子量分布や組成分布が狭い重合体が得られることが知られている。   In producing an olefin polymer by polymerizing an olefin in the presence of a catalyst, a method using a catalyst comprising a metallocene compound and an aluminoxane is already known (for example, see Patent Documents 1 and 2). It is known that the polymerization method using these catalysts provides a polymer having a high polymerization activity per transition metal and a narrow molecular weight distribution and composition distribution compared with the conventional method using a Ziegler-Natta catalyst. It has been.

しかしながら、これらの触媒系は、反応系に可溶であることが多く、また、スラリー重合あるいは気相重合で得られるオレフィン重合体は、粒子性状の極めて悪いものであるのが普通であり、これらは、製造工程上の大きな問題点となっている。これらの問題点を解消するために、遷移金属化合物およびアルミノキサンの一方あるいは両方をシリカ、アルミナ等の無機酸化物もしくは有機物に担持させて固体化ないし粉体化した触媒も提案されている(例えば、特許文献3、4参照。)。
しかしながら、一般的にオレフィン重合用触媒は乾燥し、粉体で取り扱う場合、いわゆる触媒粉体性状、例えば付着性、流動性、安息角、嵩密度が悪いなど種々の問題点があった。このような触媒粉体性状を改良する目的で、予備重合処理したメタロセン触媒成分に、微粒子の金属酸化物を添加した固体触媒が提案されている(例えば、特許文献5参照。)。しかし、予備重合処理していない触媒成分に特許文献5に記載の微粒子の金属酸化物を添加すると触媒粉体性状が悪化したり、重合活性の低下を招いたりするため、予備重合処理していない触媒成分の粉体性状について改良手法の発明が望まれていた。
However, these catalyst systems are often soluble in the reaction system, and olefin polymers obtained by slurry polymerization or gas phase polymerization usually have very poor particle properties. Is a major problem in the manufacturing process. In order to solve these problems, a catalyst in which one or both of a transition metal compound and an aluminoxane are supported on an inorganic oxide or organic substance such as silica or alumina and solidified or powdered has also been proposed (for example, (See Patent Documents 3 and 4).
However, in general, when an olefin polymerization catalyst is dried and handled as powder, there are various problems such as so-called catalyst powder properties such as poor adhesion, fluidity, angle of repose, and bulk density. For the purpose of improving the properties of such catalyst powder, a solid catalyst obtained by adding a fine metal oxide to a prepolymerized metallocene catalyst component has been proposed (for example, see Patent Document 5). However, when the fine metal oxide described in Patent Document 5 is added to a catalyst component that has not been pre-polymerized, the catalyst powder properties are deteriorated or the polymerization activity is reduced. There has been a demand for an invention of an improved technique for powder properties of catalyst components.

また、このように固体化され、粉体で取り扱われるオレフィン重合用触媒成分は、製造装置内での付着を起こしやすいものであるところから、実際のプロセスでは触媒の供給工程での付着や閉塞などにより触媒供給が安定しにくく、また、重合反応器壁への付着を引き起こして、安定した重合運転が継続できないなどの問題があった。
特公平4−12283号公報 特開昭60−35007号公報 特開昭61−108610号公報 特開昭61−276805号公報 特開平9−324008公報
In addition, since the catalyst component for olefin polymerization that is solidified and handled in this way is likely to cause adhesion in the manufacturing apparatus, in actual processes, such as adhesion and blockage in the catalyst supply process. As a result, there is a problem that the catalyst supply is difficult to stabilize, and that the stable polymerization operation cannot be continued due to the adhesion to the polymerization reactor wall.
Japanese Examined Patent Publication No. 4-12283 Japanese Unexamined Patent Publication No. 60-35007 JP-A-61-108610 Japanese Patent Laid-Open No. 61-276805 JP-A-9-324008

本発明の目的は、上記問題点に鑑み、固体化され、粉体で取り扱われるオレフィン重合用触媒成分の触媒粉体性状を改良し、高活性であり、かつ、触媒粉体の嵩密度、粒子性状が良好で、触媒供給工程や重合工程での重合反応器壁等への付着を抑制し、安定した重合運転が継続できるオレフィン重合用触媒組成物を提供することにある。   In view of the above problems, the object of the present invention is to improve the catalyst powder properties of a catalyst component for olefin polymerization that is solidified and handled in powder, is highly active, and has a bulk density and particles of the catalyst powder. An object of the present invention is to provide a catalyst composition for olefin polymerization which has good properties, suppresses adhesion to a polymerization reactor wall or the like in a catalyst supply step or a polymerization step, and can continue a stable polymerization operation.

本発明者等は、上記課題を解決するために、触媒粉体の嵩密度、付着性、流動性等性状が良好であり、且つ重合活性等の性能を損なわない方法を見出すべく鋭意検討した結果、遷移金属化合物と助触媒担体を含有するオレフィン重合用固体触媒に、特定の疎水化度を有する無機酸化物微粒子を混合することにより、高活性であり、かつ、触媒粉体の嵩密度、粒子性状が極めて良好で、触媒供給工程や重合工程での付着などの問題が解消されたオレフィン重合用触媒組成物が得られることを見出し、本発明に到達した。   In order to solve the above-mentioned problems, the present inventors have intensively studied to find a method in which the catalyst powder has good bulk density, adhesion, fluidity and other properties and does not impair the performance such as polymerization activity. By mixing inorganic oxide fine particles having a specific degree of hydrophobicity with a solid catalyst for olefin polymerization containing a transition metal compound and a co-catalyst support, the bulk density and particle size of the catalyst powder are high. The inventors have found that an olefin polymerization catalyst composition having very good properties and in which problems such as adhesion in the catalyst supply step and the polymerization step are eliminated can be obtained.

すなわち、本発明の第1の発明によれば、周期律表第3〜10族の遷移金属化合物(成分[a])と助触媒担体(成分[b])を含有するオレフィン重合用固体触媒(成分[A])に対して、疎水化度が35%以上の無機酸化物微粒子(成分[B])を、重量比で0.0001〜0.1の範囲で混合してなることを特徴とするオレフィン重合用触媒組成物が提供される。   That is, according to 1st invention of this invention, the solid catalyst for olefin polymerization containing the transition metal compound (component [a]) of the 3rd-10th groups of a periodic table, and a promoter support (component [b]) ( It is characterized by mixing inorganic oxide fine particles (component [B]) having a hydrophobization degree of 35% or more with respect to component [A]) in a weight ratio of 0.0001 to 0.1. An olefin polymerization catalyst composition is provided.

また、本発明の第2の発明によれば、第1の発明において、成分[a]が、周期律表第4〜6族の遷移金属化合物であることを特徴とするオレフィン重合用触媒組成物が提供される。   According to the second invention of the present invention, in the first invention, the component [a] is a transition metal compound belonging to Groups 4 to 6 of the periodic table. Is provided.

また、本発明の第3の発明によれば、第1又は2の発明において、成分[b]が、下記[b−1]〜[b−5]から選ばれた1種以上を含有する助触媒担体であることを特徴とするオレフィン重合用触媒組成物が提供される。
[b−1]アルミニウムオキシ化合物が担持された担体
[b−2]成分[a]と反応して成分[a]をカチオンに変換することが可能なイオン性化合物またはルイス酸が担持された担体
[b−3]固体酸
[b−4]有機金属化合物と、活性水素を有する官能基もしくは非プロトン性のルイス塩基性官能基および電子吸引性基を有する化合物と、化合物Rt−2TH(Rは炭化水素基またはハロゲン化炭化水素基を表し、Tはそれぞれ独立に周期律表の第15族、第16族の非金属原子を表し、tは化合物のTの原子価を表す。)とを接触させて得られる改質された粒子担体
[b−5]層状ケイ酸塩
According to the third invention of the present invention, in the first or second invention, the component [b] contains one or more selected from the following [b-1] to [b-5]. Provided is a catalyst composition for olefin polymerization, which is a catalyst carrier.
[B-1] A carrier carrying an aluminum oxy compound [b-2] A carrier carrying an ionic compound or Lewis acid capable of reacting with component [a] to convert component [a] into a cation [B-3] Solid acid [b-4] An organometallic compound, a compound having a functional group having active hydrogen or an aprotic Lewis basic functional group and an electron-withdrawing group, and a compound R t-2 TH 2 (R represents a hydrocarbon group or a halogenated hydrocarbon group, T represents a group 15 or group 16 nonmetal atom of the periodic table, and t represents the valence of T of the compound.) Modified particle support [b-5] layered silicate obtained by contacting with

また、本発明の第4の発明によれば、第1〜3のいずれかの発明において、成分[B]の平均粒径が、30μm以下であることを特徴とするオレフィン重合用触媒組成物が提供される。   According to a fourth aspect of the present invention, there is provided the catalyst composition for olefin polymerization according to any one of the first to third aspects, wherein the average particle size of the component [B] is 30 μm or less. Provided.

また、本発明の第5の発明によれば、第1〜4のいずれかの発明において、成分[A]の平均粒子径に対する成分[B]の平均粒子径の比が、0.0001〜0.5であることを特徴とするオレフィン重合用触媒組成物が提供される。   According to the fifth aspect of the present invention, in any one of the first to fourth aspects, the ratio of the average particle diameter of the component [B] to the average particle diameter of the component [A] is 0.0001-0. The catalyst composition for olefin polymerization is provided.

また、本発明の第6の発明によれば、第1〜5のいずれかの発明において、成分[B]が、Mg、Ca、Ti、Zr、Al若しくはSiのいずれかの酸化物又は複合酸化物の中から選択されることを特徴とするオレフィン重合用触媒組成物が提供される。   According to the sixth invention of the present invention, in any one of the first to fifth inventions, the component [B] is an oxide or composite oxide of Mg, Ca, Ti, Zr, Al or Si. An olefin polymerization catalyst composition is provided, wherein the catalyst composition is selected from among products.

また、本発明の第7の発明によれば、第1〜6のいずれかの発明において、更に、有機アルミニウム化合物(成分[C])を含有することを特徴とするオレフィン重合用触媒組成物が提供される。   According to a seventh aspect of the present invention, there is provided the catalyst composition for olefin polymerization according to any one of the first to sixth aspects, further comprising an organoaluminum compound (component [C]). Provided.

また、本発明の第8の発明によれば、第1〜7のいずれかの発明において、気相重合用の触媒であることを特徴とするオレフィン重合用触媒組成物が提供される。   According to an eighth aspect of the present invention, there is provided an olefin polymerization catalyst composition characterized in that, in any one of the first to seventh aspects, the catalyst is a gas phase polymerization catalyst.

また、本発明の第9の発明によれば、第1〜8のいずれかの発明において、金属容器への付着性が0.1g/10cc以下であることを特徴とするオレフィン重合用触媒組成物が提供される。   According to a ninth aspect of the present invention, the catalyst composition for olefin polymerization according to any one of the first to eighth aspects, wherein adhesion to a metal container is 0.1 g / 10 cc or less. Is provided.

本発明のオレフィン重合用触媒組成物は、高活性であり、かつ、触媒粉体の嵩密度、粒子性状が極めて良好で、触媒供給工程や重合工程での付着などの問題が解消された触媒組成物である。このような触媒組成物は、触媒供給ラインへの付着およびそれによる閉塞や重合反応器壁への付着などの問題が実質的に発生せず、継続的かつ安定的な触媒の供給が可能となり、オレフィンの重合を安定的に行なうことができる。   The catalyst composition for olefin polymerization of the present invention has a high activity, and the catalyst powder has a very good bulk density and particle properties, which eliminates problems such as adhesion in the catalyst supply process and polymerization process. It is a thing. Such a catalyst composition does not substantially cause problems such as adhesion to the catalyst supply line and clogging due thereto, and adhesion to the polymerization reactor wall, and enables continuous and stable catalyst supply. Olefin polymerization can be performed stably.

本発明のオレフィン重合用触媒組成物は、周期律表第3〜10族の遷移金属化合物(成分[a])と助触媒担体(成分[b])を含有するオレフィン重合用固体触媒(成分[A])に対して、疎水化度が35%以上の無機酸化物微粒子(成分[B])を混合した触媒組成物である。以下、構成成分、オレフィンの重合等について詳細に説明する。   The catalyst composition for olefin polymerization of the present invention is a solid catalyst for olefin polymerization (component [component [b]) containing a transition metal compound (component [a]) of groups 3 to 10 of the periodic table and a promoter catalyst (component [b]). A]) is a catalyst composition in which inorganic oxide fine particles (component [B]) having a degree of hydrophobicity of 35% or more are mixed. Hereinafter, constituent components, olefin polymerization, and the like will be described in detail.

1.オレフィン重合用触媒組成物構成成分
(1)成分[A]
本発明のオレフィン重合用触媒組成物に用いるオレフィン重合用固体触媒(成分[A])は、遷移金属化合物(成分[a])および助触媒担体(成分[b])を含有し、さらに必要に応じて、有機アルミニウム化合物(成分[c])を含有する。
また、成分[A]の平均粒径は、好ましくは5〜500μmであり、より好ましくは10〜100μmである。成分[A]の平均粒径が5μm未満であると触媒供給ラインへの付着およびそれによる閉塞や重合反応器壁への付着、また微粉ポリマーの生成などによって安定した製造運転が継続できない。500μmを超えても流動性の悪化や大粒径ポリマーの生成などによって安定した製造運転が継続できない。
1. Olefin Polymerization Catalyst Composition Component (1) Component [A]
The solid catalyst for olefin polymerization (component [A]) used in the catalyst composition for olefin polymerization of the present invention contains a transition metal compound (component [a]) and a promoter support (component [b]), and further required. Accordingly, an organoaluminum compound (component [c]) is contained.
Moreover, the average particle diameter of component [A] becomes like this. Preferably it is 5-500 micrometers, More preferably, it is 10-100 micrometers. When the average particle size of component [A] is less than 5 μm, stable production operation cannot be continued due to adhesion to the catalyst supply line, clogging or adhesion to the polymerization reactor wall, and formation of finely divided polymer. Even if it exceeds 500 μm, stable production operation cannot be continued due to deterioration of fluidity or generation of a large particle size polymer.

(i)成分[a]
本発明で用いられる成分[a]は、オレフィン重合能を有する遷移金属化合物成分である。遷移金属化合物成分としては、周期律表第3〜10族のすべての遷移金属化合物が挙げられる。好ましくは、3〜6族金属のメタロセン化合物、4族金属のビスアミドまたは8〜10族金属のビスイミノ化合物、4〜10族金属のサリチルアルジミナト化合物が挙げられる。
(I) Component [a]
Component [a] used in the present invention is a transition metal compound component having olefin polymerization ability. Examples of the transition metal compound component include all transition metal compounds of Groups 3 to 10 of the periodic table. Preferably, a metallocene compound of a Group 3-6 metal, a bisamide of a Group 4 metal, a biimino compound of a Group 8-10 metal, or a salicylaldiminato compound of a Group 4-10 metal is used.

これら遷移金属化合物がジアルキル体でない場合は、これらをジアルキル体に変換しうるLi、Na、K、Mg、Ca、Ag、Hg、Zn、Al、Ga等の有機金属化合物を重合に際してあらかじめ、または、同時に存在させることが必要である。   In the case where these transition metal compounds are not dialkyl compounds, an organic metal compound such as Li, Na, K, Mg, Ca, Ag, Hg, Zn, Al, Ga or the like that can convert them into a dialkyl compound is polymerized in advance, or It is necessary to exist at the same time.

少なくとも1個の共役5員環配位子を有する周期律表第3〜6族の遷移金属化合物、すなわちメタロセン化合物としては、以下の一般式(1)〜(4)で表されるものを挙げることができる。   Examples of the transition metal compounds of Group 3 to 6 of the periodic table having at least one conjugated 5-membered ring ligand, that is, metallocene compounds include those represented by the following general formulas (1) to (4). be able to.

(C5−a )(C5−b )MXY …(1)
Q(C4−c )(C4−d )MXY …(2)
Q(C4−e )ZMXY …(3)
(C5−f )MXYW …(4)
(C 5 H 5-a R 1 a) (C 5 H 5-b R 2 b) MXY ... (1)
Q (C 5 H 4-c R 1 c) (C 5 H 4-d R 2 d) MXY ... (2)
Q (C 5 H 4-e R 3 e) ZMXY ... (3)
(C 5 H 5-f R 4 f) MXYW ... (4)

ここで、一般式(1)〜(4)において、Qは二つの共役5員環配位子、共役5員環配位子とZ基、若しくは二つの共役5員環に隣接して付加するアルキル基同士が結合して形成する環同士を架橋する結合性基であり、炭素数1〜20の炭化水素基、または炭素数1〜40の、ケイ素、ゲルマニウム、酸素、窒素若しくはリン含有炭化水素基を、Mは周期律表第3〜6族遷移金属を、X、Y、Wはそれぞれ独立して水素原子、ハロゲン、炭素数1〜20の炭化水素基、または炭素数1〜20の、酸素、窒素、ケイ素若しくはリン含有炭化水素基を、Zは酸素、イオウ、または炭素数1〜40の、ケイ素、酸素、窒素若しくはリン含有炭化水素基を示す。Mは特にTi、Zr、Hfが好ましい。   Here, in the general formulas (1) to (4), Q is added adjacent to two conjugated 5-membered ring ligands, a conjugated 5-membered ring ligand and a Z group, or two conjugated 5-membered rings. It is a bonding group that bridges rings formed by bonding alkyl groups, and is a hydrocarbon group having 1 to 20 carbon atoms, or a silicon, germanium, oxygen, nitrogen, or phosphorus-containing hydrocarbon having 1 to 40 carbon atoms A group, M is a group 3-6 transition metal in the periodic table, X, Y, and W are each independently a hydrogen atom, a halogen, a C1-C20 hydrocarbon group, or a C1-C20 group, O represents an oxygen, nitrogen, silicon or phosphorus-containing hydrocarbon group, and Z represents oxygen, sulfur or a silicon, oxygen, nitrogen or phosphorus-containing hydrocarbon group having 1 to 40 carbon atoms. M is particularly preferably Ti, Zr, or Hf.

、R、R、Rはそれぞれ独立して、炭素数1〜20の炭化水素基、または炭素数1〜20の、ハロゲン、酸素、ケイ素、リン、窒素若しくはホウ素含有炭化水素を示す。酸素含有炭化水素基の例示としては、アルコキシ基、アルコキシアルキル基、アリールオキシ基、アルコキシアリール基などが挙げられる。 R 1 , R 2 , R 3 and R 4 each independently represents a hydrocarbon group having 1 to 20 carbon atoms, or a halogen, oxygen, silicon, phosphorus, nitrogen or boron-containing hydrocarbon having 1 to 20 carbon atoms. Show. Examples of the oxygen-containing hydrocarbon group include an alkoxy group, an alkoxyalkyl group, an aryloxy group, and an alkoxyaryl group.

また、隣接する2個のR、R、R、R同士がそれぞれ結合して4員環〜10員環を形成していてもよい。a、b、c、d、e、fはそれぞれ0≦a,b、f≦5、0≦c,d、e≦4を満足する整数である。 Two adjacent R 1 , R 2 , R 3 and R 4 may be bonded to each other to form a 4-membered ring to a 10-membered ring. a, b, c, d, e, and f are integers that satisfy 0 ≦ a, b, f ≦ 5, 0 ≦ c, d, and e ≦ 4, respectively.

上述した配位子の中では、(C5−a )、(C5−b )、(C4−c )、(C4−d )、(C4−e )、(C5−f )がシクロペンタジエニル基、インデニル基、フルオレニル基、アズレニル基あるいは部分水素添加されたインデニル基、フルオレニル基、アズレニル基が好ましい。 Among the above-mentioned ligands, (C 5 H 5-a R 1 a), (C 5 H 5-b R 2 b), (C 5 H 4-c R 1 c), (C 5 H 4 -d R 2 d), are added (C 5 H 4-e R 3 e), (C 5 H 5-f R 4 f) is a cyclopentadienyl group, an indenyl group, a fluorenyl group, an azulenyl group or a partially hydrogenated Indenyl, fluorenyl and azulenyl groups are preferred.

架橋結合性基Qは、アルキレン基、アルキリデン基、シリレン基、あるいはゲルミレン基が挙げられる。具体的には、メチレン基、エチレン基、ジメチルシリレン基、ジフェニルシリレン基、ジメチルゲルミレン基等が好ましい。   Examples of the crosslinkable group Q include an alkylene group, an alkylidene group, a silylene group, and a germylene group. Specifically, a methylene group, an ethylene group, a dimethylsilylene group, a diphenylsilylene group, a dimethylgermylene group, and the like are preferable.

上記一般式(1)〜(4)で示される具体的なジルコニウム錯体の例を以下に例示するが、ジルコニウムをハフニウム、チタニウムに置き換えた化合物も同様に使用できる。   Examples of specific zirconium complexes represented by the above general formulas (1) to (4) are exemplified below, but compounds in which zirconium is replaced with hafnium or titanium can also be used.

一般式(1)で示されるジルコニウム錯体としては、ビスシクロペンタジエニルジルコニウムジメチル、ビス(2−メチルシクロペンタジエニル)ジルコニウムジメチル、ビス(2−メチル−4,5−ベンゾインデニル)ジルコニウムジメチル、ビスフルオレニルジルコニウムジメチル、ビスシクロペンタジエニルジルコニウムジクロリド、ビス(2−メチル−4−フェニルアズレニル)ジルコニウムジクロリド、(インデニル)(1,3−ジメチルシクロペンタジエニル)ジルコニウムジメチル等が挙げられる。   Examples of the zirconium complex represented by the general formula (1) include biscyclopentadienylzirconium dimethyl, bis (2-methylcyclopentadienyl) zirconium dimethyl, and bis (2-methyl-4,5-benzoindenyl) zirconium dimethyl. Bisfluorenylzirconium dimethyl, biscyclopentadienylzirconium dichloride, bis (2-methyl-4-phenylazurenyl) zirconium dichloride, (indenyl) (1,3-dimethylcyclopentadienyl) zirconium dimethyl, etc. It is done.

一般式(2)で示されるジルコニウム錯体としては、ジメチルシリレンビス(1,1’−シクロペンタジエニル)ジルコニウムジメチル、ジメチルシリレンビス(1,1’−2−メチルインデニル)ジルコニウムジメチル、ジメチルシリレンビス(1,1’−2−メチル−4,5−ベンゾインデニル)ジルコニウムジメチル、ジメチルシリレンビス(1,1’−シクロペンタジエニル)ジルコニウムジクロリド、ジメチルシリレンビス(1,1’−2−メチル−4,5−ベンゾインデニル)ジルコニウムジクロリド、ジメチルシリレンビス(1,1’−2−メチル−4−フェニルアズレニル)ジルコニウムジクロリド、ジメチルゲルミレンビス(1,1’−2−メチル−4−フェニルアズレニル)ジルコニウムジクロリド、ジメチルシリレンビス[7,7’−{1−イソプロピル−3−(4−クロロフェニル)インデニル)}ジルコニウムジクロリド等が挙げられる。   Examples of the zirconium complex represented by the general formula (2) include dimethylsilylene bis (1,1′-cyclopentadienyl) zirconium dimethyl, dimethylsilylene bis (1,1′-2-methylindenyl) zirconium dimethyl, and dimethylsilylene. Bis (1,1'-2-methyl-4,5-benzoindenyl) zirconium dimethyl, dimethylsilylene bis (1,1'-cyclopentadienyl) zirconium dichloride, dimethylsilylene bis (1,1'-2- Methyl-4,5-benzoindenyl) zirconium dichloride, dimethylsilylene bis (1,1′-2-methyl-4-phenylazurenyl) zirconium dichloride, dimethylgermylene bis (1,1′-2-methyl-4) -Phenylazurenyl) zirconium dichloride, dimethylsilylene The [7,7 '- {1-isopropyl-3- (4-chlorophenyl) indenyl)} zirconium dichloride, and the like.

一般式(3)で示されるジルコニウム錯体としては、ジメチルシリレン(t−ブチルアミド)(テトラメチルシクロペンタジエニル)ジルコニウムジメチル、(t−ブチルアミド)(テトラメチルシクロペンタジエニル)−1,2−エタンジイルジルコニウムジメチル、(t−ブチルアミド)(テトラメチルシクロペンタジエニル)シランジイルジルコニウムジメチル、(フェニルフォスフィド)ジメチル(テトラジメチルシクロペンタジエニル)シランジイルジルコニウムジメチル、(t−ブチルアミド)(テトラメチルシクロペンタジエニル)−1,2−エタンジイルジルコニウムジクロリド、(t−ブチルアミド)(テトラメチルシクロペンタジエニル)シランジイルジルコニウムジクロリド等が挙げられる。   Examples of the zirconium complex represented by the general formula (3) include dimethylsilylene (t-butylamide) (tetramethylcyclopentadienyl) zirconium dimethyl, (t-butylamide) (tetramethylcyclopentadienyl) -1,2-ethane. Diylzirconium dimethyl, (t-butylamide) (tetramethylcyclopentadienyl) silanediylzirconium dimethyl, (phenylphosphide) dimethyl (tetradimethylcyclopentadienyl) silanediylzirconium dimethyl, (t-butylamide) (tetramethylcyclo Pentadienyl) -1,2-ethanediylzirconium dichloride, (t-butylamide) (tetramethylcyclopentadienyl) silanediylzirconium dichloride, and the like.

一般式(4)で示されるジルコニウム錯体としては、(シクロペンタジエニル)(フェノキシ)ジルコニウムジメチル、(2,3−ジメチルシクロペンタジエニル)(フェノキシ)ジルコニウムジメチル、(ペンタメチルシクロペンタジエニル)(フェノキシ)ジルコニウムジメチル、(シクロペンタジエニル)(フェノキシ)ジルコニウムジクロリド、(2,3−ジメチルシクロペンタジエニル)(フェノキシ)ジルコニウムジクロリド、(ペンタメチルシクロペンタジエニル)(フェノキシ)ジルコニウムジクロリド、(ペンタメチルシクロペンタジエニル)(2,6−ジ−i−プロピルフェノキシ)ジルコニウムジクロリド、(シクロペンタジエニル)ジルコニウムクロロジメチル、(ペンタメチルシクロペンタジエニル)ジルコニウムクロロジメチル、(ペンタメチルシクロペンタジエニル)ジルコニウムイソプロポキシジメチル、(シクロペンタジエニル)ジルコニウムトリクロリド、(ペンタメチルシクロペンタジエニル)ジルコニウムトリクロリド、(シクロペンタジエニル)ジルコニウムトリイソプロポキシド、(ペンタメチルシクロペンタジエニル)ジルコニウムトリイソプロポキシド等が挙げられる。   As the zirconium complex represented by the general formula (4), (cyclopentadienyl) (phenoxy) zirconium dimethyl, (2,3-dimethylcyclopentadienyl) (phenoxy) zirconium dimethyl, (pentamethylcyclopentadienyl) (Phenoxy) zirconium dimethyl, (cyclopentadienyl) (phenoxy) zirconium dichloride, (2,3-dimethylcyclopentadienyl) (phenoxy) zirconium dichloride, (pentamethylcyclopentadienyl) (phenoxy) zirconium dichloride, Pentamethylcyclopentadienyl) (2,6-di-i-propylphenoxy) zirconium dichloride, (cyclopentadienyl) zirconium chlorodimethyl, (pentamethylcyclopentadienyl) zirconium Chlorodimethyl, (pentamethylcyclopentadienyl) zirconium isopropoxydimethyl, (cyclopentadienyl) zirconium trichloride, (pentamethylcyclopentadienyl) zirconium trichloride, (cyclopentadienyl) zirconium triisopropoxide, (Pentamethylcyclopentadienyl) zirconium triisopropoxide and the like.

またメタロセン化合物として、次の成分(I)〜(III)を相互に接触させて得られる反応生成物を用いることもできる。
成分(I):下記一般式(5)で表される化合物
Me (OR 4−p−q …(5)
(式中、R、Rは個別に炭素数1〜24の炭化水素基、Xは水素原子またはハロゲン原子、MeはTi、Zr又はHfを示し、pおよびqはそれぞれ0≦p≦4、0≦q≦4、0≦p+q≦4である。)
成分(II):下記一般式(6)で表される化合物
Me (OR z−m−n …(6)
(式中、R、Rは個別に炭素数1〜24の炭化水素基、Xは水素原子またはハロゲン原子、Meは周期律表第1〜13族元素、zはMeの価数を示し、mおよびnはそれぞれ0≦m≦z、0≦n≦z、0<m+n≦zである。)
成分(III):共役二重結合を2個以上持つ有機環状化合物
As the metallocene compound, reaction products obtained by bringing the following components (I) to (III) into contact with each other can also be used.
Component (I): Compound represented by the following general formula (5) Me 1 R 1 p (OR 2 ) q X 1 4-pq (5)
(Wherein R 1 and R 2 are each independently a hydrocarbon group having 1 to 24 carbon atoms, X 1 is a hydrogen atom or a halogen atom, Me 1 is Ti, Zr or Hf, and p and q are 0 ≦ p, respectively. ≦ 4, 0 ≦ q ≦ 4, 0 ≦ p + q ≦ 4)
Component (II): Compound represented by the following general formula (6) Me 2 R 3 m (OR 4 ) n X 2 zm-n (6)
(Wherein R 3 and R 4 are each independently a hydrocarbon group having 1 to 24 carbon atoms, X 2 is a hydrogen atom or a halogen atom, Me 2 is a Group 1-13 element of the periodic table, and z is a valence of Me 2 . And m and n are 0 ≦ m ≦ z, 0 ≦ n ≦ z, and 0 <m + n ≦ z, respectively.)
Component (III): an organic cyclic compound having two or more conjugated double bonds

上記成分(I)、(II)の一般式(5)、(6)で示される化合物および成分(III)の化合物を具体的に例示するが、ジルコニウムをハフニウム、チタニウムに置き換えた化合物も同様に使用できる。   The compounds represented by the general formulas (5) and (6) of the above components (I) and (II) and the compound of the component (III) are specifically exemplified, but the compounds in which zirconium is replaced with hafnium and titanium are similarly exemplified. Can be used.

一般式(5)で示される化合物としては、テトラメトキシジルコニウム、テトラエトキシジルコニウム、テトラプロポキシジルコニウム、テトラ−iso−プロポキシジルコニウム、テトラ−iso−ブトキシジルコニウム、テトラメチルジルコニウム、テトラエチルジルコニウム、テトラプロピルジルコニウム、テトラ−n−ブチルジルコニウム、テトラクロロジルコニウム、トリメチルモノクロロジルコニウム、トリエチルモノクロロジルコニウム、トリメトキシモノクロロジルコニウム等が挙げられる。   Examples of the compound represented by the general formula (5) include tetramethoxy zirconium, tetraethoxy zirconium, tetrapropoxy zirconium, tetra-iso-propoxy zirconium, tetra-iso-butoxy zirconium, tetramethyl zirconium, tetraethyl zirconium, tetrapropyl zirconium, tetra -N-butyl zirconium, tetrachloro zirconium, trimethyl monochloro zirconium, triethyl monochloro zirconium, trimethoxy monochloro zirconium and the like.

一般式(6)で示される化合物としては、メチルリチウム、エチルリチウム、n−ブチルリチウム、tert−ブチルリチウム、フェニルリチウム、メチルエチルマグネシウム、ジメチル亜鉛、ジエチル亜鉛、トリメチルアルミニウム、トリエチルアルミニウム、トリ−iso−ブチルアルミニウム、トリ−n−ヘキシルアルミニウム、ジエチルアルミニウムハイドライド、ジエチルアルミニウムクロライド等が挙げられる。   Examples of the compound represented by the general formula (6) include methyl lithium, ethyl lithium, n-butyl lithium, tert-butyl lithium, phenyl lithium, methyl ethyl magnesium, dimethyl zinc, diethyl zinc, trimethyl aluminum, triethyl aluminum, tri-iso. -Butylaluminum, tri-n-hexylaluminum, diethylaluminum hydride, diethylaluminum chloride and the like.

成分(III)の化合物としては、シクロペンタジエン、メチルシクロペンタジエン、エチルシクロペンタジエン、プロピルシクロペンタジエン、iso−プロピルシクロペンタジエン、n−ブチルシクロペンタジエン、sec−ブチルシクロペンタジエン、tert−ブチルシクロペンタジエン、トリメチルシリルシクロペンタジエン、1,2−ジメチルシクロペンタジエン、1,3−ジメチルシクロペンタジエン、1−メチル−3−プロピルシクロペンタジエン、ペンタメチルシクロペンタジエン、インデン、2−メチルインデン、4−メチルインデン、4,7−ジメチルインデン、4,5,6,7−テトラヒドロインデン、4,5−ベンゾインデン、アズレン等が挙げられる。   Examples of the component (III) compound include cyclopentadiene, methylcyclopentadiene, ethylcyclopentadiene, propylcyclopentadiene, iso-propylcyclopentadiene, n-butylcyclopentadiene, sec-butylcyclopentadiene, tert-butylcyclopentadiene, trimethylsilylcyclohexane. Pentadiene, 1,2-dimethylcyclopentadiene, 1,3-dimethylcyclopentadiene, 1-methyl-3-propylcyclopentadiene, pentamethylcyclopentadiene, indene, 2-methylindene, 4-methylindene, 4,7-dimethyl Examples include indene, 4,5,6,7-tetrahydroindene, 4,5-benzoindene, and azulene.

さらに、メタロセン化合物の特殊な例として、特開平7−188335号公報やJACS,1996,118,p2291で開示されている5員環あるいは6員環に炭素以外の元素を一つ以上含む配位子を有する遷移金属化合物も使用可能である。   Furthermore, as a special example of a metallocene compound, a ligand containing one or more elements other than carbon in a 5-membered ring or a 6-membered ring disclosed in JP-A-7-188335 and JACS, 1996, 118, p2291 Transition metal compounds having can also be used.

次に、中心金属が4族もしくは8〜10族元素である非メタロセン化合物としては、以下の一般構造式(7)〜(12)で示されるような、N原子またはO原子が中心金属に直接配位しており、かつ窒素原子、酸素原子に嵩高い置換基を有する架橋型遷移金属化合物を挙げることができる。   Next, as a nonmetallocene compound whose central metal is a group 4 or group 8-10 element, N atoms or O atoms as shown in the following general structural formulas (7) to (12) are directly formed on the central metal. Examples thereof include a bridged transition metal compound that is coordinated and has a bulky substituent on a nitrogen atom or an oxygen atom.

周期律表第4族金属の化合物の例としては、下記一般式(7)に示すような、N−N型配位子を持つビスアミド化合物を挙げることができる。   Examples of the group 4 metal compound of the periodic table include bisamide compounds having an NN type ligand as shown in the following general formula (7).

Figure 2007039603
Figure 2007039603

一般式(7)中、Rは炭素数1〜20の炭化水素基、炭素数1〜20の、ハロゲン、酸素またはケイ素含有炭化水素基を、Uは2つのN原子を架橋する結合性基で、炭素数1〜20の炭化水素基、または炭素数1〜40の、ケイ素、窒素、酸素若しくはイオウ含有炭化水素基を、M’は周期律表第4族遷移金属を、X、Yは水素原子、ハロゲン、炭素数1〜20の炭化水素基、または炭素数1〜20の、酸素、窒素、ケイ素若しくはリン含有炭化水素基を示す。 In general formula (7), R 5 represents a hydrocarbon group having 1 to 20 carbon atoms, a halogen, oxygen or silicon-containing hydrocarbon group having 1 to 20 carbon atoms, and U represents a bonding group that bridges two N atoms. A hydrocarbon group having 1 to 20 carbon atoms, or a hydrocarbon group having 1 to 40 carbon atoms, silicon, nitrogen, oxygen or sulfur, M ′ is a group 4 transition metal in the periodic table, and X and Y are A hydrogen atom, a halogen, a C1-C20 hydrocarbon group, or a C1-C20 oxygen, nitrogen, silicon, or phosphorus containing hydrocarbon group is shown.

具体的には、R=tert−ブチル、トリメチルシリル、2,6−ジイソプロピルフェニル、2,4,6−トリメチルフェニル基である場合が好ましい。 Specifically, it is preferable that R 5 = tert-butyl, trimethylsilyl, 2,6-diisopropylphenyl, or 2,4,6-trimethylphenyl group.

Uは、U=プロペニル、2−フェニルプロペニル、2,2−ジフェニルプロペニル基であることが好ましい。またM’はTi、Zr、Hfのいずれかであり、X,YはCl、メチル、ベンジル、ジメチルアミドのいずれかであることが好ましい。
さらに具体的には、(R、U、M’、X、Y)=(tert−ブチル、プロペニル、Ti、Cl、Cl)、(トリメチルシリル、プロペニル、Ti、Cl、Cl)、(2,6−ジイソプロペニルフェニル、プロペニル、Ti、Cl、Cl)、あるいは(トリメチルシリル、2−フェニルプロペニル、Ti、Cl、Cl)である組合せが好ましい。
これらの化合物例は、Macromolecules,1996,p5241;JACS,1997,119,p3830;JACS,1999,121,p5798に開示されている。
U is preferably U = propenyl, 2-phenylpropenyl, 2,2-diphenylpropenyl. M ′ is any one of Ti, Zr, and Hf, and X and Y are preferably any one of Cl, methyl, benzyl, and dimethylamide.
More specifically, (R 5 , U, M ′, X, Y) = (tert-butyl, propenyl, Ti, Cl, Cl), (trimethylsilyl, propenyl, Ti, Cl, Cl), (2, 6 Combinations that are -diisopropenylphenyl, propenyl, Ti, Cl, Cl) or (trimethylsilyl, 2-phenylpropenyl, Ti, Cl, Cl) are preferred.
Examples of these compounds are disclosed in Macromolecules, 1996, p5241; JACS, 1997, 119, p3830; JACS, 1999, 121, p5798.

また、下記一般式(8)に示すような、N−N型配位子を持つビスアミジナト化合物を挙げることができる。   Moreover, the bisamidinato compound which has a NN type ligand as shown in following General formula (8) can be mentioned.

Figure 2007039603
Figure 2007039603

一般式(8)中、R、Rは炭素数1〜20の炭化水素基、炭素数1〜20の、ハロゲン、酸素またはケイ素含有炭化水素基を、M’は周期律表第4族遷移金属を、X、Yは水素原子、ハロゲン、炭素数1〜20の炭化水素基、または炭素数1〜20の、酸素、窒素、ケイ素若しくはリン含有炭化水素基を示す。 In the general formula (8), R 6 and R 7 are a hydrocarbon group having 1 to 20 carbon atoms, a halogen, oxygen or silicon-containing hydrocarbon group having 1 to 20 carbon atoms, and M ′ is group 4 of the periodic table. In the transition metal, X and Y represent a hydrogen atom, a halogen, a hydrocarbon group having 1 to 20 carbon atoms, or an oxygen, nitrogen, silicon or phosphorus-containing hydrocarbon group having 1 to 20 carbon atoms.

具体的には、R=tert−ブチル、シクロヘキシル、トリメチルシリル、2,6−ジイソプロピルフェニル、2,4,6−トリメチルフェニルのいずれかである場合が好ましく、R=メチル、イソプロピル、フェニル、パラトリルのいずれかである場合が好ましい。またM’はTi、Zr、Hfのいずれかであり、X、YはCl、メチル、ベンジル、ジメチルアミドのうちいずれかである場合が好ましい。 Specifically, it is preferable that R 6 = tert-butyl, cyclohexyl, trimethylsilyl, 2,6-diisopropylphenyl, 2,4,6-trimethylphenyl, and R 7 = methyl, isopropyl, phenyl, paratolyl. It is preferable that it is either. M ′ is preferably any one of Ti, Zr, and Hf, and X and Y are preferably any one of Cl, methyl, benzyl, and dimethylamide.

さらに具体的には、(R、R、M’、X、Y)=(tert−ブチル、フェニル、Zr、Cl、Cl)、(トリメチルシリル、フェニル、Zr、Cl、Cl)、(2,6−ジイソプロペニルフェニル、プロペニル、Ti、Cl、Cl)、あるいは(トリメチルシリル、トリル、Zr、Cl、Cl)である組合せが好ましい。これらの化合物例はOrganometallics,1998,p3155に開示されている。 More specifically, (R 6 , R 7 , M ′, X, Y) = (tert-butyl, phenyl, Zr, Cl, Cl), (trimethylsilyl, phenyl, Zr, Cl, Cl), (2, 6-diisopropenylphenyl, propenyl, Ti, Cl, Cl) or (trimethylsilyl, tolyl, Zr, Cl, Cl) is preferred. Examples of these compounds are disclosed in Organometallics, 1998, p3155.

さらに、下記一般式(9)に示すような、N−O型配位子を持つサリチルアルジミナト化合物を挙げることができる。   Furthermore, a salicylaldiminato compound having an N—O type ligand as shown in the following general formula (9) can be mentioned.

Figure 2007039603
Figure 2007039603

一般式(9)中、R、Rは炭素数1〜20の炭化水素基、または炭素数1〜20の、ハロゲン、酸素、窒素、ケイ素若しくはイオウ含有炭化水素を、R10は水素原子、炭素数1〜20の炭化水素基、または炭素数1〜20のハロゲン、酸素、窒素若しくはケイ素含有炭化水素を、M’は周期律表第4族遷移金属を、X、Yは水素原子、ハロゲン、炭素数1〜20の炭化水素基、または炭素数1〜20の、酸素、窒素、ケイ素若しくはリン含有炭化水素基を示す。 In the general formula (9), R 8 and R 9 are hydrocarbon groups having 1 to 20 carbon atoms, or halogen-containing oxygen, nitrogen, silicon or sulfur-containing hydrocarbons having 1 to 20 carbon atoms, and R 10 is a hydrogen atom. , A hydrocarbon group having 1 to 20 carbon atoms, or a halogen, oxygen, nitrogen or silicon-containing hydrocarbon having 1 to 20 carbon atoms, M ′ is a Group 4 transition metal in the periodic table, X and Y are hydrogen atoms, A halogen, a C1-C20 hydrocarbon group, or a C1-C20 oxygen, nitrogen, silicon, or phosphorus containing hydrocarbon group is shown.

具体的には、R=ヘキシル、シクロヘキシル、フェニル、トリル、ペンタフロロフェニル、パラメトキシフェニル、2,4−ジメチルピロリルのうちいずれかである場合が好ましく、R=t−ブチル若しくはアダマンチル基であり、R10=水素原子、メチル、エチル、若しくはメトキシ基である場合が好ましい。またMはTi、Zr、Hfのうちいずれかであり、X、YはCl、メチル、ベンジル、ジメチルアミドのうちいずれかであることが好ましい。 Specifically, the case where R 8 = hexyl, cyclohexyl, phenyl, tolyl, pentafluorophenyl, paramethoxyphenyl, or 2,4-dimethylpyrrolyl is preferable, and R 9 = t-butyl or an adamantyl group And R 10 is preferably a hydrogen atom, methyl, ethyl, or methoxy group. M is preferably any one of Ti, Zr, and Hf, and X and Y are preferably any one of Cl, methyl, benzyl, and dimethylamide.

さらに具体的には、(R、R、R10、M’、X、Y)=(シクロヘキシル、tert−ブチル、水素原子、Zr、Cl、Cl)、(フェニル、t−ブチル、水素原子、Zr、Cl、Cl)、(トリル、t−ブチル、水素原子、Zr、Cl、Cl)、(ペンタフルオロフェニル、t−ブチル、水素原子、Zr、Cl、Cl)、(ペンタフルオロフェニル、t−ブチル、水素原子、Ti、Cl、Cl)、(2,5−ジメチルピロリル、tert−ブチル、水素原子、Zr、Cl、Cl)である組合せが好ましい。これらの化合物例は特開平11−315109号公報に開示されている。 More specifically, (R 8 , R 9 , R 10 , M ′, X, Y) = (cyclohexyl, tert-butyl, hydrogen atom, Zr, Cl, Cl), (phenyl, t-butyl, hydrogen atom) , Zr, Cl, Cl), (tolyl, t-butyl, hydrogen atom, Zr, Cl, Cl), (pentafluorophenyl, t-butyl, hydrogen atom, Zr, Cl, Cl), (pentafluorophenyl, t -Butyl, hydrogen atom, Ti, Cl, Cl), (2,5-dimethylpyrrolyl, tert-butyl, hydrogen atom, Zr, Cl, Cl) are preferred. Examples of these compounds are disclosed in JP-A-11-315109.

周期律表第8〜10族金属の化合物の例としては、下記一般式(10)〜(11)に示すような、N−N型配位子を持つビスイミノ化合物を挙げることができる。   Examples of the group 8-10 metal compounds of the periodic table include biimino compounds having an NN type ligand as shown in the following general formulas (10) to (11).

Figure 2007039603
Figure 2007039603

Figure 2007039603
Figure 2007039603

一般式(10)および(11)中、MはFeまたはCoを、R11、R13は炭素数1〜20の炭化水素基、または炭素数1〜20の、ハロゲン、酸素、窒素、ケイ素若しくはイオウ含有炭化水素を、R12、R14は水素原子、炭素数1〜20の炭化水素基、または炭素数1〜20のハロゲン、酸素、窒素若しくはケイ素含有炭化水素を示し、またR14はお互いに結合してもよい。M’はNiまたはPdを、X、Yは水素原子、ハロゲン、炭素数1〜20の炭化水素基、または炭素数1〜20の、酸素、窒素、ケイ素若しくはリン含有炭化水素基を示す。 In the general formulas (10) and (11), M is Fe or Co, R 11 and R 13 are hydrocarbon groups having 1 to 20 carbon atoms, or halogen, oxygen, nitrogen, silicon or 1 to 20 carbon atoms R 12 and R 14 represent a sulfur-containing hydrocarbon, a hydrogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or a halogen, oxygen, nitrogen or silicon-containing hydrocarbon having 1 to 20 carbon atoms, and R 14 represents each other. May be combined. M ′ represents Ni or Pd, and X and Y represent a hydrogen atom, a halogen, a hydrocarbon group having 1 to 20 carbon atoms, or an oxygen, nitrogen, silicon or phosphorus-containing hydrocarbon group having 1 to 20 carbon atoms.

具体的には、R11=パラトリル、2,6−ジメチルフェニル、2,6−ジイソプロピルフェニル、もしくは2,4,6−トリメチルフェニルであり、R12=水素原子、メチル、エチル、若しくはプロピルであり、R13=2,6−ジメチルフェニル、2−t−ブチルフェニル、若しくは2,6−ジイソプロピルフェニルである。また、R14は水素原子、メチル、お互いに結合しているものの例としては1,8−ナフチル、−SCHCHS−、若しくは−OCHCHO−である。また、M’=NiまたはPdであり、X,Y=Cl、Br、メチル、若しくはベンジル基である。 Specifically, R 11 = paratolyl, 2,6-dimethylphenyl, 2,6-diisopropylphenyl, or 2,4,6-trimethylphenyl, and R 12 = hydrogen atom, methyl, ethyl, or propyl , R 13 = 2,6-dimethylphenyl, 2-t-butylphenyl, or 2,6-diisopropylphenyl. R 14 is a hydrogen atom, methyl, and examples of those bonded to each other are 1,8-naphthyl, —SCH 2 CH 2 S—, or —OCH 2 CH 2 O—. M ′ = Ni or Pd, and X, Y = Cl, Br, methyl, or benzyl group.

さらに具体的には、(R11、R12、X、Y)=(2,6−ジメチルフェニル、水素原子、Cl、Cl)、(2,4,6−トリメチルフェニル、水素原子、Cl、Cl)、(2,6−ジイソプロピルフェニル、水素原子、Cl、Cl)、(p−トリル、メチル、Cl、Cl)、(2,6−ジメチルフェニル、メチル、Cl、Cl)、あるいは(2,6−ジメチルピロリル、水素原子、Cl、Cl)である組合せが好ましい。 More specifically, (R 11, R 12, X, Y) = (2,6- dimethylphenyl, hydrogen atom, Cl, Cl), (2,4,6-trimethylphenyl, a hydrogen atom, Cl, Cl ), (2,6-diisopropylphenyl, hydrogen atom, Cl, Cl), (p-tolyl, methyl, Cl, Cl), (2,6-dimethylphenyl, methyl, Cl, Cl), or (2,6 A combination which is -dimethylpyrrolyl, hydrogen atom, Cl, Cl) is preferred.

あるいは、(R13、R14、M’、X、Y)=(2,6−ジメチルフェニル、水素原子、Ni、Br、Br)、(2−t−ブチルフェニル、水素原子、Ni、Br、Br)、(2,6−ジイソプロピルフェニル、水素原子、Ni、Br、Br)、(2,6−ジイソプロピルフェニル、1,8−ナフチル、Ni、Br、Br)、(2,5−ジメチルピロリル、水素原子、Ni、Br、Br)あるいは(2,6−ジイソプロピルフェニル、水素原子、Pd、Br、Br)である組合せが好ましい。 Alternatively, (R 13 , R 14 , M ′, X, Y) = (2,6-dimethylphenyl, hydrogen atom, Ni, Br, Br), (2-t-butylphenyl, hydrogen atom, Ni, Br, Br), (2,6-diisopropylphenyl, hydrogen atom, Ni, Br, Br), (2,6-diisopropylphenyl, 1,8-naphthyl, Ni, Br, Br), (2,5-dimethylpyrrolyl) , Hydrogen atom, Ni, Br, Br) or (2,6-diisopropylphenyl, hydrogen atom, Pd, Br, Br).

これらの化合物はJACS,1995,117,p6414、WO96/23010、Chemical Communication,1998,p849、JACS,1998,120,p4049、WO98/27124で開示されている。   These compounds are disclosed in JACS, 1995, 117, p6414, WO 96/23010, Chemical Communication, 1998, p849, JACS, 1998, 120, p4049, WO 98/27124.

また、下記一般式(12)に示すような、N−O型配位子を持つサリチルアルジミナト化合物を挙げることができる。   Moreover, the salicylaldiminato compound which has a NO type ligand as shown in the following general formula (12) can be mentioned.

Figure 2007039603
Figure 2007039603

一般式(12)中、R、Rは炭素数1〜20の炭化水素基、または炭素数1〜20の、ハロゲン、酸素、窒素、ケイ素若しくはイオウ含有炭化水素を、R10は水素原子、炭素数1〜20の炭化水素基、または炭素数1〜20のハロゲン、酸素、窒素若しくはケイ素含有炭化水素を、M’はNiまたはPdを、X、Yは水素原子、ハロゲン、炭素数1〜20の炭化水素基、または炭素数1〜20の、酸素、窒素、ケイ素若しくはリン含有炭化水素基を示す。 In the general formula (12), R 8 and R 9 are hydrocarbon groups having 1 to 20 carbon atoms, or hydrocarbons having 1 to 20 carbon atoms, such as halogen, oxygen, nitrogen, silicon or sulfur, and R 10 is a hydrogen atom. , A hydrocarbon group having 1 to 20 carbon atoms, or a halogen-containing oxygen, nitrogen or silicon-containing hydrocarbon having 1 to 20 carbon atoms, M ′ is Ni or Pd, X and Y are hydrogen atoms, halogens, carbon number 1 -20 hydrocarbon group or a C1-C20 oxygen, nitrogen, silicon, or phosphorus containing hydrocarbon group is shown.

具体的には、R=ヘキシル、シクロヘキシル、フェニル、トリル、ペンタフロロフェニル、パラメトキシフェニル、若しくはピロール基であり、R=t−ブチル若しくはアダマンチル基であり、R10=水素原子、メチル、エチル、若しくはメトキシ基であり、M’=Niであり、X,Y=Cl、メチル、ベンジル、若しくはジメチルアミドである場合が好ましい。 Specifically, R 8 = hexyl, cyclohexyl, phenyl, tolyl, pentafluorophenyl, paramethoxyphenyl, or pyrrole group, R 9 = t-butyl or adamantyl group, R 10 = hydrogen atom, methyl, Preferred is an ethyl or methoxy group, M ′ = Ni, X, Y = Cl, methyl, benzyl or dimethylamide.

さらに具体的には、(R、R、R10、M’、X、Y)=(フェニル、t−ブチル、水素原子、Ni、Br、Br)、(p−トリル、t−ブチル、水素原子、Ni、Br、Br)、(フェニル、t−ブチル、水素原子、Ni、Br、Br)、あるいは(2,5−ジメチルピロリル、t−ブチル、水素原子、Ni、Br、Br)である組合せが好ましい。これらの化合物例は、特開平11−315109号公報に開示されている。 More specifically, (R 8 , R 9 , R 10 , M ′, X, Y) = (phenyl, t-butyl, hydrogen atom, Ni, Br, Br), (p-tolyl, t-butyl, (Hydrogen atom, Ni, Br, Br), (phenyl, t-butyl, hydrogen atom, Ni, Br, Br) or (2,5-dimethylpyrrolyl, t-butyl, hydrogen atom, Ni, Br, Br) A combination is preferred. Examples of these compounds are disclosed in JP-A-11-315109.

更にこれらの化合物の混合物を用いてもよく、また、テトラヒドロフラン等が各例示錯体に錯化したものも同様に使用可能である。   Further, a mixture of these compounds may be used, and those in which tetrahydrofuran or the like is complexed with each exemplified complex can also be used.

(ii)成分[b]
本発明のオレフィン重合用触媒に用いる助触媒担体の成分[b]は、次の[b−1]〜[b−5]から選ばれた1種以上を含有する助触媒担体である。
(Ii) Component [b]
Component [b] of the promoter support used in the olefin polymerization catalyst of the present invention is a promoter support containing at least one selected from the following [b-1] to [b-5].

[b−1]アルミニウムオキシ化合物が担持された担体
[b−2]成分[a]と反応して成分[a]をカチオンに変換することが可能なイオン性化合物またはルイス酸が担持された担体
[b−3]固体酸
[b−4]有機金属化合物と、活性水素を有する官能基もしくは非プロトン性のルイス塩基性官能基および電子吸引性基を有する化合物と、化合物Rt−2TH(Rは炭化水素基またはハロゲン化炭化水素基を表し、Tはそれぞれ独立に周期律表の第15族、第16族の非金属原子を表し、tは化合物のTの原子価を表す。)とを接触させて得られる改質された粒子担体
[b−5]層状珪酸塩
[B-1] A carrier carrying an aluminum oxy compound [b-2] A carrier carrying an ionic compound or Lewis acid capable of reacting with component [a] to convert component [a] into a cation [B-3] Solid acid [b-4] An organometallic compound, a compound having a functional group having active hydrogen or an aprotic Lewis basic functional group and an electron-withdrawing group, and a compound R t-2 TH 2 (R represents a hydrocarbon group or a halogenated hydrocarbon group, T represents each independently a group 15 or group 16 nonmetallic atom of the periodic table, and t represents the valence of T of the compound.) Modified particle support [b-5] layered silicate obtained by contacting with

上記[b−1]においては、アルミニウムオキシ化合物が、[b−4]においては、有機Zn化合物とフッ素化フェノールおよび水の反応物が、また[b−2]においては、成分[a]をカチオンに変換することが可能なイオン性化合物またはルイス酸がそれぞれ助触媒に相当する。[b−3]と[b−5]は、助触媒と担体が同一物質で構成される場合を示すものである。以下に、[b−1]〜[b−5]を詳細に説明する。   In the above [b-1], the aluminum oxy compound, in [b-4] the reaction product of the organic Zn compound, fluorinated phenol and water, and in [b-2] the component [a] An ionic compound or a Lewis acid that can be converted to a cation corresponds to a promoter. [B-3] and [b-5] show the case where the cocatalyst and the support are composed of the same substance. [B-1] to [b-5] will be described in detail below.

[b−1]アルミニウムオキシ化合物が担持された担体:
まず、アルミニウムオキシ化合物について説明し、担体については後述する。アルミニウムオキシ化合物としては、具体的には次の一般式(13)、(14)又は(15)で表される化合物が挙げられる。
[B-1] A carrier on which an aluminum oxy compound is supported:
First, the aluminum oxy compound will be described, and the carrier will be described later. Specific examples of the aluminum oxy compound include compounds represented by the following general formula (13), (14) or (15).

Figure 2007039603
Figure 2007039603

一般式(13)〜(15)中、Rは、水素原子または炭化水素残基、好ましくは炭素数1〜10、特に好ましくは炭素数1〜6の炭化水素残基を示す。また、複数のRはそれぞれ同一でも異なっていてもよい。また、pは0〜40、好ましくは2〜30の整数を示す。 In the general formulas (13) to (15), R 4 represents a hydrogen atom or a hydrocarbon residue, preferably a hydrocarbon residue having 1 to 10 carbon atoms, particularly preferably 1 to 6 carbon atoms. The plurality of R 4 may be the same or different. P represents an integer of 0 to 40, preferably 2 to 30.

一般式(13)及び(14)で表される化合物は、アルモキサンとも呼ばれる化合物であって、これらの中では、メチルアルモキサン又はメチルイソブチルアルモキサンが好ましい。上記のアルモキサンは、各群内および各群間で複数種併用することも可能である。そして、上記のアルモキサンは、公知の様々な条件下に調製することができる。   The compounds represented by the general formulas (13) and (14) are also called alumoxanes, and among these, methylalumoxane or methylisobutylalumoxane is preferable. The above-mentioned alumoxane can be used in combination within a group and between groups. And said alumoxane can be prepared on well-known various conditions.

一般式(15)で表される化合物は、一種類のトリアルキルアルミニウム又は二種類以上のトリアルキルアルミニウムと次の一般式(16)で表されるアルキルボロン酸との10:1〜1:1(モル比)の反応により得ることができる。一般式(16)中、Rは、炭素数1〜10、好ましくは炭素数1〜6の炭化水素残基またはハロゲン化炭化水素基を示す。
B(OH) …(16)
The compound represented by the general formula (15) is 10: 1 to 1: 1 of one type of trialkylaluminum or two or more types of trialkylaluminum and an alkylboronic acid represented by the following general formula (16). It can be obtained by a (molar ratio) reaction. In General Formula (16), R 5 represents a hydrocarbon residue or halogenated hydrocarbon group having 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms.
R 5 B (OH) 2 (16)

[b−2]成分[a]と反応して成分[a]をカチオンに変換することが可能なイオン性化合物またはルイス酸が担持された担体:
成分[a]と反応して成分[a]をカチオンに変換することが可能なイオン性化合物としては、カルボニウムカチオン、アンモニウムカチオンなどの陽イオンと、テトラフェニルホウ素、テトラキス(3,5−ジフルオロフェニル)ホウ素、テトラキス(ペンタフルオロフェニル)ホウ素等の有機ホウ素化合物のアニオンとの錯化物等が挙げられる。
[B-2] A carrier carrying an ionic compound or Lewis acid capable of reacting with component [a] to convert component [a] into a cation:
Examples of ionic compounds that can react with the component [a] to convert the component [a] into a cation include cations such as a carbonium cation and an ammonium cation, tetraphenylboron, and tetrakis (3,5-difluoro And a complex with an anion of an organic boron compound such as phenyl) boron and tetrakis (pentafluorophenyl) boron.

また、ルイス酸、特に成分[a]をカチオンに変換可能なルイス酸としては、種々の有機ホウ素化合物、例えばトリス(ペンタフルオロフェニル)ホウ素などが例示される。あるいは、塩化アルミニウム、塩化マグネシウム等の金属ハロゲン化合物などが例示される。なお、上記のルイス酸のある種のものは、成分[a]と反応して成分[a]をカチオンに変換することが可能なイオン性化合物として把握することもできる。従って、上記のルイス酸およびイオン性化合物の両者に属する化合物は、何れか一方に属するものとする。担体については後述する。   Examples of the Lewis acid that can convert the component [a] into a cation include various organic boron compounds such as tris (pentafluorophenyl) boron. Alternatively, metal halogen compounds such as aluminum chloride and magnesium chloride are exemplified. In addition, a certain thing of said Lewis acid can also be grasped | ascertained as an ionic compound which can react with component [a] and can convert component [a] into a cation. Therefore, the compounds belonging to both the Lewis acid and the ionic compound belong to either one. The carrier will be described later.

[b−3]固体酸
固体酸としては、アルミナ、シリカ・アルミナ、酸化バナジウム等の固体酸が挙げられる。
[B-3] Solid acid Examples of the solid acid include solid acids such as alumina, silica / alumina, and vanadium oxide.

[b−4]有機金属化合物と、活性水素を有する官能基もしくは非プロトン性のルイス塩基性官能基および電子吸引性基を有する化合物と、化合物Rt−2TH(Rは炭化水素基またはハロゲン化炭化水素基を表し、Tはそれぞれ独立に周期律表の第15族、第16族の非金属原子を表し、tは化合物のTの原子価を表す。)とを接触させて得られる改質された粒子担体:
[b−4]における有機金属化合物としては、周期律表第12族の金属化合物を挙げることができ、具体的な化合物を例示すると、ジメチル亜鉛、ジエチル亜鉛、ジプロピル亜鉛、ジ−n−ヘキシル亜鉛等のジアルキル亜鉛、ジフェニル亜鉛、ジナフチル亜鉛、ビス(ペンタフルオロフェニル)亜鉛等のジアリール亜鉛が挙げられる。
また、活性水素を有する官能基もしくは非プロトン供与性のルイス塩基性官能基および電子吸引性基を有する化合物としては、ビス(トリフルオロメチル)アミン、ビス(ペンタフルオロフェニル)アミン等のアミン類、トリフルオロメタノール、2,2,2−トリフルオロ−1−トリフルオロメチルエタノール、1,1−ビス(トリフルオロメチル)−2,2,2−トリフルオロエタノール等のアルコール類、2−フルオロフェノール、3−フルオロフェノール、4−フルオロフェノール、2,6−ジフルオロフェノール、3,5−ジフルオロフェノール、2,4,6−トリフルオロフェノール、ペンタフルオロフェノール等のフェノール類が挙げられる。
さらに、化合物Rt−2TH(Rは炭化水素基またはハロゲン化炭化水素基を表し、Tはそれぞれ独立に周期律表の第15族、第16族の非金属原子を表し、tは化合物のTの原子価を表す。)としては、水、トリフルオロメチルアミン、パーフルオロブチルアミン、パーフルオロオクチルアミン、パーフルオロペンタデシルアミン等のアミン類、2−フルオロアニリン、3−フルオロアニリン、4−フルオロアニリン、2,6−ジフルオロアニリン、3,5−ジフルオロアニリン、2,4,6−トリフルオロアニリン、ペンタフルオロアニリン、2−(トリフルオロメチル)アニリン、3−(トリフルオロメチル)アニリン、4−(トリフルオロメチル)アニリン、2,6−ビス(トリフルオロメチル)アニリン、3,5−ビス(トリフルオロメチル)アニリン、2,4,6−トリス(トリフルオロメチル)アニリン等のアニリン類が挙げられる。
[B-4] an organometallic compound, a functional group having active hydrogen or a compound having an aprotic Lewis basic functional group and an electron-withdrawing group, and a compound R t-2 TH 2 (where R is a hydrocarbon group or Represents a halogenated hydrocarbon group, T represents each independently a nonmetallic atom of Group 15 and Group 16 of the Periodic Table, and t represents a valence of T of the compound). Modified particle carrier:
As the organometallic compound in [b-4], a metal compound belonging to Group 12 of the periodic table can be exemplified. Specific examples of the compound include dimethyl zinc, diethyl zinc, dipropyl zinc, and di-n-hexyl zinc. And diaryl zinc such as dialkyl zinc, diphenyl zinc, dinaphthyl zinc and bis (pentafluorophenyl) zinc.
Examples of the compound having a functional group having active hydrogen or a non-proton-donating Lewis basic functional group and an electron-withdrawing group include amines such as bis (trifluoromethyl) amine and bis (pentafluorophenyl) amine, Alcohols such as trifluoromethanol, 2,2,2-trifluoro-1-trifluoromethylethanol, 1,1-bis (trifluoromethyl) -2,2,2-trifluoroethanol, 2-fluorophenol, Examples thereof include phenols such as 3-fluorophenol, 4-fluorophenol, 2,6-difluorophenol, 3,5-difluorophenol, 2,4,6-trifluorophenol, and pentafluorophenol.
Further, the compound R t-2 TH 2 (R represents a hydrocarbon group or a halogenated hydrocarbon group, T represents each independently a non-metal atom of Group 15 or Group 16 of the Periodic Table, and t represents a compound. As the valence of T.), amines such as water, trifluoromethylamine, perfluorobutylamine, perfluorooctylamine, perfluoropentadecylamine, 2-fluoroaniline, 3-fluoroaniline, 4- Fluoroaniline, 2,6-difluoroaniline, 3,5-difluoroaniline, 2,4,6-trifluoroaniline, pentafluoroaniline, 2- (trifluoromethyl) aniline, 3- (trifluoromethyl) aniline, 4 -(Trifluoromethyl) aniline, 2,6-bis (trifluoromethyl) aniline, 3,5-bis (tri Anilines such as fluoromethyl) aniline and 2,4,6-tris (trifluoromethyl) aniline.

次に、前述した[b−1]、[b−2]および[b−4]における担体について説明する。本発明の担体は、その元素組成、化合物組成についてはとくに限定されない。例えば、無機または有機の化合物から成る担体が例示できる。無機担体としては、シリカ、アルミナ、シリカ・アルミナ、塩化マグネシウム、活性炭、無機珪酸塩等が挙げられる。あるいは、これらの混合物であってもよい。   Next, the carriers in [b-1], [b-2] and [b-4] described above will be described. The carrier of the present invention is not particularly limited with respect to its elemental composition and compound composition. For example, the support | carrier consisting of an inorganic or organic compound can be illustrated. Examples of the inorganic carrier include silica, alumina, silica / alumina, magnesium chloride, activated carbon, inorganic silicate, and the like. Alternatively, a mixture thereof may be used.

有機担体としては、例えば、エチレン、プロピレン、1−ブテン、4−メチル−1−ペンテン等の炭素数2〜14のα−オレフィンの重合体、スチレン、ジビニルベンゼン等の芳香族不飽和炭化水素の重合体などから成る多孔質ポリマーの微粒子担体が挙げられる。あるいはこれらの混合物であってもよい。
これらの担体は、通常1μm〜5mm、好ましくは5μm〜1mm、更に好ましくは10〜200μmの平均粒径を有する。
Examples of the organic carrier include polymers of α-olefins having 2 to 14 carbon atoms such as ethylene, propylene, 1-butene and 4-methyl-1-pentene, and aromatic unsaturated hydrocarbons such as styrene and divinylbenzene. Examples thereof include a porous polymer fine particle carrier made of a polymer or the like. Alternatively, a mixture thereof may be used.
These carriers usually have an average particle size of 1 μm to 5 mm, preferably 5 μm to 1 mm, more preferably 10 to 200 μm.

[b−5]層状珪酸塩:
本発明で使用する層状珪酸塩としては、イオン結合などによって構成される面が互いに結合力で平行に積み重なった結晶構造を有し、且つ、含有されるイオンが交換可能であるイオン交換性層状珪酸塩(以下、単に珪酸塩と略記する)が挙げられる。大部分の珪酸塩は、天然には主に粘土鉱物の主成分として産出されるため、イオン交換性層状珪酸塩以外の夾雑物(石英、クリストバライト等)が含まれることが多いが、それらを含んでもよい。珪酸塩は各種公知のものが使用できる。具体的には、白水春雄著「粘土鉱物学」朝倉書店(1995年)に記載されている次のような層状珪酸塩が挙げられる。
モンモリロナイト、ザウコナイト、バイデライト、ノントロナイト、サポナイト、ヘクトライト、スチーブンサイト等のスメクタイト族、バーミキュライト等のバーミキュライト族、雲母、イライト、セリサイト、海緑石等の雲母族、アタパルジャイト、セピオライト、パリゴルスカイト、ベントナイト、パイロフィライト、タルク、緑泥石群。
[B-5] Layered silicate:
As the layered silicate used in the present invention, an ion-exchangeable layered silicic acid having a crystal structure in which surfaces formed by ionic bonds and the like are stacked in parallel with each other and binding ions can be exchanged. Salt (hereinafter, simply abbreviated as silicate). Most silicates are naturally produced mainly as a main component of clay minerals, and therefore often contain impurities (quartz, cristobalite, etc.) other than ion-exchangeable layered silicates. But you can. Various known silicates can be used. Specific examples include the following layered silicates described in Haruo Shiramizu “Clay Mineralogy” Asakura Shoten (1995).
Montmorillonite, Sauconite, Beidellite, Nontronite, Saponite, Hectorite, Stevensite, etc. , Pyrophyllite, talc, chlorite group.

本発明で使用する珪酸塩は、上記の混合層を形成した層状珪酸塩であってもよい。主成分の珪酸塩が2:1型構造を有する珪酸塩であることが好ましく、スメクタイト族であることが更に好ましく、モンモリロナイトが特に好ましい。珪酸塩は、天然品または工業原料として入手したものは、特に処理を行うことなくそのまま用いることができるが、化学処理を施すことが好ましい。具体的には、酸処理、アルカリ処理、塩類処理、有機物処理等が挙げられる。これらの処理を互いに組み合わせて用いてもよい。本発明において、これらの処理条件には特に制限はなく、公知の条件が使用できる。   The silicate used in the present invention may be a layered silicate in which the above mixed layer is formed. The main component silicate is preferably a silicate having a 2: 1 type structure, more preferably a smectite group, and particularly preferably montmorillonite. Silicates obtained as natural products or industrial raw materials can be used as they are without any particular treatment, but are preferably subjected to chemical treatment. Specifically, acid treatment, alkali treatment, salt treatment, organic matter treatment and the like can be mentioned. These processes may be used in combination with each other. In the present invention, these treatment conditions are not particularly limited, and known conditions can be used.

また、これらイオン交換性層状珪酸塩には、通常吸着水および層間水が含まれるため、不活性ガス流通下で加熱脱水処理するなどして、水分を除去してから使用するのが好ましい。
また、重合によって得られるポリマー粒子の粉体性状を改善するため、当該珪酸塩を球状とすることが好ましい。粒子の形状が球状であれば天然物あるいは市販品をそのまま使用してもよいし、造粒、分粒、分別等により粒子の形状および粒径を制御したものを用いてもよい。ただし、一般的には市販品の珪酸塩は不定形であるため、造粒、分粒、分別等の操作をおこなう場合が多い。
球状粒子を得るための噴霧造粒の原料スラリー液の珪酸塩の濃度は0.1〜70%、好ましくは1〜50%、特に好ましくは2〜30%である。噴霧造粒の熱風の入り口の温度は、分散媒により異なるが、水を例にとると80〜260℃、好ましくは100〜220℃で行う。
本発明では、化学処理前、処理間、処理後に粉砕や造粒等で形状制御を行ってもよい。造粒には各種公知の方法が採用できるが、好ましくは攪拌造粒法、噴霧造粒法が挙げられる。
Moreover, since these ion-exchange layered silicates usually contain adsorbed water and interlayer water, it is preferable to use them after removing moisture by heat dehydration under an inert gas flow.
Moreover, in order to improve the powder property of the polymer particle obtained by superposition | polymerization, it is preferable to make the said silicate spherical. If the particle shape is spherical, a natural product or a commercially available product may be used as it is, or a particle whose particle shape and particle size are controlled by granulation, sizing, fractionation or the like may be used. However, in general, commercially available silicates are indefinite, and thus operations such as granulation, sizing and fractionation are often performed.
The concentration of the silicate in the raw slurry liquid for spray granulation for obtaining spherical particles is 0.1 to 70%, preferably 1 to 50%, particularly preferably 2 to 30%. The temperature at the inlet of the hot air for spray granulation varies depending on the dispersion medium, but is 80 to 260 ° C, preferably 100 to 220 ° C when water is taken as an example.
In the present invention, shape control may be performed by pulverization, granulation, or the like before chemical treatment, during treatment, or after treatment. Various known methods can be employed for granulation, and preferably, stirring granulation method and spray granulation method are exemplified.

上述の成分[b]の中で、特に効果が大きいものは、[b−1]アルミニウムオキシ化合物が担持された担体である。   Among the above-mentioned component [b], the one having a particularly large effect is a support on which [b-1] aluminum oxy compound is supported.

なお、本発明のオレフィン重合用触媒における成分[A]において、[b−1]アルミニウムオキシ化合物が担持された担体、[b−2]成分[a]と反応して成分[a]をカチオンに変換することが可能なイオン性化合物またはルイス酸が担持された担体、[b−3]固体酸、[b−4]有機金属化合物と、活性水素を有する官能基もしくは非プロトン性のルイス塩基性官能基および電子吸引性基を有する化合物と、化合物Rt−2TH(Rは炭化水素基またはハロゲン化炭化水素基を表し、Tはそれぞれ独立に周期律表の第15族、第16族の非金属原子を表し、tは化合物のTの原子価を表す。)とを接触させて得られる改質された粒子担体、あるいは、[b−5]イオン交換性層状珪酸塩は、それぞれ単独に成分[b]として使用される他、これらの4成分を適宜組み合わせて使用することができる。 In addition, in the component [A] in the olefin polymerization catalyst of the present invention, [b-1] a carrier carrying an aluminum oxy compound, [b-2] reacting with the component [a] to convert the component [a] into a cation. An ionic compound that can be converted or a carrier carrying a Lewis acid, [b-3] a solid acid, [b-4] an organometallic compound, a functional group having active hydrogen or an aprotic Lewis basicity A compound having a functional group and an electron-withdrawing group; and a compound R t-2 TH 2 (wherein R represents a hydrocarbon group or a halogenated hydrocarbon group, and T independently represents groups 15 and 16 of the periodic table). And a modified particle carrier obtained by contacting the compound with a non-metallic atom, or [b-5] an ion-exchange layered silicate, respectively. Used as ingredient [b] In addition to being used, these four components can be used in appropriate combination.

(iii)成分[c]
本発明のオレフィン重合用固体触媒[A]において、必要に応じて用いられる成分[c]は、有機アルミニウム化合物である。
成分[c]として用いることのできる有機アルミニウム化合物としては、AlR 3−j(式中、Rは炭素数1〜20の炭化水素基、Xは水素、ハロゲン、アルコキシ基、jは0<j≦3の数である)で示されるものが好ましい。特に、トリメチルアルミニウム、トリエチルアルミニウム、トリプロピルアルミニウム、トリイソブチルアルミニウム等のトリアルキルアルミニウムまたはジエチルアルミニウムモノクロライド、ジエチルアルミニウムメトキシド等のハロゲンもしくはアルコキシ含有アルキルアルミニウムが好ましい。またこの他、メチルアルミノキサン等のアルミノキサン等も使用できる。これらのうちでは、特にトリアルキルアルミニウムが好ましい。これらは、単独であるいは2種以上を混合して用いることができる。
(Iii) Component [c]
In the solid catalyst for olefin polymerization [A] of the present invention, the component [c] used as necessary is an organoaluminum compound.
As the organoaluminum compound that can be used as the component [c], AlR 6 j X 3-j (wherein R 6 is a hydrocarbon group having 1 to 20 carbon atoms, X is hydrogen, halogen, alkoxy group, j is It is preferable that 0 <j ≦ 3. In particular, trialkylaluminum such as trimethylaluminum, triethylaluminum, tripropylaluminum, triisobutylaluminum, or halogen- or alkoxy-containing alkylaluminum such as diethylaluminum monochloride or diethylaluminum methoxide is preferable. In addition, aluminoxane such as methylaluminoxane can also be used. Of these, trialkylaluminum is particularly preferable. These can be used alone or in admixture of two or more.

(iv)成分[A]の製造
本発明のオレフィン重合用触媒における成分[A]は、上記成分[a]、成分[b]および必要に応じて成分[c]を接触させて製造することができる。その接触方法は、特に限定されないが、以下のような接触順序で接触させることができる。また、この接触は、触媒調製時だけでなく、オレフィンによる予備重合時または、オレフィンの重合時に行ってもよい。
(ア)成分[a]と成分[b]を接触させる。
(イ)成分[a]と成分[b]を接触させた後に成分[c]を添加する。
(ウ)成分[a]と成分[c]を接触させた後に成分[b]を添加する。
(エ)成分[b]と成分[c]を接触させた後に成分[a]を添加する。
(オ)三成分を同時に接触させる。
(Iv) Production of Component [A] Component [A] in the olefin polymerization catalyst of the present invention may be produced by contacting component [a], component [b] and, if necessary, component [c]. it can. Although the contact method is not specifically limited, it can contact in the following contact sequences. Further, this contact may be performed not only at the time of catalyst preparation but also at the time of prepolymerization with olefin or at the time of polymerization of olefin.
(A) Component [a] and component [b] are contacted.
(A) Component [c] is added after contacting component [a] and component [b].
(C) Component [b] is added after contacting component [a] and component [c].
(D) Component [a] is added after contacting component [b] and component [c].
(E) Contact the three components simultaneously.

触媒各成分の接触に際し、または接触の後にポリエチレン、ポリプロピレン等の重合体、シリカ、アルミナ等の無機酸化物の固体を共存させ、あるいは接触させてもよい。   When contacting each component of the catalyst, or after the contact, a polymer such as polyethylene or polypropylene, or a solid of an inorganic oxide such as silica or alumina may coexist or contact.

接触は窒素等の不活性ガス中、ペンタン、ヘキサン、ヘプタン、トルエン、キシレン等の不活性炭化水素溶媒中で行ってもよい。接触温度は、−20℃〜溶媒の沸点の間で行い、特に室温から溶媒の沸点の間で行うのが好ましい。   The contact may be carried out in an inert gas such as nitrogen or in an inert hydrocarbon solvent such as pentane, hexane, heptane, toluene, xylene. The contact temperature is between −20 ° C. and the boiling point of the solvent, particularly preferably between room temperature and the boiling point of the solvent.

触媒各成分の使用量は、成分[b]1gあたり成分[a]が0.0001〜10mmol、好ましくは0.001〜5mmolであり、成分[c]が0.01〜10000mmol、好ましくは0.1〜100mmolである。また、成分[a]中の遷移金属と成分[c]中のアルミニウムの原子比が1:0.01〜1000000、好ましくは0.1〜100000である。   The amount of each catalyst component used is 0.0001 to 10 mmol, preferably 0.001 to 5 mmol for component [a] per 1 g of component [b], and 0.01 to 10,000 mmol, preferably 0.001 for component [c]. 1 to 100 mmol. Moreover, the atomic ratio of the transition metal in component [a] and the aluminum in component [c] is 1: 0.01-1 million, Preferably it is 0.1-100,000.

このようにして得られた成分[A]は、重合(本重合)に先だってあらかじめエチレン、プロピレン、1−ブテン、1−ヘキセン、1−オクテン、4−メチル−1−ペンテン、3−メチル−1−ブテン、ビニルシクロアルカン、スチレン等のオレフィンに接触させてこれを少量重合させることからなる予備的重合処理に付しておくことができる。そして、この予備重合処理済触媒は、必要に応じてさらに洗浄処理に付すことができる。   The component [A] obtained in this way was subjected to ethylene, propylene, 1-butene, 1-hexene, 1-octene, 4-methyl-1-pentene, 3-methyl-1 in advance of polymerization (main polymerization). -It can be subjected to a preliminary polymerization treatment comprising contacting an olefin such as butene, vinylcycloalkane, styrene or the like and polymerizing it in a small amount. The prepolymerized catalyst can be further subjected to a washing treatment as necessary.

この予備的な重合は、不活性溶媒中で本重合に比較して穏和な条件で行うことが好ましく、固体触媒1g当たり、0.01〜1000g、好ましくは0.1〜100g、の重合体が生成するように行うことが望ましい。   This preliminary polymerization is preferably carried out in an inert solvent under mild conditions as compared with the main polymerization, and 0.01 to 1000 g, preferably 0.1 to 100 g, of polymer per 1 g of the solid catalyst is obtained. It is desirable to do so.

(2)成分[B]
本発明のオレフィン重合用触媒組成物で使用する成分[B]は、表面処理により疎水化された無機酸化物およびその混合物である。本発明で使用する成分[B]は、1次粒子の状態で使用することも可能であるが、1次粒子が凝集し、2次粒子または3次粒子になったものおよびこれらが混在するものでも、使用可能である。ここでの成分[B]は、本発明の効果が認められるかぎり、いかなるものでも使用できるが、例えば、次に例示するものを疎水化処理することによって得られる。TiO、SiO、Al(OH)、Al、CaCO、MgCO、Al・4SiO・HO、Al・2SiO・2HO、Al・2SiO、3MgO・4SiO・HO、3CaO・Al・3CaSO・31HO、SiO・nHO、BaSO、AlSiO、3CaO・SiO、BaSiO、Al・NaO・6SiO、Al・CaO・2SiO、CdSiO、BaTiO、ZrO、ゼオライト等があり、好ましくはゼオライト、Al、TiO、SiO及びZrO等であり、さらに好ましくはTiO、Al及びSiO、特に好ましくは、SiOである。
(2) Component [B]
Component [B] used in the olefin polymerization catalyst composition of the present invention is an inorganic oxide hydrophobized by surface treatment and a mixture thereof. The component [B] used in the present invention can be used in the form of primary particles, but the primary particles are aggregated into secondary particles or tertiary particles, or a mixture of these. But it can be used. Any component [B] can be used as long as the effect of the present invention is recognized. For example, the component [B] can be obtained by hydrophobizing the following compounds. TiO 2 , SiO 2 , Al (OH) 3 , Al 2 O 3 , CaCO 3 , MgCO 3 , Al 2 O 3 · 4SiO 2 · H 2 O, Al 2 O 3 · 2SiO 2 · 2H 2 O, Al 2 O 3 · 2SiO 2, 3MgO · 4SiO 2 · H 2 O, 3CaO · Al 2 O 3 · 3CaSO 4 · 31H 2 O, SiO 2 · nH 2 O, BaSO 4, Al 2 SiO 5, 3CaO · SiO 2, Ba 2 SiO 4, Al 2 O 3 · Na 2 O · 6SiO 2, Al 2 O 3 · CaO · 2SiO 2, Cd 2 SiO 4, BaTiO 3, ZrO 2, there are zeolite, preferably zeolite, Al 2 O 3, TiO 2 , SiO 2, ZrO 2 and the like, more preferably TiO 2 , Al 2 O 3 and SiO 2 , particularly preferably SiO 2 .

なお、疎水化処理前の無機酸化物の製造方法は、一般に、微粒子工学大系 第I巻 基本技術637−764に記載の次のような方法が挙げられる。
化学炎法、電気炉加熱法、熱プラズマ法、レーザー加熱法、レーザー励起反応法、抵抗加熱法、電子ビーム加熱法、熱プラズマ加熱法、共沈法、均一沈殿法、化合物沈殿法、金属アルコキシド法、水熱合成法、ゾル-ゲル法、噴霧法、凍結乾燥法、エマルション法、硝酸塩分解法、溶液燃焼法、晶析法、熱分解法、機械的粉砕等である。
In addition, the manufacturing method of the inorganic oxide before the hydrophobization process generally includes the following method described in the fine particle engineering large volume I basic technology 637-764.
Chemical flame method, electric furnace heating method, thermal plasma method, laser heating method, laser excitation reaction method, resistance heating method, electron beam heating method, thermal plasma heating method, coprecipitation method, uniform precipitation method, compound precipitation method, metal alkoxide Method, hydrothermal synthesis method, sol-gel method, spray method, freeze-drying method, emulsion method, nitrate decomposition method, solution combustion method, crystallization method, thermal decomposition method, mechanical grinding, and the like.

これらの無機酸化物は、通常吸着水並びに表面水酸基を保有するが、表面水酸基は、アルコキシ基、有機シリル基、アルコキシシリル基、有機シリルオキシ基、有機シロキシ基等に置換されて、疎水化度が高くなったものである。   These inorganic oxides usually have adsorbed water and surface hydroxyl groups, but the surface hydroxyl groups are substituted with alkoxy groups, organic silyl groups, alkoxysilyl groups, organic silyloxy groups, organic siloxy groups, etc., and have a degree of hydrophobicity. It has become expensive.

成分[B]は、次の[B−1]〜[B−6]などから選ばれる1種以上の表面処理により疎水化された無機酸化物から選ばれた少なくとも1種の無機酸化物微粒子である。
[B−1]アルコールによる脱水縮合反応
[B−2]アルキル金属化合物による脱アルカン縮合反応
[B−3]有機シリルハロゲン化物による脱ハロゲン化水素縮合反応
[B−4]アルコキシシリル化合物による脱アルコール縮合反応
[B−5]シロキサン化合物による脱シラノール縮合反応
[B−6]シラザン化合物による脱アンモニア縮合反応
The component [B] is at least one inorganic oxide fine particle selected from inorganic oxides hydrophobized by one or more surface treatments selected from the following [B-1] to [B-6]. is there.
[B-1] Dehydration condensation reaction with alcohol [B-2] Dealkane condensation reaction with alkyl metal compound [B-3] Dehydrohalogenation condensation reaction with organic silyl halide [B-4] Dealcoholization with alkoxysilyl compound Condensation reaction [B-5] Desilanol condensation reaction with siloxane compound [B-6] Deammonia condensation reaction with silazane compound

上記[B−1]〜[B−6]の表面疎水化処理には、下記一般式(17)〜(22)に示す少なくともいずれか1つの疎水化処理剤が用いられる。   For the surface hydrophobization treatment of the above [B-1] to [B-6], at least any one hydrophobization treatment agent represented by the following general formulas (17) to (22) is used.

OH …(17)
一般式(17)中、Rは炭素数1〜20の炭化水素基である。一般式(17)で表される具体的な化合物としては、メタノール、エタノール、n−プロパノール、iso−プロパノール、n−ブタノール、sec−ブタノール、tert−ブタノール、iso−ブタノール、ペンタノール、neo−ペンタノール、ヘキサノール、シクロヘキサノールなどが挙げられる。
R 1 OH (17)
In General Formula (17), R 1 is a hydrocarbon group having 1 to 20 carbon atoms. Specific compounds represented by the general formula (17) include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, tert-butanol, iso-butanol, pentanol, and neo-pen. Examples include tanol, hexanol, and cyclohexanol.

M(ORl−k …(18)
一般式(18)中、R、Rは同じでも異なってもよい炭素数1〜20の炭化水素基であり、MはLi、Na、K、Mg、Ca、Zn、B、Al、Snのいずれかであり、kはMの価数以下の正の数であり、lはMの価数である。一般式(18)で表される具体的な化合物としては、メチルリチウム、n−ブチルリチウム、sec−ブチルリチウム、tert−ブチルリチウム、フェニルリチウム、水素化ナトリウム、水素化カリウム、水素化カルシウム、n−ブチルエチルマグネシウム、ジメチル亜鉛、ジエチル亜鉛、トリメチルアルミニウム、トリエチルアルミニウム、トリ−iso−ブチルアルミニウム、ジエチルアルミニウムエトキシドなどが挙げられる。
R 2 k M (OR 3 ) 1−k (18)
In general formula (18), R 2 and R 3 are the same or different hydrocarbon groups having 1 to 20 carbon atoms, and M is Li, Na, K, Mg, Ca, Zn, B, Al, Sn. Where k is a positive number less than or equal to the valence of M, and l is the valence of M. Specific compounds represented by the general formula (18) include methyl lithium, n-butyl lithium, sec-butyl lithium, tert-butyl lithium, phenyl lithium, sodium hydride, potassium hydride, calcium hydride, n -Butylethylmagnesium, dimethylzinc, diethylzinc, trimethylaluminum, triethylaluminum, tri-iso-butylaluminum, diethylaluminum ethoxide and the like.

SiX4−a …(19)
一般式(19)中、Rは同じでも異なってもよい炭素数1〜20の炭化水素基であり、Xはハロゲンであり、aは1、2または3である。一般式(19)で表される具体的な化合物としては、トリメチルクロロシラン、トリエチルクロロシラン、トリプロピルクロロシラン、トリフェニルクロロシラン、ジメチルプロピルクロロシラン、ジメチルフェニルクロロシラン、ジメチルビニルクロロシラン、ジフェニルメチルクロロシラン、ジメチルクロロシラン、ジエチルジクロロシラン、ジフェニルジクロロシラン、フェニルビニルジクロロシラン、メチルトリクロロシラン、エチルトリクロロシラン、フェニルトリクロロシラン、オクチルトリクロロシランなどが挙げられる。
R 4 a SiX 4-a (19)
In general formula (19), R 4 is the same or different hydrocarbon group having 1 to 20 carbon atoms, X is halogen, and a is 1, 2 or 3. Specific compounds represented by the general formula (19) include trimethylchlorosilane, triethylchlorosilane, tripropylchlorosilane, triphenylchlorosilane, dimethylpropylchlorosilane, dimethylphenylchlorosilane, dimethylvinylchlorosilane, diphenylmethylchlorosilane, dimethylchlorosilane, diethyl Examples include dichlorosilane, diphenyldichlorosilane, phenylvinyldichlorosilane, methyltrichlorosilane, ethyltrichlorosilane, phenyltrichlorosilane, octyltrichlorosilane, and the like.

Si(OR4−b …(20)
一般式(20)中、R、Rはそれぞれ同じでも異なってもよい炭素数1〜20の炭化水素基であり、bは1、2または3である。一般式(20)で表される具体的な化合物としては、メトキシトリメチルシラン、エトキシトリメチルシラン、メトキシトリプロピルシラン、エトキシトリフェニルシラン、ジメトキシジメチルシラン、ジメトキシジフェニルシラン、ジエトキシジメチルシラン、ジエトキシジエチルシラン、ジエトキシジフェニルシラン、ジエトキシメチルビニルシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシランなどが挙げられる。
R 5 b Si (OR 6 ) 4-b (20)
In General Formula (20), R 5 and R 6 are the same or different hydrocarbon groups having 1 to 20 carbon atoms, and b is 1, 2 or 3. Specific compounds represented by the general formula (20) include methoxytrimethylsilane, ethoxytrimethylsilane, methoxytripropylsilane, ethoxytriphenylsilane, dimethoxydimethylsilane, dimethoxydiphenylsilane, diethoxydimethylsilane, diethoxydiethyl. Examples include silane, diethoxydiphenylsilane, diethoxymethylvinylsilane, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, phenyltrimethoxysilane, and phenyltriethoxysilane.

[−Si(RO−] …(21)
一般式(21)中、R、R、Rはそれぞれ同じでも異なってもよい炭素数1〜10の炭化水素基であり、cは2から50の整数である。一般式(21)で表される具体的な化合物としては、ヘキサメチルジシロキサン、ヘキサエチルジシロキサン、ヘキサプロピルジシロキサン、ヘキサフェニルジシロキサン、オクタメチルトリシロキサン、デカメチルテトラシロキサンなどが挙げられる。
R 7 [—Si (R 8 ) 2 O—] c R 9 (21)
In General Formula (21), R 7 , R 8 , and R 9 are the same or different hydrocarbon groups having 1 to 10 carbon atoms, and c is an integer of 2 to 50. Specific examples of the compound represented by the general formula (21) include hexamethyldisiloxane, hexaethyldisiloxane, hexapropyldisiloxane, hexaphenyldisiloxane, octamethyltrisiloxane, decamethyltetrasiloxane, and the like.

(R10 Si)NH3−d …(22)
一般式(22)中、R10は同じでも異なってもよい炭素数1〜20の炭化水素基であり、dは1から3の整数である。一般式(22)で表される具体的な化合物としては、トリメチルシリルアミン、1,1,3,3−テトラメチルジシラザン、1,1,1,3,3,3−ヘキサメチルジシラザン、トリス(トリメチルシリル)アミンなどが挙げられる。
(R 10 3 Si) d NH 3-d (22)
In general formula (22), R 10 is the same or different hydrocarbon group having 1 to 20 carbon atoms, and d is an integer of 1 to 3. Specific compounds represented by the general formula (22) include trimethylsilylamine, 1,1,3,3-tetramethyldisilazane, 1,1,1,3,3,3-hexamethyldisilazane, tris (Trimethylsilyl) amine and the like.

表面処理により疎水化された無機酸化物の疎水化度は、以下の方法により測定することができる。
200ミリリットルビーカーに水50ミリリットルを入れ、さらに無機酸化物0.2グラムを添加する。マグネチックスターラーで緩やかに撹拌しつつ、先端を水中に浸したビュレットからメタノールを滴下し、浮いている無機酸化物が完全に沈んだ時のメタノール滴下量から次式で求められる。
疎水化度(%)={メタノール滴下量ml/(50+メタノール滴下量ml)}×100
疎水化度の値が大きいほど無機酸化物の疎水性は高い。
本発明においては、成分[B]の疎水化度は、35%以上であり、好ましくは40%以上、さらに好ましくは45%以上である。疎水化度が35%未満であると触媒の付着性、流動性、安息角、嵩密度などの触媒粉体性状が悪化するとともに、重合活性の低下を招く。
The degree of hydrophobicity of the inorganic oxide hydrophobized by the surface treatment can be measured by the following method.
Place 50 milliliters of water in a 200 milliliter beaker and add 0.2 grams of inorganic oxide. While gently stirring with a magnetic stirrer, methanol is dropped from a burette whose tip is immersed in water, and the amount of methanol added when the floating inorganic oxide completely sinks can be obtained by the following formula.
Hydrophobicity (%) = {methanol drop volume ml / (50 + methanol drop volume ml)} × 100
The higher the degree of hydrophobicity, the higher the hydrophobicity of the inorganic oxide.
In the present invention, the degree of hydrophobicity of component [B] is 35% or more, preferably 40% or more, more preferably 45% or more. If the degree of hydrophobicity is less than 35%, the catalyst powder properties such as catalyst adhesion, fluidity, angle of repose, and bulk density are deteriorated, and polymerization activity is reduced.

成分[B]の粒子性状は、本発明の効果が認められるかぎり、任意のものでありうるが、一般的には下記のものが好ましい。形状としては、球状、不定形のものいずれも使用可能である。
成分[B]の平均粒径は、本発明で使用する成分[A]の平均粒子径よりも小であることが必要である。従って、30μm以下が好ましく、より好ましくは4μm以下、更に好ましくは1μm以下である。平均粒径が30μmを超えると得られるポリマーをフィルムなどに加工した際、フィッシュアイなどによる外観不良を生じる。
ここで、平均粒径は、1次粒子が凝集して2次粒子ないし3次粒子が生成されて、2次粒子ないし3次粒子の大きさをいう。また、1次粒子径の場合は、小さいものが好ましく、1次粒子の平均粒子径で1μm以下のものが好ましく、さらに好ましくは0.1μm以下である。なお、一次粒子径は一般に、色材,61[11]614−621.1988に記載の方法により測定されるものである。
The particle property of the component [B] can be arbitrary as long as the effect of the present invention is recognized, but the following are generally preferable. As the shape, either spherical or irregular shapes can be used.
The average particle size of component [B] needs to be smaller than the average particle size of component [A] used in the present invention. Therefore, it is preferably 30 μm or less, more preferably 4 μm or less, and still more preferably 1 μm or less. When the average particle size exceeds 30 μm, when the polymer obtained is processed into a film or the like, a poor appearance due to fish eyes or the like occurs.
Here, the average particle size refers to the size of the secondary particles or tertiary particles as the primary particles aggregate to produce secondary particles or tertiary particles. Moreover, in the case of a primary particle diameter, a small thing is preferable and the average particle diameter of a primary particle has a preferable thing of 1 micrometer or less, More preferably, it is 0.1 micrometer or less. In addition, generally a primary particle diameter is measured by the method of a coloring material, 61 [11] 614-6211.188.

さらに、成分[A]の平均粒子径に対する成分[B]の平均粒子径の比は、好ましくは0.0001〜0.5、さらに好ましくは0.0005〜0.1の範囲内である。その理由は、現在までのところ明らかになっていないが、本発明者らは、成分[A]の粒子表面に成分[B]が、吸着していることが重要であると推定している。   Furthermore, the ratio of the average particle size of component [B] to the average particle size of component [A] is preferably in the range of 0.0001 to 0.5, more preferably 0.0005 to 0.1. The reason is not clear so far, but the present inventors presume that it is important that the component [B] is adsorbed on the particle surface of the component [A].

これらの表面処理により疎水化された無機酸化物微粒子は、通常、吸着水が含まれている。
ここで、吸着水とは、表面処理した無機酸化物の表面あるいは結晶破面に吸着された水である。
The inorganic oxide fine particles hydrophobized by these surface treatments usually contain adsorbed water.
Here, the adsorbed water is water adsorbed on the surface or crystal fracture surface of the surface-treated inorganic oxide.

吸着水が過度に多いと、触媒性能の低下を招くおそれがあり、そして通常無機酸化物等上記化合物は、吸着水を過度に含むのが一般的であるから、本発明においては、これらの吸着水を除去して成分[B]を得るのがふつうである。   If the amount of adsorbed water is excessively large, the catalyst performance may be deteriorated, and the above-mentioned compounds such as inorganic oxides usually contain excessively adsorbed water. Usually, the component [B] is obtained by removing water.

吸着水の除去方法は、合目的的な任意の方法でありえるが、本発明では加熱乾燥処理、減圧乾燥処理、気体流通乾燥処理、等によりこれらの吸着水を除去したものを用いられるのが望ましい。吸着水の加熱処理方法は特に制限されないが、加熱脱水、気体流通下の加熱脱水、減圧下の加熱脱水および有機溶媒との共沸脱水等の方法が用いられる。
加熱の際の温度は、吸着水が残存しないように、100℃以上が好ましく、200℃以上が更に好ましい。上限は800℃程度である。
加熱時間は0.05時間以上、好ましくは0.5時間以上、更に好ましくは1時間以上である。
The removal method of adsorbed water can be any suitable method, but in the present invention, it is desirable to use a method from which these adsorbed water has been removed by heat drying treatment, vacuum drying treatment, gas circulation drying treatment, etc. . The heat treatment method of the adsorbed water is not particularly limited, and methods such as heat dehydration, heat dehydration under gas flow, heat dehydration under reduced pressure, and azeotropic dehydration with an organic solvent are used.
The temperature at the time of heating is preferably 100 ° C. or higher, and more preferably 200 ° C. or higher so that adsorbed water does not remain. The upper limit is about 800 ° C.
The heating time is 0.05 hours or longer, preferably 0.5 hours or longer, more preferably 1 hour or longer.

その際、除去した後の成分[B]の水分含有率が温度200℃、圧力760mmHgの条件下で2時間脱水した場合の水分含有量を0重量%としたときに3重量%以下、好ましくは1重量%以下、更に好ましくは0.5重量%以下、下限は0重量%、であることが好ましい。
本発明においては、脱水されて水分含有率が3重量%以下に調整された成分[B]は、成分[A]と接触する際にも同様の水分含有量を保つように取り扱われることが好ましい。
At that time, the water content of the component [B] after removal is 3% by weight or less when the water content is 0% by weight when dehydrated for 2 hours under the conditions of a temperature of 200 ° C. and a pressure of 760 mmHg, preferably It is preferable that it is 1 weight% or less, More preferably, it is 0.5 weight% or less, and a minimum is 0 weight%.
In the present invention, the component [B], which has been dehydrated and adjusted to have a water content of 3% by weight or less, is preferably handled so as to maintain the same water content when contacting the component [A]. .

2.オレフィン重合用触媒組成物の製造および重合反応
本発明のオレフィン重合用触媒組成物は、成分[A]及び成分[B]を含有し、このような触媒は、予め調製して得られた成分[A]と成分[B]とを重合槽外であるいは重合槽内で、重合させるべきオレフィンの存在下あるいは不存在下に、成分[A]および成分[B]、ならびに第三成分(任意成分)と混合することによって得ることができる。
このとき、成分[B]の使用量は、成分[A]に対して重量比で0.0001〜0.1の範囲内であり、好ましくは、0.001〜0.1の範囲内である。成分[A]と成分[B](およびこれらと第三成分)の混合方法は、本発明の効果が認められるかぎり任意のものでありうるが、不活性ガス(充分に精製したものが好ましい)、例えば窒素ガス雰囲気下で混合する方法、不活性溶剤、例えばヘキサン、ヘプタン等の炭化水素溶剤の存在下に混合する方法などがある。予め調製された成分[A]と成分[B]を混合することによって、成分[B]が成分[A]の表面に付着した状態で主として存在しているものと推測される。また混合は、攪拌下に行なう方法、振動ミル、回転ボールミル、等のミルで混合する方法、振とう機で行なう方法、等で行われる。混合時間としては1分から100時間、好ましくは5分〜10時間程度、である。
2. Production and Polymerization Reaction of Olefin Polymerization Catalyst Composition The olefin polymerization catalyst composition of the present invention contains a component [A] and a component [B], and such a catalyst is prepared by preparing a component [ In the presence or absence of the olefin to be polymerized, the component [A], the component [B], and the third component (optional component) outside the polymerization tank or in the polymerization tank. Can be obtained by mixing with.
At this time, the usage-amount of component [B] exists in the range of 0.0001-0.1 by weight ratio with respect to component [A], Preferably, it exists in the range of 0.001-0.1. . The mixing method of the component [A] and the component [B] (and these and the third component) can be arbitrary as long as the effect of the present invention is recognized, but an inert gas (fully purified one is preferable). For example, there are a method of mixing in a nitrogen gas atmosphere and a method of mixing in the presence of an inert solvent, for example, a hydrocarbon solvent such as hexane or heptane. By mixing the component [A] and the component [B] prepared in advance, it is presumed that the component [B] mainly exists in a state of adhering to the surface of the component [A]. The mixing is performed by a method of stirring, a method of mixing with a mill such as a vibration mill or a rotating ball mill, a method of using a shaker, or the like. The mixing time is 1 minute to 100 hours, preferably about 5 minutes to 10 hours.

また、このようにして得られたオレフィン重合用触媒組成物は、重合反応に用いられるが、必要に応じて、新たに有機アルミニウム化合物(成分[C])を組合わせて用いることもできる。この際に用いられる有機アルミニウム化合物の具体例は、成分[c]として前記したものを挙げることができる。この有機アルミニウム化合物の量は、成分[a]中の遷移金属に対する該有機アルミニウム化合物成分中のアルミニウムの原子比で好ましくは1:0〜10000になるように選ばれる。   In addition, the olefin polymerization catalyst composition thus obtained is used for the polymerization reaction, and if necessary, a new organoaluminum compound (component [C]) can also be used in combination. Specific examples of the organoaluminum compound used in this case can include those described above as the component [c]. The amount of the organoaluminum compound is selected so that the atomic ratio of aluminum in the organoaluminum compound component to the transition metal in component [a] is preferably 1: 0 to 10,000.

このようにして得られた本発明のオレフィン重合用触媒組成物は、内容積300ccの金属容器へ10ccの触媒成分を充填して振動させた際の付着量から導いた金属容器付着性が、好ましくは0.1g/10cc以下である。金属容器への付着性が0.1g/10cc以下であると、触媒供給ラインへの付着およびそれによる閉塞や重合反応器壁への付着などの問題が発生せず、継続的かつ安定的な触媒供給が可能となり、オレフィンの重合を安定的に行なうことができる利点を有する。   The thus obtained olefin polymerization catalyst composition of the present invention preferably has a metal container adhesion derived from the amount of adhesion when a metal container having an internal volume of 300 cc is filled with 10 cc of the catalyst component and vibrated. Is 0.1 g / 10 cc or less. If the adhesion to the metal container is 0.1 g / 10 cc or less, there will be no problems such as adhesion to the catalyst supply line, clogging due to it, and adhesion to the polymerization reactor wall, and a continuous and stable catalyst. Supply is possible, and there is an advantage that olefin polymerization can be performed stably.

本発明のオレフィン重合用触媒組成物を用いてオレフィンを安定的に重合することができる。重合に用いられるオレフィンとしては、エチレン、プロピレン、1−ブテン、1−ヘキセン、3−メチル−1−ブテン、3−メチル−1−ペンテン、4−メチル−1−ペンテン、ビニルシクロアルカン、スチレンあるいはこれらの誘導体等がある。また、重合は単独重合のほか通常公知のランダム共重合やブロック共重合にも好適に適用できる。   Olefin can be stably polymerized using the olefin polymerization catalyst composition of the present invention. Examples of the olefin used for the polymerization include ethylene, propylene, 1-butene, 1-hexene, 3-methyl-1-butene, 3-methyl-1-pentene, 4-methyl-1-pentene, vinylcycloalkane, styrene, These derivatives are available. In addition to homopolymerization, the polymerization can be suitably applied to generally known random copolymerization and block copolymerization.

重合反応は、ブタン、ペンタン、ヘキサン、ヘプタン、トルエン、シクロヘキサン等の不活性炭化水素や液化α−オレフィン等の溶媒存在下、あるいは不存在下に行われる。温度は、−50℃〜250℃であり、圧力は特に制限されないが、好ましくは、常圧〜約2000kgf/cmの範囲である。また、重合系内に分子量調節剤として水素を存在させることもできる。 The polymerization reaction is performed in the presence or absence of an inert hydrocarbon such as butane, pentane, hexane, heptane, toluene, cyclohexane, or a solvent such as a liquefied α-olefin. The temperature is −50 ° C. to 250 ° C., and the pressure is not particularly limited, but is preferably in the range of normal pressure to about 2000 kgf / cm 2 . Also, hydrogen can be present as a molecular weight regulator in the polymerization system.

以下に、本発明を実施例を示して具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例において使用した評価方法は以下のとおりであり、以下の触媒合成工程および重合工程はすべて精製窒素雰囲気下で行い、また、使用した溶媒はモレキュラーシーブ−4Aで脱水精製したものを用いた。   EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these examples. The evaluation methods used in the examples are as follows, and the following catalyst synthesis step and polymerization step are all carried out in a purified nitrogen atmosphere, and the solvent used was dehydrated and purified with molecular sieve-4A. It was.

(1)重合用触媒組成物の付着量:触媒組成物10ccを300ccのステンレス製容器に窒素下で充てんし、振とう機で2分間振とうした後に内容物を傾斜廃棄して、触媒の残存付着量の重さを測定した。
(2)重合用触媒組成物の流動性:3.0mmφ、5.0mmφ、5.8mmφ、6.5mmφ、8.0mmφ、12mmφの種々の流出孔径を有する円錐角30゜のステンレス製ロートに、14ccの触媒組成物の粉体を導入して測定した。数字は15秒内に触媒全てが流出する最小孔径にて表示した。
(3)重合用触媒組成物の嵩密度:5.0mmφ流出孔径を有するステンレス製ロートから触媒組成物を10ccの容器に流した時の重さを測定し、1ccあたりの重さで表示した。
(4)重合体のMFR:JIS K6760に準拠し、190℃、2.16kg荷重の条件で測定した。
(5)重合体の嵩密度:JIS K7365に準拠し、ポリマーの見掛け密度を測定した。
(6)成分[A]および[B]の平均粒径:粒度分布測定装置(HORIBA:LA−920)を用いて測定した。分散液はエタノール、超音波時間1分で測定し、得られたメジアン径を平均粒径とした。
(1) Amount of catalyst composition for polymerization: 10 cc of the catalyst composition was filled into a 300 cc stainless steel container under nitrogen, shaken for 2 minutes with a shaker, and the contents were discarded by inclining to leave the catalyst. The weight of the adhesion amount was measured.
(2) Flowability of polymerization catalyst composition: Stainless steel funnel with a conical angle of 30 ° having various outflow hole diameters of 3.0 mmφ, 5.0 mmφ, 5.8 mmφ, 6.5 mmφ, 8.0 mmφ, and 12 mmφ, Measurement was carried out by introducing 14 cc of the catalyst composition powder. The numbers are shown as the minimum pore size from which all the catalyst flows out within 15 seconds.
(3) Bulk density of the catalyst composition for polymerization: The weight when the catalyst composition was poured into a 10 cc container from a stainless steel funnel having a 5.0 mmφ outflow hole diameter was measured and displayed as the weight per cc.
(4) MFR of polymer: Measured in accordance with JIS K6760 under conditions of 190 ° C. and 2.16 kg load.
(5) Bulk density of polymer: The apparent density of the polymer was measured according to JIS K7365.
(6) Average particle diameter of components [A] and [B]: measured using a particle size distribution measuring apparatus (HORIBA: LA-920). The dispersion was measured with ethanol at an ultrasonic time of 1 minute, and the obtained median diameter was defined as the average particle diameter.

(実施例1)
(1)オレフィン重合用固体触媒の調製
窒素下で電磁誘導攪拌機付き300ml三つ口フラスコに精製トルエン150mlを加え、ついでテトラプロポキシジルコニウム(Zr(On−Pr))3.3グラムおよびインデン9.3グラムを加え、室温下30分攪拌後、0℃に系を保持してトリエチルアルミニウム(AlEt)11.1グラムを30分かけて滴下し、滴下終了後、反応系を室温にして5時間攪拌した。この溶液をA溶液とする。なおA溶液のZr濃度は、Zrとして0.057mmol/mlであった。次に、窒素下で別の攪拌機付3L三つ口フラスコに精製トルエン200mlを加え、前記A溶液96ml、ついでメチルアルミノキサンのトルエン溶液(濃度1mmol/ml)548mlを添加し、反応させた。これをB溶液とする。
次に、窒素下で撹拌機付3L三つ口フラスコに精製トルエン400mlを加え、ついで予め600℃で5時間焼成処理したシリカ(富士デビソン社製、グレード#952、表面積300m/g)100gを加えたのち、前記B溶液の全量を添加し、室温で2時間攪拌した。ついで窒素ブローにて溶媒を除去して流動性の良い粉末状のオレフィン重合用固体触媒(成分[A])を得た。成分[A]の平均粒径は40.9μmであった。
(2)オレフィン重合用固体触媒(成分[A])と成分[B]の混合
充分に窒素置換した内容積200mlのステンレス製ボンベに上記(1)で得た固体触媒粉末を20グラムおよび成分[B]として、予め200℃で2時間真空乾燥した日本アエロジル社製シリカR972(1次粒子平均径16nm、ジメチルシリル化処理品、疎水化度48.4%)を0.1グラム(0.5重量%)添加し、振とう機により1時間混合した。得られた触媒組成物の性状を調べたところ、触媒の付着量は0.0668g/10cc、嵩密度は0.420g/ccであり、流動性は3.0mmφであった。
(3)エチレンと1−ヘキセンの気相共重合
攪拌および温度制御装置を有する内容積1リットルのステンレス鋼製オートクレーブに、充分脱水および脱酸素した粒径850μmから2000μmのポリエチレンを80グラム、トリエチルアルミニウムを33ミリグラム、水素を0.38mmol導入し撹拌しながら90℃へ昇温した。1−ヘキセン10重量%を含むエチレンを、分圧が2.0MPaになるまで導入した後、前記(2)で得られた触媒組成物50ミリグラムをアルゴンガスで圧入して55分間重合を行った。その結果、31.2グラムのポリエチレンが生成した。
表1に成分[B]の性状を、表2に触媒組成物の性状及び重合結果を示す。
Example 1
(1) Preparation of solid catalyst for olefin polymerization Under nitrogen, 150 ml of purified toluene was added to a 300 ml three-necked flask equipped with an electromagnetic induction stirrer, and then 3.3 g of tetrapropoxyzirconium (Zr (On-Pr) 4 ) and indene 9. 3 grams was added and stirred at room temperature for 30 minutes, and the system was maintained at 0 ° C., and 11.1 grams of triethylaluminum (AlEt 3 ) was added dropwise over 30 minutes. After completion of the dropwise addition, the reaction system was brought to room temperature for 5 hours. Stir. This solution is designated as solution A. The Zr concentration of the solution A was 0.057 mmol / ml as Zr. Next, 200 ml of purified toluene was added to another 3 L three-necked flask equipped with a stirrer under nitrogen, and 96 ml of the solution A, followed by 548 ml of a toluene solution of methylaluminoxane (concentration 1 mmol / ml) were reacted. This is designated as solution B.
Next, 400 ml of purified toluene was added to a 3 L three-necked flask equipped with a stirrer under nitrogen, and then 100 g of silica (made by Fuji Devison, grade # 952, surface area 300 m 2 / g) previously calcined at 600 ° C. for 5 hours was added. After the addition, the whole amount of the solution B was added and stirred at room temperature for 2 hours. Subsequently, the solvent was removed by nitrogen blowing to obtain a powdery solid catalyst for olefin polymerization (component [A]) having good fluidity. The average particle size of component [A] was 40.9 μm.
(2) Mixing of solid catalyst for olefin polymerization (component [A]) and component [B] 20 grams of solid catalyst powder obtained in (1) above and component [ B], 0.1 g (0.5%) of silica R972 (primary particle average diameter 16 nm, dimethylsilylated product, degree of hydrophobicity 48.4%) manufactured by Nippon Aerosil Co., Ltd., which was previously vacuum-dried at 200 ° C. for 2 hours. % By weight) and mixed with a shaker for 1 hour. When properties of the obtained catalyst composition were examined, the amount of the catalyst adhered was 0.0668 g / 10 cc, the bulk density was 0.420 g / cc, and the fluidity was 3.0 mmφ.
(3) Vapor phase copolymerization of ethylene and 1-hexene 80 g of triethylaluminum in a 1 liter stainless steel autoclave having a stirring and temperature control device and having a sufficiently dehydrated and deoxygenated particle diameter of 850 μm to 2000 μm Was heated to 90 ° C. with stirring. Ethylene containing 10% by weight of 1-hexene was introduced until the partial pressure reached 2.0 MPa, and then 50 mg of the catalyst composition obtained in the above (2) was injected with argon gas for polymerization for 55 minutes. . As a result, 31.2 grams of polyethylene was produced.
Table 1 shows the properties of the component [B], and Table 2 shows the properties of the catalyst composition and the polymerization results.

(実施例2)
実施例1(2)において、成分[B]の日本アエロジル社製シリカR972(1次粒子平均径16nm、ジメチルシリル化処理品、疎水化度48.4%)を0.2グラム(1.0重量%)添加した以外は、実施例1(2)と同様にして触媒組成物の製造を行った。触媒組成物の触媒の付着量は0.1089g/10cc、嵩密度は0.406g/ccであり、流動性は3.0mmφであった。更に、この触媒組成物を使用して実施例1(3)と同様にして気相共重合を行ったところ、重合時間60分で、29.2グラムのポリエチレンが生成した。
表1に成分[B]の性状を、表2に触媒組成物の性状及び重合結果を示す。
(Example 2)
In Example 1 (2), 0.2 g (1.0%) of Component [B] Silica R972 manufactured by Nippon Aerosil Co., Ltd. (average primary particle diameter: 16 nm, dimethylsilylated product, hydrophobicity: 48.4%) The catalyst composition was produced in the same manner as in Example 1 (2) except that (wt%) was added. The catalyst adhesion amount of the catalyst composition was 0.1089 g / 10 cc, the bulk density was 0.406 g / cc, and the fluidity was 3.0 mmφ. Furthermore, when this catalyst composition was used for vapor phase copolymerization in the same manner as in Example 1 (3), 29.2 grams of polyethylene was produced in a polymerization time of 60 minutes.
Table 1 shows the properties of the component [B], and Table 2 shows the properties of the catalyst composition and the polymerization results.

(比較例1)
実施例1(1)で得た固体触媒(成分[A])粉末の性状を調べたところ、付着量は0.1526g/10cc、嵩密度は0.436g/ccであり、流動性は3.0mmφであった。更に、この固体触媒粉末を使用して実施例1(3)と同様にして気相共重合を行ったところ、重合時間52分で、29.6グラムのポリエチレンが生成した。
表2に固体触媒粉体の性状及び重合結果を示す。
(Comparative Example 1)
When the properties of the solid catalyst (component [A]) powder obtained in Example 1 (1) were examined, the adhesion amount was 0.1526 g / 10 cc, the bulk density was 0.436 g / cc, and the fluidity was 3. It was 0 mmφ. Furthermore, when this solid catalyst powder was used for vapor phase copolymerization in the same manner as in Example 1 (3), 29.6 grams of polyethylene was produced in a polymerization time of 52 minutes.
Table 2 shows the properties of the solid catalyst powder and the polymerization results.

(比較例2)
実施例1(2)において、成分[B]として日本アエロジル社製R972の代わりに日本アエロジル社製RA200H(1次粒子平均径12nm、トリメチルシリル化およびメチルアミノシリル化処理品、疎水化度32.9%)を使用した以外は同様にして、触媒組成物の製造を行った。触媒付着量は0.2115g/10cc、嵩密度は0.390g/ccであり、流動性は3.0mmφであった。更に、この触媒組成物を使用して実施例1(3)と同様にして気相共重合を行ったところ、重合時間60分で、19.8グラムのポリエチレンが生成した。
表1に成分[B]の性状を、表2に触媒組成物の性状及び重合結果を示す。
(Comparative Example 2)
In Example 1 (2), RA200H manufactured by Nippon Aerosil Co., Ltd. (average primary particle size 12 nm, trimethylsilylated and methylaminosilylated product, degree of hydrophobicity 32.9 as component [B] instead of R972 manufactured by Nippon Aerosil Co., Ltd. %) Was used in the same manner to produce a catalyst composition. The catalyst adhesion amount was 0.2115 g / 10 cc, the bulk density was 0.390 g / cc, and the fluidity was 3.0 mmφ. Furthermore, when this catalyst composition was used for vapor phase copolymerization in the same manner as in Example 1 (3), 19.8 grams of polyethylene was produced in a polymerization time of 60 minutes.
Table 1 shows the properties of the component [B], and Table 2 shows the properties of the catalyst composition and the polymerization results.

(比較例3)
実施例2において、成分[B]として日本アエロジル社製R972の代わりに日本アエロジル社製RA200H(1次粒子平均径12nm、トリメチルシリル化およびメチルアミノシリル化処理品、疎水化度32.9%)を使用した以外は同様にして、触媒組成物の製造を行った。触媒の付着量は0.2468g/10cc、嵩密度は0.341g/ccであり、流動性は8.0mmφであった。更に、この触媒組成物を使用して実施例1(3)と同様にして気相共重合を行ったところ、重合時間60分で、9.0グラムのポリエチレンが生成した。
表1に成分[B]の性状を、表2に触媒組成物の性状及び重合結果を示す。
(Comparative Example 3)
In Example 2, instead of R972 manufactured by Nippon Aerosil Co., Ltd., RA200H (primary particle average diameter 12 nm, trimethylsilylated and methylaminosilylated product, degree of hydrophobicity 32.9%) was used as component [B] instead of R972 manufactured by Nippon Aerosil Co., Ltd. A catalyst composition was produced in the same manner except that it was used. The adhesion amount of the catalyst was 0.2468 g / 10 cc, the bulk density was 0.341 g / cc, and the fluidity was 8.0 mmφ. Further, when this catalyst composition was used for vapor phase copolymerization in the same manner as in Example 1 (3), 9.0 grams of polyethylene was produced in a polymerization time of 60 minutes.
Table 1 shows the properties of the component [B], and Table 2 shows the properties of the catalyst composition and the polymerization results.

(実施例3)
実施例1(2)において、成分[B]として日本アエロジル社製R972の代わりに日本アエロジル社製T805(1次粒子平均径21nm、ノルマルオクチルジエトキシシリル化処理、疎水化度88.9%)を使用した以外は同様にして、触媒組成物の製造を行った。触媒の付着量は0.1055g/10cc、嵩密度は0.445g/ccであり、流動性は3.0mmφであった。更に、この触媒組成物を使用して実施例1(3)と同様にして気相共重合を行ったところ、重合時間60分で、33.0グラムのポリエチレンが生成した。
表1に成分[B]の性状を、表2に触媒組成物の性状及び重合結果を示す。
(Example 3)
In Example 1 (2), instead of R972 manufactured by Nippon Aerosil Co., Ltd. as component [B], T805 manufactured by Nippon Aerosil Co., Ltd. (average primary particle diameter of 21 nm, normal octyl diethoxysilylation treatment, degree of hydrophobicity of 88.9%) A catalyst composition was produced in the same manner except that was used. The adhesion amount of the catalyst was 0.1055 g / 10 cc, the bulk density was 0.445 g / cc, and the fluidity was 3.0 mmφ. Furthermore, when this catalyst composition was used for vapor phase copolymerization in the same manner as in Example 1 (3), 33.0 grams of polyethylene was produced in a polymerization time of 60 minutes.
Table 1 shows the properties of the component [B], and Table 2 shows the properties of the catalyst composition and the polymerization results.

(比較例4)
実施例3において、成分[B]として日本アエロジル社製T805の代わりに日本アエロジル社製P25(1次粒子平均径21nm、表面処理なし、疎水化度0%)を使用した以外は同様にして、触媒組成物の製造を行った。触媒の付着量は0.1742g/10cc、嵩密度は0.440g/ccであり、流動性は3.0mmφであった。更に、この触媒組成物を使用して実施例1(3)と同様にして気相共重合を行ったところ、重合時間60分で、14.5グラムのポリエチレンが生成した。
表1に成分[B]の性状を、表2に触媒組成物の性状及び重合結果を示す。
(Comparative Example 4)
In Example 3, P25 (average primary particle diameter 21 nm, no surface treatment, hydrophobization degree 0%) manufactured by Nippon Aerosil Co., Ltd. was used instead of T805 manufactured by Nippon Aerosil Co., Ltd. as component [B]. A catalyst composition was produced. The adhesion amount of the catalyst was 0.1742 g / 10 cc, the bulk density was 0.440 g / cc, and the fluidity was 3.0 mmφ. Furthermore, when this catalyst composition was used for vapor phase copolymerization in the same manner as in Example 1 (3), 14.5 grams of polyethylene was produced in a polymerization time of 60 minutes.
Table 1 shows the properties of the component [B], and Table 2 shows the properties of the catalyst composition and the polymerization results.

(実施例4)
実施例1(2)において、成分[B]として日本アエロジル社製R972の代わりに日本アエロジル社製R812(1次粒子平均径7nm、トリメチルシリル化処理品、疎水化度55.3%)を使用した以外は同様にして、触媒組成物の製造を行った。触媒の付着量は0.0672g/10cc、嵩密度は0.415g/ccであり、流動性は3.0mmφであった。更に、この触媒組成物を使用して実施例1(3)と同様にして気相共重合を行ったところ、重合時間60分で、34.0グラムのポリエチレンが生成した。
表1に成分[B]の性状を、表2に触媒組成物の性状及び重合結果を示す。
Example 4
In Example 1 (2), instead of R972 manufactured by Nippon Aerosil Co., Ltd., R812 manufactured by Nippon Aerosil Co., Ltd. (average primary particle size: 7 nm, trimethylsilylated product, hydrophobization degree: 55.3%) was used as the component [B]. Except for this, the catalyst composition was produced in the same manner. The adhesion amount of the catalyst was 0.0672 g / 10 cc, the bulk density was 0.415 g / cc, and the fluidity was 3.0 mmφ. Further, when this catalyst composition was used for vapor phase copolymerization in the same manner as in Example 1 (3), 34.0 grams of polyethylene was produced in a polymerization time of 60 minutes.
Table 1 shows the properties of the component [B], and Table 2 shows the properties of the catalyst composition and the polymerization results.

(比較例5)
実施例1(2)において、成分[B]として日本アエロジル社製R972の代わりに日本アエロジル社製300CF(1次粒子平均径7nm、表面未処理品、疎水化度0%)を使用した以外は同様にして、触媒組成物の製造を行った。触媒の付着量は0.2952g/10cc、嵩密度は0.322g/ccであり、流動性は8.0mmφであった。更に、この触媒組成物を使用して実施例1(3)と同様にして重合を行ったところ、重合時間60分で、10.5グラムのポリエチレンが生成した。
表1に成分[B]の性状を、表2に触媒組成物の性状及び重合結果を示す。
(Comparative Example 5)
In Example 1 (2), instead of R972 manufactured by Nippon Aerosil Co., Ltd., 300CF manufactured by Nippon Aerosil Co., Ltd. (average primary particle diameter: 7 nm, untreated surface, hydrophobization degree 0%) was used as the component [B]. Similarly, the catalyst composition was produced. The adhesion amount of the catalyst was 0.2952 g / 10 cc, the bulk density was 0.322 g / cc, and the fluidity was 8.0 mmφ. Furthermore, when this catalyst composition was used for polymerization in the same manner as in Example 1 (3), 10.5 grams of polyethylene was produced in a polymerization time of 60 minutes.
Table 1 shows the properties of the component [B], and Table 2 shows the properties of the catalyst composition and the polymerization results.

(実施例5)
(1)固体触媒成分の製造
市販の多孔質シリカ(グレースジャパン社製サイロポール948)をASTMD1921(1996)、TEST METHOD Aの方法によりNo.230(目開き63μm)メッシュの篩で分級し、通過した微粒子側のシリカ(SiO−1)を使用した。本SiO−1の平均粒径を、堀場製作所社製レーザー回折・散乱式粒子径分布測定装置LA−920を用い、分散溶媒を蒸留水、屈折率1.0、形状係数1.0の条件で測定した結果、算術平均径での平均粒径は45μm、100μm以上の粒子は0%であった。
3リットル・ガラスフラスコに上記で得た分級シリカSiO−1、400グラムを導入し、次いでCrO4グラムを2リットルの蒸留水に溶解して加えて15分間攪拌した。次いで、上澄みを除去した後、過熱しつつ窒素ガスを導入し、粉粒状になった時点で、150℃まで昇温し、さらに4時間乾燥し、クロム担持シリカ(Cr−SiO−1)を得た。その結果、この担持シリカにはクロムが0.2重量%含まれていた。
次いで、この乾燥担体400グラムを、3リットルのフラスコに導入し、イソペンタン1リットル、チタン酸イソプロピルを100グラム導入し、50℃で2時間攪拌した後、イソペンタンを留去した。さらに、(NHSiFを1グラム加えて、150℃で1時間窒素ガス流通下で乾燥した。室温に戻した後、窒素下で焼成管に移し、焼成炉で窒素下150℃で更に1時間乾燥した後、窒素から乾燥空気にガスを切り替えて、350℃で2時間、更に750℃で4時間焼成した。焼成終了後、窒素ガスに切り替えた後、ゆっくり室温に戻し、クロムとチタンの担持された固体触媒を得た。この触媒中には、チタンが3.5重量%含まれていた。
(2)オレフィン重合用固体触媒と成分[B]の混合
充分に窒素置換した内容積200mlのステンレス製ボンベに実施例5(1)で得た固体触媒粉末を20グラムおよび成分[B]として、予め200℃で2時間真空乾燥した日本アエロジル社製シリカR972(1次粒子平均径16nm、ジメチルシリル化処理品、疎水化度48.4%)を0.1グラム(0.5重量%)添加し、振とう機により1時間混合した。得られた触媒組成物の性状を調べたところ、触媒の付着量は0.0303g/10cc、嵩密度は0.409g/ccであり、流動性は3.0mmφであった。
(3)エチレンと1−ブテンの共重合
上記(2)の触媒組成物を用いて、エチレンと1−ブテンの混合ガス(1−ブテン/(エチレン+1−ブテン)=7.5モル%)流体中で酸素を0.10ppmの濃度を保持しつつ、温度90℃、全圧力2.0MPa、滞留時間3.5時間で気相共重合し、MFR0.77g/10分、灰分0.021%、嵩密度0.436g/ccの粉粒状直鎖状低密度ポリエチレン(エチレン−1−ブテン共重合体)を得た。
表1に成分[B]の性状を、表2に触媒組成物の性状及び重合結果を示す。
(Example 5)
(1) Production of Solid Catalyst Component Commercially available porous silica (Silopol 948 manufactured by Grace Japan Co., Ltd.) was measured according to ASTM D1921 (1996) and TEST METHOD A No. The fine particles were passed through a 230 (mesh 63 μm) mesh sieve, and silica (SiO 2 -1) on the fine particle side that passed through was used. The average particle size of the SiO 2 -1 was measured using a laser diffraction / scattering particle size distribution measuring device LA-920 manufactured by Horiba, Ltd., and the dispersion solvent was distilled water, the refractive index was 1.0, and the shape factor was 1.0. As a result, the average particle diameter in terms of the arithmetic average diameter was 45 μm, and the particle size of 100 μm or more was 0%.
Into a 3 liter glass flask, 400 grams of the classified silica SiO 2 -1 obtained above was introduced, and then 4 grams of CrO 3 was dissolved in 2 liters of distilled water and stirred for 15 minutes. Next, after removing the supernatant, nitrogen gas was introduced while heating, and when the powder became granular, the temperature was raised to 150 ° C., and further dried for 4 hours, and chromium-supporting silica (Cr—SiO 2 -1) was removed. Obtained. As a result, this supported silica contained 0.2% by weight of chromium.
Next, 400 grams of this dry carrier was introduced into a 3 liter flask, 1 liter of isopentane and 100 grams of isopropyl titanate were introduced, and the mixture was stirred at 50 ° C. for 2 hours, after which isopentane was distilled off. Furthermore, 1 gram of (NH 4 ) 2 SiF 6 was added and dried at 150 ° C. for 1 hour under a nitrogen gas flow. After returning to room temperature, it was transferred to a firing tube under nitrogen, and further dried at 150 ° C. under nitrogen in a firing furnace for 1 hour, then the gas was switched from nitrogen to dry air, 350 ° C. for 2 hours, and further at 750 ° C. for 4 hours. Baked for hours. After the calcination, the gas was switched to nitrogen gas, and then slowly returned to room temperature to obtain a solid catalyst carrying chromium and titanium. This catalyst contained 3.5% by weight of titanium.
(2) Mixing of solid catalyst for olefin polymerization and component [B] 20 grams of the solid catalyst powder obtained in Example 5 (1) and component [B] in a stainless steel cylinder with an internal volume of 200 ml sufficiently purged with nitrogen, 0.1 g (0.5 wt%) of silica R972 (primary particle average diameter 16 nm, dimethylsilylated product, degree of hydrophobicity 48.4%) manufactured by Nippon Aerosil Co., Ltd., which was previously vacuum-dried at 200 ° C. for 2 hours, was added. And mixed for 1 hour with a shaker. When the properties of the obtained catalyst composition were examined, the catalyst adhesion amount was 0.0303 g / 10 cc, the bulk density was 0.409 g / cc, and the fluidity was 3.0 mmφ.
(3) Copolymerization of ethylene and 1-butene Using the catalyst composition of (2) above, a mixed gas of ethylene and 1-butene (1-butene / (ethylene + 1-butene) = 7.5 mol%) fluid While maintaining a concentration of 0.10 ppm in oxygen, gas phase copolymerization was performed at a temperature of 90 ° C., a total pressure of 2.0 MPa, a residence time of 3.5 hours, MFR 0.77 g / 10 minutes, ash content 0.021%, A powdery linear low-density polyethylene (ethylene-1-butene copolymer) having a bulk density of 0.436 g / cc was obtained.
Table 1 shows the properties of the component [B], and Table 2 shows the properties of the catalyst composition and the polymerization results.

(実施例6)
(1)固体触媒成分の製造
硫酸亜鉛七水和物0.2キログラムを溶解させた脱塩水3.2キログラムに合成ウンモ(コープケミカル社製ME−100)1キログラムを分散させ、室温で1時間攪拌処理し、濾過した。脱塩水で洗浄した後固形分濃度を25%に調整し、該スラリーを噴霧乾燥機に導入し球状の造粒粒子を得た。この粒子を更に200℃で2時間減圧乾燥した。
この球状粒子30グラムをn−ヘプタン500mlでスラリー化し、ここへ室温撹拌下トリイソブチルアルミニウム5.6グラム(28mmol、ヘプタン溶液34ml)を加えた。10分間撹拌を続けた後、下記構造式の鉄錯体を1.26グラム(24.1mmol、トルエン溶液200ml)加え、更に10分間撹拌した。室温で減圧下、溶媒を留去してオレフィン重合用固体触媒を得た。
(Example 6)
(1) Production of solid catalyst component 1 kg of synthetic ummo (ME-100 manufactured by Co-op Chemical Co.) is dispersed in 3.2 kg of demineralized water in which 0.2 kg of zinc sulfate heptahydrate is dissolved, and then at room temperature for 1 hour. Stir and filter. After washing with demineralized water, the solid content concentration was adjusted to 25%, and the slurry was introduced into a spray dryer to obtain spherical granulated particles. The particles were further dried under reduced pressure at 200 ° C. for 2 hours.
30 g of the spherical particles were slurried with 500 ml of n-heptane, and 5.6 g of triisobutylaluminum (28 mmol, 34 ml of heptane solution) was added thereto with stirring at room temperature. After stirring for 10 minutes, 1.26 g (24.1 mmol, 200 ml of toluene solution) of an iron complex having the following structural formula was added, and the mixture was further stirred for 10 minutes. The solvent was distilled off under reduced pressure at room temperature to obtain a solid catalyst for olefin polymerization.

Figure 2007039603
Figure 2007039603

(2)オレフィン重合用固体触媒と成分[B]の混合
充分に窒素置換した内容積200mlのステンレス製ボンベに上記(1)で得た固体触媒粉末を20グラムおよび成分[B]として、予め200℃で2時間真空乾燥した日本アエロジル社製シリカR972(1次粒子平均径16nm、ジメチルシリル化処理品、疎水化度48.4%)を0.1グラム(0.5重量%)添加し、振とう機により1時間混合した。得られた触媒組成物の性状を調べたところ、触媒の付着量は0.0349g/10cc、嵩密度は0.440g/ccであり、流れ性は3.0mmφであった。
(3)エチレン−1−ヘキセン共重合
(2)で得られた触媒を用いてスラリー重合を行った。すなわち、3Lオートクレーブにn−ヘプタン1.5L、トリイソブチルアルミニウム2.5mmol、1−ヘキセン180ml、微量の水素(0.0285NL)を加え、80℃に昇温し、エチレンガスを導入して全圧を1.96MPa(20Kg/cmG)に昇圧した。ついで上記(2)で得られた触媒組成物100ミリグラムを、微量水素を混合したエチレン(水素/エチレン比=0.42モル%)とともに導入し、全圧を2.16MPa(22Kg/cmG)に保って、80℃で重合を行った。重合開始5分後および重合停止直前の水素/エチレン比はそれぞれ0.13モル%、0.42モル%であった。25分後、エタノールを加えて重合を停止した。得られたポリマーをろ過にて分別し、熱風下で乾燥した。得られたポリマーは粒子状で、重合槽への付着は見られなかった。得られたポリマーは190グラムであった。
表1に成分[B]の性状を、表2に触媒組成物の性状及び重合結果を示す。
(2) Mixing of solid catalyst for olefin polymerization and component [B] 200 g of the solid catalyst powder obtained in the above (1) and 200 parts of component [B] were placed in advance in a 200 ml stainless steel cylinder sufficiently purged with nitrogen. 0.1 g (0.5 wt%) of silica R972 (primary particle average diameter 16 nm, dimethylsilylated product, hydrophobization degree 48.4%) manufactured by Nippon Aerosil Co., Ltd., vacuum-dried at 2 ° C. for 2 hours, Mix for 1 hour with a shaker. When the properties of the obtained catalyst composition were examined, the catalyst adhesion amount was 0.0349 g / 10 cc, the bulk density was 0.440 g / cc, and the flowability was 3.0 mmφ.
(3) Ethylene-1-hexene copolymerization Slurry polymerization was performed using the catalyst obtained in (2). That is, 1.5 L of n-heptane, 2.5 mmol of triisobutylaluminum, 180 ml of 1-hexene and a small amount of hydrogen (0.0285 NL) were added to a 3 L autoclave, the temperature was raised to 80 ° C., ethylene gas was introduced, and the total pressure was increased. The pressure was increased to 1.96 MPa (20 Kg / cm 2 G). Next, 100 mg of the catalyst composition obtained in the above (2) was introduced together with ethylene mixed with a trace amount of hydrogen (hydrogen / ethylene ratio = 0.42 mol%), and the total pressure was 2.16 MPa (22 Kg / cm 2 G The polymerization was carried out at 80 ° C. The hydrogen / ethylene ratios 5 minutes after the start of polymerization and immediately before the termination of the polymerization were 0.13 mol% and 0.42 mol%, respectively. After 25 minutes, ethanol was added to stop the polymerization. The obtained polymer was separated by filtration and dried under hot air. The obtained polymer was in the form of particles, and no adhesion to the polymerization tank was observed. The resulting polymer was 190 grams.
Table 1 shows the properties of the component [B], and Table 2 shows the properties of the catalyst composition and the polymerization results.

Figure 2007039603
Figure 2007039603

Figure 2007039603
Figure 2007039603

本発明の触媒組成物は、高活性であり、かつ、触媒粉体の嵩密度、粒子性状が極めて良好で、触媒供給工程や重合工程での付着などの問題が解消されたオレフィン重合用触媒組成物であり、このような触媒組成物は、触媒供給ラインへの付着およびそれによる閉塞や重合反応器壁への付着などの問題が実質的に発生せず、継続的かつ安定的な触媒の供給が可能となり、オレフィンの重合を安定的に行なうことができ、工業的価値は極めて高い。   The catalyst composition of the present invention is a highly active catalyst composition for olefin polymerization in which the bulk density and particle properties of the catalyst powder are extremely good, and problems such as adhesion in the catalyst supply process and polymerization process are eliminated. Such a catalyst composition is substantially free from problems such as adhesion to the catalyst supply line and clogging and adhesion to the polymerization reactor wall, thereby providing a continuous and stable catalyst supply. The olefin can be stably polymerized, and the industrial value is extremely high.

Claims (9)

周期律表第3〜10族の遷移金属化合物(成分[a])と助触媒担体(成分[b])を含有するオレフィン重合用固体触媒(成分[A])に対して、疎水化度が35%以上の無機酸化物微粒子(成分[B])を、重量比で0.0001〜0.1の範囲で混合してなることを特徴とするオレフィン重合用触媒組成物。   Hydrophobic degree of the solid catalyst for olefin polymerization (component [A]) containing a transition metal compound of group 3 to 10 of the periodic table (component [a]) and a promoter support (component [b]) A catalyst composition for olefin polymerization, comprising 35% or more of inorganic oxide fine particles (component [B]) mixed in a weight ratio of 0.0001 to 0.1. 成分[a]が、周期律表第4〜6族の遷移金属化合物であることを特徴とする請求項1に記載のオレフィン重合用触媒組成物。   The olefin polymerization catalyst composition according to claim 1, wherein the component [a] is a transition metal compound of Groups 4 to 6 of the periodic table. 成分[b]が、下記[b−1]〜[b−5]から選ばれた1種以上を含有する助触媒担体であることを特徴とする請求項1又は2に記載のオレフィン重合用触媒組成物。
[b−1]アルミニウムオキシ化合物が担持された担体
[b−2]成分[a]と反応して成分[a]をカチオンに変換することが可能なイオン性化合物またはルイス酸が担持された担体
[b−3]固体酸
[b−4]有機金属化合物と、活性水素を有する官能基もしくは非プロトン性のルイス塩基性官能基および電子吸引性基を有する化合物と、化合物Rt−2TH(Rは炭化水素基またはハロゲン化炭化水素基を表し、Tはそれぞれ独立に周期律表の第15族、第16族の非金属原子を表し、tは化合物のTの原子価を表す。)とを接触させて得られる改質された粒子担体
[b−5]層状ケイ酸塩
The catalyst for olefin polymerization according to claim 1 or 2, wherein the component [b] is a promoter support containing one or more selected from the following [b-1] to [b-5]. Composition.
[B-1] A carrier carrying an aluminum oxy compound [b-2] A carrier carrying an ionic compound or Lewis acid capable of reacting with component [a] to convert component [a] into a cation [B-3] Solid acid [b-4] An organometallic compound, a compound having a functional group having active hydrogen or an aprotic Lewis basic functional group and an electron-withdrawing group, and a compound R t-2 TH 2 (R represents a hydrocarbon group or a halogenated hydrocarbon group, T represents each independently a group 15 or group 16 nonmetallic atom of the periodic table, and t represents the valence of T of the compound.) Modified particle support [b-5] layered silicate obtained by contacting with
成分[B]の平均粒径が、30μm以下であることを特徴とする請求項1〜3のいずれか1項に記載のオレフィン重合用触媒組成物。   The average particle diameter of component [B] is 30 micrometers or less, The catalyst composition for olefin polymerization of any one of Claims 1-3 characterized by the above-mentioned. 成分[A]の平均粒子径に対する成分[B]の平均粒子径の比が0.0001〜0.5であることを特徴とする請求項1〜4のいずれか1項に記載のオレフィン重合用触媒組成物。   The ratio of the average particle diameter of the component [B] to the average particle diameter of the component [A] is 0.0001 to 0.5, for olefin polymerization according to any one of claims 1 to 4 Catalyst composition. 成分[B]が、Mg、Ca、Ti、Zr、Al若しくはSiのいずれかの酸化物又は複合酸化物の中から選択されることを特徴とする請求項1〜5のいずれか1項に記載のオレフィン重合用触媒組成物。   The component [B] is selected from oxides or composite oxides of any one of Mg, Ca, Ti, Zr, Al, and Si. A catalyst composition for olefin polymerization. 更に、有機アルミニウム化合物(成分[C])を含有することを特徴とする請求項1〜6のいずれか1項に記載のオレフィン重合用触媒組成物。   Furthermore, the organoaluminum compound (component [C]) is contained, The catalyst composition for olefin polymerization of any one of Claims 1-6 characterized by the above-mentioned. 気相重合用の触媒であることを特徴とする請求項1〜7のいずれか1項に記載のオレフィン重合用触媒組成物。   The catalyst composition for olefin polymerization according to any one of claims 1 to 7, which is a catalyst for gas phase polymerization. 金属容器への付着性が0.1g/10cc以下であることを特徴とする請求項1〜8のいずれか1項に記載のオレフィン重合用触媒組成物。   Adhesivity to a metal container is 0.1 g / 10cc or less, The catalyst composition for olefin polymerization of any one of Claims 1-8 characterized by the above-mentioned.
JP2005227556A 2005-08-05 2005-08-05 Olefin polymerization catalyst composition Active JP4759339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005227556A JP4759339B2 (en) 2005-08-05 2005-08-05 Olefin polymerization catalyst composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005227556A JP4759339B2 (en) 2005-08-05 2005-08-05 Olefin polymerization catalyst composition

Publications (2)

Publication Number Publication Date
JP2007039603A true JP2007039603A (en) 2007-02-15
JP4759339B2 JP4759339B2 (en) 2011-08-31

Family

ID=37797891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005227556A Active JP4759339B2 (en) 2005-08-05 2005-08-05 Olefin polymerization catalyst composition

Country Status (1)

Country Link
JP (1) JP4759339B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009026666A (en) * 2007-07-20 2009-02-05 Furukawa Electric Co Ltd:The Multilayer insulation electric wire
JP2014177545A (en) * 2013-03-14 2014-09-25 Japan Polyethylene Corp Method of producing olefin polymer
JP2014177544A (en) * 2013-03-14 2014-09-25 Japan Polyethylene Corp Olefin polymerization solid catalyst storing method and method for producing olefin polymer using the catalyst
JP2014177543A (en) * 2013-03-14 2014-09-25 Japan Polyethylene Corp Olefin polymerization solid catalyst storing method and method for producing olefin polymer using the catalyst
JP2015134891A (en) * 2014-01-20 2015-07-27 日本ポリエチレン株式会社 Method for producing olefin polymerization catalyst
WO2016085856A1 (en) * 2014-11-24 2016-06-02 Univation Technologies, Llc Composition comprising particles
JP2019060928A (en) * 2017-09-25 2019-04-18 富士ゼロックス株式会社 Electrophotographic photoreceptor, process cartridge, and image forming apparatus
US10266618B2 (en) 2014-11-24 2019-04-23 Univation Technologies, Llc Chromium-based catalyst compositions for olefin polymerization
JP2019172775A (en) * 2018-03-28 2019-10-10 東邦チタニウム株式会社 Olefin polymerization catalyst, method for producing olefin polymerization catalyst, and method for producing olefin polymer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05155926A (en) * 1991-12-11 1993-06-22 Mitsui Toatsu Chem Inc Solid catalyst for production of polyolefin and production of polyolefin
JPH08325333A (en) * 1995-03-28 1996-12-10 Nippon Petrochem Co Ltd Ethylene-alpha-olefin copolymer
JP2002179723A (en) * 2000-12-08 2002-06-26 Asahi Kasei Corp Catalyst for olefin polymerization and method for polymerizing olefin using the catalyst
JP2003516440A (en) * 1999-12-10 2003-05-13 エクソンモービル・ケミカル・パテンツ・インク Propylene diene copolymer
JP2004505119A (en) * 1999-11-24 2004-02-19 ダウ・グローバル・テクノロジーズ・インコーポレーテツド Preparation of catalyst composition for polymerization
JP2004521158A (en) * 2000-12-04 2004-07-15 ユニベーション・テクノロジーズ・エルエルシー Polymerization method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05155926A (en) * 1991-12-11 1993-06-22 Mitsui Toatsu Chem Inc Solid catalyst for production of polyolefin and production of polyolefin
JPH08325333A (en) * 1995-03-28 1996-12-10 Nippon Petrochem Co Ltd Ethylene-alpha-olefin copolymer
JP2004505119A (en) * 1999-11-24 2004-02-19 ダウ・グローバル・テクノロジーズ・インコーポレーテツド Preparation of catalyst composition for polymerization
JP2003516440A (en) * 1999-12-10 2003-05-13 エクソンモービル・ケミカル・パテンツ・インク Propylene diene copolymer
JP2004521158A (en) * 2000-12-04 2004-07-15 ユニベーション・テクノロジーズ・エルエルシー Polymerization method
JP2002179723A (en) * 2000-12-08 2002-06-26 Asahi Kasei Corp Catalyst for olefin polymerization and method for polymerizing olefin using the catalyst

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009026666A (en) * 2007-07-20 2009-02-05 Furukawa Electric Co Ltd:The Multilayer insulation electric wire
JP2014177545A (en) * 2013-03-14 2014-09-25 Japan Polyethylene Corp Method of producing olefin polymer
JP2014177544A (en) * 2013-03-14 2014-09-25 Japan Polyethylene Corp Olefin polymerization solid catalyst storing method and method for producing olefin polymer using the catalyst
JP2014177543A (en) * 2013-03-14 2014-09-25 Japan Polyethylene Corp Olefin polymerization solid catalyst storing method and method for producing olefin polymer using the catalyst
JP2015134891A (en) * 2014-01-20 2015-07-27 日本ポリエチレン株式会社 Method for producing olefin polymerization catalyst
WO2016085856A1 (en) * 2014-11-24 2016-06-02 Univation Technologies, Llc Composition comprising particles
CN107001506A (en) * 2014-11-24 2017-08-01 尤尼威蒂恩技术有限责任公司 Composition comprising particle
US10266618B2 (en) 2014-11-24 2019-04-23 Univation Technologies, Llc Chromium-based catalyst compositions for olefin polymerization
JP2019060928A (en) * 2017-09-25 2019-04-18 富士ゼロックス株式会社 Electrophotographic photoreceptor, process cartridge, and image forming apparatus
JP2019172775A (en) * 2018-03-28 2019-10-10 東邦チタニウム株式会社 Olefin polymerization catalyst, method for producing olefin polymerization catalyst, and method for producing olefin polymer
JP7108440B2 (en) 2018-03-28 2022-07-28 東邦チタニウム株式会社 Catalyst for olefin polymerization, method for producing catalyst for olefin polymerization, and method for producing olefin polymer

Also Published As

Publication number Publication date
JP4759339B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
JP4759339B2 (en) Olefin polymerization catalyst composition
EP0785955B1 (en) Polymerization catalyst systems, their production and use
RU2258712C2 (en) Polymerization process
TW460493B (en) Catalyst component dispersion comprising an ionic compound and solid addition polymerization catalysts containing the same
KR101529340B1 (en) Aluminoxane catalyst activators derived from dialkylaluminum cation precursor agents, processes for making same, and use thereof in catalysts and polymerization of olefins
TWI239962B (en) A catalyst composition and methods for its preparation and use in a polymerization process
JP2725010B2 (en) New supported polymerization catalyst
US6140432A (en) Polymerization catalyst systems, their production and use
US6147174A (en) Aluminum based lewis acid cocatalysts for olefin polymerization
EP1241188A1 (en) Component of catalyst for olefin polymerization
JPH10505622A (en) Catalytic control of wide / 2 mode MWD resin in a single reactor
RU2581361C2 (en) Activator compositions, production and use thereof in catalysis
US20040167016A1 (en) Polymerization catalyst activators, method of preparing, and their use in polymerization processes
JP2004514030A (en) Polymerization catalyst systems and their production
JPH0859727A (en) Polymerization catalyst for olefins and production of polyolefin using the same
JP2004504420A (en) Catalyst systems and their use in polymerization processes
TWI242568B (en) Bimetallic catalysts with higher activity
TWI238832B (en) Process for preparing a supported polymerization catalyst using reduced amounts of solvent and polymerization process
TWI229087B (en) Process for polymerization of olefins
AU2003233649B2 (en) Solid, particulated, spray dried, heterogenous catalyst composition
US20040209764A1 (en) Catalyst precursor for the polymerization of olefins and polymerization process using the same
JP5981865B2 (en) Method for preserving solid catalyst for olefin polymerization and method for producing olefin polymer using the catalyst
JP4636655B2 (en) Olefin polymerization catalyst and process for producing olefin polymer using the same
WO2021193650A1 (en) Catalyst for olefin polymerization, production method for catalyst for olefin polymerization, and production method for olefin polymer using said catalyst for olefin polymerization
JP2010059375A (en) Olefin polymerization catalyst and method for preparing olefin polymer using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110606

R150 Certificate of patent or registration of utility model

Ref document number: 4759339

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250