JP2007039442A - Antibacterial agent consisting of silver and organic acid anion-containing aluminum sulfate hydroxide particle and use of the same - Google Patents
Antibacterial agent consisting of silver and organic acid anion-containing aluminum sulfate hydroxide particle and use of the same Download PDFInfo
- Publication number
- JP2007039442A JP2007039442A JP2006179771A JP2006179771A JP2007039442A JP 2007039442 A JP2007039442 A JP 2007039442A JP 2006179771 A JP2006179771 A JP 2006179771A JP 2006179771 A JP2006179771 A JP 2006179771A JP 2007039442 A JP2007039442 A JP 2007039442A
- Authority
- JP
- Japan
- Prior art keywords
- antibacterial
- particles
- antibacterial agent
- resin
- silver
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Nonwoven Fabrics (AREA)
- Paper (AREA)
- Cosmetics (AREA)
- Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Paints Or Removers (AREA)
- Artificial Filaments (AREA)
Abstract
Description
本発明は銀及び有機酸アニオン含有アルミニウム硫酸塩水酸化物粒子よりなる抗菌剤に関する。さらに詳しくは特定粒子性状(粒子形状、粒子径均一性、平均2次粒子径、比表面積等)を有する銀及び有機酸アニオン含有アルミニウム硫酸塩水酸化物粒子よりなる抗菌剤に関する。また該抗菌剤の製造方法にも関する。
さらには該抗菌剤を樹脂に混練混合する時の性能として混練押出加工時フィルター通過性、分散性に優れた抗菌性樹脂組成物(マスターバッチを含む)にも関する。また該樹脂組成物から形成された、分散性、透明性、白色性、抗菌性(水道水接触環境後抗菌力維持特性も含む)に優れた抗菌性樹脂成形品、抗菌性フィルム、抗菌性繊維、抗菌性塗料、抗菌性不織布、抗菌性コーキング材のような抗菌性樹脂製品にも関する。さらに抗カビ剤、抗菌消臭剤、抗菌紙、農薬及び化粧料にも関する。
The present invention relates to an antibacterial agent comprising silver and organic acid anion-containing aluminum sulfate hydroxide particles. More specifically, the present invention relates to an antibacterial agent comprising silver and organic acid anion-containing aluminum sulfate hydroxide particles having specific particle properties (particle shape, particle size uniformity, average secondary particle size, specific surface area, etc.). The present invention also relates to a method for producing the antibacterial agent.
Furthermore, the present invention also relates to an antibacterial resin composition (including a masterbatch) excellent in filter permeability and dispersibility at the time of kneading extrusion as a performance when the antibacterial agent is kneaded and mixed with a resin. In addition, an antibacterial resin molded article, antibacterial film, and antibacterial fiber that are formed from the resin composition and have excellent dispersibility, transparency, whiteness, and antibacterial properties (including antibacterial activity maintaining properties after contact with tap water) It also relates to antibacterial resin products such as antibacterial paints, antibacterial nonwoven fabrics and antibacterial caulks. It also relates to antifungal agents, antibacterial deodorants, antibacterial paper, agricultural chemicals and cosmetics.
一般的に細菌は高温多湿な環境で繁殖が進み、安全衛生上、住環境上重大な問題を引き起こす場合がある。これらの問題を解決するため従来有機系抗菌剤や無機系抗菌剤を抗菌性付与対象物となる樹脂その他の物に配合して細菌からの被害を防止する抗菌性樹脂組成物等の技術が提案されているが、その中では無機系抗菌剤が比較的安全なため最近無機抗菌剤の需要は伸びてきている。
無機系抗菌剤においては、銀が比較的高い抗菌活性と比較的高い安全性を有することから、銀を無機化合物に担持又はイオン交換させた抗菌剤を使用した抗菌性樹脂組成物が多数提案されている。
In general, bacteria propagate in hot and humid environments, and may cause serious problems in terms of safety and health and living environment. In order to solve these problems, technologies such as antibacterial resin compositions that prevent damage from bacteria by combining conventional organic antibacterial agents and inorganic antibacterial agents with resins and other objects that are subject to antibacterial properties have been proposed. However, among them, the demand for inorganic antibacterial agents has been increasing recently because inorganic antibacterial agents are relatively safe.
In inorganic antibacterial agents, since silver has a relatively high antibacterial activity and relatively high safety, many antibacterial resin compositions using an antibacterial agent in which silver is supported or ion-exchanged on an inorganic compound have been proposed. ing.
例えば、特許文献1ではリン酸ジルコニウムに銀を担持した抗菌性樹脂組成物の技術が開示されている。しかしながら、該抗菌剤を樹脂に配合した抗菌性樹脂組成物においては白色性は若干改善されているものの抗菌性、分散性、透明性、水道水接触環境後抗菌力維持特性の全ての点において完全ではなく解決すべき問題が残っていた。
なかでも、この従来技術では抗菌性樹脂組成物をしばらく水道水に接触させて使用すると該樹脂組成物の抗菌活性は全くなくなるか、又は著しく低下してしまい長時間の使用に耐えなくなり、細菌からの被害を防止できなくなるという問題があり、この問題を解決することは重要な課題であった。
この問題をさらに具体例で説明すると、台所、風呂場やトイレの周りでは水道水が常に使用され、衣類等は水道水で何回も洗濯して使用される。従って、このような場所であるいは条件で使用する抗菌性樹脂製品は本来水道水に長時間接触しても抗菌性を発揮して細菌からの被害を防止できるものでなければならない。ところが、前記従来の技術による抗菌性樹脂製品は樹脂製品製造直後には一定程度の抗菌性を発現するものの、しばらく水道水と接触して使用すると、該樹脂製品の抗菌活性は全くなくなるか又は著しく低下してしまい、さらに長時間の経過の後は細菌からの被害を全く防止できなくなるという問題があった。
For example, Patent Document 1 discloses a technique of an antibacterial resin composition in which silver is supported on zirconium phosphate. However, in the antibacterial resin composition in which the antibacterial agent is blended with the resin, the whiteness is slightly improved, but the antibacterial property, dispersibility, transparency, and antibacterial activity maintenance property after contact with tap water are all perfect. Rather, there were problems to be solved.
In particular, in this conventional technique, when the antibacterial resin composition is used after being in contact with tap water for a while, the antibacterial activity of the resin composition is completely lost or cannot be used for a long period of time. There is a problem that it becomes impossible to prevent the damage of this, and it was an important issue to solve this problem.
This problem will be further explained with a specific example. Tap water is always used around kitchens, bathrooms, and toilets, and clothes and the like are washed and used many times with tap water. Therefore, an antibacterial resin product used in such a place or under conditions must be able to exhibit antibacterial properties and prevent damage from bacteria even if it is originally in contact with tap water for a long time. However, although the antibacterial resin product according to the conventional technology exhibits a certain degree of antibacterial properties immediately after the resin product is manufactured, the antibacterial activity of the resin product is completely lost or significantly reduced when used in contact with tap water for a while. There was a problem that after the lapse of a long time, damage from bacteria could not be prevented at all.
特許文献2では、MAl3(SO4)2(OH)6なる式で表されたBET法比表面積が30m2/g以下で、該式中のMをアルカリ金属又はアンモニウム基とした粒子形状が紡錘状乃至球状を呈するアルカリアルミニウム硫酸塩水酸化物が開示され、この文献にはコールターカウンター法で測定された体積基準累積粒子径の25%値の粒子径D25(大粒子側)を75%値の粒子径D75(小粒子側)で除した算式で表される粒子径分布のシャープ度Rs=D25/D75が1.45乃至1.61のものが実施例で具体的に示され、さらにその製造方法及び樹脂配合例が紹介されている。
前記特許文献の、段落番号0035では該化合物のMがAg,Zn、Cu等の抗菌性発現効果のある元素を含むことが可能であり抗菌性粒子を得ることができるとの極一般的な説明はある。しかしこの文献には抗菌剤及び抗菌性樹脂製品及び抗カビ剤、抗菌消臭剤、抗菌紙、農薬、化粧料に関する具体的な説明もまた実施例もない。
In Paragraph No. 0035 of the above-mentioned patent document, a very general explanation that M of the compound can contain an element having an antibacterial effect, such as Ag, Zn, Cu and the like, and antibacterial particles can be obtained. There is. However, there is no specific description or examples regarding the antibacterial agent, the antibacterial resin product, the antifungal agent, the antibacterial deodorant, the antibacterial paper, the agricultural chemical, and the cosmetic.
かくして本発明の目的は、前記従来技術の無機系抗菌剤の種々の問題点を克服し、抗菌剤の性能として樹脂等の抗菌化対象物に配合使用された時、分散性、透明性、白色性に優れ、抗菌性特に水道水接触環境後の抗菌力維持特性にも優れた銀と有機酸アニオンがアルカリアルミニウム硫酸塩水酸化物粒子に特定範囲で含有したことからなる銀及び有機酸アニオン含有アルミニウム硫酸塩水酸化物粒子よりなる抗菌剤を提供すること、さらには該抗菌剤において該諸特性が特に優れるように設計された特定粒子性状(粒子形状、粒子径均一性、平均2次粒子径、比表面積等)を有する銀及び有機酸アニオン含有アルミニウム硫酸塩水酸化物粒子よりなる抗菌剤を提供すること、さらには該抗菌剤の製造方法を提供することである。 Thus, the object of the present invention is to overcome various problems of the inorganic antibacterial agent of the prior art, and when used as an antibacterial object such as a resin, the dispersibility, transparency, white Silver and organic acid anion-containing aluminum composed of silver and organic acid anions contained in alkali aluminum sulfate hydroxide particles in a specific range with excellent antibacterial properties and antibacterial activity maintenance characteristics especially after contact with tap water Providing an antibacterial agent comprising sulfate hydroxide particles, and further specific particle properties (particle shape, particle size uniformity, average secondary particle size, ratio) designed so that the various properties of the antibacterial agent are particularly excellent It is to provide an antibacterial agent comprising silver having a surface area or the like and an aluminum sulfate hydroxide particle containing an organic acid anion, and further to provide a method for producing the antibacterial agent.
さらに他の目的は、その抗菌剤を樹脂混練押出機を用いて混練混合する時に樹脂混練押出加工時フィルター通過性、分散性に優れた性質を有する抗菌性樹脂組成物(マスターバッチを含む)を提供すること、さらには該樹脂組成物から成形されて分散性、透明性、白色性、抗菌性特に水道水接触環境後抗菌力維持特性に優れた抗菌性樹脂成形品、抗菌性フィルム、抗菌性繊維、抗菌性不織布、抗菌性塗料、抗菌性コーキング材等の抗菌性樹脂製品を提供することである。
従来技術では抗菌性樹脂製品を水道水接触環境下でしばらく使用すると抗菌活性が全くなくなるか、又は短時間で著しく低下するというような問題があったことに鑑み、本発明はその問題を解決し、台所、風呂場やトイレ等で水道水を常に使用する場所、あるいは衣類のような製品において水道水で何回も洗濯して使用する条件下でも抗菌性を長時間維持できる抗菌性樹脂組成物、及びそれからの製品、及び該樹脂組成物に配合する該抗菌剤、及び該抗菌剤の製造方法を提供することが本発明の課題の1つである。
もう1つの重要な課題は、抗菌性樹脂製品を得るための前段として通常良く実施される技術、すなわち一旦樹脂と抗菌剤とを樹脂混練押出機を用いてマスターバッチ(MB)を製造する時に樹脂混練押出加工時フィルター通過性(押出機圧力)が悪くなって機械を長時間運転できずフィルターを短時間で交換しなければならなかった問題を解決することである。機械をより長時間運転できれば、フィルター交換に伴う資源、エネルギー、労力、時間が節減できそれだけ低コストで抗菌性樹脂組成物、及び抗菌性樹脂製品が社会に提供でき工業的な価値は大である。
Still another object is to provide an antibacterial resin composition (including a masterbatch) having excellent properties of filter passability and dispersibility during resin kneading extrusion when the antibacterial agent is kneaded and mixed using a resin kneading extruder. Providing, and further, antibacterial resin molded article, antibacterial film, antibacterial property, which is molded from the resin composition and has excellent dispersibility, transparency, whiteness, antibacterial property, especially antibacterial activity maintenance property after tap water contact environment It is to provide antibacterial resin products such as fibers, antibacterial nonwoven fabrics, antibacterial paints, and antibacterial caulks.
In view of the problem that in the prior art, antibacterial resin products have been used for a while in a tap water contact environment, the antibacterial activity is completely lost or significantly reduced in a short time. Antibacterial resin composition that can maintain antibacterial properties for a long time even in places where kitchens, bathrooms, toilets, etc., always use tap water, or in products such as clothes that are washed and used several times with tap water It is one of the objects of the present invention to provide an antibacterial agent to be blended in a resin composition and a product therefrom, and a method for producing the antibacterial agent.
Another important issue is a technique that is usually well implemented as a pre-stage for obtaining an antibacterial resin product, that is, when a resin and an antibacterial agent are once produced into a master batch (MB) using a resin kneading extruder. This is to solve the problem that the filter passability (extruder pressure) at the time of kneading extrusion processing is deteriorated and the machine cannot be operated for a long time and the filter must be replaced in a short time. If the machine can be operated for a longer period of time, resources, energy, labor, and time associated with filter replacement can be saved, and the antibacterial resin composition and antibacterial resin product can be provided to society at a low cost. .
本発明のさらに他の目的は、前記した抗菌性樹脂製品の他に、抗菌剤の特性を利用した別の製品を提供することにある。すなわち、抗カビ剤、抗菌消臭剤、抗菌紙、農薬または化粧料を提供することにある。 Still another object of the present invention is to provide another product utilizing the characteristics of the antibacterial agent in addition to the antibacterial resin product described above. That is, it is to provide an antifungal agent, an antibacterial deodorant, an antibacterial paper, an agrochemical or a cosmetic.
本発明者等は前記課題の達成のため鋭意研究した結果下記式(1)で表される銀及び有機酸アニオン含有アルミニウム硫酸塩水酸化物粒子及び/又は該化合物粒子の150℃〜600℃で乾燥処理又は焼成処理された化合物粒子が抗菌剤の性能として抗菌性が非常に優れ、且つその粒子を樹脂100重量部に対し0.001〜300重量部配合した樹脂組成物も抗菌性が非常に優れていること、しかも樹脂混練押出加工時フィルター通過性、白色性、透明性、水道水接触環境後抗菌力維持特性等の諸特性に優れていること、及び該樹脂組成物から形成された抗菌性樹脂成形品、抗菌性フィルム、抗菌性繊維、抗菌性不織布、抗菌性塗料、抗菌性コーキング材のような抗菌性樹脂製品も同様に白色性、透明性、水道水接触環境後抗菌力維持特性等の諸特性に優れていることを見出し本発明に到達した。
さらに前記粒子は、その抗菌性を利用して、成形品以外にも抗カビ剤、抗菌消臭剤、農薬および化粧料としても有利に利用しうることを見出し本発明に到達した。
As a result of diligent researches to achieve the above-mentioned problems, the present inventors dried silver and organic acid anion-containing aluminum sulfate hydroxide particles represented by the following formula (1) and / or the compound particles at 150 ° C. to 600 ° C. The treated or baked compound particles are very antibacterial as antibacterial agent performance, and the resin composition containing 0.001 to 300 parts by weight of the particles with respect to 100 parts by weight of the resin is also very antibacterial. And excellent properties such as filter passability, whiteness, transparency, antibacterial activity maintenance property after contact with tap water, and antibacterial properties formed from the resin composition Antibacterial resin products such as resin molded products, antibacterial films, antibacterial fibers, antibacterial nonwoven fabrics, antibacterial paints, and antibacterial caulking materials are also white, transparent, and maintain antibacterial activity after contact with tap water. It was reached the present invention is excellent in various properties.
Further, the present inventors have found that the particles can be advantageously used as antifungal agents, antibacterial deodorants, agricultural chemicals, and cosmetics in addition to molded articles by using the antibacterial properties, and have reached the present invention.
本発明によれば、下記式(1)で表わされる銀及び有機酸アニオン含有アルミニウム硫酸塩水酸化物粒子よりなる抗菌剤が提供される。
(AgaBb−a)bAlcAx(SO4)y(OH)z・pH2O (1)
式(1)中,a,b,c,x,y,z及びpは0.00001≦a<0.5、 0.7≦b≦1.35、2.7<c<3.3、 0.001≦x≦0.5, 1.7<y<2.5、4<z<7及び0≦p≦5を満足し、BはNa+、NH4 +、K+及びH3O+の群から選ばれた少なくとも1種の1価陽イオンを表わし、陽イオンの価数×モル数の合計値(1b+3c)の範囲が8<(1b+3c)<12であり、Aは有機酸アニオンを表す。
According to the present invention, an antibacterial agent comprising silver and organic acid anion-containing aluminum sulfate hydroxide particles represented by the following formula (1) is provided.
(Ag a B b-a) b Al c A x (SO 4) y (OH) z · pH 2 O (1)
In the formula (1), a, b, c, x, y, z and p are 0.00001 ≦ a <0.5, 0.7 ≦ b ≦ 1.35, 2.7 <c <3.3, 0.001 ≦ x ≦ 0.5, 1.7 <y <2.5, 4 <z <7 and 0 ≦ p ≦ 5 are satisfied, and B is Na + , NH 4 + , K + and H 3 O. Represents at least one kind of monovalent cation selected from the group of + , and the range of the total value (1b + 3c) of cation valence × mol number is 8 <(1b + 3c) <12, and A is an organic acid anion Represents.
本発明の銀及び有機酸アニオン含有アルミニウム硫酸塩水酸化物粒子からなる抗菌剤を樹脂に使用すれば、分散性、透明性、白色性、抗菌性特に水道水接触環境後抗菌力維持特性、混練押出加工時フィルター通過性の全ての性質に優れた抗菌性樹脂組成物、及び該樹脂組成物から形成された抗微菌樹脂成形品、抗菌性フィルム、抗菌性繊維、抗菌性不織布、抗菌性塗料、抗菌性コーキング材等の抗菌性樹脂製品を提供することが可能となった。
なかでも、水道水接触環境後抗菌力特性を長時間維持し続けることは、従来技術では到底成し得なかったことであり、それが本発明によって例えば台所、風呂場、トイレ等の水道水を常に使用する場所でも長時間抗菌性を維持できること、つまり細菌からの被害をそのような条件でも長時間維持し続ける抗菌剤、該抗菌剤の製造方法、抗菌性樹脂組成物、及びそれからの抗菌性樹脂製品を提供することに関する新規な技術が提供できるようになったことは本発明の大きな成果である。
If the antibacterial agent composed of silver sulfate and organic acid anion-containing aluminum sulfate hydroxide particles of the present invention is used for the resin, dispersibility, transparency, whiteness, antibacterial property, especially antibacterial force maintenance property after tap water contact environment, kneading extrusion Antibacterial resin composition excellent in all properties of filter passability during processing, and antibacterial resin molded article formed from the resin composition, antibacterial film, antibacterial fiber, antibacterial nonwoven fabric, antibacterial paint, It became possible to provide antibacterial resin products such as antibacterial caulking materials.
In particular, maintaining antibacterial activity characteristics after contact with tap water for a long time has never been possible with the prior art, and this makes it possible to supply tap water such as kitchens, bathrooms, and toilets according to the present invention. An antibacterial agent that can maintain antibacterial properties for a long time even in a place where it is always used, that is, an antibacterial agent that maintains damage from bacteria for a long time even under such conditions, a method for producing the antibacterial agent, an antibacterial resin composition, and an antibacterial property thereof It is a great achievement of the present invention that a new technology related to providing a resin product can be provided.
もう一つの本発明の大きな成果は抗菌性樹脂製品を得るための前段として通常良く実施される技術、すなわち一旦樹脂と抗菌剤とを樹脂混練押出機を用いてマスターバッチ(MB)を製造する時に樹脂混練押出加工時フィルター通過性(押出機圧力)が悪くなって機械を長時間運転できずフィルターを短時間で交換しなければならなかった問題をも解決したことである。
この成果をさらに具体的に説明すると、本発明によって樹脂混練押出加工時フィルター通過性が改善され機械をより長時間運転できるようになり、フィルター交換の頻度が少なくて済むことに伴う樹脂及び樹脂に配合する添加剤・充填剤等の副資材、水、エネルギー、電力、労力、時間が節減できそれだけ低コストで抗菌性樹脂組成物、及び抗菌性樹脂製品が社会に提供できるようになったことによる工業的な価値は非常に大であるということである。
Another great achievement of the present invention is a technique that is usually performed well as a pre-stage for obtaining an antibacterial resin product, that is, when a resin and an antibacterial agent are once produced into a master batch (MB) using a resin kneading extruder. This also solves the problem that the filter passability (extruder pressure) at the time of resin kneading extrusion processing deteriorates and the machine cannot be operated for a long time and the filter must be replaced in a short time.
This result will be described in more detail. According to the present invention, it is possible to improve the filter passability at the time of resin kneading extrusion, and to operate the machine for a longer period of time. By adding auxiliary materials such as additives and fillers, water, energy, electric power, labor, and time, saving time and providing antibacterial resin compositions and antibacterial resin products to society at a lower cost The industrial value is very large.
本発明について以下さらに詳しく説明する。 The present invention is described in further detail below.
本発明によれば、前記式(1)で表わされる抗菌剤粒子の性状として、下記(i)、(ii)及び(iii)の特性を、独立して有していることも見出された。 According to the present invention, it has also been found that the following properties (i), (ii) and (iii) are independently possessed as the properties of the antibacterial agent particles represented by the formula (1). .
(i)レーザー回折散乱法で測定された平均二次粒子径が0.1μm〜12μm、好ましくは0.1〜5μm
(ii)BET法比表面積が0.1〜250m2/g、好ましくは1〜100m2/g
(iii)Dr=D75/D25[D25がレーザー回折散乱法による体積基準累積粒子径分布曲線の25%値(微粒子径側)の粒子径を表し、D75がその75%値(大粒子径側)の粒子径を表す]で定義される粒子径分布のシャープ度が1.0〜1.8、好ましくは1.01〜1.5、さらに好ましくは1.01〜1.3、最も好ましくは1.01〜1.2
(I) The average secondary particle diameter measured by a laser diffraction scattering method is 0.1 μm to 12 μm, preferably 0.1 to 5 μm.
(Ii) BET method specific surface area 0.1~250m 2 / g, preferably 1 to 100 m 2 / g
(Iii) Dr = D 75 / D 25 [D 25 represents the particle size of the 25% value (fine particle size side) of the volume-based cumulative particle size distribution curve by the laser diffraction scattering method, and D 75 represents the 75% value (large The particle size distribution defined by (representing the particle size on the particle size side)] has a sharpness of 1.0 to 1.8, preferably 1.01 to 1.5, more preferably 1.01 to 1.3, Most preferably from 1.01 to 1.2
前記(i)の平均二次粒子径、(ii)のBET法比表面積及び(iii)の粒子径分布のシャープ度(Dr)は、それぞれ独した特性であり、これらの2つの特性が同時に満足するものが、より好ましく、さらにこれら3つの特性を同時に満足する粒子が最も本発明の目的が達成のため好ましい。
さらに本発明の抗菌剤粒子は凝集粒子ではなく単分散状であって以下の粒子形状を有する点にも特徴を有している。
本発明の抗菌剤の粒子は、種々の粒子形状を有しているが、その形状が均一で大きさが揃っていることおよび凝集が少なく単分散状を呈する点にも特徴を有している。粒子形状について説明すると、抗菌剤の粒子は、大きく分けると、球状、円盤状(基石状)、一対状(ハンバーガー状)、米粒状、直方体状、六角板状、円柱状(酒樽状)及び八面体状に分類される。これら種々の粒子形状を図1〜図13により具体的に説明する。
The average secondary particle diameter (i), the BET specific surface area (ii), and the sharpness (Dr) of the particle diameter distribution (iii) are unique characteristics, and these two characteristics are satisfied simultaneously. More preferably, particles that satisfy these three characteristics at the same time are most preferable for achieving the object of the present invention.
Further, the antibacterial agent particles of the present invention are not aggregated particles but are monodispersed and have the following particle shape.
The particles of the antibacterial agent of the present invention have various particle shapes, but are also characterized in that the shapes are uniform and uniform in size, and are monodispersed with little aggregation. . The particle shape of the antibacterial agent can be roughly divided into spherical shape, disc shape (basal stone shape), pair shape (hamburger shape), rice granular shape, rectangular parallelepiped shape, hexagonal plate shape, columnar shape (sake barrel shape), and eight. It is classified into a planar shape. These various particle shapes will be specifically described with reference to FIGS.
図1〜図13は、本発明の実施例により得られた粒子の代表的なSEM写真である。粒子の形状は約1万倍乃至約2万倍に拡大されたSEM写真に基いて観察される。なお、図14は従来知られたアルカリアルミニウム硫酸塩水酸化物粒子のSEM写真である。
球状粒子の例は図1〜図6に示され、これら球状粒子は図1に示す表面が平滑である球状、図2に示す表面に小粒を有する球状、図3に示す表面が荒くさらには球に皺(傷や割れ)を有する球状、図4に示す小穴(凹凸)を有する球状、図5に示す表面が平滑であり且つ直線部分を図1のものより少し多く含む球状、及び図6に示す表面が荒く皺を有する球状に分類できる。
円盤状粒子の例は図7に示され、この形状は表と裏がほぼ対象であり、ドーム形であって、碁石にも似ている。図7の円盤状粒子は表面が平滑である。
一対状粒子の例は図8に示されている。この粒子の特徴は、底面が平板でその反対面がドーム形の円盤粒子の2つが底面を対称面として一対状の形状を有していることであり、その2つの粒子の重なり合う周囲の間隙には空間が存在している。また重なり合う中心部は2つの円盤を接合しているアルミニウム塩水酸化物が存在している。この一対状粒子は、一見ハンバーガーに似ている。
米粒状粒子の例は、図9に示されている。この米粒状粒子は、投影した形が楕円形で長さ方向の直角断面がほぼ円形の形状をしている。図9の粒子は、表面に小さなしわ(皺)を有している。
直方体状粒子の例は図10に示され正六面体に近い直方体であって表面が平滑である。
六角板状粒子の例は図11に示され、この六角板状粒子は六つの辺で形成された六面体の表面を有する板状のものである。この六つの辺は同じ長さであることを要せず、また2つの辺の接点は丸味を有していてもよい。
八面体状粒子の例は図12に示され正方両錐体状乃至偏八面体状の八面体状の形状を有している。
円柱状粒子の例は図13に示されている。この円柱状粒子は、大略酒樽状(またはワイン樽状)のように中間部分が膨らんだものでよく、また断面がほぼ円形の筒状のものでもよい。
図13の粒子は表面に多数の凹凸を有している。
図1〜図13から理解されるように本発明の粒子は各々の図(写真)において、粒子形状が揃っており、その大きさが均一でありかつ分散性がよい点に特徴を有している。前記した各粒子の形状は、それぞれ区分するために分類して表現したものであり、若干の変形や少割合の他の粒子の混合があっても差支えない。また粒子の表面における平滑性、微小凹凸の存在または小さいしわ(皺)の存在は、特に限定されるものではなく、存在してもしなくてもよい。
1 to 13 are representative SEM photographs of particles obtained according to examples of the present invention. The shape of the particles is observed based on SEM photographs magnified about 10,000 to about 20,000 times. FIG. 14 is a SEM photograph of conventionally known alkali aluminum sulfate hydroxide particles.
Examples of spherical particles are shown in FIGS. 1 to 6, and these spherical particles are spherical with a smooth surface shown in FIG. 1, spherical with small particles on the surface shown in FIG. 2, and rough and even spherical surfaces shown in FIG. 3. 4 having a sphere (scratches and cracks), a sphere having small holes (irregularities) shown in FIG. 4, a sphere having a smooth surface shown in FIG. The surface to be shown can be classified into rough and wrinkled spheres.
An example of a discoidal particle is shown in FIG. 7, which has a dome-like shape that is mostly on the front and back and is similar to a meteorite. The disk-like particles in FIG. 7 have a smooth surface.
An example of a pair of particles is shown in FIG. The feature of this particle is that two of the disk particles with a flat bottom surface and a dome-shaped opposite surface have a pair of shapes with the bottom surface as a symmetry plane, and in the gap around the overlap of the two particles. There is a space. Moreover, the aluminum salt hydroxide which has joined two disks exists in the overlapping center part. The pair of particles look like a hamburger.
An example of rice granular particles is shown in FIG. The rice granular particles have an oval projected shape and a substantially circular shape in the longitudinal cross section. The particles in FIG. 9 have small wrinkles (wrinkles) on the surface.
An example of a rectangular parallelepiped particle is shown in FIG. 10 and is a rectangular parallelepiped close to a regular hexahedron, and the surface is smooth.
An example of the hexagonal plate-like particle is shown in FIG. 11, and this hexagonal plate-like particle is a plate having a hexahedral surface formed by six sides. The six sides do not need to be the same length, and the contact points of the two sides may be rounded.
An example of octahedral particles is shown in FIG. 12, and has an octahedral shape of a tetragonal bipyramidal shape or a decentered octahedral shape.
An example of cylindrical particles is shown in FIG. The cylindrical particles may have a shape in which an intermediate portion swells like a roughly barrel shape (or wine barrel shape), or may have a cylindrical shape with a substantially circular cross section.
The particle | grains of FIG. 13 have many unevenness | corrugations on the surface.
As understood from FIGS. 1 to 13, the particles of the present invention are characterized in that the shape of the particles is uniform in each figure (photograph), the size is uniform, and the dispersibility is good. Yes. The shape of each particle described above is classified and expressed for classification, and there is no problem even if there is a slight deformation or a mixture of other particles in a small proportion. Further, the smoothness on the surface of the particles, the presence of minute irregularities or the presence of small wrinkles (wrinkles) are not particularly limited, and may or may not be present.
次に本発明の粒子の形状を特定する方法について説明する。
粒子の形状を特定する尺度の一つに、粉体工業分野において従来から用いられてきたWadellの円形度及び球形度がある。
Wadellの球形度sは、s=(粒子と等体積の球の表面積)/(粒子の表面積)
で定義され、sが1に近い程真球に近い。
Wadellの円形度cは、c=(粒子の投影面積と等面積の周長)/(粒子の投影面の周長)で定義され、cが1に近い程真円に近い。
Next, the method for specifying the particle shape of the present invention will be described.
One of the measures for specifying the particle shape is Wadell's circularity and sphericity, which has been used in the powder industry.
Wadell's sphericity s is expressed as s = (surface area of a sphere having the same volume as the particle) / (surface area of the particle)
The closer s is to 1, the closer it is to a true sphere.
Wadell's circularity c is defined by c = (peripheral length of the projected area of the particle) / (peripheral length of the projected surface of the particle).
本発明において粒子の形状が球状であるとは、図1〜図6に示すようなボール様の形状であれば良く、前記のWadellの球形度sが0.95≦s≦1であることが好ましい。 In the present invention, the shape of the particles may be a spherical shape as shown in FIGS. 1 to 6, and the Wadell sphericity s is 0.95 ≦ s ≦ 1. preferable.
本発明において粒子の形状が円盤状(碁石状)であるとは、図7に示すように短径を回転軸とした回転楕円状の形状である。具体的には、回転軸の方向から見た粒子の投影像に関して、Wadellの円形度cが、0.95≦s≦1であって、断面である楕円の(短径/長径)の比率aが0.05≦a≦0.5であることが好ましい。 In the present invention, the shape of the particles is a disc shape (meteorite shape) as shown in FIG. 7 is a spheroid shape having a minor axis as a rotation axis. Specifically, with respect to the projected image of the particle viewed from the direction of the rotation axis, Wadell's circularity c is 0.95 ≦ s ≦ 1, and the ratio of the ellipse (minor axis / major axis) ratio a Is preferably 0.05 ≦ a ≦ 0.5.
本発明において粒子の形状が一対状(ハンバーガー状)であるとは、図8に示すように半球状の粒子が2個重なり合うような形状で対を形成した粒子である。そして一対状粒子は、二つの半球状粒子の重なり合う面の周縁に、隙間(溝)が存在している。一対状粒子の(短径/長径)の比率tは0.1<t<0.5であり、(該半球の合わせ目の隙間幅)/(短径)の比率uが0.05<u<0.5であることが好ましい。 In the present invention, the shape of the particles is a pair (hamburger shape), as shown in FIG. 8, is a particle in which a pair is formed in such a shape that two hemispherical particles overlap each other. The pair of particles have gaps (grooves) at the periphery of the surface where the two hemispherical particles overlap. The ratio t of (minor axis / major axis) of the pair of particles is 0.1 <t <0.5, and the ratio u of (gap width of the seam of the hemisphere) / (minor axis) is 0.05 <u. <0.5 is preferred.
本発明において粒子の形状が米粒状であるとは、図9に示すように短径を回転軸とした回転楕円状の形状であり、楕円の(短径/長径)の比率aが0.1≦a≦0.5であり、前記のWadellの球形度sが,0.4≦s<0.75であることが好ましい。 In the present invention, the shape of the particles is rice-granular, as shown in FIG. 9, is a spheroid shape having a minor axis as a rotation axis, and the ratio a of the ellipse (minor axis / major axis) is 0.1. ≦ a ≦ 0.5, and the Wadell's sphericity s is preferably 0.4 ≦ s <0.75.
本発明において粒子の形状が直方体状であるとは、図10に示すような六面体又は正六面体に類似する形状であれば良く、前記のWadellの球形度sが0.5≦s≦0.8であることが好ましい。 In the present invention, the shape of the particles is a rectangular parallelepiped as long as the shape is similar to a hexahedron or a regular hexahedron as shown in FIG. 10, and the Wadell sphericity s is 0.5 ≦ s ≦ 0.8. It is preferable that
本発明において粒子の形状が六角板状であるとは、図11に示すような扁平な正六角柱様の形状で、上面又は下面方向から見た粒子の投影像に関してWadellの円形度cが,0.95≦c<0.99であって、厚さ/(正六角形の対角線長さ)の比率bが0.05≦b≦0.5であることが好ましい。 In the present invention, the shape of the particles is a hexagonal plate shape, which is a flat regular hexagonal column shape as shown in FIG. 11, and the Wadell's circularity c is 0 with respect to the projected image of the particles viewed from the upper surface or the lower surface direction. .95 ≦ c <0.99, and the ratio b of thickness / (diagonal length of regular hexagon) is preferably 0.05 ≦ b ≦ 0.5.
本発明において粒子の形状が8面体状であるとは、図12で示されるように正方両錐体状乃至偏八面体状の八面体状の形状を有していると考えられ、前記のWadellの球形度sが0.5≦s≦0.9であることが好ましい。ただし、この八面体状粒子は熟視しないと、SEM写真の分解能不足からくる不鮮明さにより一見六面体状粒子に見える恐れがある。 In the present invention, the shape of the particles is an octahedral shape, which is considered to have a tetrahedral bipyramidal shape or an octahedral shape as shown in FIG. The sphericity s is preferably 0.5 ≦ s ≦ 0.9. However, if the octahedral particles are not carefully examined, they may appear to be hexahedral particles at first glance due to unclearness resulting from insufficient resolution of the SEM photograph.
本発明において粒子の形状が円柱状(酒樽状)であるとは、図13に示すように円柱を含み、円柱の高さ方向の中心部の半径が上面及び下面の半径の1.0〜1.2倍までの形状をいい、上面及び下面の投影像に関して、前記のWadellの円形度cが,0.95≦c<0.99であって、(高さ)/(上面又は下面の直径)の値dが1.5≦d≦3であることが好ましい。 In the present invention, the shape of the particles is a columnar shape (sake barrel shape) including a column as shown in FIG. 13, and the radius of the center of the column in the height direction is 1.0-1 of the radius of the upper surface and the lower surface. .2 times the shape, and the Wadell circularity c is 0.95 ≦ c <0.99 with respect to the projected images of the upper surface and the lower surface, and (height) / (the diameter of the upper surface or the lower surface) ) Value d is preferably 1.5 ≦ d ≦ 3.
本発明によれば、上記のように、銀及び有機酸アニオン含有アルミニウム塩水酸化物粒子は、用途や目的に応じて球状、円盤状(碁石状)、一対状、直方体状、六角板状、米粒状、八面体状または円柱状などの種々の形状を提供でき、かつ粒子径をコントロールできる。 According to the present invention, as described above, silver and organic acid anion-containing aluminum salt hydroxide particles are spherical, disc-shaped (meteorite-like), pair-shaped, rectangular parallelepiped, hexagonal plate-shaped, rice grain, depending on the application and purpose. Shape, octahedral shape, cylindrical shape, and the like, and the particle diameter can be controlled.
一方粒子径に関しても、用途および必要な充填率に応じて最適な粒子径の銀及び有機酸アニオン含有アルミニウム硫酸塩水酸化物粒子を提供することが可能である。
それらの粒子には粒子同士の凝集がなく樹脂への分散性に優れ、さらに樹脂に配合した時も該抗菌剤の樹脂中での凝集も全くあるいはほとんどないことが該抗菌剤を樹脂に配合した樹脂製品において銀の含有量が極めて少量でも抗菌性を発揮する要因の1つだと考えられ、この単分散技術だけでも従来技術では到底達成できなかった予想外の高抗菌活性を発揮するものである。
On the other hand, regarding the particle size, it is possible to provide silver sulfate and organic acid anion-containing aluminum sulfate hydroxide particles having an optimum particle size depending on the application and the required filling rate.
These particles are excellent in dispersibility in the resin without aggregation between particles, and the antibacterial agent is blended in the resin so that the antibacterial agent has no or little aggregation in the resin even when blended in the resin. It is considered to be one of the factors that exert antibacterial properties even if the silver content is very small in resin products, and this monodisperse technology alone exhibits unexpectedly high antibacterial activity that could not be achieved with conventional technology. is there.
本発明の該抗菌剤がこのような予想外の高抗菌活性を発揮するメカニズムについてはさらに次の第2の要因も推定される。
本発明の該抗菌剤粒子に高い抗菌性発現効果があるのは、本発明の該抗菌剤の粒子には分子の内部構造にまで有機酸がアニオンとして取り込まれているため本発明の該抗菌剤に光が当たった時、本発明の該抗菌剤粒子からヒドロキシルラジカル(OH−)のようなラジカルが長期間にわたり発生し易くなり、これが本発明の該抗菌剤の抗菌性能が長期間にわたって維持できる要因にもなっているものと推定される。
それは、従来の大部分の銀系無機抗菌剤は抗菌剤から銀イオンを除放できる期間においては抗菌性を発現するが、その期間が終わると抗菌性が発現しなくなるという致命的な欠点があったが、本発明はその問題を根本的に解決するものである。
さらにそればかりでなく、本発明によると該抗菌剤の分子構造中に有機酸をアニオンとして取り込んだことによる抗菌性発現向上効果の第3の要因として、前記の分散効果及びラジカル発生効果のみならず、該抗菌剤粒子の有機酸の炭素部分による樹脂との相溶性向上効果がさらに加わって、つまり本発明ではこれら3つの効果を相乗作用させることに成功しより一層高い抗菌性能を奏することができるようになったものと推定される。
Regarding the mechanism by which the antibacterial agent of the present invention exhibits such unexpectedly high antibacterial activity, the following second factor is also estimated.
The antibacterial agent particles of the present invention have a high antibacterial effect because the antibacterial agent particles of the present invention incorporate an organic acid as an anion into the internal structure of the molecule. when light strikes the hydroxyl radicals from antibacterial agent particles of the present invention (OH -) radicals are easily generated over a long period of time, such as, which can be maintained for a long period of time antimicrobial performance of the antimicrobial agent of the present invention It is estimated that it is also a factor.
Most of the conventional silver inorganic antibacterial agents have a fatal disadvantage that they exhibit antibacterial properties during the period when silver ions can be released from the antibacterial agents, but after that period the antibacterial properties do not appear. However, the present invention fundamentally solves that problem.
Furthermore, according to the present invention, as a third factor of the antibacterial expression improving effect by incorporating an organic acid as an anion into the molecular structure of the antibacterial agent, not only the dispersion effect and the radical generating effect described above, Further, the effect of improving the compatibility with the resin due to the carbon portion of the organic acid of the antibacterial agent particles is added, that is, the present invention succeeds in synergizing these three effects and can exhibit further higher antibacterial performance. It is presumed that
本発明では前記式(1)で表される抗菌剤を樹脂100重量部に対し0.001〜300重量部配合することにより混練押出加工時フィルター通過性、抗菌性、分散性、白色性に優れた性質を有しながらしかも尚且つ水道水接触環境後の抗菌力維持特性に優れた抗菌性樹脂組成物及びそれから形成される樹脂製品を提供することができるが、該樹脂製品に高い透明性という付加価値を重視する目的においては0.001〜10重量部、好ましくは0.001重量部〜2重量部配合することが推奨できる。該抗菌剤の配合量が0.001重量部以下であると充分な抗菌性を発揮できない恐れがあり、300重量部以上配合することは銀の含有量にもよるが不経済となり、透明性も低下する傾向がある。
本発明の抗菌剤の屈折率は約1.48〜約1.56であり多くの樹脂と屈折率が重複あるいは接近していため、樹脂にかなり高濃度に本発明の抗菌剤を配合しても透明性をあまり損なわないが、透明性を高度に維持するためには該抗菌剤の配合量は10重量部以下、好ましくは2重量部以下にすることが推奨できる。
In the present invention, the antibacterial agent represented by the above formula (1) is blended in an amount of 0.001 to 300 parts by weight with respect to 100 parts by weight of the resin, thereby being excellent in filter passability, antibacterial properties, dispersibility, and whiteness during kneading extrusion processing Antibacterial resin composition excellent in antibacterial activity maintaining characteristics after contact with tap water and a resin product formed therefrom, but having high transparency to the resin product. For the purpose of placing importance on added value, it is recommended to add 0.001 to 10 parts by weight, preferably 0.001 to 2 parts by weight. If the blending amount of the antibacterial agent is 0.001 part by weight or less, sufficient antibacterial properties may not be exhibited, and blending 300 parts by weight or more becomes uneconomical depending on the silver content, and transparency is also high. There is a tendency to decrease.
The refractive index of the antibacterial agent of the present invention is about 1.48 to about 1.56, and the refractive index overlaps or is close to that of many resins. Although transparency is not impaired so much, in order to maintain high transparency, it is recommended that the amount of the antibacterial agent is 10 parts by weight or less, preferably 2 parts by weight or less.
本発明における式(1)中のaは銀の該抗菌剤粒子へのイオン交換量を示し、aの数値が高ければそれだけ銀が該抗菌剤粒子にイオン交換していることを示し抗菌性が向上するが、あまり高くなりすぎるとイオン交換体(固溶体)から銀が環境中で析出や溶出し酸化銀になる恐れがあり該抗菌剤が配合された樹脂成形品等の色が暗褐色を呈することにもなり、また経済的でもないし、またaは0.5以上イオン交換しにくい。一方aの数値が低過ぎる場合はそれだけ銀が該抗菌剤粒子へのイオン交換量が少ないことを示し抗菌性が発現しないので、抗菌性発現力と色の問題を適度にバランスするためaは一定範囲にすることが望まれる。かかる意味において式(1)におけるaは0.00001〜0.5、好ましくは0.00001〜0.35、さらに好ましくは0.001〜0.3の範囲であることが適している。 In formula (1) in the present invention, a represents the amount of ion exchange of silver into the antibacterial agent particles, and a higher value of a indicates that silver is ion-exchanged into the antibacterial agent particles and has antibacterial properties. However, if it becomes too high, silver may precipitate or elute from the ion exchanger (solid solution) in the environment to become silver oxide, and the color of the resin molded product containing the antibacterial agent will be dark brown Also, it is not economical, and a is difficult to ion-exchange 0.5 or more. On the other hand, if the value of a is too low, it means that silver has less ion exchange amount to the antibacterial agent particles and does not exhibit antibacterial properties. Therefore, a is constant in order to properly balance the antibacterial properties and color problems. It is desirable to make it a range. In this sense, a in Formula (1) is suitably in the range of 0.00001 to 0.5, preferably 0.00001 to 0.35, and more preferably 0.001 to 0.3.
本発明において、「銀及び有機酸アニオン含有アルミニウム硫酸塩水酸化物粒子よりなる抗菌剤」なる記述の中の、含有という言葉は該粒子を粉末X線回折法で測定した時、式(1)以外の化合物のピークが現らわれない程度に式(1)以外の銀及び有機酸からなる化合物の混入量が少ない範囲の物であることを意味している。
従って該抗菌剤粒子にはイオン交換体のみならず、粉末X線回折法の測定ではピークが現らわれない若干の銀イオンがイオン交換体以外の形態で該粒子に担持された形態及び/又は若干の有機酸アニオンが該粒子の表面に吸着している形態も含んでいるものと考えられる。
その場合、該粒子を銀に着目して考えると、銀がイオン交換許容範囲内でイオン交換した固溶体のみからなるものは樹脂製品への着色の影響が少なくなっていると考えられ、そういう意味では完全な銀イオン交換体(固溶体)のみからなる物が好ましい。
In the present invention, in the description of “antibacterial agent comprising silver sulfate and organic acid anion-containing aluminum sulfate hydroxide particles”, the term “containing” means that when the particles are measured by a powder X-ray diffraction method, other than the formula (1) This means that the amount of the compound composed of silver and organic acid other than the formula (1) is small enough to prevent the compound peak from appearing.
Therefore, the antibacterial agent particles have not only an ion exchanger but also a form in which some silver ions that do not show a peak in powder X-ray diffraction measurement are supported on the particles in a form other than the ion exchanger and / or It is considered that some organic acid anions are adsorbed on the surface of the particles.
In that case, when considering the particles focusing on silver, it is considered that the silver is only composed of a solid solution that is ion-exchanged within the permissible ion-exchange range, and the influence of coloring on the resin product is reduced. The thing which consists only of a perfect silver ion exchanger (solid solution) is preferable.
本発明における式(1)中Bには種々の1価のカチオンであればよいが、実際には銀イオンとイオン半径が比較的近く広い範囲で強くイオン交換体を形成することができるという意味、つまり樹脂に配合した時に銀が該イオン交換体から遊離して酸化銀になることがなく、その結果樹脂製品の白色度の低下(樹脂製品の成形直後の白色から光による作用で時間とともに暗褐色乃至褐色への変色すること)を招き難いということ、さらに安全性、及び経済性を考慮すると、BとしてはNa+,NH4 +,K+及びH3O+が適している。さらにその中ではNa+,NH4 +及びH3O+が比較的好ましく、その中でもさらにNH4 +及びH3O+がさらに好ましく、NH4 +が該目的において最も好ましい。この変色防止という観点からは、BとしてNa+及び/又はK+を用いる量はできるだけ少ないことが好ましく、特にK+を用いる量はBなる1価陽イオンの合計モルの1/2より小であることが好ましい。ただしこれらの変色は蛍光増白剤を樹脂中に0.000001%〜0.1%添加することにより防止できる程度のものである。従ってBとしてNa+及びK+を多く用いる場合は変色防止のため蛍光増白剤を用いることは好ましいことである。 In formula (1) in the present invention, B may be any of various monovalent cations, but actually means that an ion exchanger can be strongly formed in a wide range where the ionic radius is relatively close to silver ions. In other words, silver does not release from the ion exchanger to become silver oxide when blended with the resin, resulting in a decrease in the whiteness of the resin product (from the white color immediately after molding the resin product to the darkness over time due to the action of light. Na + , NH 4 + , K +, and H 3 O + are suitable as B in view of the fact that it is difficult to cause a color change from brown to brown, and safety and economy. Further, among these, Na + , NH 4 + and H 3 O + are relatively preferable, and among them, NH 4 + and H 3 O + are more preferable, and NH 4 + is most preferable for the purpose. From the viewpoint of anti-tarnish, the amount is preferably as small as possible using the Na + and / or K + as B, in particular the amount of using the K + in less than half of the total moles of B becomes monovalent cations Preferably there is. However, these discoloration can be prevented by adding 0.000001% to 0.1% of a fluorescent brightening agent to the resin. Accordingly, when a large amount of Na + and K + is used as B, it is preferable to use an optical brightener to prevent discoloration.
本発明の抗菌性樹脂組成物の一部分ではあるが、前記比較的好ましい態様すなわち、NH4 +及びNa+、H3O+の3種1価陽イオンが用いられる抗菌剤粒子の場合、蛍光増白剤を用いなくとも変色しないあるいは比較的変色が少ない樹脂製品を得るためには、Naの使用量は、Naのモル含有量がこれらBなる1価陽イオンの合計モル含有量の1/2より小であるべきである。そうすることによって本発明では変色のないあるいは少ない樹脂製品を得ることができる。
該蛍光増白剤を用いる場合、その例としてはベンゾヘキサゾール系の2,5−チオフェンジイル(5−tert−ブチル−1,3−ベンゾヘキサゾール、4,4’−ビス(ベンゾヘキサゾール−2−イル)スチルベン、及びピラゾリン系、カーマリン系のものが例示できるが、FDA(米国Food & Drag Administration)やポリオレフィン等衛生協議会に登録されているものを用いることが好ましい。
Although it is a part of the antibacterial resin composition of the present invention, in the case of antibacterial agent particles using the relatively preferred embodiment, that is, NH 4 +, Na + , and H 3 O + three kinds of monovalent cations are used. In order to obtain a resin product that does not change color or has relatively little discoloration without using a whitening agent, the amount of Na used is 1/2 of the total molar content of monovalent cations in which the molar content of Na is B. Should be smaller. By doing so, in the present invention, it is possible to obtain a resin product with little or no color change.
When the optical brightener is used, examples thereof include benzohexazole-based 2,5-thiophenediyl (5-tert-butyl-1,3-benzohexazole, 4,4′-bis (benzohexazole- Examples of 2-yl) stilbene, pyrazoline-based, and carmarin-based ones can be given, but those registered in the FDA (Food & Drag Administration) and polyolefin hygiene associations are preferably used.
本発明における式(1)中bは0.7〜1.35、好ましくは0.8〜1.2、最も好ましくは0.9〜1.1であれば本発明の該抗菌剤粒子を形成し易く、cは2.7〜3.3、好ましくは2.8〜3.2、最も好ましくは2.9〜3.1であれば本発明の該抗菌剤粒子を形成し易い。
式(1)の陽イオンのイオン価×モル数は(1b+3c)として表される。本発明でのその範囲は8<(1b+3c)<12、好ましくは9<(1b+3c)<11であれば本発明の該抗菌剤粒子を形成し易い。
本発明の抗菌剤では式(1)なる粒子の合成において、粒子形状と粒子サイズを選択して製造すること、粒子径分布を均一に整えること、該粒子を出来る限りに単分散状態で樹脂に分散できるようにするためには、該反応において反応時に有機酸類を添加する必要があり、添加された有機酸類は該抗菌剤粒子の分子構造中に組み込むことができる。
If b in the formula (1) in the present invention is 0.7 to 1.35, preferably 0.8 to 1.2, most preferably 0.9 to 1.1, the antibacterial agent particles of the present invention are formed. If c is 2.7 to 3.3, preferably 2.8 to 3.2, and most preferably 2.9 to 3.1, the antibacterial agent particles of the present invention are easily formed.
The ionic valence x number of moles of the cation of formula (1) is expressed as (1b + 3c). If the range in the present invention is 8 <(1b + 3c) <12, preferably 9 <(1b + 3c) <11, the antibacterial agent particles of the present invention are easily formed.
In the synthesis of the particles of the formula (1) in the antibacterial agent of the present invention, the particle shape and the particle size are selected and manufactured, the particle size distribution is uniformly adjusted, and the particles are converted into a resin in a monodispersed state as much as possible. In order to make it dispersible, it is necessary to add organic acids during the reaction in the reaction, and the added organic acids can be incorporated into the molecular structure of the antibacterial agent particles.
かかる有機酸類としては式(1)中の有機酸アニオン(A)が有機カルボン酸又は有機オキシカルボン酸に基づくアニオン群から選ばれる少なくとも1種であるものを例示できるが、有機酸アニオン(A)が、炭素数1〜15、好ましくは1〜10有し、且つカルボキシル基を1〜4個有する有機カルボン酸又は有機オキシカルボン酸に基づくアニオン群から選ばれる少なくとも1種であることも好ましく、例えばジカルボン酸、モノカルボン酸、トリカルボン酸、鎖式カルボン酸、芳香族カルボン酸、ヒドロキシ酸、ケトン酸、アルデヒド酸、フェノール酸、アミノ酸、ハロゲンカルボン酸及びそれらの塩類が例示できるが、その中でも有機酸アニオン(A)が、蓚酸イオン、クエン酸イオン、リンゴ酸イオン、酒石酸イオン、グリセリン酸イオン、没食子酸イオン、及び乳酸イオンの群から選ばれる少なくとも1種であることが最も好ましい。 Examples of such organic acids include those in which the organic acid anion (A) in formula (1) is at least one selected from the group of anions based on organic carboxylic acids or organic oxycarboxylic acids, but organic acid anions (A) Is preferably at least one selected from the group of anions based on organic carboxylic acids or organic oxycarboxylic acids having 1 to 15 carbon atoms, preferably 1 to 10 carbon atoms and 1 to 4 carboxyl groups. Examples include dicarboxylic acids, monocarboxylic acids, tricarboxylic acids, chain carboxylic acids, aromatic carboxylic acids, hydroxy acids, ketone acids, aldehyde acids, phenol acids, amino acids, halogen carboxylic acids, and salts thereof, among which organic acids Anion (A) is oxalate ion, citrate ion, malate ion, tartrate ion, glycerin Ions, and most preferably at least one selected from the group consisting of gallic acid ion, and lactate.
式(1)中の有機酸アニオン(A)の割合xを0.0001≦x≦0.5、好ましくは0.0001≦x≦0.4、さらに好ましくは0.001≦x≦0.2にすれば前記の目的を達成し且つ粒子形状が前記のを形状を有し且つ粒子径均一性の該抗菌剤粒子が得られる。xが0.5を超えると特にこの効果は高くなるものでもなく又経済的でもない。
xが0.0001未満の場合は粒子形状が前記の形状を有し且つ粒子径均一性の該抗菌剤粒子が得られ難くなるし、又前記のヒドロキシラジカルの発生、及び有機酸による樹脂との相溶性向上効果が原因と考えられる抗菌性の向上等本発明の目的は達成し難くなる。
The ratio x of the organic acid anion (A) in the formula (1) is 0.0001 ≦ x ≦ 0.5, preferably 0.0001 ≦ x ≦ 0.4, and more preferably 0.001 ≦ x ≦ 0.2. By doing so, the antibacterial agent particles that achieve the above-mentioned object and have the same particle shape and uniform particle diameter can be obtained. If x exceeds 0.5, this effect is not particularly high and is not economical.
When x is less than 0.0001, it is difficult to obtain the antibacterial agent particles having the above-mentioned shape and uniform particle diameter, and the generation of the hydroxy radicals and the resin with organic acid. The object of the present invention such as improvement of antibacterial properties, which is considered to be due to the effect of improving compatibility, is difficult to achieve.
本発明の式(1)におけるyは1.7<y<2.5、好ましくは1.8<y<2.2であれば本発明の該抗菌剤粒子を形成し易く、zは4<z<7、好ましくは5<z<7であれば本発明の該抗菌剤粒子をより一層形成し易い。
式(1)中のpは結晶水の量を示し、通常pは0≦p≦5の範囲である。このpを限りなく0に近づけるか、あるいは0にするためには350℃以下の追加の乾燥処理、あるいは焼成処理すれば良い。焼成処理は600℃以下が好ましい。焼成温度が500℃以上、さらに550℃以上、特に600℃以上の温度であると、下記式で表される水溶性のアルミニウム硫酸塩が一部生成する恐れがあり、またそれを添加した樹脂製品は耐水性が低下する恐れがある。ただし添加量が少ない場合には特に耐水性に問題はない。
(AgaBb−a)bAlAx(SO4)y
焼成温度が500℃以下、特に450℃以下であれば前記式で表される水溶性のアルミニウム硫酸塩は生成せず、これを樹脂製品に多量に使用しても耐水性は低下せず何ら問題ない。また、本発明の抗菌剤粒子は600℃以上の温度で焼成すると図1〜図13に示すような、本発明の該抗菌剤粒子の粒子形状が維持できない恐れもある。かかる耐水性及び形状維持の観点から本発明の抗菌剤粒子の焼成温度は350℃〜600℃、好ましくは350℃〜550℃、さらに好ましくは350℃〜500℃、最も好ましくは350℃〜450℃である。
In the formula (1) of the present invention, if y is 1.7 <y <2.5, preferably 1.8 <y <2.2, the antibacterial particles of the present invention can be easily formed, and z is 4 < If z <7, preferably 5 <z <7, the antibacterial agent particles of the present invention are more easily formed.
P in the formula (1) indicates the amount of crystal water, and usually p is in the range of 0 ≦ p ≦ 5. In order to make p as close to 0 as possible, or to make it 0, an additional drying process or a baking process at 350 ° C. or lower may be performed. The baking treatment is preferably 600 ° C. or lower. If the firing temperature is 500 ° C. or higher, further 550 ° C. or higher, particularly 600 ° C. or higher, there is a possibility that a part of the water-soluble aluminum sulfate represented by the following formula may be formed. May reduce water resistance. However, when the amount added is small, there is no problem with water resistance.
(Ag a B b-a) b AlA x (SO 4) y
If the calcination temperature is 500 ° C. or less, particularly 450 ° C. or less, the water-soluble aluminum sulfate represented by the above formula will not be produced, and even if it is used in a large amount in resin products, the water resistance does not decrease and there is no problem. Absent. Further, when the antibacterial agent particles of the present invention are baked at a temperature of 600 ° C. or higher, the particle shape of the antibacterial agent particles of the present invention as shown in FIGS. From the viewpoint of water resistance and shape maintenance, the firing temperature of the antibacterial agent particles of the present invention is 350 ° C to 600 ° C, preferably 350 ° C to 550 ° C, more preferably 350 ° C to 500 ° C, most preferably 350 ° C to 450 ° C. It is.
前述した乾燥処理又は焼成処理を窒素雰囲気下で実施することは、該抗菌剤粒子及び該抗菌剤粒子が配合された樹脂製品の着色防止の点で好ましいことである。乾燥処理は真空乾燥で実施しても着色防止の点で好まい。
樹脂加工の際、pが0でなくても問題にならない場合、例えば該抗菌剤の配合量が非常に少ない場合あるいは樹脂加工時の水分が特に問題にならない樹脂の場合は、乾燥処理又は焼成処理を実施していないpが0≦p≦5、好ましくは0≦p≦3のものを樹脂に配合して樹脂組成物を製造することができる。
逆に、そのpが0又は0に近づけたものでないと問題になる場合は追加乾燥処理又は焼成処理を加えることによりp=0又は0に限りなく近づけたものを使用すれば良い。
例えばPET,PBTのようなポリエステル系樹脂、ポリアミド系樹脂、ポリウレタン系樹脂、ポリカーボネート樹脂、ポリアセタール樹脂等の樹脂では前記の条件で追加乾燥処理、あるいは焼成処理されたp(水分量)を0又は限りなく0に近づける配慮をした該抗菌剤を使用することは推奨できることである。
It is preferable to carry out the above-described drying treatment or baking treatment in a nitrogen atmosphere from the viewpoint of preventing coloring of the antibacterial agent particles and resin products containing the antibacterial agent particles. The drying process is preferable in terms of preventing coloring even if it is carried out by vacuum drying.
When p is not 0 at the time of resin processing, if there is no problem, for example, if the amount of the antibacterial agent is very small, or if the resin has no particular problem of moisture during resin processing, drying or baking treatment The resin composition can be produced by blending a resin having p of 0 ≦ p ≦ 5, preferably 0 ≦ p ≦ 3.
On the other hand, if it is a problem that p is not 0 or close to 0, it may be used as much as p = 0 or 0 by adding additional drying or baking.
For example, for resins such as polyester resins such as PET and PBT, polyamide resins, polyurethane resins, polycarbonate resins, and polyacetal resins, p (moisture content) subjected to additional drying treatment or baking treatment under the above conditions is 0 or limited. It is recommended to use the antibacterial agent in consideration of approaching zero.
本発明の粒子は、前記レーザー回折散乱法粒子径分布のシャープ度(Dr)を1.0≦Dr≦1.8、好ましくは1.0≦Dr≦1.5、さらに好ましくは1.01≦Dr≦1.3、最も好ましくは1.01≦Dr≦1.2とすることにより樹脂への分散性という点において凝集がなく完全分散することができ、それが抗菌効果を高める要素であると考えられるが、さらには樹脂の押出加工等の際、特にマスターバッチを製造する際、フィルター(スクリーンメッシュ)を使用しても、該抗菌剤のスクリーンメッシュへの目詰まりがなくなるあるいは少なくなるという利点もある。 The particles of the present invention have a sharpness (Dr) of the particle size distribution of the laser diffraction scattering method of 1.0 ≦ Dr ≦ 1.8, preferably 1.0 ≦ Dr ≦ 1.5, more preferably 1.01 ≦. By setting Dr ≦ 1.3, most preferably 1.01 ≦ Dr ≦ 1.2, it is possible to achieve complete dispersion without aggregation in terms of dispersibility in the resin, and that is an element that enhances the antibacterial effect. Although it is conceivable, there is an advantage that clogging of the antibacterial agent to the screen mesh is eliminated or reduced even when a filter (screen mesh) is used, for example, when a masterbatch is produced, for example, during resin extrusion. There is also.
本発明の該抗菌剤配合抗菌性樹脂製品に高い抗菌性を付与する目的においては粒子の平均二次粒子が小さい程適しているが0.1μm〜12μm、好ましくは0.1〜5μm、さらに好ましくは0.1〜2μm、さらにより好ましくは0.1〜1μm、最も好ましくは0.1μm〜0.5μmの物が用いられる。
ただし該抗菌剤の平均二次粒子径が0.1μm未満のものは製造し難い恐れがあり、12μm以上のものは樹脂に配合しても樹脂組成物等の抗菌性があまり高くならない恐れがある。本発明の樹脂組成物に抗菌性のみならず、高度の透明性を付与する目的においては、本発明の抗菌剤の中でも平均二次粒子径が0.1〜0.5μm、好ましくは0.1〜0.4μm、さらに好ましくは0.1〜0.3μmである超微粒子のものを使用すると、もともと樹脂と屈折率が重複又は接近している本発明の抗菌剤粒子の特性を最大限に発揮でき、樹脂製品に従来技術では到底達成し得なかった尚一層高度な透明性を付与する効果を絶大に発揮するものである。
For the purpose of imparting a high antibacterial property to the antibacterial agent-containing antibacterial resin product of the present invention, the smaller the average secondary particles, the better. Is 0.1 to 2 μm, more preferably 0.1 to 1 μm, and most preferably 0.1 μm to 0.5 μm.
However, if the average secondary particle size of the antibacterial agent is less than 0.1 μm, it may be difficult to produce, and if it is 12 μm or more, the antibacterial property of the resin composition or the like may not be so high even if it is added to the resin. . For the purpose of imparting not only antibacterial properties but also high transparency to the resin composition of the present invention, among the antibacterial agents of the present invention, the average secondary particle size is 0.1 to 0.5 μm, preferably 0.1. When using ultrafine particles of ~ 0.4 μm, more preferably 0.1 to 0.3 μm, the characteristics of the antibacterial agent particles of the present invention whose refractive index overlaps or approaches the resin are maximized. In addition, the resin product exhibits the effect of imparting an even higher degree of transparency that could not be achieved with the prior art.
本発明で使用される抗菌剤のBET法比表面積は0.1〜250m2/gの物が用いられる。
樹脂組成物に高い抗菌性を付与するためにはBET法比表面積の高い方が有利ではあるが、BET法比表面積のあまり高い物は一方では樹脂に充填し難い問題が生ずる恐れがあり、一方BET法比表面積が低すぎると樹脂組成物に十分な抗菌性を付与できない恐れがある。
かかる意味において該抗菌剤のBET法比表面積は0.1〜250m2/g、好ましくは1〜100m2/gさらに好ましくは10〜100m2/g、最も好ましくは30〜100m2/gである。
The antibacterial agent used in the present invention has a BET specific surface area of 0.1 to 250 m 2 / g.
In order to impart high antibacterial properties to the resin composition, a higher BET method specific surface area is advantageous, but on the other hand, a material with a very high BET method specific surface area may cause a problem that it is difficult to fill the resin. If the BET method specific surface area is too low, sufficient antibacterial properties may not be imparted to the resin composition.
BET specific surface area of the antimicrobial agent in this sense is 0.1~250m 2 / g, is preferably 1 to 100 m 2 / g and more preferably 10 to 100 m 2 / g, most preferably 30 to 100 m 2 / g .
本発明の、該抗菌剤粒子が配合された抗菌性樹脂製品は元々高い耐酸性を有しているが、さらに高い耐酸性を樹脂製品に付与する目的、あるいは変色防止の目的においては、本発明の該抗菌剤粒子の表面を、ケイ素化合物、リン化合物、ホウ素化合物、アルミニュウム化合物,ジルコニウム化合物、チタン化合物、亜鉛化合物、錫化合物の群から選ばれた少なくとも1種の耐酸性改質剤で被覆してさらに耐酸性を向上することができる。
かかる耐酸性改質剤を例示するとケイ素化合物としてはメタケイ酸ナトリウム、オルトケイ酸ナトリウム、メタケイ酸カリウム、オルトケイ酸カリウム、水ガラス、ケイ酸、シリコーンオイル;ホウ素化合物としては四ホウ酸ナトリウム、メタホウ酸ナトリウム、四ホウ酸カリウム、メタホウ酸カリウム、ホウ酸;アルミニュウム化合物としてはオルトアルミン酸ナトリウム、メタアルミン酸ナトリウム、オルトアルミン酸カリウム、メタアルミン酸カリウム、塩化アルミニュウム、硝酸アルミニュウム、硫酸アルミニュウム、リン酸アルミニュウム;リン化合物としてはリン酸カリウム、リン酸ナトリウム、リン酸;ジルコニウム化合物としてはリン酸ジルコニウム、ジルコン酸ナトリウム、ジルコン酸カリウム、ジルコン酸;チタン化合物としては塩化チタン、チタン酸ナトリウム、チタン酸カリウム、チタン酸;亜鉛化合物としては塩化亜鉛、硝酸亜鉛、炭酸亜鉛、硫酸亜鉛、亜鉛酸塩;錫化合物としては錫酸ソーダ、錫酸カリウム等の改質剤を一例として挙げることができる。
The antibacterial resin product in which the antibacterial agent particles of the present invention are blended originally has high acid resistance. However, for the purpose of imparting higher acid resistance to the resin product or for the purpose of preventing discoloration, the present invention The surface of the antibacterial agent particles is coated with at least one acid resistance modifier selected from the group consisting of silicon compounds, phosphorus compounds, boron compounds, aluminum compounds, zirconium compounds, titanium compounds, zinc compounds and tin compounds. The acid resistance can be further improved.
Examples of such acid resistance modifiers include sodium metasilicate, sodium orthosilicate, potassium metasilicate, potassium orthosilicate, water glass, silicic acid, silicone oil; boron compounds such as sodium tetraborate and sodium metaborate. , Potassium tetraborate, potassium metaborate, boric acid; as the aluminum compound, sodium orthoaluminate, sodium metaaluminate, potassium orthoaluminate, potassium metaaluminate, aluminum chloride, aluminum nitrate, aluminum sulfate, aluminum phosphate; phosphorus compound As potassium phosphate, sodium phosphate, phosphoric acid; zirconium compound as zirconium phosphate, sodium zirconate, potassium zirconate, zirconic acid; titanium compound Titanium chloride, sodium titanate, potassium titanate, titanic acid; zinc compounds such as zinc chloride, zinc nitrate, zinc carbonate, zinc sulfate, zincate; tin compounds such as sodium stannate and potassium stannate A quality agent can be mentioned as an example.
本発明の該抗菌剤粒子は元々単分散粒子であるため樹脂への分散性は極めて優れているが、さらに分散性を向上させる目的、あるいは樹脂製品の変色防止の目的、あるいは本発明の該抗菌剤粒子が樹脂に比較的多量に配合された時の機械的強度の低下を抑制する目的においては、本発明の該抗菌剤粒子の表面を、高級脂肪酸類、シラン系カップリング剤、アルミネート系カップリング剤、アルコールリン酸エステル類、界面活性剤類等の群から選ばれた少なくとも1種で表面処理することもできる。
かかる表面処理剤としては、ステアリン酸、オレイン酸、エルカ酸、パルミチン酸、ラウリン酸、ベヘニン酸等の高級脂肪酸類及びその塩類、ポリエチレンエーテルの硫酸エステル塩、アミド結合硫酸エステル塩、エステル結合硫酸エステル塩、エステル結合スルホネート、アミド結合スルホン酸塩、エーテル結合スルホン酸塩、エーテル結合アルキルアリルスルホン酸塩、アミド結合アルキルアリルスルホン酸塩等の界面活性剤類、ステアリルアルコール、オレイルアルコール等の高級アルコールの硫酸エステル塩、オルトリン酸とステアリルアルコール又はオレイルアルコールなどのモノ又はジエステル又は両者の混合物であって、その酸型又はアルカリ金属塩又はアミン等の燐酸エステル類、ビニルエトキシシラン、ビニル−トリル(2−メトキシ−エトキシ)シラン、ガンマ−メタクリロキシプロピルトリメトキシシラン、ガンマ−アミノプロピルトリメトキシシラン、N−フェニル−ガンマ−アミノプロピルトリメトキシシラン、N−ベータ(アミノエチル)ガンマ−アミノプロピルトリメトキシシラン、N−ベータ(アミノエチル)ガンマ−アミノプロピルトリエトキシシラン、N−フェニル−ガンマ−アミノプロピルトリエトキシシラン、ベータ(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、ガンマ−メルカプトプロピルとりメトキシシラン等のシランカップリング剤類、イソプロピルトリイソステアロイルチタネート、イソプロピルトリ(アミノエチル)チタネート、イソプロピルトリデシルベンゼンスルホニルチタネート等のチタネートカップリング剤類、アセトアルコキシアルミニュウムジイソプロピレート等のアルミネートカップリング剤を例示できる。
Although the antibacterial agent particles of the present invention are originally monodisperse particles, the dispersibility in the resin is extremely excellent. However, the antibacterial particles of the present invention have the object of further improving dispersibility or preventing discoloration of resin products. For the purpose of suppressing the decrease in mechanical strength when the agent particles are blended in a relatively large amount with the resin, the surface of the antibacterial agent particles of the present invention is made of higher fatty acids, silane coupling agents, aluminate systems. Surface treatment can also be performed with at least one selected from the group of coupling agents, alcohol phosphates, surfactants and the like.
Such surface treating agents include stearic acid, oleic acid, erucic acid, palmitic acid, lauric acid, behenic acid and other higher fatty acids and salts thereof, polyethylene ether sulfate, amide-bonded sulfate, ester-bound sulfate. Surfactants such as salts, ester bond sulfonates, amide bond sulfonates, ether bond sulfonates, ether bond alkyl allyl sulfonates, amide bond alkyl allyl sulfonates, higher alcohols such as stearyl alcohol and oleyl alcohol A sulfate ester salt, a mono- or diester such as orthophosphoric acid and stearyl alcohol or oleyl alcohol, or a mixture thereof, and its acid type or an alkali metal salt or a phosphate ester such as an amine, vinylethoxysilane, vinyl-tolyl ( -Methoxy-ethoxy) silane, gamma-methacryloxypropyltrimethoxysilane, gamma-aminopropyltrimethoxysilane, N-phenyl-gamma-aminopropyltrimethoxysilane, N-beta (aminoethyl) gamma-aminopropyltrimethoxysilane N-beta (aminoethyl) gamma-aminopropyltriethoxysilane, N-phenyl-gamma-aminopropyltriethoxysilane, beta (3,4-epoxycyclohexyl) ethyltrimethoxysilane, gamma-mercaptopropyl and methoxysilane Silane coupling agents, isopropyl triisostearoyl titanate, isopropyl tri (aminoethyl) titanate, isopropyl tridecylbenzenesulfonyl titanate, etc. Ring agents, aluminate coupling agents such as acetoalkoxyaluminum aluminum Niu Muzi isopropylate can be exemplified.
本発明の該抗菌剤粒子は下記の方法で製造することができる。
その際、工業的に食品衛生法厚生省告示第20号で規定された、鉛、カドミュム等の重金属含有量が少なく、さらには樹脂製品の熱劣化防止(耐熱劣化性の向上)及び着色防止という意味で鉄、マンガン、クロム、銅、ニッケル等の重金属含有量を1%以下、好ましくは0.1%以下、さらに好ましくは0.01重量%以下、最も好ましくは0.001%以下の高純度の該抗菌剤粒子を得る場合には、先ず原料面で高純度の物を選択すること、さらには化学操作装置の材質面において特に腐食が起き易い水熱処理工程等では装置材料の溶出によって鉄、マンガン、クロム、銅、ニッケル等の重金属化合物が固溶体及び又は夾雑物として本発明の該抗菌剤粒子に混入しないように配慮された耐腐食性に優れたハステロイ鋼、ステンレスSUS−316鋼等を選択することは好ましいことである。
The antibacterial agent particles of the present invention can be produced by the following method.
At that time, the content of heavy metals such as lead and cadmium, which is industrially specified in the Ministry of Health and Welfare Notification No. 20 of the Food Sanitation Law, and also means prevention of heat deterioration (improvement of heat resistance deterioration) and coloring prevention of resin products. The content of heavy metals such as iron, manganese, chromium, copper, and nickel is 1% or less, preferably 0.1% or less, more preferably 0.01% by weight or less, and most preferably 0.001% or less. In order to obtain the antibacterial agent particles, first, a high-purity material is selected on the raw material side, and further, in the hydrothermal treatment process where corrosion is particularly likely to occur on the material side of the chemical operation device, the elution of the device material causes iron, manganese, etc. Hastelloy steel excellent in corrosion resistance and stainless steel SUS- in which heavy metal compounds such as chromium, copper, nickel and the like are not mixed into the antibacterial agent particles of the present invention as solid solutions and / or contaminants 16 selecting a steel or the like is preferable.
本発明の該抗菌剤粒子は、基本的には国際特許出願PCT/JP2005/003831(出願日:2005年3月1日)明細書に記載された方法によって製造できる下記一般式(2)で表される有機酸アニオン含有アルミニウム硫酸塩水酸化物粒子の1価陽イオン(B)の部分を銀とイオン交換する方法であり、その方法を後記1〜4に例示する。
[B]bAlcAx(SO4)y(OH)z・pH2O 式(2)
式中、b、c、x、y、z、p、BおよびAの定義は、前記式(1)と同じものを意味する。
式(2)なる化合物を合成するためには、硫酸アルミニウム、硫酸ナトリウム、硫酸カリウム、硫酸アンモニウム、及び硫酸カルシュウム等のアルミニウム及び硫酸原料と、蓚酸等の有機酸類原料と、水酸化ナトリウム、水酸化カリウム及びアンモニア水溶液等のアルカリ原料とを湿式法又は乾式法で反応させ、Bがナトリウム型、カリウム型またはアンモニウム型の銀を含まない有機酸アニオン含有アルミニウム硫酸塩水酸化物粒子〔粒子形状が球状、円盤状、(碁石状)、一対状(ハンバーガー状)、米粒状、六角板状、六面体状、円柱状のものについては後記1〜3に示す〕を先ず合成しておき、然る後それらの有機酸アニオン含有アルミニウム硫酸塩水酸化物粒子を水等の懸濁液中において銀溶液と接触攪拌すれば、銀が有機酸アニオン含有アルミニウム硫酸塩水酸化物粒子にイオン交換した本発明の該抗菌剤粒子が製造できる。
The antibacterial agent particles of the present invention are basically represented by the following general formula (2) that can be produced by the method described in the specification of International Patent Application PCT / JP2005 / 003831 (filing date: March 1, 2005). This is a method in which the monovalent cation (B) portion of the organic acid anion-containing aluminum sulfate hydroxide particles is ion exchanged with silver.
[B] b Al c A x (SO 4 ) y (OH) z · pH 2 O Formula (2)
In the formula, the definitions of b, c, x, y, z, p, B, and A mean the same as the formula (1).
In order to synthesize the compound of formula (2), aluminum and sulfuric acid raw materials such as aluminum sulfate, sodium sulfate, potassium sulfate, ammonium sulfate, and calcium sulfate, organic acid raw materials such as oxalic acid, sodium hydroxide, potassium hydroxide And an alkali raw material such as an aqueous ammonia solution by a wet method or a dry method, and B is a sodium-type, potassium-type or ammonium-type silver-free organic acid anion-containing aluminum sulfate hydroxide particle [particle shape is spherical, disc , (Meteorite-like), pair-like (hamburger-like), rice grain, hexagonal plate, hexahedral, and columnar are shown in the following paragraphs 1 to 3]. If acid anion-containing aluminum sulfate hydroxide particles are stirred in contact with a silver solution in a suspension of water or the like, the silver is converted into an organic acid anion. Down-containing aluminum antibacterial agent particles of the present invention as ion-exchanged sulfate hydroxide particles can be produced.
粒子形状が直方体状の銀及び有機酸アニオン含有アルミニウム硫酸塩水酸化物粒子の製造方法については後記4に示す。
いずれの際も、銀及び有機酸アニオン含有アルミニウム硫酸塩水酸化物粒子を、形状と粒子サイズを選択して製造すること、粒子径分布を均一に整えること、該粒子を完璧なまでに単分散状態で樹脂に分散できるようにするためには、該反応において前記の有機酸類を前記の反応時に添加する必要があり、添加された有機酸類は該抗菌剤粒子の構造中に組み込むことができる。
ただし有機酸類の一部は該抗菌剤粒子の表面に吸着している場合も考えられる。
いずれにしても有機酸類は本発明の目的を達成するために該抗菌剤に含有することができる。
有機酸類を前記の反応時に添加せず、反応が終わった後に添加しても前記粒子形状、粒子径均一性、分散性等の性質を有する本発明の抗菌剤粒子は製造できない。
A method for producing silver and organic acid anion-containing aluminum sulfate hydroxide particles having a rectangular parallelepiped shape will be described later.
In any case, silver sulfate and organic acid anion-containing aluminum sulfate hydroxide particles can be produced by selecting the shape and particle size, the particle size distribution can be uniformly adjusted, and the particles can be perfectly dispersed in a monodisperse state. In order to make it dispersible in the resin, it is necessary to add the organic acids in the reaction during the reaction, and the added organic acids can be incorporated into the structure of the antibacterial agent particles.
However, some organic acids may be adsorbed on the surface of the antibacterial agent particles.
In any case, organic acids can be contained in the antibacterial agent in order to achieve the object of the present invention.
Even if the organic acid is not added at the time of the reaction and is added after the reaction is completed, the antibacterial agent particles of the present invention having properties such as particle shape, particle diameter uniformity, dispersibility and the like cannot be produced.
製造された本発明の抗菌剤粒子の粉砕処理に関しては従来技術のように強力な機械力で実施する必要はなく弱い力で簡単に処理してもの凝集のないのものが得られることも本発明の技術の特徴である。
以下に、ナトリウム型、カリウム型、アンモニウム型、水素型の銀及び有機酸アニオン含有アルミニウム硫酸塩水酸化物粒子抗菌剤の製造方法について例示する。
Regarding the pulverization treatment of the produced antibacterial agent particles of the present invention, it is not necessary to carry out with a strong mechanical force as in the prior art, and it is also possible to obtain a product that does not aggregate even if it is simply treated with a weak force. It is a feature of the technology.
Hereinafter, examples of the method for producing an antibacterial agent containing aluminum sulfate hydroxide particles containing sodium and potassium, ammonium and hydrogen and organic acid anions will be described.
1、ナトリウム型銀及び有機酸アニオン含有アルミニウム硫酸塩水酸化物粒子の製造方法
原料としては硫酸アルミニウム、硫酸ナトリウム等硫酸塩、及び水酸化ナトリウム等のAl原料及びSO4原料及びNa原料、蓚酸等の有機酸原料、及びイオン交換反応で使用する硝酸銀等の可溶性銀塩を銀原料として用い、下記の方法で製造する方法が例示できる。
例えばAl2(SO4)3+Na2SO4(或いはNaNO3)+H2C2O4を水の中に充分溶解した後、攪拌しながら、水酸化ナトリウムを添加する。
添加終了後、よく分散させるために、好ましくは更に20分以上攪拌する。
その後水熱処理を行うことは好ましいことである。
水熱処理の温度は100℃〜250℃が好ましく、処理時間は1時間〜30時間が好ましい。
1, sodium form silver and organic acid anion containing aluminum sulphate aluminum production method the raw material of the sulfate hydroxide particles, such as sodium sulfate sulfate and Al raw material and SO 4 raw material and Na raw material such as sodium hydroxide, such as oxalic acid The method of manufacturing by the following method using organic acid raw material and soluble silver salts, such as silver nitrate used by ion exchange reaction, as a silver raw material can be illustrated.
For example, Al 2 (SO 4 ) 3 + Na 2 SO 4 (or NaNO 3 ) + H 2 C 2 O 4 is sufficiently dissolved in water, and then sodium hydroxide is added with stirring.
After the addition, the mixture is preferably further stirred for 20 minutes or more in order to disperse well.
It is preferable to perform hydrothermal treatment thereafter.
The hydrothermal treatment temperature is preferably 100 ° C. to 250 ° C., and the treatment time is preferably 1 hour to 30 hours.
このようにして得られた有機酸アニオン含有アルミニウム硫酸塩水酸化物粒子は濾過、及び必要に応じ水洗する。、
それを水等の液に懸濁し硫酸銀、硝酸銀等の可溶性銀塩の溶液と攪拌すればイオン交換反応処理が実施でき、本発明の銀及び有機酸アニオン含有アルミニウム硫酸塩水酸化物粒子が製造できる。
イオン交換反応処理の温度は0℃〜100℃が好ましく、処理時間は0.1時間〜30時間遮光下で実施することが好ましい。
The organic acid anion-containing aluminum sulfate hydroxide particles thus obtained are filtered and washed with water as necessary. ,
If it is suspended in a liquid such as water and stirred with a solution of a soluble silver salt such as silver sulfate or silver nitrate, an ion exchange reaction treatment can be carried out, and the silver sulfate and organic acid anion-containing aluminum sulfate hydroxide particles of the present invention can be produced. .
The temperature of the ion exchange reaction treatment is preferably 0 ° C. to 100 ° C., and the treatment time is preferably 0.1 to 30 hours under light shielding.
イオン交換するときの処理温度が低かったり、処理時間が短か過ぎると銀のイオン交換量が少なくなる恐れがある。一方イオン交換するときの処理温度が高かったり、処理時間が長過ぎるとイオン交換処理物が褐色に着色する傾向がある。
イオン交換反応処理での攪拌の方法は振動及び回転等の方法が例示できる。
イオン交換したものは濾過・遠心分離の方法で濾別した後、必要ならばさらに水洗・表面処理・乾燥・粉砕等の操作を必要に応じ実施し回収すれば良い。濾別が困難な場合、本発明の目的に反しない範囲で凝集剤を使用し濾別操作を改善しても良い。凝集剤としてはポリアクリルアミドのような高分子凝集剤が例示できる。高分子凝集剤の添加量は0.2%以下が好ましい。0.2%以上添加しても特に炉別操作は改善しない。
If the treatment temperature at the time of ion exchange is low or the treatment time is too short, the amount of silver ion exchange may be reduced. On the other hand, if the treatment temperature during ion exchange is high or the treatment time is too long, the ion exchange treatment product tends to be colored brown.
Examples of the stirring method in the ion exchange reaction treatment include methods such as vibration and rotation.
The ion exchanged product may be collected by filtration / centrifugation, and if necessary, operations such as washing with water, surface treatment, drying, and pulverization may be further performed as necessary. When the separation by filtration is difficult, a flocculant may be used to improve the separation operation as long as the object of the present invention is not violated. Examples of the flocculant include polymer flocculants such as polyacrylamide. The amount of the polymer flocculant added is preferably 0.2% or less. Addition of 0.2% or more does not improve the furnace operation.
2、カリウム型銀及び有機酸アニオン含有アルミニウム硫酸塩水酸化物粒子の製造方法
原料としては硫酸アルミニウム、硫酸カリウム等硫酸塩、及び水酸化カリウム等のAl原料及びSO4原料及びK原料、蓚酸等の有機酸原料、及びイオン交換反応で使用する硝酸銀等の可溶性銀塩を銀原料として用い、下記の方法で製造する方法が例示できる。
例えばAl2(SO4)3+K2SO4(或いはKNO3)+H2C2O4を水の中に充分溶解した後、攪拌しながら、水酸化カリウムを添加する。それ以後の操作方法は上記1に準じて行う。
2. Production method of potassium sulfate silver and organic acid anion-containing aluminum sulfate hydroxide particles As raw materials, aluminum sulfate, potassium sulfate and other Al raw materials such as potassium hydroxide, SO 4 raw material and K raw material, oxalic acid, etc. The method of manufacturing by the following method can be illustrated, using a soluble silver salt such as silver nitrate used in the organic acid raw material and ion exchange reaction as the silver raw material.
For example, Al 2 (SO 4 ) 3 + K 2 SO 4 (or KNO 3 ) + H 2 C 2 O 4 is sufficiently dissolved in water, and then potassium hydroxide is added with stirring. Subsequent operation methods are performed in accordance with 1 above.
3、アンモニウム型銀及び有機酸アニオン含有アルミニウム硫酸塩水酸化物粒子の製造方法
原料としては硫酸アルミニウム、硫酸アンモニウム等硫酸塩、及び硝酸アンモニウム等のAl原料及びSO4原料及びNH4原料、蓚酸等の有機酸原料、及びイオン交換反応で使用する硝酸銀等の可溶性銀塩を銀原料として用い、下記の方法で製造する方法が例示できる。
例えばAl2(SO4)3+K2SO4(或いはKNO3)+H2C2O4を水の中に充分溶解した後、攪拌しながら、アンモニア水溶液を添加する。それ以後の操作方法は上記1に準じて行う。
3. Method for producing ammonium-type silver and organic acid anion-containing aluminum sulfate hydroxide particles As raw materials, aluminum sulfate, ammonium sulfate and the like, and ammonium nitrate and other Al raw materials and SO 4 raw materials and NH 4 raw materials and organic acids such as oxalic acid Examples thereof include a raw material and a soluble silver salt such as silver nitrate used in an ion exchange reaction as a silver raw material, and a method for production by the following method.
For example, Al 2 (SO 4 ) 3 + K 2 SO 4 (or KNO 3 ) + H 2 C 2 O 4 is sufficiently dissolved in water, and then an aqueous ammonia solution is added with stirring. Subsequent operation methods are performed in accordance with 1 above.
4、水素型{(H3O)+型}直方体状銀及び有機酸アニオン含有アルミニウム硫酸塩水酸化物粒子の製造方法
直方体状粒子は前記の球状及び円板状粒子の製造方法とは異なり、硫酸アルミニウム水溶液と水酸化アルミニウム懸濁液、及び蓚酸等の有機酸を混合攪拌したものを100℃〜250℃、好ましくは120℃〜200℃で、0.5時間以上、好ましくは0.5〜30時間、好ましくは2〜20時間水熱処理すれば直方体状で水素型、化学式(H3O)Al3(SO4)2(OH)6で表されるものを得ることができる。
用いる水酸化アルミニウムとしては、結晶性のギプサイト、バイアライト、ベーマイト、擬ベーマイト、ダイアスポア、無定形の水酸化アルミニウムが例示できるが、無定形の水酸化アルミニウムが粒子径の均一性が高くなるという点で好ましい。
無定形の水酸化アルミニウムとしては、協和化学工業(株)製乾燥水酸化アルミニウムゲルS−100,及び同FMが例示できる。
4. Method for producing hydrogen-type {(H 3 O) + type} cuboidal silver and organic acid anion-containing aluminum sulfate hydroxide particles The cuboidal particles are different from the above-described method for producing spherical and discoidal particles. What mixed and stirred aluminum aqueous solution, aluminum hydroxide suspension, and organic acids, such as a oxalic acid, is 100 to 250 degreeC, Preferably it is 120 to 200 degreeC, 0.5 hour or more, Preferably it is 0.5 to 30 If it is hydrothermally treated for a period of time, preferably 2 to 20 hours, a rectangular parallelepiped, hydrogen type, represented by the chemical formula (H 3 O) Al 3 (SO 4 ) 2 (OH) 6 can be obtained.
Examples of the aluminum hydroxide to be used include crystalline gypsite, viaite, boehmite, pseudoboehmite, diaspore, and amorphous aluminum hydroxide, but the amorphous aluminum hydroxide has high particle size uniformity. Is preferable.
Examples of amorphous aluminum hydroxide include dry aluminum hydroxide gel S-100 manufactured by Kyowa Chemical Industry Co., Ltd. and FM.
この方法において微粒子化と粒子径均一性を向上ためには、硫酸アルミニウム水溶液と水酸化アルミニウム懸濁液を混合攪拌した反応物を直ちに水熱処理するよりは、反応後ある程度時間が経過したもの、例えば0.5時間以上、好ましくは5時間以上、さらに好ましくは16時間以上静置又は攪拌したものを水熱処理すると微粒子で粒子径均一性を有するアルミニウム硫酸塩水酸化物粒子が得られる。それ以後の操作方法は上記1に準じて行う。 In order to improve the micronization and particle size uniformity in this method, rather than immediately subjecting the reaction mixture obtained by mixing and stirring the aluminum sulfate aqueous solution and the aluminum hydroxide suspension to hydrothermal treatment, a certain amount of time has passed after the reaction, for example, When hydrothermally treating the mixture after standing or stirring for 0.5 hour or longer, preferably 5 hours or longer, more preferably 16 hours or longer, aluminum sulfate hydroxide particles having fine particle diameter uniformity are obtained. Subsequent operation methods are performed in accordance with 1 above.
本発明の銀及び有機酸アニオン含有アルミニウム硫酸塩水酸化物粒子は粉末X線回折法により同定することができる。銀が該粒子にイオン交換していればその回折パターンはイオン交換前の該粒子と同じ回折パターンとなるので化学分析値と照らし合わせて回折X線の回折パターンを精査すれば良い。もし銀が該粒子にイオン交換せずに、酸化銀のような不純物で共存する製造物を樹脂に配合すると樹脂製品の色は暗褐色を呈し本発明の重要な目的の一つである白色の樹脂製品を得ることから逸脱するので好ましくない。
本発明においては、式(1)なる該抗菌剤の3価陽イオンであるアルミニウム(Al)の一部をZn2+、Ti4+の群から選ばれた少なくとも1種の陽イオンで、及び/又は1価陽イオンBの一部をCa2+で本発明の目的を害しない範囲で置き換えて含有させても良い。
その場合、該抗菌剤を樹脂に配合した時樹脂製品の透明性を低下させないようにするためZn2+、Ti4+の合計モル含有量はアルミニウムのモル含有量の1/2以下好ましくは1/3以下、Ca2+のモル含有量は1価陽イオン(B)のモル含有量の1/2以下好ましくは1/3以下にして該抗菌剤粒子に含有させれば良い。
The silver and organic acid anion-containing aluminum sulfate hydroxide particles of the present invention can be identified by powder X-ray diffraction. If silver is ion-exchanged with the particles, the diffraction pattern thereof is the same as that before the ion-exchange, and therefore, the diffraction pattern of the diffracted X-rays may be examined in light of the chemical analysis value. If silver does not ion exchange with the particles and a product coexisting with impurities such as silver oxide is added to the resin, the color of the resin product is dark brown, which is one of the important objects of the present invention. Since it deviates from obtaining a resin product, it is not preferable.
In the present invention, a part of aluminum (Al) which is a trivalent cation of the antibacterial agent represented by the formula (1) is at least one cation selected from the group of Zn 2+ and Ti 4+ , and / or some of monovalent cations B may be contained replaced within a range not damaging the object of the present invention in Ca 2+.
In that case, the total molar content of Zn 2+ and Ti 4+ is less than or equal to 1/2 of the molar content of aluminum, preferably 1/3 in order not to lower the transparency of the resin product when the antibacterial agent is blended with the resin. Hereinafter, the molar content of Ca 2+ is ½ or less, preferably 3 or less of the molar content of the monovalent cation (B), and may be contained in the antibacterial agent particles.
式(1)なる該抗菌剤の3価陽イオンのアルミニウム(Al)の一部を置き換える方法としては、該金属カチオンを含む硫酸亜鉛、硫酸チタン、硫酸カルシウム等の塩類を前記式(2)なる化合物を合成する時に用いて式(2)に組み込むか、あるいは式(2)なる化合物に該金属カチオンを含む化合物を用いて溶媒中でイオン交換した物に、さらに前記の方法で銀とイオン交換する方法が例示できる。その場合、Zn2+、Ti4+は抗菌性発現効果がある元素であるため式(1)においてAg1+の相対的含有量を減らしても抗菌性を発揮し、その結果これを樹脂に配合した樹脂成形品の着色を減少させる利点がありそういう意味で好ましいことである。 As a method for replacing a part of the trivalent cation aluminum (Al) of the antibacterial agent represented by the formula (1), a salt such as zinc sulfate, titanium sulfate or calcium sulfate containing the metal cation is represented by the formula (2). Used when synthesizing a compound, incorporated into the formula (2), or ion-exchanged with a compound of the formula (2) using a compound containing the metal cation in a solvent and further ion-exchanged with silver by the above-described method. The method of doing can be illustrated. In that case, since Zn 2+ and Ti 4+ are elements having an antibacterial effect, the antibacterial property is exhibited even if the relative content of Ag 1+ is reduced in the formula (1). There is an advantage of reducing the coloring of the molded article, which is preferable in that sense.
本発明においては、式(1)なる該抗菌剤の(SO4)yは(SO4)yの一部、好ましくyモルの1/2以下を他の無機酸イオンで置き換えることもでき、置き換える量が特に1/2以下であれば本発明の粒子形状や粒子径均一性が何の問題もなく維持でき本発明の目的が達成される。該無機酸イオンとしてはSO3 2−、PO4 3−、HPO3 2−、CO3 2−、NO3 −、SiO4 4−及びBO3 3−等が例示できる。式(1)なる該抗菌剤の(SO4)yの一部を他の無機酸イオンで置き換える方法としては、該無機酸イオンを含む塩類を式(2)なる化合物を反応する時に硫酸アルミニウム、硫酸ナトリウム、硫酸カリウム等の代りに用いて式(2)に組み込むか、あるいは式(2)なる化合物に該無機酸イオンを含む化合物を用いて溶媒中でイオン交換した物に、さらに前記の方法で銀とイオン交換する方法が例示できる。該粒子はさらに式(1)の該抗菌剤粒子同様、追加乾燥処理、焼成処理、表面処理、耐酸性被覆処理をして抗菌剤として利用することもできるし、樹脂に配合して抗菌性樹脂製品を得ることもできる。 In the present invention, (SO 4 ) y of the antibacterial agent represented by the formula (1) is a part of (SO 4 ) y , and preferably ½ or less of y mol can be replaced with other inorganic acid ions. If the amount is particularly ½ or less, the particle shape and particle size uniformity of the present invention can be maintained without any problems, and the object of the present invention is achieved. SO 3 2-as inorganic acid ions, PO 4 3-, HPO 3 2- , CO 3 2-, NO 3 -, SiO 4 4- and BO 3 3- like. As a method of replacing a part of (SO 4 ) y of the antibacterial agent represented by the formula (1) with another inorganic acid ion, when the salt containing the inorganic acid ion is reacted with the compound represented by the formula (2), aluminum sulfate, In place of sodium sulfate, potassium sulfate or the like, the above-mentioned method is further applied to a product which is incorporated into the formula (2) or ion-exchanged in a solvent using a compound containing the inorganic acid ion in the compound of the formula (2). And a method of ion exchange with silver. In addition to the antibacterial agent particles of formula (1), the particles can be used as an antibacterial agent by additional drying treatment, baking treatment, surface treatment, acid-resistant coating treatment, or added to a resin to provide an antibacterial resin. You can also get a product.
本発明においては、式(1)なる該抗菌剤の(OH)zは(OH)zの一部がCl−で置き換わって含有されている場合もあるが、その含有量は着色防止という意味で該抗菌剤式(1)中0.1モル以下、好ましくは0.01モル以下、最も好ましくは0.001モル以下である。
本発明において抗菌化の対象樹脂としては特に限定されるものではなく合成樹脂・ゴム、天然樹脂・ゴム等を原料としそれを加工して通常成形品、繊維、不織布、塗料、コーキング材、フィルム等樹脂製品として使用されるものであれば良く、以下にその一部を例示する。
In the present invention, the (OH) z in the formula (1) becomes antibacterial agent Cl part of (OH) z - in some cases have contained replaced by, the content thereof in the sense of preventing coloration In the antibacterial agent formula (1), it is 0.1 mol or less, preferably 0.01 mol or less, and most preferably 0.001 mol or less.
In the present invention, the antibacterial target resin is not particularly limited, and is processed from a synthetic resin / rubber, natural resin / rubber or the like as a raw material, and is usually molded, fiber, non-woven fabric, paint, caulking material, film, etc. What is necessary is just to be used as a resin product, The one part is illustrated below.
熱可塑性樹脂としては、ポリプロピレン、エチレンプロピレン共重合体、高密度ポリエチレン、低密度ポリエチレン、超高分子量ポリエチレン、直鎖状低密度ポリエチレン、ポリブテン、ポリ・4メチルペンテン−1等の如きC2〜C12のオレフィン(αオレフィン)の重合体もしくは共重合体、これらのオレフィンとジエンとの共重合体、エチレン酢酸ビニル共重合体、エチレン・アクリレート共重合体、TPO(熱可塑性ポリオレフィン)樹脂等のポリオレフィン系樹脂、ポリエチレンオキサイド樹脂、ポリスチレン、ABS(アクリロニトリルブタジエンスチレン)樹脂、AAS(アクリロニトリルアクリルスチレン)樹脂、AS(アクリロニトリルスチレン)樹脂、AES(アクリロニトリルイーピーディーエムスチレン)樹脂、MBS(メチルメタクリレートブタジエンスチレン)樹脂、ポリパラメチルスチレン樹脂等のスチレン系樹脂、ACS(アクリロニトリルクロリネイティドポリエチレンスチレン)樹脂、酢酸ビニル樹脂、プロピオン酸ビニル樹脂、フェノキシ樹脂、アイオノマー樹脂、ポリアセタール樹脂、ナイロン6、ナイロン66等のポリアミド系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル系樹脂、ポリアミドイミド樹脂、ポリサルホン樹脂、ポリアリレート樹脂、ポリエーテルイミド樹脂、ポリエーテルケトン樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンサルファイド樹脂、メタクリル樹脂、セルロース樹脂、ポリカーボネート樹脂、フッソ樹脂、ポリウレタン樹脂、シリコーン樹脂、ポリビニルエーテル樹脂、ポリビニルホルマール樹脂、ポリビニルブチラール樹脂、ポリビニルアルコール樹脂、イソブチレン−無水マレイン酸共重合樹脂、さらにはポリ塩化ビニル樹脂、エチレン塩ビ共重合樹脂、エチレン酢ビ共重合樹脂、塩素化塩化ビニル樹脂、塩素化ポリエチレン、塩素化ポリプロピレン、クマロン樹脂、ケトン樹脂、ポリ塩化ビニリデン、ポリ2塩化ビニル樹脂、塩素化ポリエーテル等の分子構造中に塩素を有する樹脂、アセテートプラスチック、酢酸セルロース、セルロイド、液晶ポリマー、さらには吸水性樹脂等がそれらの一部として例示できる。 Examples of the thermoplastic resin include C 2 to C such as polypropylene, ethylene propylene copolymer, high density polyethylene, low density polyethylene, ultrahigh molecular weight polyethylene, linear low density polyethylene, polybutene, and poly-4methylpentene-1. Polymers or copolymers of 12 olefins (α-olefins), copolymers of these olefins and dienes, ethylene vinyl acetate copolymers, ethylene acrylate copolymers, polyolefins such as TPO (thermoplastic polyolefin) resins Resin, polyethylene oxide resin, polystyrene, ABS (acrylonitrile butadiene styrene) resin, AAS (acrylonitrile acryl styrene) resin, AS (acrylonitrile styrene) resin, AES (acrylonitrile EPD styrene) resin Styrenic resins such as MBS (methyl methacrylate butadiene styrene) resin, polyparamethyl styrene resin, ACS (acrylonitrile chlorinated polyethylene styrene) resin, vinyl acetate resin, vinyl propionate resin, phenoxy resin, ionomer resin, polyacetal resin, nylon 6. Polyamide resins such as nylon 66, polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polyamide imide resins, polysulfone resins, polyarylate resins, polyether imide resins, polyether ketone resins, polyphenylene ether resins, polyphenylene sulfide resins , Methacrylic resin, cellulose resin, polycarbonate resin, fluorine resin, polyurethane resin, silicone resin, polyvinyl resin Ether resin, polyvinyl formal resin, polyvinyl butyral resin, polyvinyl alcohol resin, isobutylene-maleic anhydride copolymer resin, further polyvinyl chloride resin, ethylene vinyl chloride copolymer resin, ethylene vinyl acetate copolymer resin, chlorinated vinyl chloride resin, Chlorinated polyethylene, chlorinated polypropylene, coumarone resin, ketone resin, polyvinylidene chloride, polyvinyl dichloride resin, resin having chlorine in molecular structure such as chlorinated polyether, acetate plastic, cellulose acetate, celluloid, liquid crystal polymer, Furthermore, a water absorbing resin etc. can be illustrated as some of them.
熱硬化性樹脂としては、エポキシ樹脂、フェノール樹脂、メラミン樹脂、不飽和ポリエステル樹脂、アルキド樹脂、グアナミン樹脂、ポリイミド樹脂、尿素樹脂、シリコーン樹脂、フェノールホルムアルデヒド樹脂、メラミンホルムアルデヒド樹脂、ポリパラ安息香酸樹脂、ポリウレタン樹脂、マレイン酸樹脂、ユリア樹脂、フラン樹脂、キシレン樹脂、ジアリルフタレート樹脂等の樹脂を例示できる。
ゴムとしてはEPDM(エチレンプロピレンジエン共重合体ゴム),EPM(エチレンプロピレン共重合体ゴム),ブチルゴム、イソプレンゴム、SBR(スチレンブタジエンゴム),NIR(ニトリルイソプレンゴム),NBR(ニトリルブタジエンゴム),ウレタンゴム、クロロプレンゴム、水素化ニトリルゴム、ポリエーテル系ゴム、四フッ化エチレン・プロピレンゴム、クロロスルホン化ゴム、ブタジエンゴム、アクリルゴム、塩素化ポリエチレン、エピクロルヒドリンゴム、プロピレンオキサイドゴム、エチレン・アクリルゴム、ノルボルネンゴム、多硫化ゴム、フッ素ゴム、シリコーンゴム、天然ゴム等が例示できる。
これらの樹脂及びゴムは単独で用いても良く、あるいは複数種同時に用いても良い。複数種同時に用いる場合はポリマーアロイ化して用いても良く、ブレンドして用いても良く、あるいは積層成形して用いても良い。これら合成樹脂類は製造方法によって限定されるものではなく、例えばポリオレフィンの重合触媒としては、チーグラー法、チーグラーナッタ法、フリーデルクラフト法、メタロセン法、フィリップス法等いかなものであっても良い。
Thermosetting resins include epoxy resin, phenol resin, melamine resin, unsaturated polyester resin, alkyd resin, guanamine resin, polyimide resin, urea resin, silicone resin, phenol formaldehyde resin, melamine formaldehyde resin, polyparabenzoic acid resin, polyurethane Examples thereof include resins such as resin, maleic acid resin, urea resin, furan resin, xylene resin, and diallyl phthalate resin.
As rubber, EPDM (ethylene propylene diene copolymer rubber), EPM (ethylene propylene copolymer rubber), butyl rubber, isoprene rubber, SBR (styrene butadiene rubber), NIR (nitrile isoprene rubber), NBR (nitrile butadiene rubber), Urethane rubber, chloroprene rubber, hydrogenated nitrile rubber, polyether rubber, ethylene tetrafluoride / propylene rubber, chlorosulfonated rubber, butadiene rubber, acrylic rubber, chlorinated polyethylene, epichlorohydrin rubber, propylene oxide rubber, ethylene / acrylic rubber Examples thereof include norbornene rubber, polysulfide rubber, fluorine rubber, silicone rubber, natural rubber and the like.
These resins and rubbers may be used alone or in combination of a plurality of types. When a plurality of types are used simultaneously, they may be used after being polymer-alloyed, may be used after blending, or may be used after being laminated. These synthetic resins are not limited by the production method. For example, the polymerization catalyst for polyolefin may be any method such as Ziegler method, Ziegler-Natta method, Friedel-Craft method, metallocene method, and Phillips method.
本発明の抗菌性樹脂組成物には通常使用される添加剤、補強剤、充填剤を本発明の目的を害しない範囲で配合することができる。以下これらの一部を例示する。
酸化防止剤、紫外線吸収剤、光安定化剤、熱安定剤、金属不活性化剤、可塑剤、帯電防止剤、難燃剤、加硫剤、加硫促進剤、老化防止剤、素練り促進剤、粘着付与剤、香料、滑剤、着色剤、造核剤、発砲剤、脱臭剤、ポリマーアロイ相溶化剤等。
本発明の抗菌性樹脂組成物を得る方法には、特別の制約はなく前記の樹脂類、ゴム類と本発明の抗菌剤粒子を、例えば2軸押出機、加圧ニーダー、オープンロール、バンバリーミキサー等の装置を使用しできるだけ均一に混合混練しておき、それをペレッターザー、粉砕機等の装置を使用しペレットや粉末にし樹脂組成物を得る方法や、樹脂類が溶媒を使用して溶解されたものの中に本発明の抗菌剤粒子を混合する方法が例示できる。
In the antibacterial resin composition of the present invention, commonly used additives, reinforcing agents, and fillers can be blended within a range that does not impair the object of the present invention. Some of these are exemplified below.
Antioxidant, UV absorber, light stabilizer, heat stabilizer, metal deactivator, plasticizer, antistatic agent, flame retardant, vulcanizing agent, vulcanization accelerator, anti-aging agent, peptizer , Tackifiers, fragrances, lubricants, colorants, nucleating agents, foaming agents, deodorants, polymer alloy compatibilizers, and the like.
The method for obtaining the antibacterial resin composition of the present invention is not particularly limited, and the above-mentioned resins, rubbers and the antibacterial agent particles of the present invention are used, for example, a twin screw extruder, a pressure kneader, an open roll, a Banbury mixer. Etc. using a device such as a pelletizer, a pulverizer, etc., and using a device such as a pelletizer or a pulverizer to make pellets or powders to obtain a resin composition, or a resin was dissolved using a solvent. An example is a method of mixing the antibacterial agent particles of the present invention.
本発明の抗菌性樹脂組成物の成形品を得る方法には、特別の制約はなく前記の方法で得られた該抗菌剤配合樹脂組成物をそのままの濃度で成形品等の樹脂製品にする方法、あるいはマスターバッチとして一旦高濃度に加工したものからそれを最終的に樹脂製品として使用する濃度に希釈混合し、それを射出成形機、押出成形機、ブロー成形機、カレンダー成形機、圧縮成形機、積層成形機等の装置を用いて抗菌性樹脂製品とする方法、さらには抗菌剤粒子を樹脂と混合後、前記の機械に直接投入し直接射出成形、直接押出成形する方法等を一例として例示できる。
得られた成形品の形状、大きさ、厚さ、太さ、さらには使用方法についても何ら制約はなく例えば板状、ボトル状、球状、円盤状、シート状、電線被覆状、発砲体、積層体等何でも良くその成形品は例えば台所、風呂場、トイレ周りの製品、衛生用品、エアコンの吹き出し口等抗菌性を必要とする分野で好適に使用できる。
The method for obtaining the molded article of the antibacterial resin composition of the present invention is not particularly limited, and the method for forming the resin composition containing the antibacterial agent obtained by the above-mentioned method into a resin product such as a molded product at the same concentration. Or, once processed into a high concentration as a masterbatch, it is diluted and mixed to a concentration that will eventually be used as a resin product, and then it is injection-molded, extruded, blow-molded, calendered, and compression-molded As an example, a method of making an antibacterial resin product using an apparatus such as a laminate molding machine, and a method of directly injecting and direct injection molding or direct extrusion molding of the antibacterial agent particles after mixing them with the resin it can.
There are no restrictions on the shape, size, thickness, thickness, and usage of the obtained molded product, for example, plate shape, bottle shape, spherical shape, disk shape, sheet shape, wire covering shape, foam, laminated body Anything such as a body may be used, and the molded product can be suitably used in fields requiring antibacterial properties such as kitchens, bathrooms, products around toilets, sanitary products, and air-conditioner outlets.
本発明の抗菌性フィルムを得る方法には、特別の制約はなくフィルム製造に適した樹脂の中から前記の方法で得られた抗菌性樹脂組成物を製造し、それをインフレーション法、Tダイ法、カレンダー法、キャスト法等でフィルムを得ることができ、さらにそのフィルムを延伸しても良く、さらには共押出し法により2層以上の積層フィルムにした物で抗菌性が必要な層にだけ本発明の該抗菌剤粒子を抗菌剤として使用する経済性を追求した利用方法も例示できる。
得られたフィルムの形状や形態、使用方法についても特に制約はなく、例えば野菜果物菓子乾物魚肉等食品包装用フィルムとして鮮度保持を兼ねた抗菌性を必要とする分野を一例として例示できる。
The method for obtaining the antibacterial film of the present invention is not particularly limited, and an antibacterial resin composition obtained by the above-mentioned method is produced from resins suitable for film production, and is used for the inflation method and the T-die method. A film can be obtained by the calendering method, the casting method, etc., and the film may be further stretched. Further, the film is made into a laminated film of two or more layers by a co-extrusion method, and only the layer requiring antibacterial properties The utilization method which pursued the economical efficiency which uses this antibacterial agent particle of invention as an antibacterial agent can also be illustrated.
There is no restriction | limiting in particular also about the shape of the obtained film, a form, and a usage method, For example, the field | area which requires antibacterial property which also maintained freshness as a film for food packaging, such as vegetable fruit confectionery dried fish, can be illustrated as an example.
本発明の繊維を製造する方法において特別の制約はなく、前記の樹脂組成物のうち繊維として紡糸できる樹脂組成物を使用し従来公知の溶融押し出し法、乾式紡糸法、湿式紡糸法等で紡糸し、必要に応じさらに延伸や撚糸、及び/又は、さらには綿、ウール、麻等の天然繊維との混合等の工程を採用し製品とすれば良い。得られた繊維の利用方法についても特に制約はなく、例えば絨毯、衣服、タオル、ナプキン、ハンカチ、手袋、ソックス、帽子、マフラー等の抗菌性を必要とする分野が一例として例示できる。
繊維としては、ポリプロピレン系、ポリエチレン系、ポリアミド(ナイロン)系、アラミド系、アクリル系、ポリウレタン系、フッソ系、ポリクラール系、ポリエステル系、ポリ塩化ビニル系、ビニロン系、ビニリデン系、アセテート系、トリアセテート系、レーヨン系、キュプラ系、ノボロイド系、プロミックス系、ポリアセタール系、ポリノジック系、プラスチック光ファイバー等の繊維が例示できる。
There are no particular restrictions on the method for producing the fiber of the present invention, and a resin composition that can be spun as a fiber among the above resin compositions is used, and spinning is performed by a conventionally known melt extrusion method, dry spinning method, wet spinning method, or the like. Further, if necessary, a product such as stretching, twisted yarn, and / or mixing with natural fibers such as cotton, wool, hemp, etc. may be adopted. There is no restriction | limiting in particular also about the utilization method of the obtained fiber, For example, the field | areas which require antimicrobial properties, such as a carpet, clothes, a towel, a napkin, a handkerchief, a glove, a sock, a hat, a muffler, can be illustrated as an example.
As fibers, polypropylene, polyethylene, polyamide (nylon), aramid, acrylic, polyurethane, fluorine, polyclar, polyester, polyvinyl chloride, vinylon, vinylidene, acetate, triacetate And fibers such as rayon, cupra, novoloid, promix, polyacetal, polynosic, and plastic optical fiber.
本発明の抗菌性不織布を製造する方法には特に制約はなく従来公知の方法を採用すれば良い。
例えば、抄造ウエブ法、ランダムウエブ法、パラレルウエブ法、クロスレイドウエブ法、糸交錯ウエブ法、トウ拡開ウエブ法、短繊維ウエブ法、フィラメントウエブ法、マイクロファイバーウエブ法、スプリットフィルムウエブ法等の方法が採用し得る。これらの方法で得られた抗菌性不織布は抗菌性を有しながら軽くて通気性、防縮性等の性質に優れるため生理用用品、衣服の芯地や裏地、ビニルレザーや擬革の基布等抗菌性を必要とする分野で利用できることが一例として挙げられる。
There is no restriction | limiting in particular in the method of manufacturing the antibacterial nonwoven fabric of this invention, What is necessary is just to employ | adopt a conventionally well-known method.
For example, paper making web method, random web method, parallel web method, cross-laid web method, interlaced web method, tow spread web method, short fiber web method, filament web method, microfiber web method, split film web method, etc. A method may be employed. The antibacterial nonwoven fabric obtained by these methods has antibacterial properties and is light and breathable, and has excellent properties such as shrinkage resistance, so it can be used for sanitary products, clothing interlining and lining, vinyl leather and artificial leather base fabric One example is that it can be used in fields requiring antibacterial properties.
本発明の抗菌性塗料を工業的に製造する方法において特別の制約はなく、従来公知の方法が採用でき、顔料、展色剤、耐候剤、溶剤、助溶剤、希釈剤、可塑剤等を混合する工程で本発明の銀及び有機酸アニオン含有アルミニウム硫酸塩水酸化物粒子抗菌剤を混合し、その後は所望により練り合わせ、フルイ(濾過)等の工程を通して製品とすれば良い。家庭で個人的に使用する場合は市販の塗料に本発明の該抗菌剤粒子を混合して使用することもできる。本発明の抗菌性塗料は例えば、病院内、老人ホーム、学校、レストラン等で使用すれば大腸菌や黄色ブドウ球菌等の細菌からの被害を防止でき本発明の目的が達成される。塗料としては、合成樹脂塗料(アルキド、アミノアルキド、エポキシ、フッ素、ウレタン、酢酸ビニル、アクリル酸エステル、不飽和ポリエステル、フェノール、グアナミン、ブチラール、スチレンブタジエン、スチレン、塩化ビニル、塩化ビニリデン、塩化ゴム系塗料、サビ止めペイント、粉体塗料、電気絶縁塗料)、セルロース塗料、ゴム系塗料、水溶性合成樹脂塗料(水溶性アルキド、水溶性エポキシ、水溶性ポリブタジエン、水溶性メラミン、水溶性尿素、水溶性フェノール、水溶性アクリル等)、酒精塗料、油性塗料等樹脂を使用する塗料を例示できる。 There are no particular restrictions on the method for industrially producing the antibacterial paint of the present invention, and conventionally known methods can be employed, and pigments, color formers, weathering agents, solvents, cosolvents, diluents, plasticizers, etc. are mixed. In this step, the silver and organic acid anion-containing aluminum sulfate hydroxide particle antibacterial agent of the present invention are mixed, and then kneaded as desired, and the product is obtained through a step of filtration (filtration). In the case of personal use at home, the antibacterial agent particles of the present invention can be mixed with a commercially available paint. For example, when the antibacterial paint of the present invention is used in hospitals, nursing homes, schools, restaurants, etc., damage from bacteria such as Escherichia coli and Staphylococcus aureus can be prevented and the object of the present invention is achieved. Paints include synthetic resin paints (alkyd, aminoalkyd, epoxy, fluorine, urethane, vinyl acetate, acrylic ester, unsaturated polyester, phenol, guanamine, butyral, styrene butadiene, styrene, vinyl chloride, vinylidene chloride, rubber chloride Paint, anticorrosive paint, powder paint, electrical insulating paint), cellulose paint, rubber paint, water-soluble synthetic resin paint (water-soluble alkyd, water-soluble epoxy, water-soluble polybutadiene, water-soluble melamine, water-soluble urea, water-soluble Phenols, water-soluble acrylics, etc.), alcoholic paints, oil-based paints and other paints using resins.
本発明の抗菌性コーキング材を得る方法には、特別の制約はなく例えばコーキング材としての基礎成分オルガノポリシロキサンとγアミノプロピルビス(メチルエチルケトキシアミノ)メトキシシランのようなメトキシシラン系の接着促進剤を混合しておき、次に4官能性や3官能性のシラン架橋剤及びシリカエアロジル等の増粘剤、その他必要に応じポリマーと架橋剤の反応を促進する有機スズカルボキシレートのような触媒、さらには酸化防止剤、紫外線吸収剤、可塑剤等とともに本発明の抗菌剤粒子を従来公知の方法で得る方法が例示できる。 The method for obtaining the antibacterial caulking material of the present invention is not particularly limited. For example, a basic component organopolysiloxane as a caulking material and a methoxysilane-based adhesion promoter such as γ-aminopropylbis (methylethylketoxyamino) methoxysilane. And then a tetrafunctional or trifunctional silane crosslinking agent, a thickener such as silica aerosil, and other catalysts such as organotin carboxylates that promote the reaction of the polymer with the crosslinking agent if necessary. Furthermore, a method of obtaining the antibacterial agent particles of the present invention together with an antioxidant, an ultraviolet absorber, a plasticizer and the like by a conventionally known method can be exemplified.
本発明の前記式(1)で表わされる抗菌剤は、前述したように樹脂に配合して種々の成形品として価値のある製品を提供することができる。一方、本発明の抗菌剤は、その分散性、白色性、粒形の均一性および粒子径の均一性を利用して、樹脂以外の用途にも適用することができる。
すなわち、その抗菌性を利用して、抗カビ剤、抗菌消臭剤(スプレー)、抗菌紙、農薬および化粧料にも適用することができる。本発明の抗菌剤は人体に対して安全であり且つ人体に接触しても刺激を与えないので、人間の生活する住宅内の台所、風呂場やトイレなどの製品に対して抗菌剤および抗カビ剤として利用することができる。また農薬として野菜や果物などにも直接散布することができる。さらに化粧料の中に配合しても有利に利用することができる。
As described above, the antibacterial agent represented by the formula (1) of the present invention can be blended with a resin to provide valuable products as various molded products. On the other hand, the antibacterial agent of the present invention can be applied to uses other than resins by utilizing its dispersibility, whiteness, uniformity of particle shape and uniformity of particle diameter.
That is, it can be applied to antifungal agents, antibacterial deodorants (sprays), antibacterial papers, agricultural chemicals and cosmetics by utilizing the antibacterial properties. The antibacterial agent of the present invention is safe for the human body and does not irritate even when it comes into contact with the human body. It can be used as an agent. It can also be sprayed directly on vegetables and fruits as pesticides. Furthermore, even if it mix | blends in cosmetics, it can utilize advantageously.
以下に本発明の該抗菌剤粒子からなる抗菌剤、及び該抗菌剤粒子が配合された抗菌性樹脂組成物、及び該抗菌性樹脂組成物から形成された成形品等の各物性の測定方法を示す。
銀及び有機酸アニオン含有アルミニウム硫酸塩水酸化物粒子抗菌剤の粒子性状の測定方法;
最近の微粒子の平均二次粒子径及び粒子径分布の測定は、レーザー回折散乱法が主流になっており、本発明ではこれらの測定はレーザー回折散乱法で行われた。
The antibacterial agent comprising the antibacterial agent particles of the present invention, the antibacterial resin composition in which the antibacterial agent particles are blended, and a method for measuring each physical property such as a molded article formed from the antibacterial resin composition are described below. Show.
Measuring method of particle properties of silver and organic acid anion-containing aluminum sulfate hydroxide particles antibacterial agent;
Recently, the laser diffraction scattering method has become the mainstream for measuring the average secondary particle size and particle size distribution of fine particles. In the present invention, these measurements were performed by the laser diffraction scattering method.
(1)平均二次粒子径;堀場製作所製粒度分布測定装置LA―910(レーザー回折散乱法)を用いて測定した。 (1) Average secondary particle size: Measured using a particle size distribution measuring apparatus LA-910 (laser diffraction scattering method) manufactured by Horiba.
(2)粒子径分布のシャープ度 Dr=D75/D25
堀場製作所製粒度分布測定装置LA―910を用いて測定されたレーザー回折散乱法体積基準累積粒子径分布曲線の75%値の粒子径D75(大粒子径側)を25%値の粒子径D25(微粒子径側)で除した算式で表される粒子径分布のシャープ度をDr=D75/D25として定義した。 Drの数値が小さい程粒子径分布のシャープ度が認められ粒子径均一性を意味する。
だだし、球形粒子についてはレーザー回折散乱法で測定されたD75/D25と、下記のSEM写真による粒子径分布測定方法と組み合わせて粒子径を評価した。
その場合、レーザー回折散乱法によるD75/D25の数値はSEM写真によるD75/D25の数値と約−10〜+10%の範囲で異なる程度でほぼ一致したので本発明ではレーザー回折散乱法によるD75/D25を採用した。
電子顕微鏡写真(SEM写真)による粒子径分布測定方法(球形粒子の場合);
1枚のSEM写真で観察される全ての粒子(50個〜数百個)の球形粒子をそれぞれ個別に長径と短径をノギスで1/50mmまで測定し長径と短径の平均値を求めて各球形粒子の粒子径(μmに換算)とし、それから累積粒子径のD75%とD25%に該当する粒子径を認定しDr=D75/D25を算出した。
(2) Sharpness of particle size distribution Dr = D 75 / D 25
The 75% value particle size D 75 (large particle size side) of the laser diffraction scattering method volume-based cumulative particle size distribution curve measured using a Horiba particle size distribution measuring device LA-910 is 25% value particle size D. The sharpness of the particle size distribution represented by the formula divided by 25 (fine particle size side) was defined as Dr = D 75 / D 25 . The smaller the numerical value of Dr, the more sharp the particle size distribution is recognized, which means the particle size uniformity.
However, for spherical particles, the particle size was evaluated in combination with D 75 / D 25 measured by the laser diffraction scattering method and the particle size distribution measurement method by the following SEM photograph.
In that case, the value of D 75 / D 25 by the laser diffraction scattering method and the value of D 75 / D 25 by the SEM photograph almost coincide with each other in a range of about −10 to + 10%. D 75 / D 25 was adopted.
Particle size distribution measurement method by electron micrograph (SEM photograph) (in the case of spherical particles);
Spherical particles of all particles (50 to several hundreds) observed in one SEM photograph are individually measured for the major axis and minor axis to 1/50 mm with calipers, and the average value of major axis and minor axis is obtained. The particle diameter (converted to μm) of each spherical particle was determined, and then the particle diameter corresponding to D 75 % and D 25 % of the cumulative particle diameter was recognized, and Dr = D 75 / D 25 was calculated.
(3)BET法比表面積;湯浅アイオニクス(株)製の12検体全自動表面測定装置マルチソーブ−12で測定した。 (3) BET method specific surface area: measured with a 12-sample fully automatic surface measuring device Multisorb-12 manufactured by Yuasa Ionics Co., Ltd.
(4)粒子形状;走査型電子顕微鏡(SEM写真)で観察した。
尚粒子形状としての図(写真)のと実施例、比較例の抗菌剤粒子との関係は以下のとおりである。
図1、表面が平滑である球状粒子、A1粒子
図2、表面に小粒を有する球状粒子、A20粒子
図3、表面が荒くさらには皺(球に傷や割れ)を有する球状粒子、A21粒子
図4、穴(凹凸)を有する球状粒子、A22粒子
図5、表面が平滑であり且つ直線部分を図1のものより少し多く含む球状粒子、A30粒子
図6、表面が荒く皺を有する球状粒子、A31粒子
図7、円盤状粒子粒子、B1−1粒子、
図8、一対状粒子(ハンバーガー状粒子)、C1粒子
図9、米粒状粒子、D1粒子、
図10、直方体粒子、E1粒子
図11、六角板状粒子、F1粒子
図12、8面体状粒子、G1粒子
図13、円柱状(酒樽状)粒子、H1粒子
図14、表面が荒く延伸されたような状態の凝集体粒子、V1粒子
(4) Particle shape: observed with a scanning electron microscope (SEM photograph).
The relationship between the shape (particles) of the particle shape and the antibacterial agent particles of Examples and Comparative Examples is as follows.
Fig. 1, spherical particles with a smooth surface, A1 particles Fig. 2, spherical particles with small particles on the surface, A20 particles Fig. 3, spherical particles with rough surfaces and even wrinkles (scratches and cracks on the sphere), A21 particle diagram 4, spherical particles having holes (irregularities), A22 particles FIG. 5, spherical particles having a smooth surface and a little more straight portions than those in FIG. 1, A30 particles FIG. 6, spherical particles having rough surfaces and wrinkles, A31 particle FIG. 7, disk-like particle particle, B1-1 particle,
FIG. 8, a pair of particles (hamburger particles), C1 particles, FIG. 9, rice granular particles, D1 particles,
FIG. 10, rectangular parallelepiped particle, E1 particle FIG. 11, hexagonal plate particle, F1 particle FIG. 12, octahedral particle, G1 particle FIG. 13, columnar (shu-barrel) particle, H1 particle FIG. 14, surface roughly stretched Aggregate particles in such a state, V1 particles
(5)イオン交換体形成;粉末X線回折法により銀及び有機酸アニオン含有アルミニウム硫酸塩水酸化物粒子の回折パターン及びそれ以外の回折パターンの有無を調査した。 (5) Ion exchanger formation; The presence or absence of diffraction patterns of silver sulfate and organic acid anion-containing aluminum sulfate hydroxide particles and other diffraction patterns were examined by powder X-ray diffraction.
(6)有機酸の含有量;銀及び有機酸アニオン含有アルミニウム硫酸塩水酸化物粒子を1000℃で焼成しCO2を発生させ回収し、JIS R 9101によりCO2を測定し、それに基づいて炭素の含有量を計算しそれから有機酸の含有量を求めた。
抗菌性樹脂組成物、樹脂成形品、フィルム、繊維、塗料、コーキング材等樹脂製品の測定方法;
(6) The content of the organic acid; silver and organic acid anion containing aluminum sulfate hydroxide particles were fired recovered to generate CO 2 at 1000 ° C., the CO 2 was measured by JIS R 9101, of the carbon based thereon The content was calculated and the organic acid content was determined from it.
Measuring method of resin products such as antibacterial resin composition, resin molded product, film, fiber, paint, caulking material;
(7)抗菌性試験方法
ただし下記(a)〜(e)の試験において、大腸菌はE.coli NBRC 3972 黄色ブドウ球菌は S.aureus NBRC 12732を使用した。抗菌試験の結果も示す表−7〜表−17においてcfuはcolony forming unitの略である。cfu/mlは1ml中の生菌数を表わし、その数値が小さい程抗菌性が高いことを意味している。
(a)成形板;JIS−Z 2801(2000年版)
テストピースサイズ;50mm×50mm×2mm
(b)繊維、不織布;JIS−L 1902(2002年版)
(c)塗料;塗料を鉄板サイズ50mm×50mm×2mmのテストピース(材質はJIS G 3101 SS400)の上に約0.1mmになるように塗装し上記(a)の方法で測定した。
(d)フィルム;JIS−Z 2801(2000年版)
(e)コーキング材;コーキング材を鉄板サイズ50mm×50mm×2mmのテストピース(材質はJIS G 3101 SS400)の上に約1mmになるようにコーキングし上記(a)の方法で測定した。
(7) Antibacterial test method In the following tests (a) to (e), E. coli is E. coli. E. coli NBRC 3972 Staphylococcus aureus Aureus NBRC 12732 was used. In Tables 7 to 17, which also show the results of the antibacterial test, cfu is an abbreviation for colony forming unit. cfu / ml represents the number of viable bacteria in 1 ml, and the smaller the value, the higher the antibacterial property.
(A) Molded plate; JIS-Z 2801 (2000 version)
Test piece size: 50mm x 50mm x 2mm
(B) Fiber, non-woven fabric; JIS-L 1902 (2002 edition)
(C) Paint; The paint was coated on a test piece (material is JIS G 3101 SS400) having a size of 50 mm × 50 mm × 2 mm and measured by the method (a).
(D) Film; JIS-Z 2801 (2000 version)
(E) Caulking material: The caulking material was caulked to a thickness of about 1 mm on a test piece (material is JIS G 3101 SS400) having an iron plate size of 50 mm × 50 mm × 2 mm, and measured by the method (a).
(8)透明性;厚さ2mmの板又は50μmのフィルムでヘイズ値HをTOKYO DENSYOKU CO,LTDのAUTOMATIC HAZE METER OPTICAL UNIT TC−HIIIDPで測定し下記の算式により%で表示した。 (8) Transparency: A haze value H was measured with an AUTOMATIC HAZE METER OPTICAL UNIT TC-HIIIDP of TOKYO DENSYKU CO, LTD on a 2 mm thick plate or a 50 μm film and expressed in% by the following formula.
H={h1−(h2−h1)}×100/h1 %
h1=抗菌剤未添加の樹脂成形品又はフィルムのヘイズ値
h2=抗菌剤を添加した樹脂成形品又はフィルムのヘイズ値
Hが100%に近い程抗菌剤未添加品に近い透明性を維持していることを意味している。
H = {h 1 − (h 2 −h 1 )} × 100 / h 1 %
h 1 = haze value of resin molded product or film to which no antibacterial agent is added h 2 = haze value of resin molded product or film to which an antibacterial agent is added H It means that
(9)白色性; 成形品、フィルム、繊維、不織布等のサンプルを直射日光のない北側の室内で60日間静置したものがどの程度変色したかを目視により測定した。 (9) Whiteness: The degree of discoloration of a sample such as a molded product, a film, a fiber, and a non-woven fabric, which had been allowed to stand for 60 days in a room on the north side without direct sunlight, was measured visually.
(10)水道水接触後の抗菌力維持特性;
上記記載の試験資料を、水道水1000mlの中に90℃又は70℃で120時間浸水させた後水道水で十分に水洗し,前記(7)の(a)〜(e)の方法で測定した。尚試験片の比重が1以下のものについてはステンレス鋼SUS−304で作られた金網を錘に使い水中に強制的に浸水した。水道水を90℃又は70℃に加温した理由は水道水接触後の抗菌力維持特性を短時間で見るためであり、これは常温で水道水接触後の抗菌力維持特性を試験する場合の促進試験となる。
(10) Antibacterial activity maintenance characteristics after contact with tap water;
The test material described above was immersed in 1000 ml of tap water at 90 ° C. or 70 ° C. for 120 hours, washed thoroughly with tap water, and measured by the methods (a) to (e) in (7) above. . In the case where the specific gravity of the test piece is 1 or less, a wire mesh made of stainless steel SUS-304 was used as a weight to forcibly submerge it in water. The reason for heating tap water to 90 ° C or 70 ° C is to see the antibacterial activity maintenance characteristics after contact with tap water in a short time. It will be an accelerated test.
(11)混練押出加工時フィルター通過性試験(押出機圧力の測定)
プラスチック工学研究所製の30φ2軸混練押出機(スクリュー径30mm)にフィルター(スクリーンメッシュ)を樹脂の流れ方向から見てブレーカープレートの手前に設置した。フィルターは50メッシュのものをブレーカープレート側に、80メッシュのものを中央に、100メッシュのものをホッパー側にそれぞれ1枚づつ設置した。その状態で、該機械をスクリュー回転数が170rpm,吐出量が10Kg/Hrとなるようにして2時間、及び24時間運転し、その時のフィルター手前に設置してある圧力計により圧力を測定した。
圧力はフィルターを通過できない粗大粒子がフィルターに多く目詰まりする程早く高くなりそれはフィルター通過性が悪いことを意味し、それだけフィルターを入れ替える必要が早く生じ工業的には問題である。
この試験において、圧力が200Kg/cm2以上は機械が破損寸前での運転状態であり、150Kg/cm2以上はフィルター交換しないと機械に負荷をかけ過ぎ機械運転に支障をきたす恐れがあることを意味し、100Kg/cm2になるとフィルター交換の準備が必要なことを意味し、100Kg/cm2以下は何の問題もなく運転できることを意味している。
(11) Filter passability test during kneading extrusion (measurement of extruder pressure)
A filter (screen mesh) was placed in front of the breaker plate in a 30φ biaxial kneading extruder (screw diameter 30 mm) manufactured by Plastic Engineering Laboratory, as viewed from the resin flow direction. One 50 mesh filter was installed on the breaker plate side, one 80 mesh filter in the center, and one 100 mesh filter on the hopper side. In this state, the machine was operated for 2 hours and 24 hours with a screw rotation speed of 170 rpm and a discharge amount of 10 kg / hr, and the pressure was measured with a pressure gauge installed in front of the filter at that time.
The pressure becomes so high that coarse particles that cannot pass through the filter are clogged with a large amount of the filter, which means that the filter passage is bad, and it is necessary to replace the filter so quickly that it is an industrial problem.
In this test, when the pressure is 200 kg / cm 2 or more, the machine is in an operating state immediately before breakage, and when the pressure is 150 kg / cm 2 or more, if the filter is not replaced, the machine will be overloaded and the machine operation may be hindered. This means that when it is 100 kg / cm 2 , it means that it is necessary to prepare for filter replacement, and 100 kg / cm 2 or less means that it can be operated without any problems.
機械を運転開始して24時間後の圧力が150Kg/cm2までであれば、一日に1回程度のフィルター交換で済み工業的にはかろうじて何とか意味のあることである。
尚本測定は樹脂95重量%と抗菌剤5重量%の合計100重量%になる抗菌剤配合濃度において測定したもので、表−7〜表−9に示した縦2重線より左側の抗菌剤配合量濃度とは異なる配合条件で別途実施したものである。混練押出する時のその他の条件は縦2重線より左側と同じにした。
If the pressure after 24 hours from the start of operation of the machine is up to 150 Kg / cm 2 , the filter needs to be changed about once a day, which is barely meaningful industrially.
In addition, this measurement was measured at an antibacterial agent blending concentration of 95% by weight of resin and 5% by weight of antibacterial agent, and the antibacterial agent on the left side of the vertical double line shown in Table-7 to Table-9. This is separately carried out under blending conditions different from the blending amount concentration. The other conditions for kneading extrusion were the same as those on the left side of the vertical double line.
以下先ず本発明の抗菌剤粒子の製造方法を実施例に基づいて具体的に説明する。 Hereinafter, the method for producing antibacterial agent particles of the present invention will be specifically described based on examples.
尚、以下の実施例の式に於いて式(1)のbの数値が1の場合は1が省略してある。
銀及び有機酸アニオン含有アルミニウム硫酸塩水酸化物粒子抗菌剤の製造;
In the formulas of the following examples, when the numerical value of b in formula (1) is 1, 1 is omitted.
Production of silver and organic acid anion-containing aluminum sulfate hydroxide particles antibacterial agent;
<実施例>I−1〜I−47及び<比較例>I−1〜I−9
(A,B,C,D,E,F,G,H粒子の製造)
球状粒子(A粒子)の製造;実施例I−1〜31
実施例I−1
[Ag0.1(NH4)0.9]Al3(C2O4)0.1(SO4)1.9(OH)6・0.5H2Oの製造
下記の原料を使用し、下記の合成方法によりA1粒子を得た。
使用原料 硫酸アンモニウム 264.28g=2モル
蓚酸(H2C2O4・2H2O) 38g=0.3モル
1.04mol/Lの硫酸アルミニウム×1923ml=2.0モル
9.0mol/Lのアンモニア水溶液×894.5ml=8.05モル
合成方法 264.28gの硫酸アンモニウム(NH4)2SO4を4.0Lのイオン交換水に溶解した。
38gの蓚酸(H2C2O4・2H2O)を1.0Lのイオン交換水に溶解した。
<Examples> I-1 to I-47 and <Comparative Examples> I-1 to I-9
(Manufacture of A, B, C, D, E, F, G, H particles)
Production of spherical particles (A particles) ; Examples I-1 to 31
Example I-1
Use the [Ag 0.1 (NH 4) 0.9 ] Al 3 (C 2 O 4) 0.1 (SO 4) 1.9 (OH) 6 · 0.5H 2 O of the following raw material A1 particles were obtained by the following synthesis method.
Raw material used Ammonium sulfate 264.28 g = 2 mol
Succinic acid (H 2 C 2 O 4 .2H 2 O) 38 g = 0.3 mol
1.04 mol / L aluminum sulfate × 1923 ml = 2.0 mol
9.0 mol / L aqueous ammonia solution × 894.5 ml = 8.05 mol Synthesis method 264.28 g of ammonium sulfate (NH 4 ) 2 SO 4 was dissolved in 4.0 L of ion-exchanged water.
38 g of oxalic acid (H 2 C 2 O 4 .2H 2 O) was dissolved in 1.0 L of ion exchange water.
攪拌下の該硫酸アンモニウム(NH4)2SO4水溶液に該蓚酸水溶液及び上記硫酸アルミニウムAl2(SO4)3水溶液を添加し混合酸性水溶液を作った。
該混合酸性水溶液は良く攪拌しながら、50℃以下に加熱し(析出した結晶物を溶解させるため)、その後上記のアンモニア水溶液を894.5ml を25分かけて該混合酸性水溶液に添加しアンモニウム型の有機酸アニオン含有アルミニウム硫酸塩水酸化物粒子沈殿物のスラリーを作った。
そのスラリーを更に100℃で1時間水熱処理した。
処理後の沈殿物を濾過・水洗・乾燥・粉砕処理し粉末サンプルを得た。
そのサンプル100gをとって0.025mol/Lの硫酸銀水溶液600mlに懸濁させ攪拌して、30℃でアンモニウムイオンと銀イオンとのイオン交換処理を遮光下で8時間行った。
イオン交換後のサンプルを濾過・水洗・乾燥(105℃×6時間)・粉砕した。
これらの処理過程によって、A1粒子を得た。結果を表−1に示す。
The oxalic acid aqueous solution and the aluminum sulfate Al 2 (SO 4 ) 3 aqueous solution were added to the ammonium sulfate (NH 4 ) 2 SO 4 aqueous solution under stirring to prepare a mixed acidic aqueous solution.
The mixed acidic aqueous solution is heated to 50 ° C. or lower with good stirring (to dissolve the precipitated crystal), and then 894.5 ml of the above aqueous ammonia solution is added to the mixed acidic aqueous solution over 25 minutes to form an ammonium type. A slurry of precipitates of aluminum sulfate hydroxide particles containing organic acid anions was prepared.
The slurry was further hydrothermally treated at 100 ° C. for 1 hour.
The treated precipitate was filtered, washed with water, dried and pulverized to obtain a powder sample.
100 g of the sample was taken and suspended in 600 ml of a 0.025 mol / L silver sulfate aqueous solution and stirred, and ion exchange treatment between ammonium ions and silver ions was performed at 30 ° C. for 8 hours under light shielding.
The sample after ion exchange was filtered, washed, dried (105 ° C. × 6 hours), and pulverized.
A1 particles were obtained by these treatment processes. The results are shown in Table-1.
実施例I−2
[Ag0.1(NH4)0.9]Al3(C2O4)0.1(SO4)1.9(OH)6の製造)
実施例I−1で得たA1粒子を150℃で2時間乾燥し、A2粒子を得た。
Example I-2
[Ag 0.1 (NH 4) 0.9 ] Al 3 (C 2 O 4) 0.1 (SO 4) 1.9 (OH) 6 prepared in)
The A1 particles obtained in Example I-1 were dried at 150 ° C. for 2 hours to obtain A2 particles.
実施例I−3
[Ag0.1(NH4)0.9]Al3(C2O4)0.0001(SO4)1.9999(OH)6の合成
実施例I−1において、蓚酸の使用量を0.0005モル(0.063g)に変更したことが実施例I−1と異なるのみで、その他の処理過程は実施例I−1に準じて行い、さらに150℃で2時間乾燥しA3粒子を得た。
Example I-3
Synthesis of [Ag 0.1 (NH 4 ) 0.9 ] Al 3 (C 2 O 4 ) 0.0001 (SO 4 ) 1.9999 (OH) 6 In Example I-1, the amount of oxalic acid used was 0. .0005 mol (0.063 g) is different from Example I-1 except that the other processing steps are carried out according to Example I-1 and further dried at 150 ° C. for 2 hours to obtain A3 particles. It was.
実施例I−4
[Ag0.1(NH4)0.9]Al3(C2O4)0.01(SO4)1.999(OH)6の製造
実施例I−1において、蓚酸の使用量を0.05モル(6.3g)に変更したことが実施例I−1と異なるのみで、その他の処理過程は実施例I−1に準じて行い、さらに150℃で2時間乾燥しA4粒子を得た。
Example I-4
Production of [Ag 0.1 (NH 4 ) 0.9 ] Al 3 (C 2 O 4 ) 0.01 (SO 4 ) 1.999 (OH) 6 In Example I-1, the amount of oxalic acid used was 0. .05 mol (6.3 g) was different from Example I-1 except that the other treatment steps were carried out according to Example I-1, and further dried at 150 ° C. for 2 hours to obtain A4 particles. It was.
実施例I−5
[Ag0.1(NH4)0.9]Al3(C2O4)0.4(SO4)1.7(OH)5.8の製造
実施例I−1において、蓚酸の使用量を1.5モル(189.1g)に変更したことが実施例I−1と異なるのみで、その他の処理過程は実施例I−1に準じて行い、さらに150℃で2時間乾燥しA5粒子を得た。
Example I-5
[Ag 0.1 (NH 4 ) 0.9 ] Al 3 (C 2 O 4 ) 0.4 (SO 4 ) 1.7 (OH) Production of 5.8 Amount of oxalic acid used in Example I-1 Was changed to 1.5 mol (189.1 g) only from Example I-1, and the other processing steps were performed according to Example I-1, and further dried at 150 ° C. for 2 hours to obtain A5 particles. Got.
実施例I−6
[Ag0.1(NH4)0.9]Al2.7(C2O4)0.1(SO4)1.9(OH)5.1の製造
実施例I−1において、硫酸アルミニウムの使用量を1731ml(1.8モル)に変更したことが実施例I−1と異なるのみで、その他の処理過程は実施例I−1に準じて行い、さらに150℃で2時間乾燥しA6粒子を得た。
Example I-6
[Ag 0.1 (NH 4 ) 0.9 ] Al 2.7 (C 2 O 4 ) 0.1 (SO 4 ) Preparation of 1.9 (OH) 5.1 In Example I-1, aluminum sulfate The amount of A was changed to 1731 ml (1.8 mol), only different from Example I-1, and the other processing steps were carried out in accordance with Example I-1, and further dried at 150 ° C. for 2 hours to obtain A6. Particles were obtained.
実施例I−7 [Ag0.1(NH4)0.9]Al3.3(C2O4)0.1(SO4)1.9(OH)6.9の製造
実施例I−1において、硫酸アルミニウムの使用量を2115ml(2.2モル)に変更したことが実施例I−1と異なるのみで、その他の処理過程は実施例I−1に準じて行い、さらに150℃で2時間乾燥しA7粒子を得た。
Example I-7 Preparation of [Ag 0.1 (NH 4 ) 0.9 ] Al 3.3 (C 2 O 4 ) 0.1 (SO 4 ) 1.9 (OH) 6.9 Example I- In Example 1, the amount of aluminum sulfate used was changed to 2115 ml (2.2 mol), only different from Example I-1, and the other treatment steps were carried out in accordance with Example I-1, and at 150 ° C. A7 particles were obtained by drying for 2 hours.
実施例I−8
[Ag0.1(NH4)0.9]Al3(C2O4)0.1(SO4)2.4(OH)5の製造)
実施例I−1において、硫酸アンモニウム(NH4)2SO4の使用量を2.3モル(303.9g)に変更したことが実施例I−1と異なるのみで、その他の処理過程は実施例I−1に準じて行い、さらに150℃で2時間乾燥しA8粒子を得た。
Example I-8
[Ag 0.1 (NH 4) 0.9 ] Al 3 (C 2 O 4) 0.1 (SO 4) 2.4 (OH) preparation of 5)
Example I-1 differs from Example I-1 only in that the amount of ammonium sulfate (NH 4 ) 2 SO 4 used was changed to 2.3 mol (303.9 g). This was carried out according to I-1, and further dried at 150 ° C. for 2 hours to obtain A8 particles.
実施例I−9
[Ag0.1(NH4)1.10]1.2Al3(C2O4)0.1(SO4)1.9(OH)6.02の製造
実施例I−1において、アンモニア水溶液添加後の攪拌時間を2時間に変更したこと、添加したアンモニア水溶液の量を1093ml(9.84モル)に変更したこと、及び水熱処理時間を30分に変更したことが実施例I−1と異なるのみで、その他の処理過程は実施例I−1に準じて行い、さらに150℃で2時間乾燥しA9粒子を得た。
Example I-9
[Ag 0.1 (NH 4 ) 1.10 ] 1.2 Preparation of Al 3 (C 2 O 4 ) 0.1 (SO 4 ) 1.9 (OH) 6.02 In Example I-1, ammonia was used. Example I-1 was that the stirring time after addition of the aqueous solution was changed to 2 hours, the amount of the added aqueous ammonia solution was changed to 1093 ml (9.84 mol), and the hydrothermal treatment time was changed to 30 minutes. The other processing steps were performed according to Example I-1, and further dried at 150 ° C. for 2 hours to obtain A9 particles.
実施例I−10
[Ag0.1(NH4)0.9]Al3(C2O4)0.1(SO4)1.9(OH)6の製造
実施例I−1において、100℃での水熱処理時間を45分に変更したことが実施例I−1と異なるのみで、その他の処理過程は実施例I−1に準じて行い、さらに150℃で2時間乾燥しA10粒子を得た。
Example I-10
Production of [Ag 0.1 (NH 4 ) 0.9 ] Al 3 (C 2 O 4 ) 0.1 (SO 4 ) 1.9 (OH) 6 In Example I-1, hydrothermal treatment at 100 ° C. Only the difference from Example I-1 was that the time was changed to 45 minutes, and the other treatment steps were performed according to Example I-1, and further dried at 150 ° C. for 2 hours to obtain A10 particles.
実施例I−11
[Ag0.1(NH4)0.76]0.86Al3(C2O4)0.1(SO4)1.9(OH)5.68の製造
実施例I−1において、アンモニア水溶液添加の時間を40分に変更したこと、及び添加したアンモニア水溶液の量を755ml(6.8モル)に変更したことが実施例I−1と異なるのみで、その他の処理過程は実施例I−1に準じて行い、さらに150℃で2時間乾燥しA11粒子を得た。
Example I-11
[Ag 0.1 (NH 4 ) 0.76 ] 0.86 Preparation of Al 3 (C 2 O 4 ) 0.1 (SO 4 ) 1.9 (OH) 5.68 In Example I-1, ammonia was used. The only difference from Example I-1 was that the time for adding the aqueous solution was changed to 40 minutes and that the amount of the added aqueous ammonia solution was changed to 755 ml (6.8 mol). −1, and further dried at 150 ° C. for 2 hours to obtain A11 particles.
実施例I−12
[Ag0.3(NH4)0.7]Al3(C2O4)0.1(SO4)1.9(OH)6の合成
実施例I−1において、イオン交換用硫酸銀水溶液の量を1800mlに変更したことが実施例I−1と異なるのみで、その他の処理過程は実施例I−1に準じて行い、さらに150℃で2時間乾燥しA12粒子を得た。
Example I-12
Synthesis of [Ag 0.3 (NH 4 ) 0.7 ] Al 3 (C 2 O 4 ) 0.1 (SO 4 ) 1.9 (OH) 6 In Example I-1, a silver sulfate aqueous solution for ion exchange Only the difference from Example I-1 was that the amount of was changed to 1800 ml, and the other treatment steps were performed according to Example I-1, and further dried at 150 ° C. for 2 hours to obtain A12 particles.
実施例I−13
[Ag0.001(NH4)0.999]Al3(C2O4)0.1(SO4)1.9(OH)6の製造
実施例I−1において、イオン交換用硫酸銀水溶液を硝酸銀水溶液に変更し、その濃度を0.001mol/L,液量を300mlに変更し処理温度を15℃に変更したことが実施例I−1と異なるのみで、その他の処理過程は実施例I−1に準じて行い、さらに150℃で2時間乾燥しA13粒子を得た。
Example I-13
Production of [Ag 0.001 (NH 4 ) 0.999 ] Al 3 (C 2 O 4 ) 0.1 (SO 4 ) 1.9 (OH) 6 In Example I-1, a silver sulfate aqueous solution for ion exchange Was changed to silver nitrate aqueous solution, the concentration was changed to 0.001 mol / L, the liquid volume was changed to 300 ml, and the processing temperature was changed to 15 ° C., except for Example I-1. This was carried out according to I-1, and further dried at 150 ° C. for 2 hours to obtain A13 particles.
実施例I−14
[Ag0.00001(NH4)0.99999]Al3(C2O4)0.1(SO4)1.9(OH)6 の製造
実施例I−13において、イオン交換用硝酸銀水溶液の濃度を0.00001mol/Lに変更したことが実施例I−13と異なるのみで、その他の処理過程は実施例I−1に準じて行い、さらに150℃で2時間乾燥しA14粒子を得た。
Example I-14
[Ag 0.00001 (NH 4 ) 0.99999 ] Production of Al 3 (C 2 O 4 ) 0.1 (SO 4 ) 1.9 (OH) 6 In Example I-13, the silver nitrate aqueous solution for ion exchange was prepared. Only the difference from Example I-13 was that the concentration was changed to 0.00001 mol / L, and the other processing steps were performed in accordance with Example I-1, and further dried at 150 ° C. for 2 hours to obtain A14 particles. .
実施例I−15
[Ag0.1(NH4)0.9]Al3(C2O4)0.1(SO4)1.9(OH)6・0.5H2Oの製造
実施例I−1で得たサンプル50gをステアリン酸ソーダ1.5g含む80℃水溶液に懸濁させ、30分間攪拌し表面処理を行った後脱水、水洗、乾燥(105℃×6時間)、粉砕しA15粒子を得た。
Example I-15
Obtained in [Ag 0.1 (NH 4) 0.9 ] Al 3 (C 2 O 4) 0.1 (SO 4) 1.9 (OH) 6 · 0.5H 2 O prepared in Example I-1 of 50 g of the sample was suspended in an 80 ° C. aqueous solution containing 1.5 g of sodium stearate, stirred for 30 minutes for surface treatment, dehydrated, washed with water, dried (105 ° C. × 6 hours), and pulverized to obtain A15 particles.
実施例I−16
[Ag0.1(NH4)0.9]Al3(C2O4)0.1(SO4)1.9(OH)6・2H2Oの製造
実施例I−1で得たサンプルを30℃で相対湿度75%のNaCl雰囲気において、25時間の吸湿処理を行い、A16粒子を得た。
Example I-16
[Ag 0.1 (NH 4) 0.9 ] samples obtained in Al 3 (C 2 O 4) 0.1 (SO 4) 1.9 (OH) 6 · 2H 2 O prepared in Example I-1 of Was subjected to a moisture absorption treatment for 25 hours in a NaCl atmosphere at 30 ° C. and a relative humidity of 75% to obtain A16 particles.
実施例I−17 実施例1の400℃ 1時間焼成物
実施例I−1で得たサンプルを400℃1時間窒素雰囲気下で焼成処理を行い、A17粒子を得た。
粉末X線回折法によると全て[Ag0.1(NH4)0.9]Al3(C2O4)0.1(SO4)1.9(OH)6であった。形状は球状であった。
A17粒子10.00gをイオン交換水100mlに入れ20℃で30分攪拌し、それを脱水・水洗120℃で16時間乾燥した後の重量減少はなく10.00gであった。
Example I-17 Baked product of Example 1 at 400 ° C. for 1 hour The sample obtained in Example I-1 was fired in a nitrogen atmosphere at 400 ° C. for 1 hour to obtain A17 particles.
According to the powder X-ray diffraction method, they were all [Ag 0.1 (NH 4 ) 0.9 ] Al 3 (C 2 O 4 ) 0.1 (SO 4 ) 1.9 (OH) 6 . The shape was spherical.
A0.001 g of A17 particles was placed in 100 ml of ion-exchanged water and stirred at 20 ° C. for 30 minutes. After dehydration, washing and drying at 120 ° C. for 16 hours, there was no weight loss and the weight was 10.00 g.
実施例I−18 実施例1の500℃ 1時間焼成物
実施例I−1で得たサンプルを500℃1時間窒素雰囲気下で焼成処理を行い、A18粒子を得た。
粉末X線回折法によると全て[Ag0.1(NH4)0.9]Al3(C2O4)0.1(SO4)1.9(OH)6であった。形状は球状であった。
A18粒子10.00gをイオン交換水100mlに入れ20℃で30分攪拌し、それを脱水・水洗し120℃で16時間乾燥した後の重量減少はなく10.00gであった。
Example I-18 Baked product of Example 1 at 500 ° C. for 1 hour The sample obtained in Example I-1 was baked in a nitrogen atmosphere at 500 ° C. for 1 hour to obtain A18 particles.
According to the powder X-ray diffraction method, they were all [Ag 0.1 (NH 4 ) 0.9 ] Al 3 (C 2 O 4 ) 0.1 (SO 4 ) 1.9 (OH) 6 . The shape was spherical.
After 10.00 g of A18 particles were placed in 100 ml of ion-exchanged water and stirred at 20 ° C. for 30 minutes, it was dehydrated, washed with water and dried at 120 ° C. for 16 hours.
実施例I−19
[Ag0.001K0.999]Al3(C2O4)0.1(SO4)1.9(OH)6の製造
下記の原料を使用し、下記の方法によりA19粒子を得た。
使用原料 硫酸カリウム 2モル 348g
蓚酸(H2C2O4・2H2O)0.3モル 38g
1.04mol/Lの硫酸アルミニウム水溶液 2.0モル 1923ml
7.5mol/L KOH水溶液 8.4モル 1120ml
合成方法 348gの硫酸カリウム(K2SO4)は4.0Lのイオン交換水に溶解した。
38gの蓚酸(H2C2O4・2H2O) は1.0Lのイオン交換水に溶解した。
攪拌下の該硫酸カリウム(K2SO4)水溶液に該蓚酸水溶液及び上記硫酸アルミニウムAl2(SO4)3水溶液を添加し混合酸性水溶液を作った。
該混合酸性水溶液を良く攪拌して、そして、上記水酸化カリウム水溶液を1120mlを25分かけて該混合酸性水性液に添加しカリウム型の有機酸アニオン含有アルミニウム硫酸塩水酸化物粒子沈殿物スラリーを作った。。
そのスラリーを更に1時間攪拌後、オートクレーブによって、140℃2時間の水熱処理を行った。
処理後の沈殿物を濾過・水洗・乾燥処理し粉末サンプルを得た。
その100gサンプルをとって0.001mol/Lの硝酸銀水溶液300mlに懸濁し攪拌して、カリウムと銀とのイオン交換処理を25℃で1時間遮光下で行った。
イオン交換後のサンプルを濾過・水洗・乾燥(105℃×6時間)・粉砕した。
これらの処理過程を経てさらに200℃で2時間乾燥し、A19粒子を得た。
Example I-19
[Ag 0.001 K 0.999 ] Production of Al 3 (C 2 O 4 ) 0.1 (SO 4 ) 1.9 (OH) 6 A19 particles were obtained by the following method using the following raw materials. .
Raw material used Potassium sulfate 2mol 348g
Succinic acid (H 2 C 2 O 4 .2H 2 O) 0.3 mol 38 g
1.04 mol / L aluminum sulfate aqueous solution 2.0 mol 1923 ml
7.5 mol / L KOH aqueous solution 8.4 mol 1120 ml
Synthesis Method 348 g of potassium sulfate (K 2 SO 4 ) was dissolved in 4.0 L of ion exchange water.
38 g of oxalic acid (H 2 C 2 O 4 .2H 2 O) was dissolved in 1.0 L of ion exchange water.
The oxalic acid aqueous solution and the aluminum sulfate Al 2 (SO 4 ) 3 aqueous solution were added to the potassium sulfate (K 2 SO 4 ) aqueous solution under stirring to prepare a mixed acidic aqueous solution.
The mixed acidic aqueous solution is stirred well, and 1120 ml of the above potassium hydroxide aqueous solution is added to the mixed acidic aqueous solution over 25 minutes to form a potassium-type organic acid anion-containing aluminum sulfate hydroxide particle precipitate slurry. It was. .
The slurry was further stirred for 1 hour, and then hydrothermally treated at 140 ° C. for 2 hours by an autoclave.
The treated precipitate was filtered, washed with water and dried to obtain a powder sample.
A 100 g sample was taken and suspended in 300 ml of a 0.001 mol / L silver nitrate aqueous solution and stirred, and an ion exchange treatment between potassium and silver was performed at 25 ° C. for 1 hour in the dark.
The sample after ion exchange was filtered, washed, dried (105 ° C. × 6 hours), and pulverized.
After passing through these treatment steps, it was further dried at 200 ° C. for 2 hours to obtain A19 particles.
実施例I−20
[Ag0.001K1.179]1.18Al3(SO4)2.26(NO3)0.04(C2O4)0.07(OH)5.48の製造
実施例I−19において、使用した硫酸カリウムを硝酸カリウムKNO3に変更したこと及びが実施例I−19と異なるのみで、その他の処理過程は実施例I−19に準じて行い、A20粒子を得た。
Example I-20
[Ag 0.001 K 1.179 ] 1.18 Preparation of Al 3 (SO 4 ) 2.26 (NO 3 ) 0.04 (C 2 O 4 ) 0.07 (OH) 5.48 Example I- 19 except that the potassium sulfate used was changed to potassium nitrate KNO 3 and that was different from Example I-19, and other treatment processes were performed according to Example I-19 to obtain A20 particles.
実施例I−21
[Ag0.001K1.179]1.18Al3(SO4)2.26(NO3)0.04(C2O4)0.07(OH)5.48の製造
実施例I−19において、K2SO4の代りにKNO3に変更したこと及び水熱処理条件を160°×2時間に変更した実施例I−19と異なるのみで、その他の処理過程は実施例I−19に準じて行い、A21粒子を得た。
Example I-21
[Ag 0.001 K 1.179 ] 1.18 Preparation of Al 3 (SO 4 ) 2.26 (NO 3 ) 0.04 (C 2 O 4 ) 0.07 (OH) 5.48 Example I- 19 is different from Example I-19 in which KNO 3 is changed to KNO 3 instead of K 2 SO 4 and the hydrothermal treatment condition is changed to 160 ° × 2 hours, and other processing steps are different from those in Example I-19. According to the same manner, A21 particles were obtained.
実施例I−22
[Ag0.001K0.999]Al3(C2O4)0.1(SO4)1.9(OH)6 の製造
実施例I−19において、水熱処理の温度を140℃から170℃に変更したことが実施例I−19と異なるのみで、その他の処理過程は実施例I−19に準じて行い、A22粒子を得た。
Example I-22
[Ag 0.001 K 0.999 ] Production of Al 3 (C 2 O 4 ) 0.1 (SO 4 ) 1.9 (OH) 6 In Example I-19, the hydrothermal treatment temperature was changed from 140 ° C to 170 ° C. Only the difference from Example I-19 was that the temperature was changed to ° C., and the other treatment steps were performed according to Example I-19 to obtain A22 particles.
実施例I−23 [Ag0.1Na0.9]Al3(C6 H5O7)0.067(SO4)1.9(OH)6の製造
下記の原料を使用し、下記の方法によりA23粒子を得た。
使用原料 硫酸ナトリウム 2モル 284.06g
クエン酸(C6H8O7・H2O) 0.3モル 63g
1.04mol/Lの硫酸アルミニウム水溶液 2.0モル 1923ml
3.36mol/L NaOH水溶液 8.2モル 2440.5ml
合成方法 284.06gの硫酸ナトリウム(Na2SO4)を4.0Lのイオン交換水に溶解した。
63gのクエン酸は1.0Lのイオン交換水に溶解した。
攪拌下の該硫酸ナトリウム(Na2SO4)水溶液に該クエン酸水溶液及び上記硫酸アルミニウムAl2(SO4)3水溶液を添加し混合酸性水溶液を作った。
攪拌下の該混合酸性水溶液に上記の水酸化ナトリウム水溶液2440.5mlを 25分かけて添加しナトリウム型の銀及び有機酸アニオン含有アルミニウム硫酸塩水酸化物粒子沈殿物スラリーを作った。
そのスラリーを更に10時間攪拌継続後、オートクレーブによって、170℃2時間の水熱処理を行った。水熱処理後の沈殿物を濾過・水洗・乾燥・粉砕処理し粉末サンプルを得た。
その他の処理過程は実施例I−1に準じて行い150℃で2時間乾燥し、A23粒子を得た。
Example I-23 Preparation of [Ag 0.1 Na 0.9 ] Al 3 (C 6 H 5 O 7 ) 0.067 (SO 4 ) 1.9 (OH) 6 A23 particles were obtained by this method.
Raw material used Sodium sulfate 2 mol 284.06 g
Citric acid (C 6 H 8 O 7 · H 2 O) 0.3 mol 63g
1.04 mol / L aluminum sulfate aqueous solution 2.0 mol 1923 ml
3.36 mol / L NaOH aqueous solution 8.2 mol 2440.5 ml
Synthesis Method 284.06 g of sodium sulfate (Na 2 SO 4 ) was dissolved in 4.0 L of ion exchange water.
63 g of citric acid was dissolved in 1.0 L of ion exchange water.
The citric acid aqueous solution and the aluminum sulfate Al 2 (SO 4 ) 3 aqueous solution were added to the sodium sulfate (Na 2 SO 4 ) aqueous solution under stirring to make a mixed acidic aqueous solution.
The sodium hydroxide aqueous solution 2440.5 ml was added to the mixed acidic aqueous solution under stirring over 25 minutes to form a sodium-type silver and organic acid anion-containing aluminum sulfate hydroxide particle precipitate slurry.
The slurry was further stirred for 10 hours, and then hydrothermally treated at 170 ° C. for 2 hours by an autoclave. The precipitate after the hydrothermal treatment was filtered, washed, dried and pulverized to obtain a powder sample.
Other treatment steps were performed according to Example I-1, and dried at 150 ° C. for 2 hours to obtain A23 particles.
実施例I−24
[Ag0.1Na0.9]Al3(C6 H5O7)0.067(SO4)1.9(OH)6 の製造
実施例I−23において、水酸化ナトリウムの添加時間は40分に、及び水酸化ナトリウム添加後の攪拌時間は1時間に変更したことが実施例I−23と異なるのみで、その他の処理過程は実施例I−23に準じて行い、さらに150℃で2時間乾燥しA24粒子を得た。
Example I-24
[Ag 0.1 Na 0.9 ] Al 3 (C 6 H 5 O 7 ) 0.067 (SO 4 ) Preparation of 1.9 (OH) 6 In Example I-23, the addition time of sodium hydroxide was 40 minutes and the stirring time after addition of sodium hydroxide was changed to 1 hour, except that it was different from Example I-23. The other treatment steps were carried out in accordance with Example I-23, and further at 150 ° C. It dried for 2 hours and obtained A24 particle | grains.
実施例I−25
[Ag0.1Na0.9]Al3(C4 H4O6)0.1(SO4)1.9(OH)6 の製造
下記の原料を使用し、下記の方法によりA25粒子を得た。
使用原料 硫酸ナトリウム 2モル 284.06g
酒石酸(C4H6O6) 0.3モル 45g
1.04mol/Lの硫酸アルミニウム水溶液 2.0モル 1923ml
3.36mol/L NaOH水溶液 8.2モル 2440.5ml
合成方法 284.06gの硫酸ナトリウム(Na2SO4)は4.0Lのイオン交換水に溶解した。
45gの酒石酸(C4H6O6) は1.0Lのイオン交換水に溶解した。
攪拌下の該硫酸カリウム(K2SO4)水溶液に該蓚酸水溶液及び上記硫酸アルミニウムAl2(SO4)3水溶液を添加し混合酸性水溶液を作った。
該混合酸性水溶液を良く攪拌して、そして、上記水酸化ナトリウム水溶液244.05mlを25分かけて該混合酸性水溶液に添加しナトリウム型の銀及び有機酸アニオン含有アルミニウム硫酸塩水酸化物粒子沈殿物スラリーを作った。
そのスラリーを更に5時間攪拌後、オートクレーブによって、170℃2時間の水熱処理を行った。
水熱処理後の懸濁液を濾過・水洗・乾燥・粉砕処理した。
その他の処理過程は実施例I−1に準じて行い150℃で2時間乾燥し、A25粒子を作った。
Example I-25
Production of [Ag 0.1 Na 0.9 ] Al 3 (C 4 H 4 O 6 ) 0.1 (SO 4 ) 1.9 (OH) 6 Using the following raw materials, A25 particles were prepared by the following method. Obtained.
Raw material used Sodium sulfate 2 mol 284.06 g
Tartaric acid (C 4 H 6 O 6 ) 0.3 mol 45 g
1.04 mol / L aluminum sulfate aqueous solution 2.0 mol 1923 ml
3.36 mol / L NaOH aqueous solution 8.2 mol 2440.5 ml
Synthesis Method 284.06 g of sodium sulfate (Na 2 SO 4 ) was dissolved in 4.0 L of ion exchange water.
45 g of tartaric acid (C 4 H 6 O 6 ) was dissolved in 1.0 L of ion exchange water.
The oxalic acid aqueous solution and the aluminum sulfate Al 2 (SO 4 ) 3 aqueous solution were added to the potassium sulfate (K 2 SO 4 ) aqueous solution under stirring to prepare a mixed acidic aqueous solution.
The mixed acidic aqueous solution is stirred well, and the above sodium hydroxide aqueous solution 244.05 ml is added to the mixed acidic aqueous solution over 25 minutes to add sodium-type silver and organic acid anion-containing aluminum sulfate hydroxide particle precipitate slurry. made.
The slurry was further stirred for 5 hours, and then hydrothermally treated at 170 ° C. for 2 hours by an autoclave.
The suspension after hydrothermal treatment was filtered, washed with water, dried and pulverized.
The other treatment steps were performed according to Example I-1, and dried at 150 ° C. for 2 hours to produce A25 particles.
実施例I−26
[Ag0.1Na0.9]Al3(C4 H4O6)0.1(SO4)1.9(OH)6 の製造
実施例I−24において、水酸化ナトリウムの量は8モル(2381ml)に変更し、添加の時間も40分に変更したことが実施例I−25と異なるのみで、その他の処理過程は実施例I−25に準じて行い、A26粒子をった。
Example I-26
[Ag 0.1 Na 0.9 ] Al 3 (C 4 H 4 O 6 ) 0.1 (SO 4 ) Preparation of 1.9 (OH) 6 In Example I-24, the amount of sodium hydroxide was 8 The difference was that the molar amount (2381 ml) was changed, and the addition time was changed to 40 minutes, which was different from Example I-25. The other processing steps were performed according to Example I-25, and A26 particles were obtained.
実施例I−27
[Ag0.1(NH4)0.9] Al2.94Zn0.01 Ti0.01(C2O4)0.1(SO4)1.9(OH)6・0.5H2Oの製造
実施例I−1の混合酸性溶液(ただし該混合酸性溶液の該硫酸アルミニウム水溶液使用量は1885mlに減らした)に硫酸亜鉛2.5g,及び硫酸チタン{Ti2(SO4)3}2.5gを含む硫酸溶液を追加添加したこと及び銀イオン交換処理温度を80℃に処理時間を16時間に変更したことが実施例I−1と異なるだけでその他は実施例I−1に準じて行いA27粒子を得た。
Example I-27
[Ag 0.1 (NH 4) 0.9 ] Al 2.94 Zn 0.01 Ti 0.01 (C 2 O 4) 0.1 (SO 4) 1.9 (OH) 6 · 0.5H 2 Production of O 2.5 g of zinc sulfate and titanium sulfate {Ti 2 (SO 4 ) 3 } in the mixed acidic solution of Example I-1 (however, the amount of the aluminum sulfate aqueous solution used in the mixed acidic solution was reduced to 1885 ml) The addition of a sulfuric acid solution containing 2.5 g, and the silver ion exchange treatment temperature was changed to 80 ° C. and the treatment time was changed to 16 hours, except that Example I-1 was the same as in Example I-1. A27 particles were obtained.
実施例I−28
[Ag0.1(NH4)0.9 ]Al2.25Zn0.5 Ti0.25(C2O4)0.1(SO4)1.9(OH)6・0.5H2O の製造
実施例I−1の混合酸性溶液(ただし該混合酸性溶液の該硫酸アルミニウム水溶液使用量は1442mlに減らした)に硫酸亜鉛125g,及び硫酸チタン{Ti2(SO4)3}63gを含む硫酸溶液を追加添加したこと及び銀イオン交換処理温度を80℃に処理時間を30時間に変更したことが実施例I−1と異なるだけでその他は実施例I−1に準じて行いA28粒子を得た。
Example I-28
[Ag 0.1 (NH 4) 0.9 ] Al 2.25 Zn 0.5 Ti 0.25 (C 2 O 4) 0.1 (SO 4) 1.9 (OH) 6 · 0.5H 2 Production of O 2 The mixed acidic solution of Example I-1 (however, the amount of the aluminum sulfate aqueous solution used in the mixed acidic solution was reduced to 1442 ml) contains 125 g of zinc sulfate and 63 g of titanium sulfate {Ti 2 (SO 4 ) 3 }. The addition of a sulfuric acid solution and the change of the silver ion exchange treatment temperature to 80 ° C. and the treatment time to 30 hours were different from Example I-1, and the others were carried out in accordance with Example I-1, and the A28 particles were changed. Obtained.
実施例I−29
[Ag0.1(NH4)0.9]Al3(C2O4)0.1(SO4)1.15(PO4)0.5(OH)6 の製造
リン酸アンモニウム74.5gを水500mlに溶解させた水溶液に、銀とイオン交換する直前(水熱処理後)のA−1粒子371gを添加して100℃で1時間攪拌しPO4 3−を該粒子に組み込んだ。その後の処理過程は実施例I−1に準じて行いさらに150℃で2時間乾燥し銀及び有機酸アニオン含有アルミニウム硫酸塩リン酸塩水酸化物A29粒子を得た。
尚この例において、リン酸ナトリウムの代わりに炭酸ナトリウム、硝酸ナトリウム、珪酸ナトリウム、ホウ酸ナトリウムに置き換えて使用したことだけが異なるように試験したがCO3 2−、NO3 −、SiO4 2−、BO3 3−それぞれの無機酸イオンを含むA−29粒子同様の粒子性状を有する銀及び有機酸アニオン含有アルミニウム無機酸塩水酸化物粒子が得られた。
Example I-29
[Ag 0.1 (NH 4 ) 0.9 ] Al 3 (C 2 O 4 ) 0.1 (SO 4 ) 1.15 (PO 4 ) 0.5 (OH) 6 Production of Ammonium Phosphate 74.5 g 371 g of A-1 particles just before ion exchange with silver (after hydrothermal treatment) were added to an aqueous solution in which 500 ml of water was dissolved, and stirred at 100 ° C. for 1 hour to incorporate PO 4 3− into the particles. The subsequent treatment process was carried out in accordance with Example I-1, and further dried at 150 ° C. for 2 hours to obtain silver and organic acid anion-containing aluminum sulfate phosphate hydroxide A29 particles.
Note in this example, sodium carbonate instead of sodium phosphate, sodium nitrate, sodium silicate, only that was used to replace the sodium borate was tested differently but CO 3 2-, NO 3 -, SiO 4 2- Silver and organic acid anion-containing aluminum inorganic acid salt hydroxide particles having particle properties similar to those of A-29 particles containing inorganic acid ions of BO 3 3- were obtained.
実施例I−30
[Ag0.1Na0.9]Al3(SO4)1.9(C4H4O5)0.1(OH)6の製造
実施例I−25において、使用した有機酸を酒石酸からDL−林檎酸に変更したことが実施例I−25と異なるのみで、その他の処理過程は実施例I−25に準じて行いA30粒子を得た。
諸特性を表1に示す。このときの粒子形状は図5に示す球状であった。
Example I-30
Preparation of [Ag 0.1 Na 0.9 ] Al 3 (SO 4 ) 1.9 (C 4 H 4 O 5 ) 0.1 (OH) 6 In Example I-25, the organic acid used was tartaric acid. The change to DL-apple succinic acid was only different from Example I-25, and other treatment steps were performed according to Example I-25 to obtain A30 particles.
Various characteristics are shown in Table 1. The particle shape at this time was spherical as shown in FIG.
実施例I−31
[Ag0.1Na0.9]Al3(SO4)1.9[C6H2(OH)3COO]0.067(OH)6の製造
実施例I−23において、使用した有機酸をクエン酸から没食子酸[C6H4(OH)3COOH]に変更したことが実施例I−23と異なるのみで、その他の処理過程は実施例I−23に準じて行いA31粒子を得た。諸特性を表1に示す。
このときの粒子形状は図6に示す球状であった。
Example I-31
[Ag 0.1 Na 0.9 ] Al 3 (SO 4 ) 1.9 Production of [C 6 H 2 (OH) 3 COO] 0.067 (OH) 6 Organic acid used in Example I-23 Was changed from citric acid to gallic acid [C 6 H 4 (OH) 3 COOH], only different from Example I-23, and other treatment steps were performed according to Example I-23 to obtain A31 particles. It was. Various characteristics are shown in Table 1.
The particle shape at this time was spherical as shown in FIG.
比較例I−1
[Ag0.1(NH4)0.9]Al3(SO4)2(OH)6 の製造
実施例I−1において、蓚酸を使用しなかったことが実施例I−1と異なるのみで、その他の処理過程は実施例I−1に準じて行い、さらに150℃で2時間乾燥しV1粒子を得た。
Comparative Example I-1
Production of [Ag 0.1 (NH 4 ) 0.9 ] Al 3 (SO 4 ) 2 (OH) 6 In Example I-1, the fact that no succinic acid was used was different from Example I-1. The other treatment steps were performed according to Example I-1, and further dried at 150 ° C. for 2 hours to obtain V1 particles.
比較例I−2
NH4Al3(C2O4)0.1(SO4)1.9(OH)6の製造
実施例I−1において、銀溶液でイオン交換を行わなかったことが実施例I−1と異なるのみで、その他の処理過程は実施例I−1に準じて行い、さらに150℃で2時間乾燥しV2粒子を得た。
Comparative Example I-2
Production of NH 4 Al 3 (C 2 O 4 ) 0.1 (SO 4 ) 1.9 (OH) 6 In Example I-1, the fact that ion exchange was not carried out with a silver solution and Example I-1 Other than that, the other processing steps were carried out according to Example I-1 and further dried at 150 ° C. for 2 hours to obtain V2 particles.
比較例I−3
KAl3(C2O4)0.1(SO4)1.9(OH)6の製造
実施例I−19において、銀溶液でイオン交換を行わなかったことが実施例I−19と異なるのみで、その他の処理過程は実施例I−19に準じて行い、V3粒子を得た。
Comparative Example I-3
Production of KAl 3 (C 2 O 4 ) 0.1 (SO 4 ) 1.9 (OH) 6 In Example I-19, the difference from Example I-19 was that ion exchange was not performed with a silver solution. The other treatment steps were performed according to Example I-19 to obtain V3 particles.
円盤状粒子(碁石状粒子;B粒子)の製造;(実施例I−32〜34)
実施例I−32−1
[Ag0.1Na0.9 ]Al3(C2O4)0.1(SO4)1.9(OH)6 の製造
下記の原料を使用し、下記の方法によりB1粒子を得た。
使用原料 硫酸ナトリウム 2モル 284.06g
蓚酸(H2C2O4・2H2O) 0.3モル 38g
1.04mol/Lの硫酸アルミニウム水溶液 2.0モル 1923ml
3.36mol/L NaOH水溶液 8.2モル 2440.5ml
合成方法 284.06gの硫酸ナトリウム(Na2SO4)は4.0Lのイオン交換水に溶解した。
38gの蓚酸は1.0Lのイオン交換水に溶解した。
攪拌下の該硫酸ナトリウム(Na2SO4)水溶液に該蓚酸水溶液及び該硫酸アルミニウムAl2(SO4)3水溶液を添加し混合酸性水溶液を作った。
Production of discoid particles (meteorite particles; B particles); (Examples I-32 to 34)
Example I-3-1
Production of [Ag 0.1 Na 0.9 ] Al 3 (C 2 O 4 ) 0.1 (SO 4 ) 1.9 (OH) 6 B1 particles were obtained by the following method using the following raw materials. .
Raw material used Sodium sulfate 2 mol 284.06 g
Succinic acid (H 2 C 2 O 4 .2H 2 O) 0.3 mol 38 g
1.04 mol / L aluminum sulfate aqueous solution 2.0 mol 1923 ml
3.36 mol / L NaOH aqueous solution 8.2 mol 2440.5 ml
Synthesis Method 284.06 g of sodium sulfate (Na 2 SO 4 ) was dissolved in 4.0 L of ion exchange water.
38 g of oxalic acid was dissolved in 1.0 L of ion exchange water.
The oxalic acid aqueous solution and the aluminum sulfate Al 2 (SO 4 ) 3 aqueous solution were added to the sodium sulfate (Na 2 SO 4 ) aqueous solution under stirring to form a mixed acidic aqueous solution.
該混合酸性水溶液を良く攪拌して、そして、該水酸化ナトリウム水溶液2440.5mlを20分かけて該混合酸性水溶液に添加しナトリウム型の銀及び有機酸アニオン含有アルミニウム硫酸塩水酸化物粒子沈殿物スラリーを作った。
そのスラリーを更に5時間攪拌後、オートクレーブによって、170℃2時間の水熱処理を行った。処理後の沈殿物を濾過・水洗・乾燥処理した。そして、そのサンプル100gをとって0.025mol/Lの硫酸銀水溶液600mlに懸濁し攪拌してナトリウムと銀のイオン交換処理を25℃で5時間行った。交換後のサンプルにポリアクリルアミド系の高分子凝集剤(住友化学製 スミフロック FN−20)を0.02g添加し10分間攪拌後、濾過・水洗・乾燥(105℃×6時間)・粉砕した。これらの処理過程を経てさらに200℃で2時間乾燥しB1−1粒子を得た。
The mixed acidic aqueous solution is thoroughly stirred, and 2440.5 ml of the sodium hydroxide aqueous solution is added to the mixed acidic aqueous solution over 20 minutes to add sodium-type silver and organic acid anion-containing aluminum sulfate hydroxide particle precipitate slurry. made.
The slurry was further stirred for 5 hours, and then hydrothermally treated at 170 ° C. for 2 hours by an autoclave. The treated precipitate was filtered, washed with water and dried. Then, 100 g of the sample was taken, suspended in 600 ml of a 0.025 mol / L silver sulfate aqueous solution, stirred, and subjected to sodium-silver ion exchange treatment at 25 ° C. for 5 hours. 0.02 g of a polyacrylamide polymer flocculant (Sumitomo Chemical's Sumifloc FN-20) was added to the sample after the replacement, and the mixture was stirred for 10 minutes, filtered, washed with water, dried (105 ° C. × 6 hours), and pulverized. After these treatment steps, the particles were further dried at 200 ° C. for 2 hours to obtain B1-1 particles.
実施例I−32−2
80℃のイオン交換水1,000mlに2.6gの硫酸亜鉛7水和物(和光純薬工業試薬1級)と2.2gの硫酸アンモニウム(和光純薬工業試薬1級)を入れ混液を作った。その混液の中にB1−1粒子95gを添加して6時間攪拌した後脱水・水洗・乾燥して亜鉛及びアンモニウムで処理されたB1−2粒子を作った。該粒子のZnの含有量は0.1%、NH4の含有率は0.4%BET法比表面積は60m2/gであったが、その他の粒子性状はB1−1粒子と同じであった。
次にA20粒子、C1粒子、D1粒子、E1粒子、F1粒子、G1粒子、H1粒子それぞれについても該処理同様の処理を行い処理物を得た。
処理物のZn含有量は0.1%、NH4の含有量は0.4%でありどれもほぼ同じであった。
処理物のBET法比表面積はどれも処理前の約6倍に増大していたが、平均2次粒子径、粒子径均一性粒子の形状、その他の粒子形状は処理前の粒子性状とほぼ同じであった。
処理物を樹脂に添加した時の樹脂組成物の白色性は処理前の物を添加した場合により一層改善されていた。
Example I-3-2
A mixture of 2.6 g of zinc sulfate heptahydrate (Wako Pure Chemical Industries grade 1) and 2.2 g of ammonium sulfate (Wako Pure Chemical Industries grade 1) in 1,000 ml of ion-exchanged water at 80 ° C. was prepared. . 95 g of B1-1 particles were added to the mixed solution and stirred for 6 hours, followed by dehydration, washing with water and drying to produce B1-2 particles treated with zinc and ammonium. The Zn content of the particles was 0.1%, the NH 4 content was 0.4%, and the BET specific surface area was 60 m 2 / g, but the other particle properties were the same as the B1-1 particles. It was.
Next, A20 particles, C1 particles, D1 particles, E1 particles, F1 particles, G1 particles, and H1 particles were treated in the same manner as above to obtain a treated product.
The Zn content of the treated product was 0.1%, and the NH 4 content was 0.4%, which were almost the same.
Although the BET specific surface area of the treated product increased by about 6 times before the treatment, the average secondary particle size, the shape of the uniform particle size, and other particle shapes were almost the same as the particle properties before the treatment. Met.
The whiteness of the resin composition when the treated product was added to the resin was further improved when the product before the treatment was added.
実施例I−33
[Ag0.1Na0.9 ]Al3(C2O4)0.1(SO4)1.9(OH)6 の製造
実施例I−32において、使用した硫酸ナトリウムを0.5モル/L硫酸ナトリウムを含む反応母液4.0L使用に変更したこと、又、水酸化ナトリウムの添加時間40分に変更したこと、添加後の撹拌時間1時間に変更したことが実施例I−32と異なり、その他の処理過程は実施例I−32に準じて行い、B2粒子を得た。
Example I-33
[Ag 0.1 Na 0.9 ] Al 3 (C 2 O 4 ) 0.1 (SO 4 ) Preparation of 1.9 (OH) 6 In Example I-32, 0.5 mol of sodium sulfate was used. Example I-32 that the reaction mother liquor containing / L sodium sulfate was changed to 4.0 L, the addition time of sodium hydroxide was changed to 40 minutes, and the stirring time after addition was changed to 1 hour. Differently, other processing steps were performed according to Example I-32 to obtain B2 particles.
実施例I−34 [Ag0.001Na0.999] Al3(C2O4)0.1(SO4)1.9(OH)6 の製造
実施例I−32において、硫酸銀水溶液の濃度は0.00025モル/Lに変更したことが実施例I−32と異なるのみで、その他の処理過程は実施例I−32に準じて行い、B3粒子を得た。
Example I-34 [Ag 0.001 Na 0.999 ] Preparation of Al 3 (C 2 O 4 ) 0.1 (SO 4 ) 1.9 (OH) 6 In Example I-32, an aqueous silver sulfate solution was prepared. The concentration was changed to 0.00025 mol / L, only different from Example I-32. The other processing steps were performed in accordance with Example I-32 to obtain B3 particles.
比較例I−4−(1)
NaAl3(C2O4)0.1(SO4)1.9(OH)6 の製造
実施例I−32において、銀イオンとのイオン交換処理を行わないことが実施例I−32と異なるのみで、その他の処理過程は実施例I−32に準じて行い、W1粒子を得た。
Comparative Example I-4- (1)
Production of NaAl 3 (C 2 O 4 ) 0.1 (SO 4 ) 1.9 (OH) 6 Example I-32 differs from Example I-32 in that no ion exchange treatment with silver ions is performed. The other treatment steps were performed according to Example I-32 to obtain W1 particles.
比較例I−4−(2)
[Ag0.1Na0.9 ]Al3(SO4)2(OH)6 の製造
実施例I−32において、蓚酸を使用しなかったことが実施例I−32と異なるのみで、その他の処理過程は実施例I−32に準じて行い、W2粒子を得た。
Comparative Example I-4- (2)
Production of [Ag 0.1 Na 0.9 ] Al 3 (SO 4 ) 2 (OH) 6 Example I-32 was different from Example I-32 except that succinic acid was not used. The treatment process was performed according to Example I-32 to obtain W2 particles.
一対状(ハンバーガー状)粒子(C粒子)の製造;実施例I−35〜37
実施例I−35 [Ag0.1Na0.9] Al3(C2O4)0.1(SO4)1.9(OH)6 の製造
実施例I−32において、オートクレーブの処理温度は180℃に、処理時間10時間に変更したことが実施例I−32と異なるのみで、その他の処理過程は実施例I−32に準じて行い、C1粒子を得た。
Production of paired (hamburger-like) particles (C particles); Examples I-35 to 37
In Example I-35 [Ag 0.1 Na 0.9 ] Al 3 (C 2 O 4) 0.1 (SO 4) 1.9 (OH) 6 prepared in Example I-32 of the autoclave treatment temperature Was changed to 180 ° C. and a treatment time of 10 hours, only different from Example I-32. The other treatment steps were carried out according to Example I-32 to obtain C1 particles.
実施例 I−36
[Ag0.1Na0.9] Al3(C2O4)0.1(SO4)1.9(OH)6 の製造
実施例I−32において、オートクレーブの処理温度は180℃、処理時間10時間に変更したこと、使用した硫酸ナトリウムは0.5モル/L硫酸ナトリウムを含む反応母液4.0Lを使用したこと、又、水酸化ナトリウムの添加時間は40分に変更したことが実施例I−32と異なるのみで、その他の処理過程は実施例I−32に準じて行い、C2粒子を得た。
Example I-36
[Ag 0.1 Na 0.9 ] Al 3 (C 2 O 4 ) 0.1 (SO 4 ) Production of 1.9 (OH) 6 In Example I-32, the autoclave treatment temperature was 180 ° C. The time was changed to 10 hours, the sodium sulfate used was 4.0 L of reaction mother liquor containing 0.5 mol / L sodium sulfate, and the addition time of sodium hydroxide was changed to 40 minutes. Other than the process of Example I-32, the other processing steps were performed according to Example I-32 to obtain C2 particles.
実施例 I−37
[Ag0.001Na0.999] Al3(C2O4)0.1(SO4)1.9(OH)6 の製造
実施例I−32において、硫酸銀溶液の濃度は0.00025モル/Lに変更したこと、又、オートクレーブの処理温度180℃、処理時間10時間に変更したことが実施例I−32と異なるのみで、その他の処理過程は実施例I−32に準じて行い、C3粒子を得た。
Example I-37
[Ag 0.001 Na 0.999 ] Preparation of Al 3 (C 2 O 4 ) 0.1 (SO 4 ) 1.9 (OH) 6 In Example I-32, the concentration of the silver sulfate solution was 0.00025 The change to mol / L, and the change to autoclave treatment temperature of 180 ° C. and treatment time of 10 hours are only different from Example I-32. C3 particles were obtained.
比較例I−5−(1) NaAl3(C2O4)0.1(SO4)1.9(OH)6
実施例I−35において、銀イオンとのイオン交換処理を行わないことが実施例I−35と異なるのみで、その他の処理過程は実施例I−35に準じて行い、X1粒子を得た。
Comparative Example I-5- (1) NaAl 3 (C 2 O 4 ) 0.1 (SO 4 ) 1.9 (OH) 6
Example I-35 is different from Example I-35 in that the ion exchange treatment with silver ions is not performed, and the other processing steps are performed in accordance with Example I-35 to obtain X1 particles.
比較例I−5−(2)
[Ag0.1Na0.9] Al3(SO4)2(OH)6 の製造
実施例I−35において、蓚酸を使用しなかったことが実施例I−35と異なるのみで、その他の処理過程は実施例I−35に準じて行い、X2粒子を得た。
Comparative Example I-5- (2)
[Ag 0.1 Na 0.9 ] Preparation of Al 3 (SO 4 ) 2 (OH) 6 In Example I-35, oxalic acid was not used except that it was different from Example I-35. The treatment process was performed according to Example I-35 to obtain X2 particles.
米粒状粒子(D粒子)の製造;実施例I−38〜40
実施例I−38
[Ag0.1Na0.9]Al3(C2H4O6)0.1(SO4)1.9(OH)6の製造
実施例I−23において、クエン酸の代りに酒石酸に変更したことが実施例I−23と異なるのみで、その他の処理過程は実施例I−23に準じて行い、さらに150℃で2時間乾燥しD1粒子を得た。
Production of Rice Granular Particles (D Particles); Examples I-38-40
Example I-38
[Ag 0.1 Na 0.9 ] Al 3 (C 2 H 4 O 6 ) 0.1 (SO 4 ) Preparation of 1.9 (OH) 6 In Example I-23, tartaric acid was used instead of citric acid. The modification was only different from Example I-23, and the other treatment steps were performed according to Example I-23, and further dried at 150 ° C. for 2 hours to obtain D1 particles.
実施例I−39
[Ag0.1Na0.9]Al3(C2H4O6)0.1(SO4)1.9(OH)6の製造
実施例I−23において、クエン酸の代りに酒石酸に変更したこと、又、NaOH水溶液の添加時間35分に変更したことが実施例I−23と異なるのみで、その他の処理過程は実施例I−23に準じて行い、さらに150℃で2時間乾燥しD2粒子を得た。
Example I-39
[Ag 0.1 Na 0.9 ] Al 3 (C 2 H 4 O 6 ) 0.1 (SO 4 ) Preparation of 1.9 (OH) 6 In Example I-23, tartaric acid was used instead of citric acid. The change was made, and the addition time of the NaOH aqueous solution was changed to 35 minutes, only that it was different from Example I-23. The other treatment steps were performed in accordance with Example I-23, and further dried at 150 ° C. for 2 hours. D2 particles were obtained.
実施例I−40
[Ag0.001Na0.999]Al3(C2O4)0.1(SO4)1.9(OH)6 の製造
実施例I−23において、クエン酸の代りに酒石酸に変更したこと、又、銀イオンの濃度を0.00025モル/Lに変更したが実施例I−23と異なるのみで、その他の処理過程は実施例I−23に準じて行い、さらに150℃で2時間乾燥しD3粒子を得た。
Example I-40
Preparation of [Ag 0.001 Na 0.999 ] Al 3 (C 2 O 4 ) 0.1 (SO 4 ) 1.9 (OH) 6 In Example I-23, tartaric acid was used instead of citric acid. In addition, although the silver ion concentration was changed to 0.00025 mol / L, it was different from Example I-23, and the other processing steps were performed according to Example I-23, and further at 150 ° C. for 2 hours. D3 particles were obtained by drying.
比較例I−6−(1)
NaAl3(C2H4O6)0.1(SO4)1.9(OH)6
実施例I−38において、銀イオンとの交換を行わないことに変更したことが実施例I−38と異なるのみで、その他の処理過程は実施例I−38に準じて行い、Y1粒子を得た。
Comparative Example I-6- (1)
NaAl 3 (C 2 H 4 O 6 ) 0.1 (SO 4 ) 1.9 (OH) 6
Example I-38 is different from Example I-38 in that the exchange with silver ions is not performed, and other processing steps are performed in accordance with Example I-38 to obtain Y1 particles. It was.
比較例I−6−(2)
[Ag0.1Na0.9]Al3(SO4)2(OH)6 の製造
実施例I−38において、酒石酸を使用しなかったことが実施例I−38と異なるのみで、その他の合成処理過程は実施例I−38に準じて行い、さらに200℃で2時間乾燥しY2粒子を得た。
Comparative Example I-6- (2)
Production of [Ag 0.1 Na 0.9 ] Al 3 (SO 4 ) 2 (OH) 6 In Example I-38, tartaric acid was not used, only that it was different from Example I-38. The synthesis process was performed according to Example I-38, and further dried at 200 ° C. for 2 hours to obtain Y2 particles.
直方体状粒子(E粒子)の製造;実施例I−41〜44
実施例I−41
[Ag0.1(H3O)0.9 ]Al3(C2O4)0.1(SO4)1.9(OH)6 の製造
下記の原料を使用し、下記の方法によりE1粒子を得た。
使用原料 1.04mol/Lの硫酸アルミニウム 2.0モル 1923ml
水酸化アルミニウムAl(OH)3 2.0モル 156.02g
(水酸化アルミニウム;協和化学工業(株)製乾燥水酸化アルミニウムゲルS−100:無定形)
蓚酸(H2C2O4・2H2O) 0.25モル 31.52g
合成方法 上記硫酸アルミニウム水溶液中を撹拌しながら、上記蓚酸を添加し、さらに攪拌しながら上記水酸化アルミニウムAl(OH)3を添加し水素型の有機酸アニオン含有アルミニウム硫酸塩水酸化物粒子沈殿物スラリーを作った。
該スラリーにイオン交換水を加え該スラリーが7.0Lになるように希釈して、更に室温で15時間攪拌後、オートクレーブによって、170℃5時間の水熱処理を行った。
処理後の溶液を濾過・水洗・乾燥・粉砕処理しサンプルを得た。
その他の処理過程は実施例I−1に準じて行いさらに150℃で2時間乾燥し、E1粒子を得た。
Production of rectangular parallelepiped particles (E particles); Examples I-41 to 44
Example I-41
[Ag 0.1 (H 3 O) 0.9 ] Al 3 (C 2 O 4 ) 0.1 (SO 4 ) 1.9 (OH) 6 Production of E1 The following raw materials were used and E1 was prepared by the following method. Particles were obtained.
Raw materials used 1.04 mol / L aluminum sulfate 2.0 mol 1923 ml
Aluminum hydroxide Al (OH) 3 2.0 mol 156.02 g
(Aluminum hydroxide; dry aluminum hydroxide gel S-100 manufactured by Kyowa Chemical Industry Co., Ltd .: amorphous)
Succinic acid (H 2 C 2 O 4 .2H 2 O) 0.25 mol 31.52 g
Synthetic method While stirring in the aqueous solution of aluminum sulfate, the oxalic acid is added, and further, the aluminum hydroxide Al (OH) 3 is added with stirring to form a hydrogen-type organic acid anion-containing aluminum sulfate hydroxide particle precipitate slurry. made.
Ion exchange water was added to the slurry to dilute the slurry to 7.0 L, and the mixture was further stirred at room temperature for 15 hours, followed by hydrothermal treatment at 170 ° C. for 5 hours by an autoclave.
The treated solution was filtered, washed with water, dried and pulverized to obtain a sample.
Other treatment steps were performed according to Example I-1, and further dried at 150 ° C. for 2 hours to obtain E1 particles.
実施例I−42
[Ag0.1(H3O)0.9 ]Al3(C2O4)0.1(SO4)1.9(OH)6 の製造
実施例I−41において、オートクレーブ処理前の撹拌時間は30分に変更したこと、又オートクレーブ処理温度150℃、処理時間2時間に変更したことが、実施例I−41と異なり、その他の処理過程は実施例I−41に準じて行い、E2粒子を得た。
Example I-42
[Ag 0.1 (H 3 O) 0.9 ] Al 3 (C 2 O 4 ) 0.1 (SO 4 ) Preparation of 1.9 (OH) 6 In Example I-41, stirring before autoclaving Unlike Example I-41, the time was changed to 30 minutes, and the autoclave treatment temperature was 150 ° C. and the treatment time was changed to 2 hours. The other treatment steps were performed according to Example I-41, and E2 Particles were obtained.
実施例I−43
[Ag0.001(H3O)0.999 ]Al3(C2O4)0.1(SO4)1.9(OH)6
実施例I−41において、交換用銀イオン濃度は0.00025モル/Lに変更したことが、実施例I−41と異なるのみで、その他の処理過程は実施例I−41に準じて行い、E3粒子を得た。
Example I-43
[Ag 0.001 (H 3 O) 0.999 ] Al 3 (C 2 O 4 ) 0.1 (SO 4 ) 1.9 (OH) 6
In Example I-41, the silver ion concentration for exchange was changed to 0.00025 mol / L, except that Example I-41 was different, and the other processing steps were performed according to Example I-41. E3 particles were obtained.
実施例I−44
[Ag0.1(H3O)0.9 ]Al3(C2O4)0.1(SO4)1.9(OH)6 の製造
実施例I−41において、オートクレーブ処理前の攪拌時間を2時間に変更したことが、実施例I−41と異なるのみで、その他の処理過程は実施例I−41に準じて行い、E4粒子を得た。
Example I-44
[Ag 0.1 (H 3 O) 0.9 ] Al 3 (C 2 O 4 ) 0.1 (SO 4 ) Preparation of 1.9 (OH) 6 In Example I-41, stirring before autoclaving The change in time to 2 hours was only different from Example I-41, and the other processing steps were performed according to Example I-41 to obtain E4 particles.
比較例I−7−(1)
(H3O)Al3(C2O4)0.1(SO4)1.9(OH)6 の製造
実施例I−41において、銀イオン交換処理を行わないことが、実施例I−41と異なるのみで、その他の処理過程は実施例I−41に準じて行い、Z1粒子を得た。
Comparative Example I-7- (1)
Production of (H 3 O) Al 3 (C 2 O 4 ) 0.1 (SO 4 ) 1.9 (OH) 6 In Example I-41, the silver ion exchange treatment is not performed. Other than 41, the other treatment process was performed according to Example I-41 to obtain Z1 particles.
比較例I−7−(2)
[Ag0.1(H3O)0.9 ]Al3(SO4)2(OH)6 の製造
実施例I−41において、蓚酸を使用しなかったことが実施例I−41と異なるのみで、その他の処理過程は実施例I−41に準じて行い、Z2粒子を得た。
Comparative Example I-7- (2)
Production of [Ag 0.1 (H 3 O) 0.9 ] Al 3 (SO 4 ) 2 (OH) 6 Example I-41 was different from Example I-41 in that no succinic acid was used. The other treatment steps were performed according to Example I-41 to obtain Z2 particles.
比較例I−9
比較例I−9のR1粒子は平均2次粒子径1.0μm、Dr=4.5、BET法比表面積4m2/g、銀含有量3%である銀担持リン酸ジルコニウムであるが、R1粒子の粒子性状は表―5に示す。
Comparative Example I-9
The R1 particles of Comparative Example I-9 are silver-supported zirconium phosphates having an average secondary particle diameter of 1.0 μm, Dr = 4.5, a BET specific surface area of 4 m 2 / g, and a silver content of 3%. The particle properties of the particles are shown in Table-5.
六角板状粒子(F粒子)の製造;実施例I−45
実施例I−45
[Ag0.1Na0.9]Al3(SO4)1.9(C2O4)0.1 (OH)6の製造
硫酸アルミニウム2モルと硫酸ナトリウム2モルを6000mlの純水に溶解させ、その中に蓚酸31.52g(0.25モル)を入れた。攪拌中の前記混合液に水酸化ナトリウムを8.8モル(352g)含む水溶液1800mlを添加し、さらに室温で30分攪拌したのち、180℃で20時間の水熱処理を行った後、常温まで冷却し濾過水洗し、95℃で15時間乾燥処理して有機酸アニオン含有アルミニウム硫酸塩水酸化物粒子を得た。
その後の処理過程は実施例I−1に準じて行いさらに150℃で2時間乾燥しF1粒子を得た。
諸特性を表6に示す。
このときの粒子形状は図11に示す六角板状であった。
Production of hexagonal plate-like particles (F particles); Example I-45
Example I-45
Preparation of [Ag 0.1 Na 0.9 ] Al 3 (SO 4 ) 1.9 (C 2 O 4 ) 0.1 (OH) 6 2 mol of aluminum sulfate and 2 mol of sodium sulfate were dissolved in 6000 ml of pure water. And 31.52 g (0.25 mol) of succinic acid was placed therein. 1800 ml of an aqueous solution containing 8.8 mol (352 g) of sodium hydroxide was added to the mixed solution under stirring, and further stirred at room temperature for 30 minutes, then hydrothermally treated at 180 ° C. for 20 hours, and then cooled to room temperature. The solution was washed with filtered water and dried at 95 ° C. for 15 hours to obtain organic acid anion-containing aluminum sulfate hydroxide particles.
The subsequent treatment process was performed according to Example I-1, and further dried at 150 ° C. for 2 hours to obtain F1 particles.
Various characteristics are shown in Table 6.
The particle shape at this time was a hexagonal plate shape shown in FIG.
8面体状粒子(G粒子)の製造;実施例I−46
実施例I−46
[Ag0.1Na0.9]Al3(SO4)1.9[CH3CH(OH)COO]0.067(OH)6の製造
実施例I−23において、使用した有機酸をクエン酸からL−乳酸[CH3CH(OH)COOH]に変更したことが実施例I−23と異なるのみで、その他の処理過程は実施例I−23に準じて行いG1粒子を得た。諸特性を表6に示す。
このときの粒子形状は図12に示す八面体状であった。
Production of octahedral particles (G particles); Example I-46
Example I-46
[Ag 0.1 Na 0.9 ] Al 3 (SO 4 ) 1.9 Preparation of [CH 3 CH (OH) COO] 0.067 (OH) 6 In Example I-23, the organic acid used was citrated. The only difference from Example I-23 was that the acid was changed to L-lactic acid [CH 3 CH (OH) COOH], and the other treatment steps were performed according to Example I-23 to obtain G1 particles. Various characteristics are shown in Table 6.
The particle shape at this time was octahedral as shown in FIG.
円柱状粒子(酒樽状粒子;H粒子)の製造;実施例I−47
実施例I−47
[Ag0.1Na0.9]Al3(SO4)1.9[HOCH2CH(OH)COO]0.067(OH)6の製造
実施例I−23において、使用した有機酸をクエン酸からDL−グリセリン酸[HOCH2CH(OH)COOH]に変更したことが実施例I−23と異なるのみで、その他の処理過程は実施例I−23に準じて行いH1粒子を得た。諸特性を表6に示す。
このときの粒子形状は図13に示す円柱状(酒樽状粒子)であった。
Production of cylindrical particles (barrel-like particles; H particles); Example I-47
Example I-47
[Ag 0.1 Na 0.9 ] Al 3 (SO 4 ) 1.9 Preparation of [HOCH 2 CH (OH) COO] 0.067 (OH) 6 In Example I-23, the organic acid used was citrated. Only the difference from the acid to DL-glyceric acid [HOCH 2 CH (OH) COOH] was different from Example I-23, and the other treatment steps were performed according to Example I-23 to obtain H1 particles. Various characteristics are shown in Table 6.
The particle shape at this time was a columnar shape (sake barrel-like particle) shown in FIG.
尚前記の実施例IのA1〜A31、B1〜B3、C1〜C3,D1〜D3,E1〜E4、F1,G1,H1の各粒子は高純度の原料(不純物含有量Pb,Cd、As,Baは全て0.1ppm以下、Feは10ppm以下、Mn,Cu,Cr,Niは1ppm以下に精製されたもの)を使用し、且つ設備面では耐腐食性の前記の材質で構成された装置を使用し合成した。
そのため不純物含有量は天然の明礬石とは異なりPb,Cd、As,Baは全て0.1ppm以下、Feは10ppm以下、Mn,Cu,Cr,Niは1ppm以下,Clは100ppm以下であった。
尚不純物含有量は原子吸光法、又はICP−AES法(Inductively Coupled Plasma −Atomic Emission Spectroscopy)、又は蛍光X線法で測定した。
次に本発明の抗菌剤を樹脂に配合した場合の抗菌性樹脂組成物及び抗菌性樹脂製品の製造方法を実施例に基づいて具体的に説明する。尚配合剤の配合量は樹脂100重量部に対するものである。
蛍光増白剤は2,5−チオフェンジイル(5−tert−ブチル−1,3−ベンゾヘキサゾール)はそれぞれの表に示してある量を添加した。
In addition, each of the particles A1 to A31, B1 to B3, C1 to C3, D1 to D3, E1 to E4, F1, G1 and H1 of Example I is a high-purity raw material (impurity content Pb, Cd, As, All of Ba is 0.1 ppm or less, Fe is 10 ppm or less, and Mn, Cu, Cr, and Ni are refined to 1 ppm or less), and the equipment is made of the above-mentioned corrosion-resistant material. Used and synthesized.
Therefore, unlike natural alunite, the impurity content was 0.1 ppm or less for Pb, Cd, As, and Ba, 10 ppm or less for Fe, 1 ppm or less for Mn, Cu, Cr, and Ni, and 100 ppm or less for Cl.
The impurity content was measured by an atomic absorption method, an ICP-AES method (Inductively Coupled Plasma-Atomic Emission Spectroscopy), or a fluorescent X-ray method.
Next, the antibacterial resin composition and the method for producing the antibacterial resin product when the antibacterial agent of the present invention is blended with a resin will be specifically described based on examples. The compounding amount of the compounding agent is based on 100 parts by weight of the resin.
As the optical brightener, 2,5-thiophenediyl (5-tert-butyl-1,3-benzohexazole) was added in an amount shown in each table.
ポリプロピレン成形品;
実施例II−1〜32及び比較例II−1〜4
実施例II−1は透明射出成形用グレードポリプロピレン100重量部、表−1記載のA1粒子0.06重量部、蛍光増白剤は2,5−チオフェンジイル(5−tert−ブチル−1,3−ベンゾヘキサゾール)表−1に示す添加量}を予め混合しておき、それを2軸混練押出機を使用し230℃で混練して混和ペレットを得それを230℃で2mmに射出成形して前記各試験用のテストピースを作成し抗菌性(成形直後及び耐水道水接触環境後抗菌力維持特性)、透明性、白色性を前記の樹脂製品の測定方法(7)〜(10)に従って測定した。その結果を表−7の縦2重線より左側に示す。
混練押出加工時フィルター通過性試験(押出機圧力)の試験は上記(11)の方法で行った。
その結果を表−7の縦2重線より右側に示す。
実施例II−2〜32の試験においては実施例II−1で使用した使用抗菌剤粒子及び配合量を表−7に示すように一部変更したが、それ以外は実施例II−1同様にテストピースを作成し各試験を実施した。
その結果を表−7に示す。
Polypropylene molded products;
Examples II-1 to 32 and Comparative Examples II-1 to II-4
Example II-1 is 100 parts by weight of transparent injection molding grade polypropylene, 0.06 parts by weight of A1 particles described in Table 1, and the optical brightener is 2,5-thiophenediyl (5-tert-butyl-1,3 -Benzohexazole) The addition amount shown in Table-1} was previously mixed, and kneaded at 230 ° C. using a twin-screw kneading extruder to obtain a mixed pellet, which was injection-molded to 2 mm at 230 ° C. Test pieces for each test are prepared and antibacterial properties (immediately after molding and antibacterial activity maintaining properties after contact with tap water), transparency, and whiteness are determined according to the measurement methods (7) to (10) of the resin products. It was measured. The results are shown on the left side of the vertical double line in Table-7.
The test of filter passability test (extruder pressure) during kneading extrusion was performed by the above method (11).
The results are shown on the right side of the vertical double line in Table-7.
In the tests of Examples II-2 to 32, the used antibacterial agent particles and the blending amounts used in Example II-1 were partially changed as shown in Table 7, but other than that, the same as in Example II-1 A test piece was prepared and each test was conducted.
The results are shown in Table-7.
比較例II−1は有機酸が含まれていない銀含有アルミニウム硫酸塩水酸化物粒子でしかもDrの幅(粒度分布幅)が大きいV1,W2,X2,Y2,Z2粒子であるところ又は銀担持リン酸ジルコニウムであるR1粒子であるところが、比較例II−2の試験は抗菌剤無添加であるところが、比較例II−3は銀を含まないアルミニウム硫酸塩水酸化物粒子V2であるところが、比較例II−4も銀を含まないアルミニウム硫酸塩水酸化物粒子V3粒子であるところが、実施例II−1と異なり、抗菌剤配合量については一部の抗菌剤が表−1に示すように異なるのみで、その他の条件は実施例II−1同様にテストピースを作成し同じ測定を行った。
その結果を表−7に示す。
Comparative Example II-1 is a silver-containing aluminum sulfate hydroxide particle containing no organic acid, and V1, W2, X2, Y2, Z2 particles having a large Dr width (particle size distribution width) or silver-supporting phosphorus. Whereas the R1 particles are zirconium acid, the test of Comparative Example II-2 is where no antibacterial agent is added, whereas Comparative Example II-3 is the aluminum sulfate hydroxide particles V2 that do not contain silver, but Comparative Example II. -4 is also aluminum sulfate hydroxide particles V3 particles that do not contain silver, but unlike Example II-1, only some antibacterial agents differ as shown in Table 1 for the antibacterial compounding amount. For other conditions, test pieces were prepared and the same measurements were performed as in Example II-1.
The results are shown in Table-7.
実施例においては、成形直後の抗菌性、水道水接触環境後抗菌力維持特性、透明性、色、混練押出加工時フィルター通過性において優れた特性を有することが確認されたが、一方比較例においてはそれらの特性の中で少なくとも1つ以上の項目に問題があった。
又本実験においては、銀及び有機酸アニオン含有アルミニウム硫酸塩水酸化物粒子抗菌剤の平均二次粒子径が微粒子である程抗菌性と透明性が高くなる、BET法比表面積については高いものほど程抗菌性が高くなる、Drの幅(粒度分布幅)は小さく粒子径が均一で有機酸を一定範囲で含んでいるものは抗菌性が高くなる傾向が認められた。
一方比較例について見てみると、比較例II−1において有機酸が含まれていない銀含有アルミニウム硫酸塩水酸化物粒子でしかもDrの幅(粒度分布幅)が大きいV1,W2,X2,Y2,Z2粒子を使用した場合、前記の有機酸が含まれていないことの特徴が現われ抗菌性が不十分で、混練押出加工時フィルター通過性は機械の運転が困難なまで運転直後から悪くなり、また透明性も若干低下していた。
In the examples, it was confirmed that the antibacterial property immediately after molding, the antibacterial activity maintaining property after contact with tap water, transparency, color, and excellent filter passability during kneading extrusion processing, while in the comparative example Had problems with at least one of these characteristics.
Further, in this experiment, the antibacterial property and the transparency become higher as the average secondary particle size of the silver and organic acid anion-containing aluminum sulfate hydroxide particle antibacterial agent is finer, and the higher the BET method specific surface area is, the higher the antibacterial property is. It was observed that the antibacterial property is high, the Dr width (particle size distribution width) is small, the particle size is uniform and the organic acid is included in a certain range, and the antibacterial property tends to be high.
On the other hand, looking at the comparative example, V1, W2, X2, Y2, which are silver-containing aluminum sulfate hydroxide particles containing no organic acid in Comparative Example II-1 and have a large Dr width (particle size distribution width). When Z2 particles are used, the characteristic that the organic acid is not contained appears, the antibacterial property is insufficient, and the filter passability at the time of kneading and extruding deteriorates immediately after operation until the machine is difficult to operate, Transparency was also slightly reduced.
比較例II−1においてはリン酸ジルコニウム系のR1粒子を配合したものは、実施例に比べると、水道水接触環境後抗菌力維持特性、及び透明性が劣っていることが認められた。
比較例II−2では抗菌剤を配合しなかったため透明性と色には問題はなかったが、抗菌効果は全く認めらず本発明の目的を達成していないことはいうまでもなかった。
比較例II−4では有機酸アニオン含有アルミニウム硫酸塩水酸化物粒子を300重量部も配合したにも係らず、銀を含有した有機酸アニオン含有アルミニウム硫酸塩水酸化物粒子ではなかったため抗菌効果は全く認められなかった。
つまり、比較例をまとめるとアルミニウム硫酸塩水酸化物粒子を使用しても、比較例II−3及びII−4から解るようにアルミニウム硫酸塩水酸化物粒子であっても銀を含有していないものでは成形品に抗菌性を付与できないことが判明した。
In Comparative Example II-1, it was recognized that the compound containing zirconium phosphate-based R1 particles was inferior in antibacterial activity maintaining characteristics after tap water contact environment and transparency as compared with Examples.
In Comparative Example II-2, there was no problem in transparency and color because no antibacterial agent was blended, but it was needless to say that no antibacterial effect was observed and the object of the present invention was not achieved.
In Comparative Example II-4, although 300 parts by weight of the organic acid anion-containing aluminum sulfate hydroxide particles were blended, it was not an organic acid anion-containing aluminum sulfate hydroxide particle containing silver, so no antibacterial effect was observed. I couldn't.
In other words, even if aluminum sulfate hydroxide particles are used as a summary of the comparative examples, as is understood from Comparative Examples II-3 and II-4, even aluminum sulfate hydroxide particles do not contain silver. It was found that the molded article could not be given antibacterial properties.
ポリスチレン、アクリル樹透明性樹脂成形品
実施例II−33、34及び比較例II−5、6、7
実施例II−33,34は実施例II−1において抗菌化対象樹脂をポリプロピレンから、ポリスチレン、アクリル樹脂等の透明性樹脂に変更し、抗菌剤及び蛍光増白剤配合量を表−8に示すように変更し、混練時、成形時の温度を210℃に変更しただけでそれ以外は実施例II−1に準じておこなった。尚配合剤の添加量は表−8に示す通りである。
比較例II−5は実施例II−33において抗菌剤を添加しなかったこと、比較例II−6は抗菌剤をV2粒子に,比較例II−7は抗菌剤をY1粒子に変更したのみでそれ以外は実施例II−33に準じておこなった。抗菌性、透明性、色の結果を表−8に示す。
下記表−8に示すとおり、実施例の成形品については透明性が損なわれることなく、色も無色(白)であり且つ抗菌性(成形直後及び水道水接触環境後抗菌力維持特性)に関しても優れていることが確認された。
一方比較例においてはアルミニウム硫酸塩水酸化物粒子であっても銀を含有していないため抗菌性が全く発現しなかった。
Polystyrene, acrylic resin transparent resin molded article Examples II-33, 34 and Comparative Examples II-5, 6, 7
In Examples II-33 and 34, the antibacterial target resin in Example II-1 was changed from polypropylene to a transparent resin such as polystyrene and acrylic resin, and the blending amounts of antibacterial agent and fluorescent whitening agent are shown in Table-8. Thus, only the temperature at the time of kneading and molding was changed to 210 ° C., and the others were performed according to Example II-1. In addition, the addition amount of a compounding agent is as showing in Table-8.
In Comparative Example II-5, no antibacterial agent was added in Example II-33, Comparative Example II-6 was changed to V2 particles, and Comparative Example II-7 was changed to Y1 particles. Other than that was performed according to Example II-33. The results of antibacterial properties, transparency and color are shown in Table-8.
As shown in the following Table-8, the molded articles of the examples are not impaired in transparency, are colorless (white), and have antibacterial properties (immediately after molding and after contact with tap water). It was confirmed to be excellent.
On the other hand, in the comparative example, even the aluminum sulfate hydroxide particles did not contain silver, and therefore no antibacterial property was exhibited.
ポリカーボネート、ポリエチレンテレフタレート、ナイロン6・6、ポリアセタール樹脂成形品
実施例II−35、36及び比較例II−8、9
実施例II−35、36は実施例II−1において抗菌化対象樹脂をポリプロピレンから、ポリカーボネート、ポリエチレンテレフタレート、ナイロン6・6、ポリアセタール樹脂等透明性を有し且つ加工時に水分が少ないことが要求される樹脂に変更し、抗菌剤及び抗菌剤の配合量及び蛍光増白剤の配合量を表−9に示すように変更し、さらに混練時、成形時の温度をそれぞれの樹脂の常識的加工温度(PC,PET,ナイロン6・6では290℃、ポリアセタールでは190℃)に変更し、その他は実施例II−1に準じて試験を行った。
ただし、実施例II−35、36では抗菌剤は乾燥処理したA2,B1,C1,D1,E1,F1,G1,H1粒子又は焼成処理したA17,A18粒子を0.1重量部使用し、比較例8は抗菌剤無添加であり、比較例9はV2粒子の400℃又は500℃焼成品を0.1重量部使用した。抗菌性、透明性、色、押出機圧力の結果を表−9に示す。
無論実施例II−35、36で得られた成形品にはシルバーストリークは発生しなかった。
Polycarbonate, polyethylene terephthalate, nylon 6,6, polyacetal resin molded product Examples II-35 and 36 and Comparative Examples II-8 and 9
In Examples II-35 and 36, the resin to be antibacterial in Example II-1 is required to have transparency such as polypropylene, polycarbonate, polyethylene terephthalate, nylon 6,6, polyacetal resin, etc. The blending amount of antibacterial agent and antibacterial agent and blending amount of fluorescent brightening agent is changed as shown in Table 9, and the kneading and molding temperatures are the common processing temperatures of each resin. (PC, PET, nylon 6 · 6 for 290 ° C., polyacetal for 190 ° C.), others were tested according to Example II-1.
However, in Examples II-35 and 36, the antibacterial agent is a dry-treated A 2 , B 1 , C 1 , D 1 , E 1 , F 1 , G 1 , H 1 particle or a baked A17 or A18 particle. 0.1 part by weight was used, Comparative Example 8 was free of antibacterial agent, and Comparative Example 9 was 0.1 part by weight of a V2 particle fired 400 ° C or 500 ° C. The results of antibacterial properties, transparency, color, and extruder pressure are shown in Table-9.
Of course, silver streaks did not occur in the molded products obtained in Examples II-35 and 36.
下記表−9に示すとおり、実施例においては成形品の透明性がほとんど損なわれることなく、色も無色(白)であり且つ抗菌性(成形直後及び水道水接触環境後抗菌力維持特性)に関しても優れていることが確認された。
一方比較例においては抗菌性が全く発現しなかった。
As shown in Table-9 below, in the examples, the transparency of the molded product is hardly impaired, the color is also colorless (white), and the antibacterial property (the antibacterial activity maintaining property immediately after molding and after the tap water contact environment) Also confirmed to be excellent.
On the other hand, the antibacterial property was not expressed at all in the comparative example.
フィルム
実施例II−37及び比較例II−10
LDPE樹脂90重量%と抗菌剤A2,B1,C1,D1,E1,F1,G1,H1粒子それぞれを10重量%の合計100重量%を予め加圧ニーダーを用い120℃で15分間混練したものを押出造粒機でホットカットし120℃で直径約3mmのマスターバッチ・ペレットを得た。
Film Example II-37 and Comparative Example II-10
A mixture of 90% by weight of LDPE resin and antibacterial agents A2, B1, C1, D1, E1, F1, G1, and H1 particles, each 10% by weight in total 100% by weight using a pressure kneader for 15 minutes at 120 ° C. It was hot-cut with an extrusion granulator to obtain master batch pellets having a diameter of about 3 mm at 120 ° C.
そのマスターバッチ・ペレットとマスターバッチにする前のLDPE樹脂とを混合し表−10の組成になるようにしたものをTダイ法及びインフレーション法によりそれぞれ厚さ50μmのフィルムを得た。
尚比較例II−10ではマスターバッチにする前のLDPE樹脂のみで同様にフィルムを得た。
そのフィルムについて抗菌性(成形直後及び水道水接触環境後抗菌力維持特性)、透明性、白色性を前記の方法で測定した。その結果を表−10に示す。比較例II−10では抗菌剤無添加のものについてもフィルムを作成し、実施例II−37と同じ測定を行った。その結果を表−10に示す。
下記表−10に示すとおり、実施例のフィルムについては透明性が損なわれることなく、色も無色(白)であり且つ抗菌性(成形直後及び水道接触用環境後抗菌力維持特性)に関しても優れていることが確認された。
一方比較例においては抗菌性が全く発現しなかった。
The master batch pellets and the LDPE resin before making the master batch were mixed so as to have the composition shown in Table-10 to obtain a film having a thickness of 50 μm by the T-die method and the inflation method.
In Comparative Example II-10, a film was obtained in the same manner using only the LDPE resin before making the master batch.
The film was measured for antibacterial properties (antibacterial activity maintaining characteristics immediately after molding and after contact with tap water), transparency and whiteness by the above methods. The results are shown in Table-10. In Comparative Example II-10, a film was also prepared for the additive-free antibacterial agent, and the same measurement as in Example II-37 was performed. The results are shown in Table-10.
As shown in the following Table-10, the transparency of the film of the example is not impaired, the color is also colorless (white), and excellent in antibacterial properties (immediately after forming and antibacterial activity maintaining property after water contact environment). It was confirmed that
On the other hand, the antibacterial property was not expressed at all in the comparative example.
実施例II−38
ポリプロピレン、LDPE,HDPE,アイオノマー樹脂、ナイロン6/66共重合樹脂、PET樹脂,AS樹脂のそれぞれの樹脂100重量部につき、2軸混練押出機を用いA2粒子0.1重量部の混和ペレットを得た。
そのペレットをTダイ法によりそれぞれ厚さ50μmのフィルムを得た。
そのフィルムについて抗菌性(成形直後及び水道水接触環境下抗菌力維持特性)、透明性、白色性を前記の方法で測定した。その結果を表−10に示す。
実施例で得られた各フィルムについては透明性が損なわれることなく、色も無色(白)であり且つ抗菌性(成形直後及び水道水接触環境後抗菌力維持特性)に関しても優れていることが確認された。
一方比較例においては抗菌性が全く発現しなかった。
Example II-38
For 100 parts by weight of each of polypropylene, LDPE, HDPE, ionomer resin, nylon 6/66 copolymer resin, PET resin and AS resin, a mixed pellet of 0.1 part by weight of A2 particles is obtained using a biaxial kneading extruder. It was.
A film having a thickness of 50 μm was obtained from each of the pellets by T-die method.
The film was measured for antibacterial properties (immediately after molding and antibacterial activity maintaining characteristics in a tap water contact environment), transparency, and whiteness by the above methods. The results are shown in Table-10.
For each film obtained in the examples, the transparency is not impaired, the color is also colorless (white), and the antibacterial property (immediately after molding and after contact with tap water) is excellent. confirmed.
On the other hand, the antibacterial property was not expressed at all in the comparative example.
PVC成形品
実施例II−39及び比較例II−11
実施例II−39ではポリ塩化ビニル樹脂100重量部、表−11に示す抗菌剤粒子0.1重量部、オクチル錫メルカプト1.2重量部、グリセリンリシノレート0.8重量部、モンタン酸エステル0.4重量部からなる組成物をオープンロールを用い180℃で3分間混練したものを圧縮成形機により180℃で厚さ2mmの成形板を得た。
その成形板について抗菌性(成形直後及び水道水接触環境後抗菌力維持特性)を前記の方法で測定した。その結果を表−11に示す。
比較例II−11では同様に抗菌剤無添加のものについて厚さ2mmの成形板にし、同じ測定を行った。その結果を表−11に示す。
下記表−11に示すとおり、実施例の成形板については抗菌性(成形直後及び水道水接触環境後抗菌力維持特性)及び透明性が優れていることが確認された。一方比較例においては抗菌性が全く発現しなかった。
PVC molded product Example II-39 and Comparative Example II-11
In Example II-39, 100 parts by weight of polyvinyl chloride resin, 0.1 part by weight of the antibacterial agent particles shown in Table-11, 1.2 parts by weight of octyltin mercapto, 0.8 part by weight of glycerin ricinoleate, montanic acid ester 0 A composition of 4 parts by weight was kneaded at 180 ° C. for 3 minutes using an open roll to obtain a molded plate having a thickness of 2 mm at 180 ° C. using a compression molding machine.
The molded plate was measured for antibacterial properties (antibacterial activity maintaining characteristics immediately after molding and after contact with tap water) by the above method. The results are shown in Table-11.
In Comparative Example II-11, the same measurement was performed using a molded plate having no antibacterial agent and a 2 mm-thick molded plate. The results are shown in Table-11.
As shown in the following Table-11, it was confirmed that the molded plates of the examples were excellent in antibacterial properties (immediately after molding and antibacterial activity maintaining characteristics after contact with tap water) and transparency. On the other hand, the antibacterial property was not expressed at all in the comparative example.
熱硬化性樹脂成形品
実施例II−40及び比較例II−12、13
実施例II−40では不飽和ポリエステル樹脂100重量部、表−12に示す抗菌剤粒子1重量部、硬化剤(チバスペシャルケミカル社製HY951)3重量部、ステアリン酸1重量部、酸化防止剤(チバスペシャルケミカル社製イルガノックス1010)0.5重量部、蛍光増白剤0.001重量部、平均二次粒子径30μm、BET法比表面積1m2/gの人造代理石用途水酸化アルミニュウム150重量部をニーダーで混練して、それを90℃で15分間硬化させ厚さ2mmの板を得た。
Thermosetting resin molded product Example II-40 and Comparative Examples II-12 and 13
In Example II-40, 100 parts by weight of unsaturated polyester resin, 1 part by weight of antibacterial agent particles shown in Table-12, 3 parts by weight of curing agent (HY951 manufactured by Ciba Special Chemical Co., Ltd.), 1 part by weight of stearic acid, antioxidant ( Irganox 1010 manufactured by Ciba Special Chemical Co., Ltd. 0.5 parts by weight, 0.001 part by weight of optical brightener, average secondary particle diameter of 30 μm, BET method specific surface area of 1 m 2 / g for artificial surrogate stone use 150 wt. Of aluminum hydroxide The part was kneaded with a kneader and cured at 90 ° C. for 15 minutes to obtain a plate having a thickness of 2 mm.
その成形板について抗菌性(成形直後及び水道水接触環境後抗菌力維持特性)を前記の方法で測定した。その結果を表−12に示す。
比較例II−12、13では実施例II−40同様に抗菌剤無添加のも及びR1粒子についてもそれぞれ個別に厚さ2mmの成形板にし、同じ測定を行った。その結果を表−12に示す。
実施例の成形板について抗菌性(成形直後及び水道水接触環境後抗菌力維持特性)が優れていることが確認された。一方比較例II−12においては抗菌性が全く発現しなかった。
比較例II−13においては成形直後の抗菌性は認められるものの、水道水接触環境下抗菌力維持特性が全くないことが判明した。
The molded plate was measured for antibacterial properties (antibacterial activity maintaining characteristics immediately after molding and after contact with tap water) by the above method. The results are shown in Table-12.
In Comparative Examples II-12 and 13, as in Example II-40, the antibacterial agent-free additive and the R1 particles were individually formed into 2 mm-thick molded plates and subjected to the same measurement. The results are shown in Table-12.
It was confirmed that the molded plate of the example was excellent in antibacterial properties (antibacterial activity maintaining characteristics immediately after molding and after contact with tap water). On the other hand, in Comparative Example II-12, no antibacterial property was expressed.
In Comparative Example II-13, although antibacterial properties were observed immediately after molding, it was found that there was no antibacterial activity maintaining property in a tap water contact environment.
実施例II−41
実施例II−41は実施例II−40において抗菌剤使用粒子がE2粒子に変更されたこと、及び配合量が300重量部に変更されたこと、ステアリン酸が3重量部に変更された以外は実施例II−40同様に成形板を作成し、同じ測定を行った。その結果を表−12に示す。
成形板については抗菌性(成形直後及び水道水接触環境後抗菌力維持特性)が優れていることが確認された。
Example II-41
Example II-41 is the same as Example II-40 except that the antibacterial agent-use particles were changed to E2 particles, the blending amount was changed to 300 parts by weight, and stearic acid was changed to 3 parts by weight. A molded plate was prepared in the same manner as in Example II-40, and the same measurement was performed. The results are shown in Table-12.
It was confirmed that the molded plate was excellent in antibacterial properties (antibacterial activity maintaining characteristics immediately after molding and after contact with tap water).
実施例II−42
実施例II−40において抗菌化対象樹脂を不飽和ポリエステル樹脂からフェノール樹脂、メラミン樹脂、エポキシ樹脂へ変更、抗菌剤をE4粒子に変更し、その他は実施例II−40に準じて成形板を作成し、同じ測定を行った。その結果を表−12に示す。得られた該成形板については抗菌性(成形直後及び水道水接触環境後抗菌力維持特性)が優れていることが確認された。
Example II-42
In Example II-40, the antibacterial target resin was changed from unsaturated polyester resin to phenol resin, melamine resin, and epoxy resin, the antibacterial agent was changed to E4 particles, and the others were made in accordance with Example II-40. The same measurement was performed. The results are shown in Table-12. It was confirmed that the obtained molded plate was excellent in antibacterial property (antibacterial activity maintaining property immediately after molding and after contact with tap water).
実施例II−40〜42及び比較例II−12、13をまとめると以下のことが理解できる。
本発明の熱硬化性樹脂抗菌性製品は手洗い、風呂等水場で使用される人造大理石用途においても抗菌性(水道水接触環境後抗菌力維持特性)を長時間失うことがなく好適に使用できることを示している。
一方従来技術の銀担持リン酸ジルコニュムを配合した比較例II−13では成形直後の抗菌性は認められるものの、水道水接触環境下抗菌力維持特性が全くなりそのような用途では意味がないことを示している。
The following can be understood by summarizing Examples II-40 to 42 and Comparative Examples II-12 and 13.
The thermosetting resin antibacterial product of the present invention can be suitably used without losing the antibacterial property (antibacterial activity maintaining property after contact with tap water) for a long time even in artificial marble applications used in hand-washing, bathing water, etc. Is shown.
On the other hand, in Comparative Example II-13 containing the silver-supported zirconium of the prior art, although antibacterial properties immediately after molding are recognized, the antibacterial activity maintaining property is completely in the tap water contact environment and there is no meaning in such use. Show.
ゴム成形品
実施例II−43及び比較例II−14
EPDM(エチレン/プロピレン比=50/50)100重量部、表−13に示す抗菌剤粒子0.5重量部、ディクミルパーオキサイド3重量部、ポリ(2,2,4−トリメチル−1,2ディヒドロキノリン)0.5重量部、シランカップリング剤(日本ユニカ製A−172)1重量部、ステアリン酸0.5重量部、イオウ1重量部、蛍光増白剤0.001重量部、ルチル型酸化チタン5重量部からなる組成物をオープンロールを用い50℃で混練し、それを1日後に160℃で30分加硫し厚さ2mmの成形板を得た。
Rubber molded product Example II-43 and Comparative Example II-14
EPDM (ethylene / propylene ratio = 50/50) 100 parts by weight, antibacterial agent particles 0.5 parts by weight shown in Table-13, dicumyl peroxide 3 parts by weight, poly (2,2,4-trimethyl-1,2 0.5 parts by weight of dihydroquinoline), 1 part by weight of a silane coupling agent (A-172 manufactured by Nihon Unica), 0.5 part by weight of stearic acid, 1 part by weight of sulfur, 0.001 part by weight of optical brightener, rutile A composition comprising 5 parts by weight of type titanium oxide was kneaded at 50 ° C. using an open roll, and vulcanized at 160 ° C. for 30 minutes after 1 day to obtain a molded plate having a thickness of 2 mm.
その成形板について抗菌性(成形直後及び水道水接触環境後抗菌力維持特性)を前記の方法で測定した。その結果を表−13に示す。
比較例II−14では同様に抗菌剤無添加のものについて個別に厚さ2mmの成形板にし、同じ測定を行った。その結果を表−13に示す。
実施例の成形板については抗菌性(成形直後及び水道水接触環境後抗菌力維持特性)が優れていることが確認された。一方比較例II−14においては抗菌性が全く発現しなかった。
The molded plate was measured for antibacterial properties (antibacterial activity maintaining characteristics immediately after molding and after contact with tap water) by the above method. The results are shown in Table-13.
In Comparative Example II-14, the same measurement was performed using a molded plate having a thickness of 2 mm separately for those without the addition of the antibacterial agent. The results are shown in Table-13.
It was confirmed that the molded plates of the examples were excellent in antibacterial properties (antibacterial activity maintaining characteristics immediately after molding and after contact with tap water). On the other hand, in Comparative Example II-14, no antibacterial property was expressed.
実施例II−44
実施例II−43において抗菌剤使用粒子がA14粒子に変更されたこと、及び配合量が200重量部に変更されたこと、ステアリン酸が2重量部に変更された以外は実施例II−43同様に成形板を作成し、同じ測定を行った。その結果を表−13に示す。
成形板については抗菌性(成形直後及び水道水接触環境後抗菌力維持特性)が優れていることが確認された。
Example II-44
As in Example II-43, except that the antibacterial agent-use particles were changed to A14 particles in Example II-43, the blending amount was changed to 200 parts by weight, and stearic acid was changed to 2 parts by weight. A molded plate was prepared and the same measurement was performed. The results are shown in Table-13.
It was confirmed that the molded plate was excellent in antibacterial properties (antibacterial activity maintaining characteristics immediately after molding and after contact with tap water).
繊維
実施例II−45、比較例15
繊維用ポリプロピレン100重量部、抗菌剤A2粒子を2重量部を2軸混練押出機を用いて予め混練しておき、それを300メッシュのスクリーンを付設した押出機を用い溶融法により100デニルに紡糸した繊維を得た。その繊維について抗菌性(成形直後及び水道水接触環境後抗菌力維持特性)を前記の方法で測定した。その結果を表−14に示す。
比較例II−15では同様に抗菌剤無添加のものについて100デニルの繊維にし、同じ測定を行った。その結果を表−14に示す。
実施例の繊維については抗菌性(紡糸直後及び水道水接触環境後抗菌力維持特性)が優れていることが確認された。
このことは例えば手袋、ソックス等の繊維製品において数十回、数百回洗濯しても抗菌性を失わないあるいは失い難いことを意味している。
尚前記の押出溶融法において実施例においては該スクリーンに粗大粒子が詰まって紡糸作業に支障をきたすことはなかった。
Fiber Example II-45, Comparative Example 15
100 parts by weight of polypropylene for fibers and 2 parts by weight of antibacterial agent A2 particles are kneaded in advance using a twin-screw kneading extruder and spun to 100 denier by a melting method using an extruder equipped with a 300 mesh screen. Fiber was obtained. The antibacterial property (antibacterial activity maintaining property immediately after molding and after contact with tap water) of the fiber was measured by the above method. The results are shown in Table-14.
In Comparative Example II-15, the same measurement was performed using a 100-denyl fiber with no antibacterial agent added. The results are shown in Table-14.
It was confirmed that the fibers of the examples are excellent in antibacterial properties (antibacterial activity maintaining characteristics immediately after spinning and after contact with tap water).
This means that, for example, textile products such as gloves and socks do not lose or hardly lose antibacterial properties even after washing several tens or hundreds of times.
In the above-described extrusion melting method, in the examples, the screen was not clogged with coarse particles, and the spinning operation was not hindered.
不織布
実施例II−46、比較例II−16
実施例II−45及び比較例II−15で得られた各ポリプロピレン繊維を抄造ウエブ法及びランダムウエブ法により0.06g/cm3の密度に不織布を作成し前記の抗菌性の試験を行ったが実施例においては優れた抗菌性効果(成形直後及び水道水接触環境後抗菌力維持特性)が得られた。
一方比較例においては抗菌性が全く発現しなかった。結果を表−15に示す。
Non-woven fabric Example II-46, Comparative Example II-16
Each polypropylene fiber obtained in Example II-45 and Comparative Example II-15 was subjected to the antibacterial property test by making a nonwoven fabric with a density of 0.06 g / cm 3 by the paper making web method and the random web method. In the examples, excellent antibacterial effects (antibacterial activity maintaining characteristics immediately after molding and after contact with tap water) were obtained.
On the other hand, the antibacterial property was not expressed at all in the comparative example. The results are shown in Table-15.
塗料
実施例II−47、比較例II−17
冷却設備を有する設備の中に、メチルメタクリレート60重量部、2−エチルヘキシルアクリレート40重量部の合計100重量部に対し、トリエチレングリコールジメタクリレート3重量部、ジアルキルフタレート10重量部、ハイドロキノン0.003重量部、融点46℃のパラフィンワックス0.5重量部、融点54℃のパラフィンワックス0.5重量部、N,N−ジ8ヒドロキシプロピル9−Pトルイジン0.7重量部を投入し攪拌しながらメチルメタクリレートとn−ブチルメタクリレートの共重合体(Tg=66℃、Mw=40,000)25重量部を除々に加え60℃で2時間攪拌し30℃まで冷却した。
Paint Example II-47, Comparative Example II-17
In a facility having a cooling facility, 3 parts by weight of triethylene glycol dimethacrylate, 10 parts by weight of dialkyl phthalate, 0.003 part by weight of hydroquinone with respect to 60 parts by weight of methyl methacrylate and 40 parts by weight of 2-ethylhexyl acrylate Parts, 0.5 parts by weight of paraffin wax having a melting point of 46 ° C., 0.5 parts by weight of paraffin wax having a melting point of 54 ° C., 0.7 parts by weight of N, N-di8hydroxypropyl 9-P toluidine 25 parts by weight of a copolymer of methacrylate and n-butyl methacrylate (Tg = 66 ° C., Mw = 40,000) was gradually added and stirred at 60 ° C. for 2 hours and cooled to 30 ° C.
このものに実施例I−2のA2粒子1重量部、着色剤三菱レイヨン製トナーP−400を7重量部、骨材三菱レイヨン製KM17を300重量部、重合開始剤ジアシルパーオキサイド2重量部からなる塗料を20℃で1時間放置し塗幕を作り前記(7)の(c)の方法により抗菌のテストを実施した。その結果を表−16に示す。
比較例II−17では抗菌剤無添加のものについて実施例II−47同様に塗布をし、同じ測定を行った。その結果を表−16に示す。
実施例の塗料については抗菌性((成形直後及び水道水接触環境後抗菌力維持特性)が優れていることが確認された。一方比較例においては抗菌性が全く発現しなかった。
From this, 1 part by weight of the A2 particles of Example I-2, 7 parts by weight of the colorant Mitsubishi Rayon Toner P-400, 300 parts by weight of the aggregate Mitsubishi Rayon KM17, 2 parts by weight of the polymerization initiator diacyl peroxide The paint was left to stand at 20 ° C. for 1 hour to form a paint film, and an antibacterial test was carried out by the method (c) of (7). The results are shown in Table-16.
In Comparative Example II-17, an antibacterial agent-free additive was applied in the same manner as in Example II-47, and the same measurement was performed. The results are shown in Table-16.
The paints of the examples were confirmed to be excellent in antibacterial properties ((antibacterial activity maintaining characteristics immediately after molding and after contact with tap water)), whereas the comparative examples exhibited no antibacterial properties.
コーキング材
実施例II−48及び比較例II−18
シラノールを末端基とする25℃の粘度が50、000センチポイズのポリジメチルシロキサン100重量部に対し1重量部のγアミノプロピルビス(メチルエチルケトキシアミノ)メトキシシランを真空下で10分間混合し、ついでその混合物に5重量部のメチルトリス(メチルエチルケトキシアミノ)シランを加え真空下15分間混合し、BET法比表面積200m2/gのヒュームドシリカ5重量部、ジブチルスズラウレート0.1重量部、抗菌剤A2粒子1重量部を加え真空下で10分間混合した。
この混合された組成物をポリエチレンシートの上に垂らして厚さ2mmにし抗菌性テスト用のテストピースを得た。それを前記の抗菌性試験法(7)の(e)で塗布し抗菌のテストを実施した。その結果を表−17に示す。比較例では同様に抗菌剤無添加のものについてコーキング材にし、同じ測定を行った。その結果を表−17に示す。
実施例のコーキング材については抗菌性(成形直後及び水道水接触環境後抗菌力維持特性)が優れていることが確認された。一方比較例においては抗菌性が全く発現しなかった。
Caulking Material Example II-48 and Comparative Example II-18
1 part by weight of γ-aminopropylbis (methylethylketoxyamino) methoxysilane is mixed with 100 parts by weight of polydimethylsiloxane having a silanol-terminated 25 ° C. viscosity of 50,000 centipoise for 10 minutes, and then 5 parts by weight of methyltris (methylethylketoxyamino) silane was added to the mixture and mixed under vacuum for 15 minutes, 5 parts by weight of fumed silica having a BET specific surface area of 200 m 2 / g, 0.1 part by weight of dibutyltin laurate, antibacterial agent A2 1 part by weight of particles was added and mixed under vacuum for 10 minutes.
The mixed composition was dropped on a polyethylene sheet to a thickness of 2 mm to obtain a test piece for antibacterial test. This was applied by the antibacterial test method (7) (e) and an antibacterial test was conducted. The results are shown in Table-17. In the comparative example, the same measurement was performed using a caulking material with no antibacterial agent added. The results are shown in Table-17.
It was confirmed that the caulking materials of the examples were excellent in antibacterial properties (antibacterial activity maintaining characteristics immediately after molding and after contact with tap water). On the other hand, the antibacterial property was not expressed at all in the comparative example.
尚前記の実施例II−1〜II−48の各成形品、フィルム等を一旦900℃で焼成した灰分を硫酸及び硝酸に溶解し溶液とし、それから各実施例の成形品、フィルム等に含まれる重金属を原子吸光法、又はICP−AE法(Inductively Coupled Plasma −Atomic Emission Spectroscopy)、又は蛍光X線法で測定したが、実施例II−1〜II−48の各樹脂成形品、フィルム、繊維等に含まれるPb、Cd、As,Baは全て0.1ppm以下で、且つFeは5ppm以下、Mn,Cu,Cr,Niはそれぞれ1ppm以下であった。
従って本発明の抗菌性樹脂組成物及びそれから形成された製品は、安全性が高いだけだけでなく、さらには耐熱劣化性にも優れた材料であることが判明した。
It should be noted that each of the molded products, films, etc. of Examples II-1 to II-48, which were once baked at 900 ° C., was dissolved in sulfuric acid and nitric acid to form a solution, and then included in the molded products, films, etc. of each Example. Heavy metals were measured by atomic absorption method, ICP-AE method (Inductively Coupled Plasma-Atomic Emission Spectroscopy), or fluorescent X-ray method, but each resin molded product, film, fiber, etc. of Examples II-1 to II-48 Pb, Cd, As, and Ba contained in all were 0.1 ppm or less, Fe was 5 ppm or less, and Mn, Cu, Cr, and Ni were each 1 ppm or less.
Accordingly, it has been found that the antibacterial resin composition of the present invention and the product formed therefrom are not only high in safety but also excellent in heat deterioration resistance.
抗カビ剤
実施例II−49、比較例II−19およびII−20
培地が感性MHB培地から日水製薬製ポテトデキストロース寒天培地に変更したことだけが異なる日本化学療法学会標準法(2003年改訂版)において最小発育阻止濃度を本発明の抗カビ剤粒子、及び比較例の粒子について抗カビ性能を測定し最小発育阻止濃度としてppmで示した。
この数値が小さいほど抗カビ性能が高いことを示している。
測定の結果を下記表−18に示す。
試供カビは ※1:Caldosporium Caldosporides NBRC 6348 (黒カワカビ)、
※2:Colletotricum coccodes NBRC 5256 (ナス黒点根腐病原菌)、
※3:Ustilaginoidia virens NBRC 9175 (稲こうじ病原菌)を使用した。
Antifungal Example II-49, Comparative Examples II-19 and II-20
The anti-fungal agent particles of the present invention and the comparative example were reduced in the minimum inhibitory concentration in the standard method of the Japanese Society of Chemotherapy (2003 revised version), which was different only in that the medium was changed from the sensitive MHB medium to Nissui Pharmaceutical's potato dextrose agar medium. The antifungal performance of each particle was measured and expressed as ppm as the minimum inhibitory concentration.
It shows that anti-mold performance is so high that this figure is small.
The measurement results are shown in Table-18 below.
Free mold: * 1: Caldosporium Caldosporides NBRC 6348 (black mold),
* 2: Colletotricum coccodes NBRC 5256 (eggplant black spot root rot pathogen),
* 3: Ustilaginodia virens NBRC 9175 (rice koji pathogen) was used.
本発明抗カビ剤は比較例の抗カビ剤よりはるかに優れた抗カビ性能を示すことが判明した。 It was found that the antifungal agent of the present invention exhibits a far superior antifungal performance than the antifungal agent of the comparative example.
化粧料
実施例II−50、比較例II−21
下記表−19に示す実施例と比較例の配合成分を用いた油中水型のクリーム状の乳化化粧料を調整した。表中1〜5は油性材料、6、7は界面活性剤、10抗菌剤とを混合したものをAとし、一方、表中の物質8精製水と,9の保湿剤を混合したものを混合物Bとし、各々の混合物A,Bを70℃に加熱した後、混合物A中に混合物Bを攪拌しながら流し入れ、乳化させその後冷却した。
抗菌性テストは乳化30日後に大腸菌E.coli NBRC 3972 を使用して前記(7)の(c)に準じて実施した。さらに実施例と比較例のクリームを日頃脇に悪臭の有る人の脇下に1g塗って8時間後に悪臭のあるかないかを10人に嗅いでもらった。
測定の結果を下記表−19に示す。
Cosmetic Example II-50, Comparative Example II-21
A water-in-oil cream emulsified cosmetic using the ingredients shown in Table 19 below and the comparative examples was prepared. In the table, 1 to 5 are oily materials, 6 and 7 are a mixture of a surfactant and 10 antibacterial agent, and A is a mixture of the substance 8 purified water in the table and a mixture of 9 humectants. After each mixture A and B was heated to 70 ° C., the mixture B was poured into the mixture A with stirring, emulsified, and then cooled.
The antibacterial test was performed after 30 days of emulsification. This was carried out according to (c) of (7) above using E. coli NBRC 3972. Further, 1 g of the creams of Examples and Comparative Examples were applied to the armpits of people who had a bad odor on the side, and 10 people smelled whether or not there was a bad odor after 8 hours.
The measurement results are shown in Table 19 below.
実験の結果実施例では抗菌性に優れ且つ悪臭を抑える効果が高いことが判明した。
また本発明においては化粧料を顔に塗った時の感触としてのざらつき感がいずれもなかったが、特に円盤状粒子(A1粒子)においては非常になめらかな塗り心地であった。
一方、比較例においては実施例の抗菌剤がR1粒子に置き換えられたこと、又は抗菌剤が全く添加されなかったことが異なるのみであるが、抗菌性は無く且つ悪臭防止効果も無かったことが判明した。
As a result of the experiment, it was found that the examples were excellent in antibacterial properties and highly effective in suppressing malodor.
Further, in the present invention, there was no rough feeling as a feel when the cosmetic was applied to the face, but the disc-like particles (A1 particles) were very smooth.
On the other hand, in the comparative example, the only difference was that the antibacterial agent of the example was replaced with R1 particles, or no antibacterial agent was added at all, but there was no antibacterial property and no odor prevention effect. found.
抗菌消臭スプレー剤
実施例II−51、比較例II−21およびII−22
70℃に加温した容器の中に2.3重量部のジプロピレングリコールを入れ、さらに2.5重量部のラウリン酸と1重量部のミリスチン酸、さらに3.2重量部のトリエタノールアミンを加えて溶液を作成した。
次にこの溶液を70℃に加温した90重量部のイオン交換水に徐々に注加して乳化させ泡基材溶液を調製し、それを25℃まで冷却した。
該泡基材溶液に本発明の抗菌剤粒子1重量部添加して攪拌、混合し抗菌消臭泡沫状エアゾール組成物を調製した。
この組成物180gと噴射剤(LPG 0.34MPa)20gをブリキ缶のスプレー式容器に充填して抗菌消臭泡沫状エアゾールスプレーを作成した。
一方、日頃脇に悪臭の有る人に充分運動してもらった後で15cm×15cmの綿製のハンカチが0.5g、及び5g重くなるように汗を採取した。該ハンカチの表と裏に該抗菌消臭泡沫状エアゾールスプレーをそれぞれ1gづつ噴霧し、恒温槽に30℃で10日間静置した後で10人に悪臭を嗅いでもらった。測定の結果を下記表−20に示す。
Antibacterial deodorant spray Example II-51, Comparative Examples II-21 and II-22
Place 2.3 parts by weight of dipropylene glycol in a container heated to 70 ° C., and further add 2.5 parts by weight of lauric acid, 1 part by weight of myristic acid, and further 3.2 parts by weight of triethanolamine. In addition, a solution was made.
Next, this solution was gradually poured into 90 parts by weight of ion-exchanged water heated to 70 ° C. to emulsify it to prepare a foam base solution, which was cooled to 25 ° C.
1 part by weight of the antibacterial agent particles of the present invention was added to the foam base solution and stirred and mixed to prepare an antibacterial deodorant foam aerosol composition.
180 g of this composition and 20 g of propellant (LPG 0.34 MPa) were filled in a tin can spray-type container to prepare an antibacterial deodorant foam aerosol spray.
On the other hand, sweat was collected so that a 15 cm × 15 cm cotton handkerchief would be 0.5 g and 5 g heavier after a person with a bad odor on the side regularly exercised. 1 g each of the antibacterial deodorant foam aerosol spray was sprayed on the front and back of the handkerchief and allowed to stand in a thermostatic bath at 30 ° C. for 10 days. The measurement results are shown in Table-20 below.
本発明抗菌剤は比較例の抗菌剤よりはるかに優れた悪臭防止性能を示すことが判明した。 It has been found that the antibacterial agent of the present invention exhibits a malodor prevention performance far superior to that of the comparative example.
抗菌紙
実施例II−52、比較例II−23およびII−24
さらしケミパルプ82%の中に、本発明の抗菌剤1%、デンプン(乾燥紙力増強剤)5%、尿素−ホルムアルデヒド樹脂(湿潤紙力増強剤)5%、ニ酸化チタン(無機填料)2%、ポリアミド系樹脂を主成分とするインキ(接着性バインダー)5%を混合し、抄紙機を用いて厚さ0.1mmの紙を抄いた。この紙を5cm×5cmに切り取り前記の抗菌性試験方法(7)の(a)同様のテストを実施した。測定の結果を下記表−21に示す。
Antibacterial paper Example II-52, Comparative Examples II-23 and II-24
82% bleached chemi pulp, 1% antibacterial agent of the present invention, 5% starch (dry paper strength enhancer), 5% urea-formaldehyde resin (wet paper strength enhancer), 2% titanium dioxide (inorganic filler) Then, 5% of an ink (adhesive binder) containing a polyamide-based resin as a main component was mixed, and paper having a thickness of 0.1 mm was made using a paper machine. This paper was cut into 5 cm × 5 cm, and the same test as (a) of the antibacterial test method (7) was performed. The measurement results are shown in Table-21 below.
本発明抗菌剤は比較例の抗菌剤よりはるかに優れた抗菌性能を示すことが判明した。 It was found that the antibacterial agent of the present invention exhibits far superior antibacterial performance than that of the comparative example.
農薬(抗カビ剤)
実施例II−53、比較例II−25およびII−26
実施例では本発明の粒子10重量部、シランカップリング剤表面改質軽質炭酸カルシウム(無機微粉体)30重量部、ポリオキシエチレンアルキルアリルエーテル(界面活性剤)5重量部、エチレングリコール(界面活性剤)10重量部、キサンタンガム(乳化安定剤)0.2重量部、水44.8重量部をホモミキサーで均一に混合した後、ボールミルで均一に湿式粉砕して水性懸濁状農薬組成物をえた。これを水で1/100に希釈して市販のプラスチック製スプレー装置に入れた。
比較例は実施例の粒子が下記の粒子、又はボルドー撒粉に置き換えられたことが異なるだけでその他の実験方法は実施例の要領に準じた。
Agricultural chemical (anti-fungal agent)
Example II-53, Comparative Examples II-25 and II-26
In Examples, 10 parts by weight of the particles of the present invention, 30 parts by weight of silane coupling agent surface modified light calcium carbonate (inorganic fine powder), 5 parts by weight of polyoxyethylene alkyl allyl ether (surfactant), ethylene glycol (surfactant) Agent) 10 parts by weight, xanthan gum (emulsification stabilizer) 0.2 parts by weight and water 44.8 parts by weight are mixed uniformly with a homomixer, and then uniformly wet-ground with a ball mill to obtain an aqueous suspended agricultural chemical composition. Yeah. This was diluted 1/100 with water and placed in a commercially available plastic spray device.
The comparative example was different from the examples in that the particles of the examples were replaced with the following particles or Bordeaux soot powder, and the other experimental methods were the same as in the examples.
一方、それぞれ約20cmに成長したナス、及び稲を用意した。
ナスには1×106個/mlに調製したColletotricum coccodes NBRC 5256 (ナス黒点根腐病原菌)懸濁液1gづつを葉、茎、根元に噴霧し、その1日後に前記の1/100に希釈された該水性懸濁状農薬組成物1gを同様に噴霧し、さらにその30日後にナス黒点根腐病の発生の程度を観察した。ただしナスの試験は直径33cm、深さ30cmの鉢に土が27cmの高さになるように入れて実施した。
稲には1×106個/mlに調製したUstilaginoidia virens NBRC 9175 (稲こうじ病原菌)懸濁液を1gづつを葉、茎、根元に噴霧し、その1日後に前記の1/100に希釈された該水性懸濁状農薬組成物1gを同様に噴霧し、さらにその30日後に稲こうじ病の発生の程度を観察した。ただし稲の試験は直径33cm、深さ30cmの鉢に土が27cmの高さになるように入れて土壌の水が表面からかろうじて切れるが土壌中には十分水が存在する条件下で実施した。測定の結果を下記表−22に示す。
On the other hand, eggplant and rice grown to about 20 cm each were prepared.
Eggplants are sprayed on leaves, stems and roots with 1 g of Colletotricum coccodes NBRC 5256 (Nasca black rot fungus) suspension prepared to 1 × 10 6 cells / ml, and diluted 1/100 the day after that 1 g of the aqueous suspension pesticide composition thus obtained was sprayed in the same manner, and the degree of occurrence of eggplant sunspot rot was observed 30 days later. However, the eggplant test was carried out by placing the soil in a pot with a diameter of 33 cm and a depth of 30 cm so that the soil had a height of 27 cm.
The rice is sprayed on leaves, stems, and roots at 1 g of a suspension of Ustilaginoidia virens NBRC 9175 (rice koji pathogen) prepared to 1 × 10 6 cells / ml. Further, 1 g of the aqueous suspension pesticide composition was sprayed in the same manner, and the degree of occurrence of rice koji was observed 30 days later. However, the rice test was carried out under the condition that the soil was barely cut from the surface by placing the soil in a pot with a diameter of 33 cm and a depth of 30 cm so that the soil had a height of 27 cm, but there was sufficient water in the soil. The measurement results are shown in Table-22 below.
本発明農薬組成物は比較例の農薬組成物よりはるかに優れた農薬性能を示すことが判明した。 It has been found that the agrochemical composition of the present invention exhibits far superior agrochemical performance than the comparative agrochemical composition.
Claims (29)
(AgaBb−a)bAlcAx(SO4)y(OH)z・pH2O (1)
式(1)中,a,b,c,x,y,z及びpは0.00001≦a<0.5、 0.7≦b≦1.35、2.7<c<3.3、 0.001≦x≦0.5, 1.7<y<2.5、4<z<7、0≦p≦5、BはNa+、NH4 +、K+及びH3O+の群から選ばれた少なくとも1種の1価陽イオンを表わし、陽イオンの価数×モル数の合計値(1b+3c)の範囲が8<(1b+3c)<12であり、Aは有機酸アニオンを表す。 An antibacterial agent comprising silver and organic acid anion-containing aluminum sulfate hydroxide particles represented by the following formula (1).
(Ag a B b-a) b Al c A x (SO 4) y (OH) z · pH 2 O (1)
In the formula (1), a, b, c, x, y, z and p are 0.00001 ≦ a <0.5, 0.7 ≦ b ≦ 1.35, 2.7 <c <3.3, 0.001 ≦ x ≦ 0.5, 1.7 <y <2.5, 4 <z <7, 0 ≦ p ≦ 5, B is a group of Na + , NH 4 + , K + and H 3 O + 1 represents at least one monovalent cation selected from the formula (1b + 3c) <12 in the range of cation valence × mol number (1b + 3c), and A represents an organic acid anion.
(i)レーザー回折散乱法で測定された平均二次粒子径が0.1μm〜12μm、
(ii)BET法比表面積が0.1〜250m2/g。 The antibacterial agent according to claim 1, wherein the particles have the following particle properties (i) and (ii).
(I) An average secondary particle diameter measured by a laser diffraction scattering method is 0.1 μm to 12 μm,
(Ii) BET method specific surface area of 0.1 to 250 m 2 / g.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006179771A JP5182911B2 (en) | 2005-06-30 | 2006-06-29 | Antibacterial agent comprising aluminum sulfate hydroxide particles containing silver and organic acid anions and use thereof |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005192471 | 2005-06-30 | ||
JP2005192471 | 2005-06-30 | ||
JP2006179771A JP5182911B2 (en) | 2005-06-30 | 2006-06-29 | Antibacterial agent comprising aluminum sulfate hydroxide particles containing silver and organic acid anions and use thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007039442A true JP2007039442A (en) | 2007-02-15 |
JP5182911B2 JP5182911B2 (en) | 2013-04-17 |
Family
ID=37797752
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006179771A Expired - Fee Related JP5182911B2 (en) | 2005-06-30 | 2006-06-29 | Antibacterial agent comprising aluminum sulfate hydroxide particles containing silver and organic acid anions and use thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5182911B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008254994A (en) * | 2007-04-09 | 2008-10-23 | Ishihara Sangyo Kaisha Ltd | Zinc oxide, method for producing the same, and cosmetic using the same |
JP2014118358A (en) * | 2012-12-13 | 2014-06-30 | Showa Denko Kk | Antimicrobial and antiviral composition and its manufacturing method |
JP2017075087A (en) * | 2015-10-13 | 2017-04-20 | 大明化学工業株式会社 | Basic aluminum sulfate, basic aluminum sulfate composite, aluminum composite, composite-containing polymer composition and method for producing them |
JP2022165893A (en) * | 2021-04-20 | 2022-11-01 | 南亞塑膠工業股▲分▼有限公司 | Transparent antibacterial film and method for manufacturing the same |
CN116218124A (en) * | 2022-12-29 | 2023-06-06 | 南京五瑞生物降解新材料研究院有限公司 | Novel antibacterial high polymer material and preparation method and application thereof |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8455751B2 (en) | 2003-12-02 | 2013-06-04 | Battelle Memorial Institute | Thermoelectric devices and applications for the same |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0557002A (en) * | 1991-08-30 | 1993-03-09 | Toagosei Chem Ind Co Ltd | Antibacterial nonwoven fabric |
JPH05221638A (en) * | 1991-08-22 | 1993-08-31 | Fuji Kagaku Kogyo Kk | Silver-substituted dawsonite-like substance, its production and antimicrobial agent |
JPH10273324A (en) * | 1997-01-21 | 1998-10-13 | Kyowa Chem Ind Co Ltd | Amorphous basic double hydroxide and its production |
JP2000007326A (en) * | 1998-06-25 | 2000-01-11 | Mizusawa Ind Chem Ltd | Spindle-like or spherical alkali aluminum sulfate hydroxide, its production and compounding agent for resin |
WO2005085168A1 (en) * | 2004-03-05 | 2005-09-15 | Kyowa Chemical Industry Co., Ltd. | Particles of aluminum salt hydroxide containing organic acid anion, method for production thereof and use thereof |
-
2006
- 2006-06-29 JP JP2006179771A patent/JP5182911B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05221638A (en) * | 1991-08-22 | 1993-08-31 | Fuji Kagaku Kogyo Kk | Silver-substituted dawsonite-like substance, its production and antimicrobial agent |
JPH0557002A (en) * | 1991-08-30 | 1993-03-09 | Toagosei Chem Ind Co Ltd | Antibacterial nonwoven fabric |
JPH10273324A (en) * | 1997-01-21 | 1998-10-13 | Kyowa Chem Ind Co Ltd | Amorphous basic double hydroxide and its production |
JP2000007326A (en) * | 1998-06-25 | 2000-01-11 | Mizusawa Ind Chem Ltd | Spindle-like or spherical alkali aluminum sulfate hydroxide, its production and compounding agent for resin |
WO2005085168A1 (en) * | 2004-03-05 | 2005-09-15 | Kyowa Chemical Industry Co., Ltd. | Particles of aluminum salt hydroxide containing organic acid anion, method for production thereof and use thereof |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008254994A (en) * | 2007-04-09 | 2008-10-23 | Ishihara Sangyo Kaisha Ltd | Zinc oxide, method for producing the same, and cosmetic using the same |
JP2014118358A (en) * | 2012-12-13 | 2014-06-30 | Showa Denko Kk | Antimicrobial and antiviral composition and its manufacturing method |
JP2017075087A (en) * | 2015-10-13 | 2017-04-20 | 大明化学工業株式会社 | Basic aluminum sulfate, basic aluminum sulfate composite, aluminum composite, composite-containing polymer composition and method for producing them |
JP2022165893A (en) * | 2021-04-20 | 2022-11-01 | 南亞塑膠工業股▲分▼有限公司 | Transparent antibacterial film and method for manufacturing the same |
JP7303263B2 (en) | 2021-04-20 | 2023-07-04 | 南亞塑膠工業股▲分▼有限公司 | Transparent antibacterial film and its manufacturing method |
CN116218124A (en) * | 2022-12-29 | 2023-06-06 | 南京五瑞生物降解新材料研究院有限公司 | Novel antibacterial high polymer material and preparation method and application thereof |
CN116218124B (en) * | 2022-12-29 | 2023-11-10 | 南京五瑞生物降解新材料研究院有限公司 | Antibacterial high polymer material and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JP5182911B2 (en) | 2013-04-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8394392B2 (en) | Antibacterial agent composed of silver-containing aluminum sulfate hydroxide particles and use thereof | |
JP5182912B2 (en) | Antibacterial agent, production method thereof and use thereof | |
Abdalkarim et al. | Sheet-like cellulose nanocrystal-ZnO nanohybrids as multifunctional reinforcing agents in biopolyester composite nanofibers with ultrahigh UV-shielding and antibacterial performances | |
Ma et al. | Preparation of zinc oxide-starch nanocomposite and its application on coating | |
KR101334283B1 (en) | Material for antimicrobial plastic, antimicrobial plastic, masterbatch for manufacturing antimicrobial plastic, and manufacturing method of antimicrobial plastic | |
JP5182911B2 (en) | Antibacterial agent comprising aluminum sulfate hydroxide particles containing silver and organic acid anions and use thereof | |
US20160326670A1 (en) | Antibacterial fiber material, antibacterial fibers, master batch for manufacturing antibacterial fibers, and method for manufacturing antibacterial fibers | |
JP4931210B2 (en) | Organic acid anion-containing aluminum salt hydroxide particles, production method thereof and use thereof | |
JP3484011B2 (en) | UV protection agents and their use | |
TWI542548B (en) | Fine hydrotalcite particles | |
KR101445304B1 (en) | Material for antimicrobial fiber, antimicrobial fiber, master batch for antimicrobial fiber, and manufacturing method of the antimicrobial fiber | |
JPH0246620B2 (en) | ||
JP2008001774A (en) | Ultraviolet light absorber and its use | |
MX2008015811A (en) | Uv absorbing composition. | |
León-Vallejo et al. | Study of layered double hydroxides as bactericidal materials against Corynebacterium ammoniagenes, a bacterium responsible for producing bad odors from human urine and skin infections | |
JP5158876B2 (en) | Antibacterial particles, production method thereof and antibacterial composition | |
JP4873790B2 (en) | UV shielding film | |
EP1136060A2 (en) | Ultraviolet light absorber and its use | |
KR20050091078A (en) | Composite particles and method for production thereof and use thereof | |
JP3597723B2 (en) | Antibiotic polymer composition | |
KR102415253B1 (en) | Antimicrobial composite material with immediate sterilization characteristics and manufacturing method thereof | |
CN115536907B (en) | Hydrotalcite auxiliary agent special for agricultural film and application thereof | |
JP2008247678A (en) | Zinc oxide-based particulate and application thereof | |
Yook et al. | A hydrophilic and negatively charged zinc silicate glass powder for antibacterial and antiviral polypropylene composites | |
Keawkhong et al. | Synthesis and characterisation of ZnO nanoparticles for production of antimicrobial textiles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090409 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111102 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121003 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121031 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130109 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130111 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5182911 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160125 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |