JP2007038288A - Gougingless complete penetration welding method using high current pulse mag - Google Patents

Gougingless complete penetration welding method using high current pulse mag Download PDF

Info

Publication number
JP2007038288A
JP2007038288A JP2005310962A JP2005310962A JP2007038288A JP 2007038288 A JP2007038288 A JP 2007038288A JP 2005310962 A JP2005310962 A JP 2005310962A JP 2005310962 A JP2005310962 A JP 2005310962A JP 2007038288 A JP2007038288 A JP 2007038288A
Authority
JP
Japan
Prior art keywords
range
welding
optimum
plate thickness
optimal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005310962A
Other languages
Japanese (ja)
Inventor
Osamu Yasuda
修 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAKADA KIKO KK
Original Assignee
TAKADA KIKO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAKADA KIKO KK filed Critical TAKADA KIKO KK
Priority to JP2005310962A priority Critical patent/JP2007038288A/en
Publication of JP2007038288A publication Critical patent/JP2007038288A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gougingless complete penetration welding method using a high current pulse MAG for a T-joint having an I-shape bevel, a single bevel or a K-shape bevel which does not require a backside chipping work. <P>SOLUTION: The method requires the following conditions when applied for a plate around 17 mm in thickness: (1) a heat input for welding is 1,500-5,000 J/mm; (2) a backside bead leg length is 1.5-6.0 mm; (3) an optimum welding current is in a range of 360±25 A; (4) an optimum welding speed is in a range of 40±10 cpm; (5) an optimum pulse peak voltage is in a range of 40-55 V; (6) an optimum pulse frequency is in a range of around 300-400 Hz; (7) an optimum pulse width is in a range of 1.0-1.5 ms; (8) an optimum target position of wire is in a range of 0 to +1 mm horizontally to the operator side and 0 to +1 mm upward from a root; (9) an optimum moving angle is in a range of 0 to +5°to advancing angle side with respect to a retreating angle of 20°; and (10) an optimum shield gas flow rate is in a range of 20-25 l/min. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、大電流パルスMAGによる厚板にも有効なガウジングレス溶接方法に関するものである。   The present invention relates to a gouging-less welding method that is effective even for a thick plate by a large current pulse MAG.

近年の耐震構造に関する要求や、溶接作業の効率向上に対する要求に応えることのできる、優れた溶接方法が希求されている。また、裏はつりが不要であって作業性の優れた溶接手法が要求されている。
特には、角継手や突き合わせ継手だけでなく、T継手に関しても、厚板(20mm以下程度)でも欠陥のない完全溶込み溶接継手が要求されるようになってきている。
角継手や突き合わせ継手は、溶接部からの熱分散方向が2方向のみであるが、T継手の場合は、溶接部からの熱分散方向が3方向であるために、溶接金属の冷却速度が大きくなるので、完全溶け込みを得るのは、同一溶接条件においては、角継手や突き合わせ継手の場合より困難である。
従来の技術としては、例えば、特許文献1、2等が提案されている。
There is a demand for an excellent welding method capable of meeting the recent demands for earthquake-resistant structures and the demand for improving the efficiency of welding work. In addition, there is a need for a welding method that does not require fishing on the back and has excellent workability.
In particular, not only corner joints and butt joints, but also T joints, there is a demand for completely penetration weld joints that are free from defects even with thick plates (about 20 mm or less).
Square joints and butt joints have only two heat dissipating directions from the welded part, but in the case of T joints, the heat dissipating direction from the welded part is three directions, so the cooling rate of the weld metal is large. Therefore, it is more difficult to obtain complete penetration than in the case of corner joints or butt joints under the same welding conditions.
As conventional techniques, for example, Patent Documents 1 and 2 have been proposed.

(特開2004-106008)(JP 2004-106008) (特開2004-98124)(JP 2004-98124)

特許文献1の技術は、
第1の母材の面と第2の母材の端面との当接部を突合せ溶接する溶接継手において、前記第2の母材における当接部の一方側に形成した第1の開先に臨ませた溶接ワイヤのアークにより、前記当接部を溶融させ、この溶融物を溶接側とは反対側に押し出して形成した第1の溶接部と、前記第2の母材における当接部の他方側に形成した第2の開先に臨ませた溶接ワイヤのアークにより、前記第2の開先側の当接部及び前記第1の溶接部の一部を溶融させて溶接する第2の溶接部とで、前記第1の母材と第2の母材との当接部を突合せ溶接したことを特徴する溶接継手に関する発明である。
特許文献2の技術は、
片側開先を有する第1の母材を第2の母材にT字型に当接し溶接する方法において、前記第1の母材と前記第2の母材との仮付溶接部を所定肉厚まで除去後、前記第1の母材と前記第2の母材で形成される開先溶接部に溶接ワイヤを臨ませ、前記溶接ワイヤを溶接方向に移動させながら、前記溶接ワイヤからのアークによって前記開先溶接部を開先側から溶融しかつ溶融物を開先裏側へ押し出して裏波ビードを形成することを特徴とする溶接方法に関する発明である。
The technology of Patent Document 1 is
In a welded joint for butt welding the contact portion between the surface of the first base material and the end surface of the second base material, the first groove formed on one side of the contact portion of the second base material The first welding part formed by melting the abutting part by the arc of the welding wire that has been exposed and extruding the melt to the side opposite to the welding side, and the abutting part in the second base material A second welding is performed by melting the contact portion on the second groove side and a part of the first welding portion with an arc of a welding wire facing the second groove formed on the other side. The invention relates to a welded joint in which a contact portion between the first base material and the second base material is butt welded with a welded portion.
The technology of Patent Document 2 is
In a method of welding a first base material having a groove on one side in contact with a second base material in a T-shape, a temporary weld portion between the first base material and the second base material is formed with a predetermined thickness. After removing to the thickness, the welding wire is exposed to a groove weld formed by the first base material and the second base material, and the arc from the welding wire is moved while moving the welding wire in the welding direction. In this case, the groove welded portion is melted from the groove side and the melt is pushed out to the groove back side to form a back bead.

特許文献1に記載の発明の場合は、第1の溶接と第2の溶接が必要である。また、対象の厚肉部材の特定が不明確であるとともに、パルス状電流の特定が不明確である。
特許文献2に記載の発明では、溶接条件の各要素の情報が十分に開示されていない。また、立板が下板より薄い場合にのみ実施可能なのもであって、それ以外の場合には実施できないという問題がある。
本発明は、以上の問題を解決するためになされたものであって、次のような手段を講じたものである。
In the case of the invention described in Patent Document 1, the first welding and the second welding are necessary. Further, the specification of the target thick member is unclear, and the specification of the pulsed current is unclear.
In the invention described in Patent Document 2, information on each element of the welding conditions is not sufficiently disclosed. Further, there is a problem that it can be performed only when the standing plate is thinner than the lower plate, and cannot be performed in other cases.
The present invention has been made to solve the above problems, and has taken the following measures.

本発明にかかる請求項1の発明は、
裏はつり不要なI形開先、レ形開先またはK形開先を有するT継手の大電流パルスMAGによるガウジングレス完全溶込み溶接方法であって、
下記の条件(1)〜(10)を満足する溶接方法としたものである。
(1)溶接入熱量は1,500〜5,000J/mm
(2)裏ビード脚長は1.5〜6.0mm
(3)最適溶接電流は、板厚が約20mmの場合には390±25Aの範囲、板厚が約17mmの場合には360±25Aの範囲、板厚が約12mmの場合には320±25Aの範囲、板厚が約9mmの場合には310±25Aの範囲板厚が約6mmの場合には360±25Aの範囲、板厚が約3.2mmの場合には300±25Aの範囲、
(4)最適溶接速度は40±10cpmの範囲
(5)最適パルスピーク電圧は40〜55Vの範囲
(6)最適パルス周波数は、約300〜400Hzの範囲
(7)最適パルス幅は1.0〜1.5msの範囲
(8)最適なワイヤの狙い位置はルートから水平手前に0〜+1mm且つ上方向に0〜+1mmの範囲
(9)最適移動角は、板厚が9mm〜20mmの場合には後退角20°に対して前進角側に0〜+5°の範囲で、板厚が9mm未満の場合には後退角0±10°の範囲
(10)最適シールドガス流量は20〜25L/minの範囲
請求項2の発明では、
裏はつり不要なレ形開先またはK形開先を有するT継手の大電流パルスMAGによるガウジングレス完全溶込み溶接方法であって、
下記の条件(1)〜(10)を満足する溶接方法とした。
(1)溶接入熱量は2,500〜5,000J/mm、
(2)裏ビード脚長は1.5〜6.0mm、
(3)最適溶接電流は360±25Aの範囲(板厚17mmの場合)、320±25Aの範囲(板厚12mmの場合)、310±25Aの範囲(板厚9mmの場合)、
(4)最適溶接速度は40±10cpmの範囲、
(5)最適パルスピーク電圧は40〜55Vの範囲、
(6)最適パルス周波数は、約300〜320Hzの範囲、
(7)最適パルス幅は1.0〜1.5msの範囲、
(8)最適なワイヤの狙い位置はルートから水平手前に0〜+1mm,上方向に0〜+1mmの範囲、
(9)最適移動角は後退角20°に対して前進角側に0〜+5°の範囲、
(10)最適シールドガス流量は20〜25L/minの範囲、
という条件を満足する溶接方法とすることによって、
裏はつり不要なレ形開先またはK形開先を有するT継手の大電流パルスMAGによるガウジングレス完全溶込み溶接方法を実現した。
また、
板厚を9〜17mmとした場合に、上記条件で欠陥の無い溶接が可能となった。
According to the first aspect of the present invention,
The back is a gouging-less full penetration welding method using a high-current pulse MAG of a T-joint having an I-shaped groove, a re-shaped groove or a K-shaped groove, which does not require fishing,
The welding method satisfies the following conditions (1) to (10).
(1) Weld heat input is 1,500 to 5,000 J / mm
(2) Back bead leg length is 1.5-6.0mm
(3) The optimum welding current is within the range of 390 ± 25A when the plate thickness is about 20mm, within the range of 360 ± 25A when the plate thickness is about 17mm, and 320 ± 25A when the plate thickness is about 12mm. When the plate thickness is about 9 mm, the range is 310 ± 25 A. When the plate thickness is about 6 mm, the range is 360 ± 25 A. When the plate thickness is about 3.2 mm, the range is 300 ± 25 A.
(4) Optimal welding speed is in the range of 40 ± 10 cpm (5) Optimal pulse peak voltage is in the range of 40 to 55 V (6) Optimal pulse frequency is in the range of about 300 to 400 Hz (7) Optimal pulse width is in the range of 1.0 to 1.5 ms (8) The optimal wire aiming position is 0 to +1 mm in the horizontal direction from the root and 0 to +1 mm in the upward direction. In the range of 0 to + 5 ° on the advancing angle side with respect to ° and the plate thickness is less than 9 mm, the range of the receding angle of 0 ± 10 ° (10) The optimal shielding gas flow rate is in the range of 20 to 25 L / min. In the invention of 2,
The back is a gouging-less full penetration welding method using a high-current pulse MAG of a T-joint having a re-shaped groove or a K-shaped groove, which does not require fishing,
The welding method satisfies the following conditions (1) to (10).
(1) Welding heat input is 2,500-5,000 J / mm,
(2) Back bead leg length is 1.5-6.0mm,
(3) Optimal welding current is in the range of 360 ± 25A (when the plate thickness is 17mm), 320 ± 25A (when the plate thickness is 12mm), 310 ± 25A (when the plate thickness is 9mm),
(4) The optimum welding speed is in the range of 40 ± 10 cpm.
(5) The optimum pulse peak voltage is in the range of 40 to 55V.
(6) The optimum pulse frequency is in the range of about 300-320 Hz.
(7) The optimum pulse width is in the range of 1.0 to 1.5 ms.
(8) The optimum target position of the wire is in the range of 0 to +1 mm horizontally from the root and 0 to +1 mm upward.
(9) The optimum movement angle is in the range of 0 to + 5 ° on the advance angle side with respect to the receding angle of 20 °.
(10) The optimum shielding gas flow rate is in the range of 20-25 L / min.
By making a welding method that satisfies the condition
A gouging-less full penetration welding method using a high-current pulse MAG of a T-joint with a re-shaped groove or a K-shaped groove that does not require a backside has been realized.
Also,
When the plate thickness was 9 to 17 mm, welding without defects was possible under the above conditions.

本発明のガウジングレス溶接方法によれば、欠陥の無い溶接が可能となるとともに、裏はつりが不要となって作業効率が向上するという効果も得られる。
According to the gouging-less welding method of the present invention, it is possible to perform welding without defects, and it is possible to obtain an effect of improving work efficiency by eliminating the need to hang the back.

以下においては、本発明の大電流パルスMAGによるガウジングレス溶接方法の実施の形態を、図面を用いて説明する。
図1は、本発明の溶接継手の一実施の形態を示す断面図であり、この図において、
1は第1の母材(縦材)、2はこの第1の母材1にT字型に接合される第2の母材(横材)である。前記第1の母材1は、その突合わせ端部にルートフェイス3を有するようにその一方側(表側)に形成したレ型開先形成面4が設けられている。
また、前記第2の母材2は第1の母材1のルートフェイス3と接触する平坦面5を有しており、第1の母材1とによりT字形継手を形成する。
In the following, an embodiment of a gouging-less welding method using a large current pulse MAG of the present invention will be described with reference to the drawings.
FIG. 1 is a sectional view showing an embodiment of a welded joint according to the present invention.
Reference numeral 1 denotes a first base material (vertical material), and 2 denotes a second base material (cross member) joined to the first base material 1 in a T-shape. The first base material 1 is provided with a mold groove forming surface 4 formed on one side (front side) so as to have a root face 3 at a butt end portion thereof.
The second base material 2 has a flat surface 5 that contacts the root face 3 of the first base material 1, and forms a T-shaped joint with the first base material 1.

6は溶接部で、この溶接部6は第1の母材1におけるレ型開先形成面4と第2の母材2の平坦面5とにより形成される開先側に設けられている。この溶接部6は後述する溶接ワイヤからのアークによって、開先側の部分を溶融した溶融物を表側から裏側に押し出すようにして形成されている。裏側に押し出された溶融物で裏波ビードが形成されている。 Reference numeral 6 denotes a welded portion, and the welded portion 6 is provided on the groove side formed by the mold groove forming surface 4 of the first base material 1 and the flat surface 5 of the second base material 2. This welded portion 6 is formed by extruding from the front side to the back side a melt obtained by melting the groove side portion by an arc from a welding wire described later. A back bead is formed from the melt extruded to the back side.

前述した溶接部6を形成するために、第1の母材の先端のルートフェース3を第2の母材の平坦面に接触させ、2つの母材の開先側の接触部(溶接部6)に対して開先側から溶接ワイヤの先端部を臨ませ、溶接ワイヤからアークを発生させて、アークで接触部付近の2つの母材部分を溶融させるように、前記溶接ワイヤには、直流電流とパルス状の電流とを重畳させた電流が印加される。 In order to form the welded portion 6 described above, the root face 3 at the tip of the first base material is brought into contact with the flat surface of the second base material, and the contact portions (welded portion 6 on the groove side of the two base materials). The welding wire has a direct current so that the tip of the welding wire faces from the groove side, an arc is generated from the welding wire, and the two base metal parts near the contact portion are melted by the arc. A current obtained by superimposing a current and a pulsed current is applied.

なお、前記溶接ワイヤの周りには、20〜25L/minの範囲のシールドガス9が吐出されている。 A shield gas 9 in the range of 20 to 25 L / min is discharged around the welding wire.

10は溶接電源であり、この溶接電源10はケーブル11および12により溶接ワイヤと母材1または母材2に接続されている。13は電圧検出器であり、溶接電源10から溶接ワイヤに供給される溶接電流の電圧を検出する。14は電流検出器であり、溶接電源10から溶接ワイヤに供給される溶接電流を検出する。 A welding power source 10 is connected to the welding wire and the base material 1 or the base material 2 by cables 11 and 12. A voltage detector 13 detects the voltage of the welding current supplied from the welding power source 10 to the welding wire. A current detector 14 detects a welding current supplied from the welding power source 10 to the welding wire.

次に、板厚を25mmとした場合において、溶接部の溶接金属形状のアスペクト比をRとし、溶接入熱量を変えた場合の高温割れの発生の有無を検証した。その結果は縦軸にアスペクト比α,横軸に溶接入熱量として、図2に示した。なお、前記アスペクト比αは、図1の断面図において、溶接部の溶接金属形状の横方向の深さをD,縦方向の高さWとしたとき、アスペクト比α=D/Wとする。
図2に示されているように、
溶接入熱量を3,000J/mm以上にすると、アスペクト比αは1.3〜2.8となり、高温割れが発生しなかった。
溶接入熱量を3,000J/mm未満にすると、アスペクト比αは1.4〜2.5となり、高温割れが発生した。
アスペクト比の範囲がほぼ同じであることを考慮すると、大電流パルスMAG溶接方法においては、高温割れを防止するためには、溶接入熱量を3,000J/mmとすることが必要であることが分かった。
Next, when the plate thickness was 25 mm, the aspect ratio of the weld metal shape of the weld was R, and the presence or absence of hot cracking when the welding heat input was changed was verified. The results are shown in FIG. 2 with the aspect ratio α on the vertical axis and the welding heat input on the horizontal axis. 1, the aspect ratio α is D / W, where D is the horizontal depth of the weld metal shape of the weld and D is the height W in the vertical direction.
As shown in FIG.
When the welding heat input was 3,000 J / mm or more, the aspect ratio α was 1.3 to 2.8, and no hot cracking occurred.
When the welding heat input was less than 3,000 J / mm, the aspect ratio α was 1.4 to 2.5, and hot cracking occurred.
Considering that the range of the aspect ratio is almost the same, it is found that in the high current pulse MAG welding method, it is necessary to set the welding heat input to 3,000 J / mm in order to prevent hot cracking. It was.

次に、板厚25mmの場合における高温割れの高さと、裏ビード脚長との関係を図3に示した。
図3に示されているように、裏ビード脚長が1.5mm以上出現すると、高温割れは発生せず、それ以下の場合は高温割れが発生した。このことから、裏ビード脚長が1.5mm以上出現すると高温割れの発生が無いと判定できるという、高温割れの発生の有無を外観から判定する基準が得られた。したがって、実際の溶接作業においては、裏ビードをオーバーラップにならない範囲でできる限り大きく出現させることが好ましい。
なお、図6には、前記板厚25mmの母材の特性を、他の厚さのものと共に示した。また、図7には、前記溶接ワイヤ(YGW16)の特性を、他のものと共に示した。図8には溶接条件を示した。
Next, FIG. 3 shows the relationship between the height of the hot crack and the length of the back bead leg when the plate thickness is 25 mm.
As shown in FIG. 3, when the back bead leg length appeared 1.5 mm or more, hot cracking did not occur, and when it was less than that, hot cracking occurred. From this, a criterion for judging the occurrence of hot cracking from the appearance, that it can be judged that there is no hot cracking when the back bead leg length appears 1.5 mm or more, was obtained. Therefore, in an actual welding operation, it is preferable that the back bead appears as large as possible without causing overlap.
In FIG. 6, the characteristics of the base material having a thickness of 25 mm are shown together with other thicknesses. FIG. 7 shows the characteristics of the welding wire (YGW16) together with other characteristics. FIG. 8 shows the welding conditions.

次に、図9、10に示した鋼材(板厚17mm)で製作した試験体(図1)を用いて、ルートフェース2mmの場合で、高温割れの発生しない溶接条件の振れ幅を確認したところ、以下に示す範囲が適当であることが判明した。
すなわち、
(1)溶接入熱量は2,500〜5,000J/mmとする。溶接入熱量が2,500J/mmより少ないと高温割れが発生しやすい。
(2)裏ビード脚長は1.5〜6.0mmとする。裏ビード脚長が1.5mm未満の場合は高温割れが発生した。
(3)最適溶接電流は360±25Aの範囲とする。この範囲を逸脱すると裏波ビードが出過ぎたり、UTで欠陥が多発したりする。
(4)最適溶接速度は40±10cpmの範囲とする。この範囲を逸脱するとUT(超音波探傷検査)およびマクロでLP(融合不良)が確認された。
(5)最適パルスピーク電圧は40〜55Vの範囲とする。パルスピーク電圧を55V以上にすると、裏波ビードは良好であるがマクロ検査で欠陥が確認された。
電流パルス波形の立ち上がりと立ち下がりは図4に示したように急峻であることが必要である。
(6)最適パルス周波数は、約300〜320Hzの範囲とする。パルス周波数をこの範囲外とすると、裏波ビードが出にくくなり、欠陥が増加する傾向が確認された。
(7)最適パルス幅は1.0〜1.5msの範囲とする。パルス幅を1.0ms未満にすると、裏波ビードが出にくくなり、欠陥が増加する傾向が確認された。
(8)最適なワイヤの狙い位置はルートから水平手前に0〜+1mm,上方向に0〜+1mmの範囲とする。この範囲外とすると、裏波ビードが出にくくなり、欠陥が確認された。
(9)最適移動角は後退角20°に対して前進角側に0〜+5°の範囲とする。これ以上傾けると、裏波ビードが出にくくなり、欠陥が確認された。
(10)最適シールドガス流量は20〜25L/minの範囲とする。これ以上とすると、裏波ビードが出にくくなり、欠陥が確認された。
Next, using the specimen (Fig. 1) manufactured with the steel material (plate thickness 17mm) shown in Figs. 9 and 10, the width of the welding condition where hot cracking does not occur in the case of 2mm root face was confirmed. The following ranges were found to be suitable.
That is,
(1) The welding heat input is 2,500 to 5,000 J / mm. If the welding heat input is less than 2,500 J / mm, hot cracking is likely to occur.
(2) The back bead leg length is 1.5 to 6.0 mm. Hot cracking occurred when the back bead leg length was less than 1.5 mm.
(3) The optimum welding current is in the range of 360 ± 25A. If it deviates from this range, too many back-beads will appear, or many defects will occur in the UT.
(4) The optimum welding speed is in the range of 40 ± 10 cpm. Outside this range, UT (ultrasonic inspection) and macro (LP) were confirmed.
(5) The optimum pulse peak voltage is in the range of 40 to 55V. When the pulse peak voltage was 55 V or higher, the back bead was good, but defects were confirmed by macro inspection.
The rise and fall of the current pulse waveform must be steep as shown in FIG.
(6) The optimum pulse frequency is in the range of about 300 to 320 Hz. When the pulse frequency was out of this range, it was difficult to generate back bead and the tendency for defects to increase was confirmed.
(7) The optimum pulse width is in the range of 1.0 to 1.5 ms. When the pulse width was less than 1.0 ms, it was difficult to generate the back bead and the tendency for defects to increase was confirmed.
(8) The optimum target position of the wire is in the range of 0 to +1 mm horizontally from the root and 0 to +1 mm upward. Outside of this range, it was difficult to produce back bead and defects were confirmed.
(9) The optimum movement angle is in the range of 0 to + 5 ° on the advance angle side with respect to the receding angle of 20 °. When tilted further, it became difficult to produce back-beads and defects were confirmed.
(10) The optimum shielding gas flow rate should be in the range of 20-25 L / min. If it was more than this, it would be difficult to produce backside beads and defects were confirmed.

以上の条件を満足するために、前記溶接電源10は、最適溶接電流は少なくとも310±25A〜360±25Aの範囲、最適パルスピーク電圧は40〜55Vの範囲、最適パルス周波数は約300〜320Hzの範囲、最適パルス幅は1.0〜1.5msの範囲に制御可能な溶接電力を出力できることが必要である。 In order to satisfy the above conditions, the welding power source 10 has an optimum welding current of at least 310 ± 25 A to 360 ± 25 A, an optimum pulse peak voltage of 40 to 55 V, and an optimum pulse frequency of about 300 to 320 Hz. The range and optimum pulse width must be able to output a welding power that can be controlled within a range of 1.0 to 1.5 ms.

以上の溶接電源を使用して、最適溶接速度を40±10cpmの範囲に保持しつつ、裏ビード脚長が1.5〜6.0mmとなるように制御しながらアーク溶接の作業をすることによって、高温割れが無く、欠陥の無い溶接が可能となった。
T継手だけでなく、角継手や、突き合わせ継手に関しても同様の効果が得られる。
By using the above welding power source and maintaining the optimum welding speed in the range of 40 ± 10 cpm and controlling the back bead leg length to be 1.5 to 6.0 mm, high temperature cracking can be achieved. It was possible to weld without defects.
Similar effects can be obtained not only for the T joint but also for the corner joint and the butt joint.

本発明による大電流パルスMAGガウジングレス溶接方法においては、
板厚17mmの場合には、適正溶接条件とその変動幅は以下の通りとする。
大電流パルスの波形において、その立ち上がりと立ち下がりが急峻であること。
最適溶接電流は、適正溶接条件は360A、変動幅は±25A。
最適溶接速度は、適正溶接条件は40cpm、変動幅は±10cpmの範囲。
最適パルスピーク電圧は、適正溶接条件は50V、変動幅は−10〜+5Vの範囲。
最適パルス周波数は、適正溶接条件は約300〜320Hzの範囲。
最適パルス幅は、適正溶接条件は1.5ms、変動幅は−0.5〜0msの範囲。
最適なワイヤの狙い位置は、適正溶接条件はルート部とし、変動幅はルート部から水平手前に0〜+1mm,上方向に0〜+1mmの範囲。
最適移動角は、適正溶接条件は後退角20°とし、変動幅は前進角側に0〜+5°の範囲。
最適シールドガス流量は、適正溶接条件は25L/min、変動幅は−5〜0L/minの範囲。
なお、板厚12mmの場合には、最適溶接電流は320±25Aの範囲とし、ほかの条件は10%程度の増減変動はあるが、ほぼ同様とする。また、板厚9mmの場合には最適溶接電流は310±25Aの範囲とし、ほかの条件は10%程度の増減変動はあるが、ほぼ同様とする。
In the high current pulse MAG gougingless welding method according to the present invention,
In the case of a plate thickness of 17 mm, the appropriate welding conditions and the fluctuation range are as follows.
The rising and falling edges of a large current pulse waveform must be steep.
The optimum welding current is 360A for proper welding conditions and ± 25A for fluctuation range.
The optimum welding speed is in the range of 40 cpm for the proper welding conditions and ± 10 cpm for the fluctuation range.
The optimum pulse peak voltage is 50V under proper welding conditions and the fluctuation range is -10 to + 5V.
The optimum pulse frequency is in the range of about 300-320Hz for proper welding conditions.
The optimum pulse width is 1.5 ms for proper welding conditions and the fluctuation range is -0.5 to 0 ms.
The optimum target position of the wire is that the proper welding condition is the root part, and the fluctuation range is 0 to +1 mm horizontally from the root part and 0 to +1 mm upward.
The optimum travel angle is 20 ° for the proper welding conditions and the fluctuation range is 0 to + 5 ° on the forward angle side.
The optimum shielding gas flow rate is 25 L / min for proper welding conditions and the fluctuation range is in the range of -5 to 0 L / min.
In the case of a plate thickness of 12 mm, the optimum welding current is in the range of 320 ± 25 A, and the other conditions are approximately the same, although there is a fluctuation of about 10%. When the plate thickness is 9 mm, the optimum welding current is in the range of 310 ± 25 A, and the other conditions are approximately the same, although there is a fluctuation of about 10%.

次に、ルートフェースRFが0〜4mmの場合における溶接条件を、ルートフェースRFが2mmの場合の溶接条件(適正溶接条件)を基準とした場合の変更する範囲を以下のように確認した。
(1)RFが4mmの場合
溶接電流を大きく、溶接速度を遅くすることで、良好な結果が得られる。
(2)RFが3mmの場合
適正溶接条件より、溶接電流を50A大きくし、溶接速度を10cpm遅くすることで、良好な結果が得られる。
(3)RFが1mmの場合
適正溶接条件より、溶接電流を50A小さく、溶接速度を10cpm速くすることで、良好な結果が得られる。
(4)RFが0mmの場合
適正溶接条件より、溶接電流を70A小さくし、溶接速度を10cpm速くすることで、良好な結果が得られる。
以上の結果より、板厚17mmにおけるRFの変動幅は0〜4mmであることが確認できた。
また、板厚12mm、および9mmの場合も、板厚17mmの場合と同様にRFの変動幅が0〜4mmにおいて適正な溶接が確認できた。
Next, the range for changing the welding conditions when the root face RF is 0 to 4 mm based on the welding conditions when the root face RF is 2 mm (appropriate welding conditions) was confirmed as follows.
(1) When RF is 4 mm Good results can be obtained by increasing the welding current and decreasing the welding speed.
(2) When RF is 3 mm Good results can be obtained by increasing the welding current by 50 A and reducing the welding speed by 10 cpm from the appropriate welding conditions.
(3) When RF is 1 mm Good results can be obtained by reducing the welding current by 50 A and increasing the welding speed by 10 cpm from the appropriate welding conditions.
(4) When RF is 0 mm Good results can be obtained by reducing the welding current by 70 A and increasing the welding speed by 10 cpm from the appropriate welding conditions.
From the above results, it was confirmed that the fluctuation range of RF at a plate thickness of 17 mm was 0 to 4 mm.
Further, in the case of the plate thicknesses of 12 mm and 9 mm, appropriate welding could be confirmed at the RF fluctuation range of 0 to 4 mm as in the case of the plate thickness of 17 mm.

また、従来のインバータ制御方式のアーク溶接電源を用いた溶接方法では、図5に示したように、板厚17mmでは8パスの溶接工程が必要であったが、本発明に用いる大電流パルスMAG溶接電源を用いた溶接方法では6パスで良いので、大幅な作業時間の縮減が可能である。 Further, in the conventional welding method using an inverter-controlled arc welding power source, as shown in FIG. 5, an 8-pass welding process is required when the plate thickness is 17 mm, but the large current pulse MAG used in the present invention is used. In the welding method using a welding power source, six passes are sufficient, and the working time can be greatly reduced.

また、図11に示した試験結果より、本発明による大電流パルスMAGガウジングレス溶接方法によれば、従来のガウジング溶接方法と同様に、無欠陥であり、機械的性質は同等あるいはそれ以上の性能であることが確認できた。
また、板厚17mmのマクロ試験片による試験結果より、角変形を従来より約30%抑制できることが確認できた。
Further, from the test results shown in FIG. 11, according to the large current pulse MAG gouging-less welding method of the present invention, as in the conventional gouging welding method, it is defect-free and the mechanical properties are equivalent or better. It was confirmed that.
Moreover, it was confirmed from the test results using a macro test piece having a plate thickness of 17 mm that the angular deformation can be suppressed by about 30% compared to the prior art.

さらに、本発明による溶接方法は、裏はつり不要なI形開先、レ形開先またはK形開先を有するT継手の大電流パルスMAGによるガウジングレス完全溶込み溶接方法として効果が得られる。
また、下記の諸条件において効果が得られる。
(1)溶接入熱量は1,500〜5,000J/mm
(2)裏ビード脚長は1.5〜6.0mm
(3)最適溶接電流は、板厚が約20mmの場合には390±25Aの範囲、板厚が約17mmの場合には360±25Aの範囲、板厚が約12mmの場合には320±25Aの範囲、板厚が約9mmの場合には310±25Aの範囲板厚が約6mmの場合には360±25Aの範囲、板厚が約3.2mmの場合には300±25Aの範囲、
(4)最適溶接速度は40±10cpmの範囲
(5)最適パルスピーク電圧は40〜55Vの範囲
(6)最適パルス周波数は、約300〜400Hzの範囲
(7)最適パルス幅は1.0〜1.5msの範囲
(8)最適なワイヤの狙い位置はルートから水平手前に0〜+1mm且つ上方向に0〜+1mmの範囲
(9)最適移動角は、板厚が9mm〜20mmの場合には後退角20°に対して前進角側に0〜+5°の範囲で、板厚が9mm未満の場合には後退角0±10°の範囲
(10)最適シールドガス流量は20〜25L/minの範囲
Further, the welding method according to the present invention is effective as a gouging-less complete penetration welding method using a large current pulse MAG of a T joint having an I-shaped groove, a ledge-shaped groove or a K-shaped groove, which does not require a back side.
Moreover, an effect is acquired on the following various conditions.
(1) Weld heat input is 1,500 to 5,000 J / mm
(2) Back bead leg length is 1.5-6.0mm
(3) The optimum welding current is within the range of 390 ± 25A when the plate thickness is about 20mm, within the range of 360 ± 25A when the plate thickness is about 17mm, and 320 ± 25A when the plate thickness is about 12mm. When the plate thickness is about 9 mm, the range is 310 ± 25 A. When the plate thickness is about 6 mm, the range is 360 ± 25 A. When the plate thickness is about 3.2 mm, the range is 300 ± 25 A.
(4) Optimal welding speed is in the range of 40 ± 10 cpm (5) Optimal pulse peak voltage is in the range of 40 to 55 V (6) Optimal pulse frequency is in the range of about 300 to 400 Hz (7) Optimal pulse width is in the range of 1.0 to 1.5 ms (8) The optimal wire aiming position is 0 to +1 mm in the horizontal direction from the root and 0 to +1 mm in the upward direction. In the range of 0 to + 5 ° on the advancing angle side with respect to °, and when the plate thickness is less than 9 mm, the range of receding angle 0 ± 10 ° (10) The optimum shielding gas flow rate is in the range of 20 to 25 L / min

本発明の実施形態のT継手の溶接方法を説明する断面図である。It is sectional drawing explaining the welding method of the T joint of embodiment of this invention. 板厚を25mmとした場合において、溶接入熱量を変えた場合の高温割れの発生の有無を検証結果を示す図である。It is a figure which shows a verification result about the presence or absence of the generation | occurrence | production of the hot crack at the time of changing plate | board thickness to 25 mm when welding heat input is changed. 板厚25mmの場合における高温割れの高さと、裏ビード脚長との関係を示す図である。It is a figure which shows the relationship between the height of a hot crack in the case of plate | board thickness 25mm, and a back bead leg length. 本発明に用いる電流パルス波形の立ち上がりと立ち下がりの波形を示す図である。It is a figure which shows the rising and falling waveform of the current pulse waveform used for this invention. 本発明による方法と従来方法との、溶接工程のパス数の比較説明図である。It is comparison explanatory drawing of the number of passes of a welding process with the method by this invention, and the conventional method. 使用した板厚25mmの母材の特性を、他の厚さのものと共に示した図である。It is the figure which showed the characteristic of the base material of the board thickness of 25 mm used with the thing of other thickness. 使用した溶接ワイヤ(YGW16)の特性を他のものと共に示した図である。It is the figure which showed the characteristic of the used welding wire (YGW16) with another. 実施形態における溶接条件を示した図である。It is the figure which showed the welding conditions in embodiment. 使用した板厚17mmの鋼材(ルートフェース2mm)の特性を示した図である。It is the figure which showed the characteristic of the steel material (root face 2mm) of the plate | board thickness used 17mm. 使用した板厚17mmの鋼材の特性を示した図である。It is the figure which showed the characteristic of the steel material of plate thickness 17mm used. 本発明による大電流パルスMAGガウジングレス溶接方法による溶接と、従来のガウジング溶接方法による溶接の比較結果を示す図である。It is a figure which shows the comparison result of the welding by the high current pulse MAG gouging-less welding method by this invention, and the welding by the conventional gouging welding method.

符号の説明Explanation of symbols

1 第1の母材(縦材)
2 第2の母材(横材)
3 ルートフェイス
4 レ型開先形成面
5 平坦面
6 溶接部
9 シールドガス
10 溶接電源
11、12 ケーブル
13 電圧検出器
14 電流検出器
1 First base material (longitudinal)
2 Second base material (cross member)
3 Root face 4 Re-shaped groove forming surface 5 Flat surface 6 Welded portion 9 Shielding gas 10 Welding power supply 11 and 12 Cable 13 Voltage detector 14 Current detector

Claims (3)

裏はつり不要なI形開先、レ形開先またはK形開先を有するT継手の大電流パルスMAGによるガウジングレス完全溶込み溶接方法であって、
下記の条件(1)〜(10)を満足する溶接方法。
(1)溶接入熱量は1,500〜5,000J/mm
(2)裏ビード脚長は1.5〜6.0mm
(3)最適溶接電流は、板厚が約20mmの場合には390±25Aの範囲、板厚が約17mmの場合には360±25Aの範囲、板厚が約12mmの場合には320±25Aの範囲、板厚が約9mmの場合には310±25Aの範囲板厚が約6mmの場合には360±25Aの範囲、板厚が約3.2mmの場合には300±25Aの範囲、
(4)最適溶接速度は40±10cpmの範囲
(5)最適パルスピーク電圧は40〜55Vの範囲
(6)最適パルス周波数は、約300〜400Hzの範囲
(7)最適パルス幅は1.0〜1.5msの範囲
(8)最適なワイヤの狙い位置はルートから水平手前に0〜+1mm且つ上方向に0〜+1mmの範囲
(9)最適移動角は、板厚が9mm〜20mmの場合には後退角20°に対して前進角側に0〜+5°の範囲で、板厚が9mm未満の場合には後退角0±10°の範囲
(10)最適シールドガス流量は20〜25L/minの範囲
The back is a gouging-less full penetration welding method using a high-current pulse MAG of a T-joint having an I-shaped groove, a re-shaped groove or a K-shaped groove, which does not require fishing,
A welding method that satisfies the following conditions (1) to (10).
(1) Weld heat input is 1,500 to 5,000 J / mm
(2) Back bead leg length is 1.5-6.0mm
(3) The optimum welding current is within the range of 390 ± 25A when the plate thickness is about 20mm, within the range of 360 ± 25A when the plate thickness is about 17mm, and 320 ± 25A when the plate thickness is about 12mm. When the plate thickness is about 9 mm, the range is 310 ± 25 A. When the plate thickness is about 6 mm, the range is 360 ± 25 A. When the plate thickness is about 3.2 mm, the range is 300 ± 25 A.
(4) Optimal welding speed is in the range of 40 ± 10 cpm (5) Optimal pulse peak voltage is in the range of 40 to 55 V (6) Optimal pulse frequency is in the range of about 300 to 400 Hz (7) Optimal pulse width is in the range of 1.0 to 1.5 ms (8) The optimal wire aiming position is 0 to +1 mm in the horizontal direction from the root and 0 to +1 mm in the upward direction. In the range of 0 to + 5 ° on the advancing angle side with respect to °, and when the plate thickness is less than 9 mm, the range of receding angle 0 ± 10 ° (10) The optimum shielding gas flow rate is in the range of 20 to 25 L / min
裏はつり不要なレ形開先またはK形開先を有するT継手の大電流パルスMAGによるガウジングレス完全溶込み溶接方法であって、
下記の条件(1)〜(10)を満足する溶接方法。
(1)溶接入熱量は2,500〜5,000J/mm
(2)裏ビード脚長は1.5〜6.0mm
(3)最適溶接電流は、板厚が約17mmの場合には360±25Aの範囲、板厚が約12mmの場合には320±25Aの範囲、板厚が約9mmの場合には310±25Aの範囲
(4)最適溶接速度は40±10cpmの範囲
(5)最適パルスピーク電圧は40〜55Vの範囲
(6)最適パルス周波数は、約300〜320Hzの範囲
(7)最適パルス幅は1.0〜1.5msの範囲
(8)最適なワイヤの狙い位置はルートから水平手前に0〜+1mm,上方向に0〜+1mmの範囲
(9)最適移動角は後退角20°に対して前進角側に0〜+5°の範囲
(10)最適シールドガス流量は20〜25L/minの範囲
The back is a gouging-less full penetration welding method using a high-current pulse MAG of a T-joint having a re-shaped groove or a K-shaped groove, which does not require fishing,
A welding method that satisfies the following conditions (1) to (10).
(1) Weld heat input is 2,500 to 5,000 J / mm
(2) Back bead leg length is 1.5-6.0mm
(3) The optimum welding current is in the range of 360 ± 25A when the plate thickness is about 17mm, within the range of 320 ± 25A when the plate thickness is about 12mm, and 310 ± 25A when the plate thickness is about 9mm. (4) Optimal welding speed is in the range of 40 ± 10 cpm (5) Optimum pulse peak voltage is in the range of 40 to 55 V (6) Optimal pulse frequency is in the range of about 300 to 320 Hz (7) Optimal pulse width is in the range of 1.0 to 1.5 ms range (8) Optimal wire target position is 0 to +1 mm horizontally from the root and 0 to +1 mm upward (9) Optimum travel angle is 0 on the forward angle side with respect to the receding angle of 20 ° -+ 5 ° range (10) Optimal shielding gas flow rate is in the range of 20-25 L / min
板厚を9〜17mmとする請求項1または2の何れか1項に記載のガウジングレス完全溶込み溶接方法。 The gouging-less full penetration welding method according to any one of claims 1 and 2, wherein the plate thickness is 9 to 17 mm.
JP2005310962A 2005-07-08 2005-10-26 Gougingless complete penetration welding method using high current pulse mag Pending JP2007038288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005310962A JP2007038288A (en) 2005-07-08 2005-10-26 Gougingless complete penetration welding method using high current pulse mag

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005200495 2005-07-08
JP2005310962A JP2007038288A (en) 2005-07-08 2005-10-26 Gougingless complete penetration welding method using high current pulse mag

Publications (1)

Publication Number Publication Date
JP2007038288A true JP2007038288A (en) 2007-02-15

Family

ID=37796747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005310962A Pending JP2007038288A (en) 2005-07-08 2005-10-26 Gougingless complete penetration welding method using high current pulse mag

Country Status (1)

Country Link
JP (1) JP2007038288A (en)

Similar Documents

Publication Publication Date Title
US9061374B2 (en) Laser/arc hybrid welding method and method for producing welded member using same
EP2786830B1 (en) Submerged arc welding method for steel sheets
JPS58119481A (en) Laser beam melting welding method
EP2695694A1 (en) Method of welding of elements for the power industry, particulary of sealed wall panels of power boilers using MIG/MAG and laser welding
CA3044370A1 (en) Gouging-less complete penetration welding method, and welded joint
US9764410B2 (en) Submerged arc welding method for steel plate
JP2010172896A (en) Multi-electrode submerged arc welding method of steel material
JP6383319B2 (en) Multi-electrode single-sided single layer submerged arc welding method
JP2007038288A (en) Gougingless complete penetration welding method using high current pulse mag
JP6082276B2 (en) Welding method
JP6031227B2 (en) Welding method
KR20230021579A (en) One-side submerged arc welding method for multielectrode
KR101595279B1 (en) Fgb welding method
JP5895423B2 (en) Multi-electrode submerged arc welding method for steel sheet
WO2019151162A1 (en) One-side submerged arc welding method and one-side submerged arc welding device
KR102597063B1 (en) Clad pipe producting method using pulse wavedorm overlay welding
JPS62286675A (en) Multi electrode gas shield arc welding method for strip steel
JP5483553B2 (en) Laser-arc combined welding method
JP6112215B2 (en) Tack welding method in manufacturing process of large diameter welded steel pipe
JP6715682B2 (en) Submerged arc welding method
RU2766615C1 (en) Method for electron beam welding of thin-walled tubular parts
JPH09271992A (en) Backing material for t-joint
JP2007030015A (en) Steel plate connection welding method
JP2002178153A (en) Narrow groove multi-layer arc welding method for extra-thick steel
JP2005144457A (en) Welding method for aluminum material or aluminum alloy material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070719

A977 Report on retrieval

Effective date: 20090518

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A02 Decision of refusal

Effective date: 20091006

Free format text: JAPANESE INTERMEDIATE CODE: A02