JP2007038144A - Method and system for treating organic resources derived from organism - Google Patents

Method and system for treating organic resources derived from organism Download PDF

Info

Publication number
JP2007038144A
JP2007038144A JP2005225625A JP2005225625A JP2007038144A JP 2007038144 A JP2007038144 A JP 2007038144A JP 2005225625 A JP2005225625 A JP 2005225625A JP 2005225625 A JP2005225625 A JP 2005225625A JP 2007038144 A JP2007038144 A JP 2007038144A
Authority
JP
Japan
Prior art keywords
resource
fossil
biological organic
resources
black liquor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005225625A
Other languages
Japanese (ja)
Other versions
JP4919253B2 (en
Inventor
Katsuhisa Maruyama
勝久 丸山
Yasumasa Yamashita
安正 山下
Hiroaki Hatori
浩章 羽鳥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005225625A priority Critical patent/JP4919253B2/en
Publication of JP2007038144A publication Critical patent/JP2007038144A/en
Application granted granted Critical
Publication of JP4919253B2 publication Critical patent/JP4919253B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/78Recycling of wood or furniture waste

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a gas having a high hydrogen content and activated carbon at a low cost with a high productivity by effectively utilizing resources such as a biomass and lignite. <P>SOLUTION: The system for treating organic resources derived from an organism and/or fossil resources is characterized by at least comprising a means of mixing black liquor with organic resources derived from an organism and/or fossil resources, a means of pyrolyzing the resulting mixture in an inert gas atmosphere at a temperature of from 500 to 800°C, and a means of pyrolyzing and activating the porous carbide prepared in the preceding means at a temperature of from 500 to 900°C. The treatment system may further comprise a means of contacting and treating the porous carbide prepared in the above means with water. The treatment system may further comprise a separate means of activating the porous carbide other than the above pyrolyzing means. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、生物由来の有機性資源および/または化石資源処理システム、および生物由来の有機性資源および/または化石資源処理方法に関する。とくに、バイオマスなどの固体有機物や褐炭などの低品質化石資源の処理システム、およびそれらの処理方法に関する。さらには、上記資源を比較的低い温度で熱分解し、タールの発生を抑制し、水素を主成分とする熱分解ガスを多量に得ると共に多孔性炭化物を得る熱分解処理と、熱分解によって得られた多孔性炭化物を賦活処理することにより活性炭を得る処理とを備える資源の処理システム、およびそれらの処理方法に関する。さらには、多孔性炭化物中に含まれるアルカリを回収し再利用する資源の総合処理システム、およびそれらの処理方法に関する。   The present invention relates to a biological organic resource and / or fossil resource processing system, and a biological organic resource and / or fossil resource processing method. In particular, it relates to a processing system for low-quality fossil resources such as solid organic matter such as biomass and lignite, and a processing method thereof. Furthermore, the above-mentioned resources are pyrolyzed at a relatively low temperature to suppress the generation of tar, to obtain a large amount of pyrolysis gas mainly composed of hydrogen and to obtain porous carbides, and to obtain by pyrolysis. The present invention relates to a resource processing system including a process of activating activated carbon carbide to obtain activated carbon, and a processing method thereof. Furthermore, the present invention relates to a comprehensive processing system for resources that recovers and reuses alkali contained in porous carbides, and a processing method thereof.

バイオマスや石炭を利用する技術として燃焼発電以外に、原料ガスやコークス、炭を製造する技術が行われている。ガス化技術は、酸素、空気、水蒸気などから選ばれるガス化剤の一種または二種以上を用い部分燃焼しながら、バイオマスや石炭の熱分解とガス化反応を行わせ、一酸化炭素、水素、低級炭化水素を主成分とするガス等を製造する技術であり、その効率向上のためガス化炉の構造、ガス化方式、触媒を用いた接触ガス化法などいろいろな手法が開発されてきた(例えば特許文献1、特許文献2)。
また、熱分解技術を用いたコークス製造においては、高炉用コークス製造を主目的とし、副産物の分解ガスは発電用、コークス炉・生産現場の熱源などとして使われている。
このため現在の高濃度水素ガスの製造は上述のガス化や天然ガスの改質、水の電気分解等により製造されている。
In addition to combustion power generation, technologies for producing raw material gas, coke, and charcoal are being used as technologies using biomass and coal. Gasification technology uses biomass or coal pyrolysis and gasification reaction while partially burning with one or more gasifiers selected from oxygen, air, water vapor, etc., carbon monoxide, hydrogen, It is a technology for producing gases mainly composed of lower hydrocarbons, and various methods have been developed to improve the efficiency, such as the structure of the gasifier, gasification method, and catalytic gasification method using a catalyst ( For example, Patent Document 1 and Patent Document 2).
In coke production using pyrolysis technology, the main purpose is coke production for blast furnaces, and by-product cracked gas is used for power generation, as a heat source for coke ovens and production sites.
For this reason, the current high-concentration hydrogen gas is manufactured by the above-described gasification, natural gas reforming, water electrolysis, or the like.

一方、有機質資源に黒液やアルカリ触媒を用いる接触ガス化法や熱分解法が知られている。例えば、バイオマスを含む有機廃棄物に黒液を一定の割合混合し、水蒸気、炭酸ガスなどをガス化剤として用い、ガス化温度500〜800℃と低温で固定層、流動層方式のガス化炉によりガス化する熱分解ガス化法が報告されている(例えば特許文献3)。この方法は有用な方法であるが、ガス化に水蒸気、炭酸ガス等を使用するため、吸熱反応によるエネルギー損失や炭素材原料として利用できる炭化物は残らないという不都合さがある。
また、バイオマスにNa2CO3などのアルカリを含む金属酸化物の触媒を混合する方法、または反応器の中に別途触媒のみを設置する方法であって、触媒によるシフト反応を促進し、高濃度に水素ガスを含む分解ガスを多量につくる熱分解法も知られている(例えば非特許文献1)。この技術は、生成タール、ガスを出来るだけ長く滞留させるため、反応器に充填するバイオマス量は反応器容器の約15%と少なくし、かつバッチ式になる。
これら従来技術はアルカリ触媒を用い高濃度水素を含むガスを得ることを目的にしているが、上記に示したようなエネルギー損失、チャーを炭素材原料として利用できないことや、生産性の向上が求められる点など幾つかの問題点を有する。
On the other hand, a catalytic gasification method and a thermal decomposition method using black liquor or an alkali catalyst as organic resources are known. For example, black liquor is mixed in a certain proportion with organic waste containing biomass, and water vapor, carbon dioxide, etc. are used as gasifying agents, and a gasification temperature of 500 to 800 ° C. and a fixed bed, fluidized bed type gasification furnace There has been reported a pyrolysis gasification method in which gasification is performed (for example, Patent Document 3). Although this method is a useful method, since steam, carbon dioxide, or the like is used for gasification, there are inconveniences that there is no energy loss due to endothermic reaction and no carbide that can be used as a carbon material raw material remains.
Also, it is a method of mixing biomass with a metal oxide catalyst containing alkali such as Na 2 CO 3 or a method of installing only a separate catalyst in the reactor, which promotes the shift reaction by the catalyst and has a high concentration There is also known a thermal decomposition method for producing a large amount of cracked gas containing hydrogen gas (for example, Non-Patent Document 1). In this technique, the generated tar and gas are retained as long as possible, so that the amount of biomass charged in the reactor is reduced to about 15% of the reactor vessel and becomes a batch type.
These conventional technologies aim to obtain a gas containing high-concentration hydrogen using an alkali catalyst. However, energy loss, char as described above cannot be used as a carbon material, and productivity improvement is required. There are some problems such as

一方、活性炭製造についてはバイオマス、プラスチック、石炭のチャーや石油系コークスに薬品賦活としてアルカリ金属化合物を用いて活性炭をつくる方法はあるが(例えば特許文献4、特許文献5、非特許文献2)、これらの技術においては、たとえ製造過程において生成する一酸化炭素、低級炭化水素、水素などを熱源に用いても、活性炭の製造コストを低減するのは困難である。   On the other hand, for activated carbon production, there is a method of producing activated carbon using an alkali metal compound as a chemical activation for biomass, plastic, coal char or petroleum coke (for example, Patent Document 4, Patent Document 5, Non-Patent Document 2). In these technologies, it is difficult to reduce the production cost of activated carbon even if carbon monoxide, lower hydrocarbon, hydrogen, or the like generated in the production process is used as a heat source.

特開2005−68373号公報JP 2005-68373 A 特開2003−246990号公報JP 2003-246990 A 特開2003−253272号公報JP 2003-253272 A 特開平9−86914号公報JP-A-9-86914 特開2001−122608号公報JP 2001-122608 A Energy Conversion and Management 44 2289(2003)Energy Conversion and Management 44 2289 (2003) Carbon 38 1873(2000)Carbon 38 1873 (2000)

そこで本発明の課題は、生産性よく、しかも製造コストを低減した高濃度水素を含むガス、および多孔性炭化物や活性炭などを得ることである。さらにアルカリなどを得ることである。また、バイオマスや褐炭などの資源を有効利用することでもある。   Therefore, an object of the present invention is to obtain a gas containing high-concentration hydrogen with good productivity and reduced production costs, porous carbide, activated carbon, and the like. Furthermore, it is to obtain an alkali or the like. It is also the effective use of resources such as biomass and lignite.

本発明者らは、上記課題を解決するために鋭意研究する最中、以下のような知見を得た。(1)木質系バイオマス、褐炭を粉砕後、黒液と混合し、不活性ガス雰囲気下500−800℃の温度で熱分解することにより、タール留分の少ない高水素濃度の熱分解ガスを原料であるバイオマス単独と比べ多量に得ることが出来た。(2)熱分解によって多孔性炭炭化物が得られること、およびその多孔性炭化物を炭酸ガス、水蒸気で賦活処理することにより活性炭が得られる。(3)得られた活性炭を水洗し、アルカリを回収し、回収したアルカリを再度、蒸解液としてリサイクルする。
これらの知見に基づき、さらに研究を重ね、上記(1)および(2)の知見を組み合わせたシステムを構築すると、従来のガスの製造、および活性炭の製造など、それぞれ単独では達成することが困難であった製造コスト削減を容易に可能とすることができるとの知見を得、さらに、上記(1)から(3)までの知見を組み合わせたシステムを構築すると、従来のガスの製造、活性炭の製造、アルカリの回収など、それぞれ単独では達成することが困難であった製造コスト削減を容易に可能とすることができるとの知見を得、さらに研究を重ね、ついに本発明を完成させた。
The present inventors have obtained the following knowledge during intensive studies to solve the above problems. (1) After pulverizing woody biomass and lignite, mixing with black liquor and pyrolyzing at a temperature of 500-800 ° C in an inert gas atmosphere to produce a high hydrogen concentration pyrolysis gas with a small tar fraction It was possible to obtain a large amount compared to biomass alone. (2) A porous carbonized carbide is obtained by pyrolysis, and activated carbon is obtained by activating the porous carbide with carbon dioxide gas and water vapor. (3) The obtained activated carbon is washed with water, the alkali is recovered, and the recovered alkali is recycled again as a cooking liquid.
Based on these findings, further research and construction of a system that combines the findings of (1) and (2) above would be difficult to achieve independently, such as conventional gas production and activated carbon production. If the knowledge that it was possible to make it possible to easily reduce the manufacturing cost was obtained, and a system that combines the knowledge from (1) to (3) above was constructed, conventional gas production and activated carbon production In addition, the inventors have obtained knowledge that it is possible to easily reduce the manufacturing cost, which has been difficult to achieve individually, such as recovery of alkali, and have further researched and finally completed the present invention.

すなわち、請求項1の発明は、(1)生物由来の有機性資源単独、(2)生物由来の化石資源単独、あるいは(1)生物由来の有機性資源と(2)化石資源との混合物に、従来から知られている黒液とを混合する手段(A)、および前記(A)で得た混合物を不活性ガス雰囲気下に500から800℃で熱分解する手段(B)を少なくとも備えることを特徴とする生物由来の有機性資源処理システムである。また、請求項1の発明は、上記手段(A)、および(B)を少なくとも備えることを特徴とする生物由来の化石資源処理処理システムでもある。さらに、請求項1の発明は、上記手段(A)、および(B)を少なくとも備えることを特徴とする生物由来の有機性資源および化石資源混合物の処理システムでもある。 That is, the invention of claim 1 is (1) a biological organic resource alone, (2) a biological fossil resource alone, or (1) a mixture of a biological organic resource and (2) a fossil resource. And at least means (A) for mixing black liquor known in the art and means (B) for thermally decomposing the mixture obtained in (A) at 500 to 800 ° C. in an inert gas atmosphere. Is a biological organic resource processing system characterized by Moreover, invention of Claim 1 is also a bio-derived fossil resource processing system characterized by comprising at least the means (A) and (B). Furthermore, the invention of claim 1 is also a treatment system for a mixture of organic resources derived from living organisms and fossil resources, characterized by comprising at least the above means (A) and (B).

本発明の請求項2の発明は、請求項1の発明において、手段(B)で生成する多孔性炭化物を水と接触処理する手段(C)をさらに備えることを特徴とする。
本発明の請求項3の発明は、請求項1または2の発明において、手段(B)で生成する炭化物を500から900℃で熱分解する手段(D)をさらに備えることを特徴とする。
請求項4の発明は、請求項3記載の発明において、手段(D)が、手段(B)で生成する多孔性炭化物を熱分解生成ガス、不活性ガス、炭酸ガス、および水蒸気からなる群から選ばれる少なくとも1種または2種以上の雰囲気下500から900℃で賦活処理する手段であることを特徴とする。
The invention of claim 2 of the present invention is characterized in that, in the invention of claim 1, further comprising means (C) for contacting the porous carbide produced in the means (B) with water.
The invention of claim 3 of the present invention is characterized in that in the invention of claim 1 or 2, it further comprises means (D) for pyrolyzing the carbide produced by means (B) at 500 to 900 ° C.
The invention of claim 4 is the invention of claim 3, wherein the means (D) is a porous carbide produced by the means (B) from the group consisting of pyrolysis product gas, inert gas, carbon dioxide gas, and water vapor. It is a means for activating treatment at 500 to 900 ° C. in at least one selected atmosphere or two or more atmospheres.

本発明の請求項5の発明は、(1)生物由来の有機性資源単独、(2)生物由来の化石資源単独、あるいは(1)生物由来の有機性資源と(2)化石資源との混合物に、従来から知られている黒液とを混合する工程(F)、および前記混合物を不活性ガス雰囲気下に500から800℃で熱分解する工程(G)を少なくとも有することを特徴とする生物由来の有機性資源処理方法である。また、請求項5の発明は、上記手段(F),および(G)を少なくとも有することを特徴とする生物由来の化石資源処理処理方法である。
本発明の請求項6の発明は、請求項5の発明において、工程(F)で生成する多孔性炭化物を水と接触処理する手段(H)をさらに備えることを特徴とする。
The invention of claim 5 of the present invention is (1) a biological organic resource alone, (2) a biological fossil resource alone, or (1) a mixture of a biological organic resource and (2) a fossil resource. And a step (F) of mixing a black liquor known in the art and a step (G) of thermally decomposing the mixture at 500 to 800 ° C. in an inert gas atmosphere. It is the organic resource processing method of origin. The invention of claim 5 is a biological fossil resource processing method characterized by comprising at least the means (F) and (G).
The invention of claim 6 of the present invention is the invention of claim 5, further comprising means (H) for contacting the porous carbide produced in the step (F) with water.

請求項7の発明は、請求項6の発明において、工程(H)での接触処理した水からアルカリを回収する工程(J)をさらに有することを特徴とする。
請求項8の発明は、少なくとも、(1)生物由来の有機性資源単独、(2)生物由来の化石資源単独、あるいは(1)生物由来の有機性資源と(2)化石資源との混合物に、従来から知られている黒液とを混合する工程(F)、および前記混合物を不活性ガス雰囲気下に500から800℃で熱分解する工程(G)からなり、熱分解性ガスを得ることを特徴とするの生物由来の有機性資源処理方法である。また、請求項8の発明は、上記手段(F),および(G)を少なくとも有し、熱分解性ガスを得ることを特徴とする生物由来の化石資源処理処理システムでもある。さらに、請求項8の発明は、上記手段(F),および(G)を少なくとも有し、熱分解性ガスを得ることを特徴とする生物由来の有機性資源および化石資源混合物の処理システムでもある。
請求項9の発明は、少なくとも、(1)生物由来の有機性資源単独、(2)生物由来の化石資源単独、あるいは(1)生物由来の有機性資源と(2)化石資源との混合物に、従来から知られている黒液とを混合する工程(F)、および前記混合物を不活性ガス雰囲気下に500から800℃で熱分解する工程(G)からなり、多孔性炭化物を得ることを特徴とするの生物由来の有機性資源処理方法である。また、請求項9の発明は、上記手段(F),および(G)を少なくとも有し、多孔性炭化物を得ることを特徴とする生物由来の化石資源処理処理システムでもある。さらに、請求項9の発明は、上記手段(F),および(G)を少なくとも有し、多孔性炭化物を得ることを特徴とする生物由来の有機性資源および化石資源混合物の処理システムでもある。ここでの多孔性炭化物は活性炭としての機能を有する。
The invention of claim 7 is the invention of claim 6, further comprising a step (J) of recovering alkali from the water subjected to the contact treatment in the step (H).
The invention of claim 8 is at least (1) a biological organic resource alone, (2) a biological fossil resource alone, or (1) a mixture of a biological organic resource and (2) a fossil resource. A step (F) of mixing a black liquor known in the art and a step (G) of pyrolyzing the mixture at 500 to 800 ° C. in an inert gas atmosphere to obtain a thermally decomposable gas A method for treating organic resources derived from living organisms. The invention of claim 8 is also a biological fossil resource treatment system characterized in that it has at least the means (F) and (G) and obtains a pyrolyzable gas. Further, the invention of claim 8 is also a system for treating a biological organic resource and fossil resource mixture characterized in that it has at least the means (F) and (G) and obtains a pyrolyzable gas. .
The invention of claim 9 is at least (1) a biological organic resource alone, (2) a biological fossil resource alone, or (1) a mixture of a biological organic resource and (2) a fossil resource. A step (F) of mixing a black liquor known in the art and a step (G) of pyrolyzing the mixture at 500 to 800 ° C. in an inert gas atmosphere to obtain a porous carbide. A feature is a method for treating organic resources derived from living organisms. The invention of claim 9 is also a bio-derived fossil resource treatment system characterized in that it has at least the means (F) and (G) and obtains porous carbide. Further, the invention of claim 9 is also a treatment system for a biological organic resource and fossil resource mixture, characterized in that it has at least the above means (F) and (G) to obtain porous carbide. The porous carbide here has a function as activated carbon.

請求項10の発明は、少なくとも、(1)生物由来の有機性資源単独、(2)生物由来の化石資源単独、あるいは(1)生物由来の有機性資源と(2)化石資源との混合物に、従来から知られている黒液とを混合する工程(F)、前記混合物を不活性ガス雰囲気下に500から800℃で熱分解する工程(G)、および前記工程(G)で生成する多孔性炭化物を熱分解生成ガス、不活性ガス、炭酸ガス、および水蒸気からなる群から選ばれる少なくとも1種または2種以上の雰囲気下500から900℃で賦活処理する工程(H)を有し、活性炭を得ることを特徴とする生物由来の有機性資源処理方法である。また、請求項10の発明は、上記手段(F),(G)および(H)を少なくとも有し、活性炭を得ることを特徴とする化石資源処理処理方法でもある。さらに、請求項10の発明は、上記手段(F),(G)および(H)を少なくとも有し、活性炭を得ることを特徴とする生物由来の有機性資源および化石資源混合物の処理方法でもある。 The invention of claim 10 is at least (1) a biological organic resource alone, (2) a biological fossil resource alone, or (1) a mixture of a biological organic resource and (2) a fossil resource. , A step (F) of mixing with a conventionally known black liquor, a step (G) of thermally decomposing the mixture at 500 to 800 ° C. in an inert gas atmosphere, and a pore formed in the step (G) A process (H) for activating the activated carbide at 500 to 900 ° C. in an atmosphere of at least one or two or more selected from the group consisting of pyrolysis product gas, inert gas, carbon dioxide gas and water vapor, and activated carbon It is the biological organic resource processing method characterized by obtaining. The invention of claim 10 is also a fossil resource treatment method characterized in that it has at least the above means (F), (G) and (H) to obtain activated carbon. Furthermore, the invention of claim 10 is also a method for treating a bio-derived organic resource and fossil resource mixture characterized in that it has at least the above means (F), (G) and (H) to obtain activated carbon. .

請求項11の発明は、少なくとも、(1)生物由来の有機性資源単独、(2)化石資源単独、あるいは(1)生物由来の有機性資源と(2)化石資源との混合物に、従来から知られている黒液とを混合する工程(F)、前記混合物を不活性ガス雰囲気下に500から800℃で熱分解する工程(G)、前記工程(G)で生成する多孔性炭化物を水と接触処理する工程(J)、および工程(J)での接触処理した水からアルカリを回収する工程(K)からなり、アルカリを得ることを特徴とする生物由来の有機性資源処理方法である。また、請求項11の発明は、上記手段(F),(G)、(J)、および(K)を少なくとも有し、アルカリを得ることを特徴とする化石資源処理処理方法である。さらに、請求項11の発明は、上記手段(F),(G)、(J)、および(K)を少なくとも有し、アルカリを得ることを特徴とする生物由来の有機性資源および化石資源混合物の処理方法でもある。 The invention of claim 11 is conventionally at least (1) a biological organic resource alone, (2) a fossil resource alone, or (1) a mixture of a biological organic resource and (2) a fossil resource. A step (F) of mixing with a known black liquor, a step (G) of thermally decomposing the mixture at 500 to 800 ° C. in an inert gas atmosphere, and a porous carbide produced in the step (G) in water A biologically-derived organic resource treatment method characterized in that the method comprises a step (J) of contact-treating with water and a step (K) of recovering alkali from the water subjected to the contact-treatment in step (J). . The invention of claim 11 is a fossil resource processing method characterized by having at least the means (F), (G), (J), and (K) and obtaining an alkali. Furthermore, the invention of claim 11 has at least the above means (F), (G), (J), and (K), and obtains an alkali. Biologically derived organic resource and fossil resource mixture It is also a processing method.

以下に本発明を詳細に記述する。
本発明でいう生物由来の有機性資源とは、各種動植物由来の有機性資源を意味する。上記生物由来の有機性資源としては、林産廃棄物、建築廃棄物などの木質系バイオマス;食品工場などの工場からの各種有機性廃棄物;生ごみ;糞尿などを挙げることができる。上記有機性資源の中では、いわゆるバイオマスあるいは固体有機物がとくに好ましい。具体的には、間伐材、おが屑など林産廃棄物、建築廃棄物、古紙などの木質系バイオマス、ヤシ殻、胡桃殻等の果実殻、コーヒー滓、茶滓、大豆滓、酒粕、酵母類が挙げられ、とくに間伐材、おが屑など林産廃棄物、建築廃棄物などの木質系バイオマスを利用することが有効である。
これら生物由来の有機性資源をそのまま利用してもよいが、乾燥処理、精製処理、破砕処理など各種前処理を施した後に使用することが有効である。例えば、木質系バイオマスでは、黒液が木質バイオマスに十分含侵できる程度の粒度、好ましくは10〜60メッシュ程度に粉砕しておくことが有効である。
The present invention is described in detail below.
The organic resource derived from a living organism in the present invention means an organic resource derived from various animals and plants. Examples of the organic resources derived from living organisms include woody biomass such as forestry waste and construction waste; various organic wastes from factories such as food factories; garbage; manure and the like. Among the organic resources, so-called biomass or solid organic matter is particularly preferable. Specific examples include thinned wood, forest waste such as sawdust, construction waste, woody biomass such as waste paper, fruit husks such as coconut husks and walnut husks, coffee cakes, tea bowls, soybean cakes, sake lees, and yeasts. In particular, it is effective to use woody biomass such as forestry waste such as thinned wood, sawdust, and construction waste.
These organic resources derived from living organisms may be used as they are, but it is effective to use them after various pretreatments such as drying treatment, purification treatment and crushing treatment. For example, in woody biomass, it is effective to pulverize the black liquor to a particle size that can sufficiently impregnate the woody biomass, preferably about 10 to 60 mesh.

本発明でいう生物由来の化石資源は、長期間にわたって、動植物が地中の熱や圧力など、各種分解作用やなどによって変化(変質作用)し、炭素が濃縮されてできたものを意味する。具体的には、瀝青炭、褐炭、亜炭、泥炭、コークス、チャーなどが挙げられるが、褐炭やチャーが有効である。
これら化石資源をそのまま利用してもよいが、乾燥処理、破砕処理など各種前処理を施した後に使用することが有効である。例えば、黒液が褐炭に含侵できる程度の粒度、好ましくは10〜60メッシュ程度に粉砕しておくことが有効である。
The bio-derived fossil resource as used in the present invention means a product obtained by enriching carbon by changing (changing action) the animals and plants by various decomposition actions such as underground heat and pressure over a long period of time. Specific examples include bituminous coal, lignite, lignite, peat, coke, and char, and lignite and char are effective.
These fossil resources may be used as they are, but it is effective to use them after various pretreatments such as drying treatment and crushing treatment. For example, it is effective to pulverize the black liquor to a particle size that can impregnate lignite, preferably about 10 to 60 mesh.

本発明は、生物由来の有機性資源および/または化石資源を有効利用することに一つの特徴がある。すなわち、その資源に黒液を添加・混合処理する手段、その混合物を熱分解処理する手段、熱分解処理にて生成する炭化物、とくに多孔性炭化物を水と接触処理する手段を備える資源処理システムを構築する。必要に応じて、上記炭化物に賦活処理を施す手段をさらに備えるシステムとしてもよい。これらの処理システムを稼動させることにより、熱分解ガス、活性炭としての機能を有する多孔性炭化物、回収アルカリを生産性よく、しかも、安価に提供することが可能となる。   One feature of the present invention resides in the effective utilization of biological organic resources and / or fossil resources. That is, a resource processing system comprising means for adding / mixing black liquor to the resource, means for thermally decomposing the mixture, and means for contacting carbide generated in the pyrolysis process, particularly porous carbide with water. To construct. As needed, it is good also as a system further provided with the means to perform the activation process to the said carbide | carbonized_material. By operating these treatment systems, it becomes possible to provide pyrolytic gas, porous carbide having a function as activated carbon, and recovered alkali with high productivity and at low cost.

上記生物由来の資源に黒液を添加・混合する手段は、一般的な手段を採用すればよい。本発明でいう黒液は、パルプ製造時に副生される廃棄物であり、パルプ製造条件などにより、黒液の組成は変動するが、たとえば水分70〜80%、固形分30〜20%の組成を有する。固形分はリグニンなどの有機成分が30〜40%、無機成分が70〜60%である。無機成分中にはNaが多量に含まれる。
この黒液を上記生物由来の有機性資源および/または化石資源に加える。その黒液を加える量は、混合物(乾燥重量)中のナトリウム換算で3〜35重量%含有するような量とする。上記資源に黒液を加えた後、均一な混合物となるよう処理することが好ましい。次いで混合物を風乾または熱分解ガスの廃熱などにより乾燥処理し、水分含量を少なくすることが好ましい。Na量の測定は公知の方法を適用すればよいのであり、例えばICP発光分析法を用いて容易に測定することができる。
As a means for adding and mixing the black liquor to the biological resource, a general means may be adopted. The black liquor as referred to in the present invention is a waste produced as a by-product during pulp production, and the composition of the black liquor varies depending on the pulp production conditions and the like. For example, the composition has a moisture content of 70 to 80% and a solid content of 30 to 20%. Have The solid content is 30 to 40% for organic components such as lignin, and 70 to 60% for inorganic components. The inorganic component contains a large amount of Na.
This black liquor is added to the above organic and / or fossil resources. The amount of black liquor added is such that it contains 3 to 35% by weight in terms of sodium in the mixture (dry weight) . After adding black liquor to the above resources, it is preferable to treat the mixture so as to form a uniform mixture. The mixture is then preferably dried by air drying or waste heat of pyrolysis gas to reduce the water content. A known method may be applied to measure the amount of Na, and it can be easily measured using, for example, an ICP emission analysis method.

上記生物由来の有機性資源および/または化石資源と黒液との混合物を不活性ガス雰囲気下に500から800℃で熱分解処理することが必須である。熱分解処理する手段は一般的な手段を採用すればよい。例えば一般的な熱分解炉を用いればよいのであり、固定層式あるいは流動層式熱分解炉を用いることが多い。
上記不活性ガスとして、窒素ガスが使用できるが、そのほか公知の不活性ガスを用いてもよい。ここで、不活性ガス雰囲気下には、不活性ガス流下も含まれる。
上記混合物を熱分解炉内にセットし、500から800℃で熱分解処理する。昇温速度はとくに限定されない。熱分解処理する時間は、用いる資源の種類、その性状、量などにより変動するので、一概に規定できないが、数分〜数十分程度でも有効である。
上記熱分解炉への熱供給方式は間接方式、直接方式のいずれでも良いが、熱分解処理後の炭化物の賦活処理において、水蒸気や炭酸ガスなどの賦活剤を使用しない場合は、間接方式が好ましい。熱供給方式としての間接方式および直接方式は一般的な方法を採用すればよい。
It is essential to subject the mixture of the above organic resources and / or fossil resources and black liquor to pyrolysis at 500 to 800 ° C. in an inert gas atmosphere. A general means may be adopted as the means for the thermal decomposition treatment. For example, a general pyrolysis furnace may be used, and a fixed bed type or fluidized bed type pyrolysis furnace is often used.
Nitrogen gas can be used as the inert gas, but other known inert gases may also be used. Here, the inert gas atmosphere includes an inert gas flow.
The above mixture is set in a pyrolysis furnace and pyrolyzed at 500 to 800 ° C. The rate of temperature increase is not particularly limited. The thermal decomposition time varies depending on the type of resource used, its properties, amount, and the like, and thus cannot be defined unconditionally, but it is also effective for several minutes to several tens of minutes.
The heat supply method to the pyrolysis furnace may be either an indirect method or a direct method, but in the activation treatment of carbide after the pyrolysis treatment, when an activator such as water vapor or carbon dioxide gas is not used, the indirect method is preferable. . A general method may be adopted as the indirect method and the direct method as the heat supply method.

かくして、上記資源を熱分解処理して、熱分解ガスが得られるが、それとともに多孔性炭化物が得られることが本発明の特徴の一つである。
本発明で得られる熱分解ガスは水素ガスが高濃度であり、たとえば通常のガス化技術として知られているLurgi法やKoppers・Totzek法に比べ、約2倍ほど高くなる。本発明で得られる熱分解ガスは各種ガスの原料として利用できるほか、低カロリーガスなど一般的なガスとして利用できる。
Thus, it is one of the features of the present invention that a pyrolysis gas is obtained by pyrolyzing the above-mentioned resources, and a porous carbide is obtained along with it.
The pyrolysis gas obtained in the present invention has a high concentration of hydrogen gas, and is about twice as high as, for example, the Lurgi method and Koppers-Totzek method known as ordinary gasification techniques. The pyrolysis gas obtained in the present invention can be used as a raw material for various gases and can be used as a general gas such as a low calorie gas.

上記多孔性炭化物をそのまま、あるいは賦活処理して、活性炭として使用できることも本発明の特徴の一つである。上記炭化物は、上記熱分解処理のみによっても、700m/g以上の比表面積を有する。これは市販の低品位活性炭と同等の活性炭として使用できる。このように多孔性炭化物としては高表面積なものが生成するメカニズムについては完全には確定できていないが、黒液中に含まれるアルカリ金属の触媒効果によるものと推定される。
さらに賦活処理をして1000m/g以上の高表面積活性炭を製造する場合には、熱分解処理と賦活処理を同一の炉で行う場合と熱分解後に別の炉で賦活処理を行う場合とがある。前者の場合は、熱分解行程中に、または熱分解行程後に連続して、炭酸ガス、水蒸気などのガスを賦活剤として導入する。後者を選ぶ場合、つまり賦活処理を熱分解処理と別工程で行う場合は、熱分解処理後に得られる炭化物をロータリーキルンあるいは別の流動層炉などを用いて賦活処理することになる。どちらを選ぶかは、目標とする活性炭の性状による決めることになるが、本法の炭化物は表面積が大きく、その後の賦活処理が容易であることが特徴である。
It is also one of the features of the present invention that the porous carbide can be used as an activated carbon as it is or after being activated. The carbide has a specific surface area of 700 m 2 / g or more only by the thermal decomposition treatment. This can be used as activated carbon equivalent to commercially available low-grade activated carbon. Thus, although the mechanism by which a high surface area is formed as a porous carbide has not been completely determined, it is presumed to be due to the catalytic effect of the alkali metal contained in the black liquor.
In the case of producing activated carbon with a surface area of 1000 m 2 / g or more by further activation treatment, there are a case where the thermal decomposition treatment and the activation treatment are performed in the same furnace and a case where the activation treatment is performed in another furnace after the thermal decomposition. is there. In the former case, a gas such as carbon dioxide or water vapor is introduced as an activator during the pyrolysis process or continuously after the pyrolysis process. When the latter is selected, that is, when the activation treatment is performed in a separate step from the thermal decomposition treatment, the carbide obtained after the thermal decomposition treatment is activated using a rotary kiln or another fluidized bed furnace. Which method is selected depends on the properties of the target activated carbon, but the carbide of this method is characterized by a large surface area and easy activation treatment thereafter.

賦活剤としては、空気、炭酸ガス、水蒸気などが適当であるが、熱分解後に別の炉で賦活処理を行う場合には、下記に挙げるような賦活剤を炭化物に混合する方法もある。この場合の賦活剤としては、リチウム、ナトリウム、カリウム、ルビジウム及びセシウムから選ばれたアルカリ金属の化合物を挙げることができる。その化合物の例としては、それらアルカリ金属の炭酸塩、重炭酸塩、硫酸塩、硝酸塩、亜硝酸塩、水酸化物、ハロゲン化物などが挙げられる。例えば炭酸塩の場合、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸ルビジウム、炭酸セシウムなどが用いられる。それら賦活剤の一種または二種以上を用いる。
賦活剤の量は、目標とする活性炭の性状により変動するが、たとえば上記通アルカリ金属の化合物を用いる場合、1×10-4〜5×10-2mol/g程度とするとよい。賦活剤を加える方法は特に制限されない。
As the activator, air, carbon dioxide gas, water vapor, and the like are suitable. However, when the activation treatment is performed in another furnace after thermal decomposition, there is a method of mixing the activator described below with carbide. Examples of the activator in this case include an alkali metal compound selected from lithium, sodium, potassium, rubidium and cesium. Examples of the compounds include carbonates, bicarbonates, sulfates, nitrates, nitrites, hydroxides and halides of these alkali metals. For example, in the case of carbonates, lithium carbonate, sodium carbonate, potassium carbonate, rubidium carbonate, cesium carbonate and the like are used. One or more of these activators are used.
The amount of the activator varies depending on the properties of the target activated carbon. For example, when the alkali metal compound is used, the amount is preferably about 1 × 10 −4 to 5 × 10 −2 mol / g. The method for adding the activator is not particularly limited.

こうして得られた活性炭は、性能と価格に応じて吸着材、配合剤など通常の活性炭と同じように利用できる。本法における原料素材は天然のものであり、安全性も高いことから、表面積の小さいものは低コスト活性炭として大量消費される土壌改良や河川の水質改善、環境中の農薬等汚染物質の除去といった用途に適している。また、賦活処理をして高表面積化した高品位活性炭は、その高性能を生かし、工業プロセスでの有用物質の回収、不要・有害物質の除去、化粧品・医薬品といった様々な用途が期待される。また、今後市場規模の増大が見込まれている、ガス貯蔵材料や電池・キャパシタの電極材料といった用途でも利用することができる。
上記のような低コスト大量消費製品、あるいは高コスト高付加価値製品の販売によって、コスト回収することで、バイオマス等を有効利用しつつ水素を製造し、コスト的にも実用的な総合プロセスが構築できる。
The activated carbon thus obtained can be used in the same manner as ordinary activated carbon such as an adsorbent and a compounding agent depending on performance and price. The raw materials used in this method are natural and safe, so those with a small surface area can be used as low-cost activated carbon for soil improvement, river water quality improvement, removal of pollutants such as pesticides in the environment, etc. Suitable for use. In addition, high-grade activated carbon with a high surface area by activation treatment is expected to have various uses such as recovery of useful substances in industrial processes, removal of unnecessary / hazardous substances, cosmetics / pharmaceuticals, taking advantage of its high performance. It can also be used for applications such as gas storage materials and battery / capacitor electrode materials, which are expected to increase in market scale in the future.
By recovering costs by selling low-cost mass-consumed products or high-cost, high-value-added products as described above, hydrogen is produced while effectively using biomass, etc., and a cost-effective integrated comprehensive process is established. it can.

上記炭化物を水や温水と接触処理し、活性炭中に存在するアルカリを溶解・除去する。この接触処理した水を集め、常法によりアルカリを炭酸塩、水酸化物などとして回収することができる。
アルカリの具体例としては、水酸化ナトリウム、水酸化カリウムなどを例示できる。
アルカリ回収の具体例を示すと、本発明で規定する生物由来の資源と黒液との混合物を熱分解した後に得られる多孔性炭化物を、アルカリ溶解液を収容するタンクにてアルカリ溶解液と所定時間接触処理し、処理液から不溶解分をろ過除去後、苛性化槽で苛性ソーダに転化し、炭酸カルシウムなどを分離・除去して、苛性ソーダを得ることができる。苛性ソーダは、例えば木材チップ蒸解用として再利用される。
The carbide is contacted with water or warm water to dissolve and remove the alkali present in the activated carbon. The contact-treated water can be collected, and alkali can be recovered as carbonate, hydroxide, etc. by a conventional method.
Specific examples of the alkali include sodium hydroxide and potassium hydroxide.
As a specific example of alkali recovery, a porous carbide obtained after pyrolyzing a mixture of biological resources defined in the present invention and black liquor is mixed with an alkali solution in a tank containing the alkali solution. After the contact treatment for a time, the insoluble matter is removed by filtration from the treatment liquid, and then converted into caustic soda in a causticizing tank, and calcium carbonate and the like are separated and removed to obtain caustic soda. Caustic soda is reused for cooking wood chips, for example.

本発明によれば、生物由来の有機性資源および/または化石資源を処理し、熱分解ガス、多孔性炭化物や活性炭を生産性よく、しかも、安価に提供することが可能となる。また、水素ガス濃度が高い熱分解ガスを製造することができる。さらに、回収アルカリを生産性よく、しかも、安価に提供することが可能となる。
活性炭のみを目的としたプロセスは、たとえ製造過程において生成する一酸化炭素、低級炭化水素、水素などを熱源に用いても、活性炭の製造コストを低減するのは困難であるので、本発明は実に有効である。
According to the present invention, it is possible to treat biological organic resources and / or fossil resources, and to provide pyrolysis gas, porous carbide and activated carbon with high productivity and at low cost. Further, a pyrolysis gas having a high hydrogen gas concentration can be produced. Furthermore, the recovered alkali can be provided with high productivity and at low cost.
In the process only for activated carbon, it is difficult to reduce the production cost of activated carbon even if carbon monoxide, lower hydrocarbon, hydrogen, etc. produced in the production process are used as a heat source. It is valid.

以下に、本発明を実施例に基づいて詳細に説明する。本発明はこれらの実施例になんら限定されない。 Hereinafter, the present invention will be described in detail based on examples. The present invention is not limited to these examples.

(実施例1)
10−60メッシュに粉砕した杉の粉末8gに黒液100gを加え混合、乾燥し、ナトリウム濃度が22.9重量%の混合物からなる試料を調製した。
その混合物25mgを石英ボートに載置・秤量し、横型管状電気炉の内径が10mmの石英製反応管内に配置した。混合物は、窒素ガスの流速30ml/分の雰囲気下、3℃/分の昇温速度で加熱し熱分解した。
試料は熱分解し、ガスおよび含水タールが生成した。発生したガス組成とその量をガスクロマトグラフで測定した。その測定結果の1例を図1に示す。また、その時の含水タールの生成量は試料の27.1重量%であった。生成した全ガス、タール、炭化物の重量%を図3に示す。
Example 1
100 g of black liquor was added to 8 g of cedar powder ground to 10-60 mesh, mixed and dried to prepare a sample consisting of a mixture having a sodium concentration of 22.9% by weight.
25 mg of the mixture was placed on a quartz boat and weighed, and placed in a quartz reaction tube having an inner diameter of a horizontal tubular electric furnace of 10 mm. The mixture was heated and pyrolyzed in a nitrogen gas flow rate of 30 ml / min at a heating rate of 3 ° C./min.
The sample was pyrolyzed to produce gas and hydrous tar. The generated gas composition and the amount thereof were measured with a gas chromatograph. An example of the measurement result is shown in FIG. The amount of hydrous tar produced at that time was 27.1% by weight of the sample. The weight percentages of the total gas, tar and carbide produced are shown in FIG.

図1は、実施例1の試料の700℃までの熱処理温度において発生する分解ガスの変化を示す。
全ガス量は633ml/gで、そのうち水素は356mlであった。
これは現在石炭のガス化で実用化されているLurgiやKoppers Totzekの方式を用いた場合、すなわち、空気や酸素、水蒸気をガス化剤とする石炭ガス化における水素発生量(約550m3/ton)の65%に相当する。LurgiやKoppers Totzekの方式での条件と比較して、実施例1では、ガス化温度が約200℃ほど低温であり、しかもガス化剤を吹き込まないにもかかわらず、かなりの水素ガスの生成があることが判明した。
FIG. 1 shows the change in decomposition gas generated at the heat treatment temperature up to 700 ° C. of the sample of Example 1.
The total gas volume was 633 ml / g, of which hydrogen was 356 ml.
This is the case of using the Lurgi and Koppers Totzek methods that are currently in practical use for coal gasification, that is, the amount of hydrogen generated in coal gasification using air, oxygen, and water vapor as gasifying agents (approximately 550 m 3 / ton ) Equivalent to 65%. Compared with the conditions of the Lurgi and Koppers Totzek methods, in Example 1, the gasification temperature is as low as about 200 ° C., and a considerable amount of hydrogen gas is generated even though no gasifying agent is injected. It turned out to be.

(比較例1)
実施例1で用いた杉の粉末に黒液を加えない試料を、実施例1と同様の条件で熱分解した。熱分解により、試料からのガスの発生、および含水タールの生成が観察された。発生するガス量を実施例1と同様に測定した。その測定結果を図2に示す。また、含水タールの生成量は試料の68.2重量%であった。
図2は、比較例1の試料の700℃までの熱処理温度において発生する分解ガスの変化を示す。
発生した全ガス量は100ml/gで、そのうち水素は26mlであった。生成した全ガス、タール、炭化物の重量%を図3に示す。
実施例1と比較例1との比較から、含水タールの発生量は黒液を混合することにより急激に低下し、含水タール中の水素が黒液の混合効果により、水素ガスに分解していることが分かる。
(Comparative Example 1)
A sample in which black liquor was not added to the cedar powder used in Example 1 was pyrolyzed under the same conditions as in Example 1. Generation of gas from the sample and formation of hydrous tar were observed by pyrolysis. The amount of gas generated was measured in the same manner as in Example 1. The measurement results are shown in FIG. The amount of hydrous tar produced was 68.2% by weight of the sample.
FIG. 2 shows the change in the decomposition gas generated at the heat treatment temperature up to 700 ° C. of the sample of Comparative Example 1.
The total amount of gas generated was 100 ml / g, of which hydrogen was 26 ml. The weight percentages of the total gas, tar and carbide produced are shown in FIG.
From the comparison between Example 1 and Comparative Example 1, the generation amount of the hydrous tar is drastically decreased by mixing the black liquor, and the hydrogen in the hydrous tar is decomposed into hydrogen gas by the mixing effect of the black liquor. I understand that.

(実施例2〜3)
実施例1で用いた杉の粉末に、黒液の混合割合を変化させて、表1記載のような混合物試料1および3を調製した。それら試料2および3に、上記実施例1と同様の条件で熱分解を行った。
実施例1と同様に、発生するガス量を測定した。その測定結果を表1に示す。また、発生する水素ガスの発生量と全ガス発生量に対する水素ガス濃度を表1に示す。
なお、表1中で、混合割合の計算値は、杉粉末単独、及び黒液単独での水素ガス発生量をあらかじめ測定しておき、杉粉末及び黒液の混合割合を考慮して得られた値である。実測値と混合割合からの計算値との差が増加量となる。
(Examples 2-3)
Mixture samples 1 and 3 as shown in Table 1 were prepared by changing the mixing ratio of black liquor to the cedar powder used in Example 1. Samples 2 and 3 were pyrolyzed under the same conditions as in Example 1 above.
As in Example 1, the amount of gas generated was measured. The measurement results are shown in Table 1. Table 1 shows the amount of generated hydrogen gas and the hydrogen gas concentration relative to the total amount of generated gas.
In Table 1, the calculated value of the mixing ratio was obtained in advance by measuring the hydrogen gas generation amount of cedar powder alone and black liquor alone, and taking into account the mixing ratio of cedar powder and black liquor. Value. The difference between the measured value and the calculated value from the mixing ratio is the increase amount.

Figure 2007038144
Figure 2007038144

(実施例4)
実施例1での試料1.0gを800℃で熱処理したときに生成した多孔性炭化物を、1mol/Lの希塩酸水溶液と10分程度撹拌して、アルカリを中和し、前記水溶液中に溶出除去し、ろ過して固体分を得た。該固体分を蒸留水で洗浄し、乾燥処理した後、110℃で乾燥処理して0.12gの多孔性炭化物を得た。その多孔性炭化物の比表面積をBET法にて測定した結果、比表面積は700m2/gであった。。BET測定には市販の自動吸着測定装置BELSORP28SA(日本ベル社製)を用いた。
Example 4
The porous carbide produced when heat-treating 1.0 g of the sample in Example 1 at 800 ° C. was stirred with a 1 mol / L dilute hydrochloric acid aqueous solution for about 10 minutes to neutralize the alkali, and eluted and removed into the aqueous solution. And filtered to obtain a solid. The solid content was washed with distilled water, dried, and then dried at 110 ° C. to obtain 0.12 g of porous carbide. As a result of measuring the specific surface area of the porous carbide by the BET method, the specific surface area was 700 m 2 / g. . For the BET measurement, a commercially available automatic adsorption measuring device BELSORP28SA (manufactured by Nippon Bell Co., Ltd.) was used.

(比較例2)
比較例1での試料を800℃で熱処理したときに生成した多孔性炭化物について、実施例4と同様な条件で操作し、多孔性炭化物の比表面積を実施例4と同様な条件で測定した。その結果、比表面積は300m2/gであった。
(Comparative Example 2)
The porous carbide produced when the sample in Comparative Example 1 was heat treated at 800 ° C. was operated under the same conditions as in Example 4, and the specific surface area of the porous carbide was measured under the same conditions as in Example 4. As a result, the specific surface area was 300 m 2 / g.

本発明を次のように記載することもできる。
(1)生物由来の有機性資源および/または化石資源と黒液とを混合処理する手段(A)、および前記混合物を不活性ガス雰囲気下に500から800℃の条件で熱分解処理する手段(B)を少なくとも備え、熱分解ガス及び多孔性炭化物を得ることを特徴とする生物由来の有機性資源および/または化石資源処理システム。
(2)手段(C)での接触処理した水からアルカリを回収する手段(E)をさらに備えることを特徴とする上記(1)記載の生物由来の有機性資源および/または化石資源処理システム。
(3)手段(C)での接触処理した水からアルカリを回収する手段(E)をさらに備えることを特徴とする上記(2)記載の生物由来の有機性資源および/または化石資源処理システム。
(4)生物由来の有機性資源および/または化石資源と黒液とを混合処理する手段(A)、および前記混合物を不活性ガス雰囲気下に500から800℃の条件で熱分解処理する手段(B)を少なくとも備え、手段(C)での接触処理した水からアルカリを回収する手段(E)をさらに備えることを特徴とする生物由来の有機性資源および/または化石資源処理システム。
(5)少なくとも、生物由来の有機性資源および/または化石資源と黒液とを混合処理する工程(F)、および前記混合物を不活性ガス雰囲気下に500から800℃で熱分解処理する工程(G)からなり、熱分解ガス及び多孔性炭化物を得ることを特徴とする生物由来の有機性資源および/または化石資源処理方法。
(6)工程(G)で得る多孔性炭化物を水と接触処理する工程(H)をさらに備える上記(5)記載の生物由来の有機性資源および/または化石資源処理方法。
(7)少なくとも、生物由来の有機性資源および/または化石資源と黒液とを混合処理する工程(F)、および前記混合物を不活性ガス雰囲気下に500から800℃で熱分解処理する工程(G)からなり、工程(G)で得る多孔性炭化物を水と接触処理する工程(H)をさらに備える生物由来の有機性資源および/または化石資源処理方法。
The present invention can also be described as follows.
(1) Means (A) for mixing biological organic resources and / or fossil resources and black liquor, and means for thermally decomposing the mixture under conditions of 500 to 800 ° C. in an inert gas atmosphere ( A biological organic resource and / or fossil resource treatment system comprising at least B) and obtaining pyrolysis gas and porous carbide.
(2) The biological organic resource and / or fossil resource treatment system according to the above (1), further comprising means (E) for recovering alkali from the water contact-treated in the means (C).
(3) The biological organic resource and / or fossil resource treatment system according to (2) above, further comprising means (E) for recovering alkali from the water subjected to the contact treatment in the means (C).
(4) Means (A) for mixing biological organic resources and / or fossil resources and black liquor, and means for thermally decomposing the mixture in an inert gas atmosphere at 500 to 800 ° C. ( A biological organic resource and / or fossil resource treatment system comprising at least B), and further comprising means (E) for recovering alkali from the water subjected to the contact treatment in means (C).
(5) At least a step (F) of mixing biological organic resources and / or fossil resources and black liquor, and a step of thermally decomposing the mixture at 500 to 800 ° C. in an inert gas atmosphere ( A biological organic resource and / or fossil resource treatment method comprising: G) and obtaining a pyrolysis gas and a porous carbide.
(6) The biological organic resource and / or fossil resource treatment method according to (5), further comprising a step (H) of contacting the porous carbide obtained in the step (G) with water.
(7) Step (F) of mixing at least biological organic resources and / or fossil resources and black liquor, and step of pyrolyzing the mixture at 500 to 800 ° C. in an inert gas atmosphere ( A biological organic resource and / or fossil resource treatment method comprising the step (H) of contacting the porous carbide obtained in step (G) with water.

杉の粉末と黒液との混合物の700℃までの熱処理温度において発生する分解ガスの変化を示す。The change of the decomposition gas generated at the heat treatment temperature up to 700 ° C of the mixture of cedar powder and black liquor is shown. 杉の粉末の700℃までの熱処理温度において発生する分解ガスの変化を示す。The change of the decomposition gas generated at the heat treatment temperature up to 700 ° C of the cedar powder is shown. 600℃における実施例1および比較例のガス、タール、炭化物の収率を示す。The yields of gas, tar and carbide of Example 1 and Comparative Example at 600 ° C. are shown.

Claims (11)

生物由来の有機性資源および/または化石資源と黒液とを混合処理する手段(A)、および前記混合物を不活性ガス雰囲気下に500から800℃の条件で熱分解処理する手段(B)を少なくとも備えることを特徴とする生物由来の有機性資源および/または化石資源処理システム。 Means (A) for mixing biological organic resources and / or fossil resources and black liquor, and means (B) for thermally decomposing the mixture in an inert gas atmosphere at 500 to 800 ° C. A biological organic resource and / or fossil resource processing system characterized by comprising at least. 手段(B)で得る多孔性炭化物を水と接触処理する手段(C)をさらに備えることを特徴とする請求項1記載の生物由来の有機性資源および/または化石資源処理システム。 The biological organic resource and / or fossil resource treatment system according to claim 1, further comprising a means (C) for contacting the porous carbide obtained by the means (B) with water. 手段(B)で生成する多孔性炭化物を500から900℃で賦活処理する手段(D)をさらに備えることを特徴とする請求項1または2記載の生物由来の有機性資源および/または化石資源処理システム。 The biological organic resource and / or fossil resource treatment according to claim 1 or 2, further comprising a means (D) for activating the porous carbide produced by the means (B) at 500 to 900 ° C. system. 手段(D)が、手段(B)で生成する多孔性炭化物を熱分解生成ガス、不活性ガス、炭酸ガス、および水蒸気からなる群から選ばれる少なくとも1種または2種以上の雰囲気下500から900℃で賦活処理する手段であるであることを特徴とする請求項3記載の生物由来の有機性資源および/または化石資源処理システム。 The porous carbide produced by the means (D) is at least one selected from the group consisting of pyrolysis gas, inert gas, carbon dioxide and water vapor, and the atmosphere (500) is 900 to 900. The biological organic resource and / or fossil resource treatment system according to claim 3, wherein the treatment system is an activation treatment at a temperature of ° C. 少なくとも、生物由来の有機性資源および/または化石資源と黒液とを混合処理する工程(F)、および前記混合物を不活性ガス雰囲気下に500から800℃で熱分解処理する工程(G)からなることを特徴とする生物由来の有機性資源および/または化石資源処理方法。 From the step (F) of mixing at least a biological organic resource and / or fossil resource and black liquor, and the step (G) of thermally decomposing the mixture in an inert gas atmosphere at 500 to 800 ° C. A biological organic resource and / or fossil resource treatment method characterized by comprising: 工程(G)で生成する多孔性炭化物を水と接触処理する工程(H)をさらに有することを特徴とする請求項5記載の生物由来の有機性資源および/または化石資源処理方法。 The biological organic resource and / or fossil resource treatment method according to claim 5, further comprising a step (H) of contacting the porous carbide produced in the step (G) with water. 工程(H)での接触処理した水からアルカリを回収する工程(J)をさらに有することを特徴とする請求項6記載の生物由来の有機性資源および/または化石資源処理方法。 The biological organic resource and / or fossil resource treatment method according to claim 6, further comprising a step (J) of recovering alkali from the water subjected to the contact treatment in the step (H). 少なくとも、生物由来の有機性資源および/または化石資源と黒液とを混合処理する工程(F)、および前記混合物を不活性ガス雰囲気下に500から800℃で熱分解処理する工程(G)からなり、熱分解性ガスを得ることを特徴とするの生物由来の有機性資源および/または化石資源処理方法。 From the step (F) of mixing at least a biological organic resource and / or fossil resource and black liquor, and the step (G) of thermally decomposing the mixture in an inert gas atmosphere at 500 to 800 ° C. A method for treating biological organic resources and / or fossil resources, characterized by obtaining a pyrolyzable gas. 少なくとも、生物由来の有機性資源および/または化石資源と黒液とを混合処理する工程(F)、および前記混合物を不活性ガス雰囲気下に500から800℃で熱分解処理する工程(G)からなり、多孔性活性炭を得ることを特徴とするの生物由来の有機性資源および/または化石資源処理方法。 From the step (F) of mixing at least a biological organic resource and / or fossil resource and black liquor, and the step (G) of thermally decomposing the mixture in an inert gas atmosphere at 500 to 800 ° C. A method for treating biological organic resources and / or fossil resources, characterized by obtaining porous activated carbon. 少なくとも、生物由来の有機性資源および/または化石資源と黒液とを混合処理する工程(F)、前記混合物を不活性ガス雰囲気下に500から800℃で熱分解処理する工程(G)、および前記工程(G)で生成する多孔性炭化物を熱分解生成ガス、不活性ガス、炭酸ガス、および水蒸気からなる群から選ばれる少なくとも1種または2種以上の雰囲気下500から900℃で賦活処理する工程(K)からなり、活性炭を得ることを特徴とするの生物由来の有機性資源および/または化石資源処理方法。 At least a process of mixing biological organic resources and / or fossil resources and black liquor (F), a process of pyrolyzing the mixture at 500 to 800 ° C. in an inert gas atmosphere (G), and The porous carbide generated in the step (G) is activated at 500 to 900 ° C. in an atmosphere of at least one or two or more selected from the group consisting of pyrolysis product gas, inert gas, carbon dioxide gas, and water vapor. A biological organic resource and / or fossil resource treatment method comprising the step (K) and obtaining activated carbon. 少なくとも、生物由来の有機性資源および/または化石資源と黒液とを混合処理する工程(F)、前記混合物を不活性ガス雰囲気下に500から800℃で熱分解処理する工程(G)、前記工程(G)で生成する多孔性炭化物を水と接触処理する工程(H)、および工程(H)での接触処理した水からアルカリを回収する工程(J)からなり、アルカリを回収することを特徴とする生物由来の有機性資源および/または化石資源処理方法。

At least a process of mixing biological organic resources and / or fossil resources and black liquor (F), a process of pyrolyzing the mixture at 500 to 800 ° C. in an inert gas atmosphere (G), The step (H) of contacting the porous carbide produced in the step (G) with water and the step (J) of recovering the alkali from the water subjected to the contact treatment in the step (H). A method for treating organic resources and / or fossil resources derived from living organisms.

JP2005225625A 2005-08-03 2005-08-03 Biological organic resource processing method and system Expired - Fee Related JP4919253B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005225625A JP4919253B2 (en) 2005-08-03 2005-08-03 Biological organic resource processing method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005225625A JP4919253B2 (en) 2005-08-03 2005-08-03 Biological organic resource processing method and system

Publications (2)

Publication Number Publication Date
JP2007038144A true JP2007038144A (en) 2007-02-15
JP4919253B2 JP4919253B2 (en) 2012-04-18

Family

ID=37796618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005225625A Expired - Fee Related JP4919253B2 (en) 2005-08-03 2005-08-03 Biological organic resource processing method and system

Country Status (1)

Country Link
JP (1) JP4919253B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009029796A (en) * 2007-07-04 2009-02-12 Hitoshi Murakami Method and system for producing polysaccharide-derived compound
JP2009299196A (en) * 2007-06-14 2009-12-24 Hitoshi Murakami Method for treating black liquor, apparatus for treating black liquor, and power generation system
KR101439504B1 (en) 2012-10-09 2014-09-15 주식회사 포스코 Method of active carbon for removing hydrogen sulfide and active carbon manufactured by the same
JP2017532465A (en) * 2014-10-15 2017-11-02 キャンフォー パルプ リミティド Integrated kraft pulp mill and thermochemical conversion system
JP2022087826A (en) * 2020-12-01 2022-06-13 正城 山地 Biochar production system, biochar production method and control program of biochar production system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106698880A (en) * 2016-12-21 2017-05-24 福建师范大学 Preparation method of sludge based biochar doped with hair

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06183715A (en) * 1992-12-21 1994-07-05 Mitsubishi Kasei Corp Production of activated carbon
JPH11171524A (en) * 1997-10-03 1999-06-29 Katsuhiro Shimada Active carbon made from waste paper and its production
WO2000024671A1 (en) * 1998-10-28 2000-05-04 Ebara Corporation Waste carbonizing method
JP2003253272A (en) * 2002-02-28 2003-09-10 Ishikawajima Harima Heavy Ind Co Ltd Gasification treatment for organic substance
JP2004161574A (en) * 2002-11-15 2004-06-10 Tsukishima Kikai Co Ltd Method and equipment for obtaining activated carbon from woody biomass
WO2004087619A2 (en) * 2003-03-28 2004-10-14 Ab-Cwt, Llc Process and apparatus for conversion of organic, waste, or low-value materials into useful products

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06183715A (en) * 1992-12-21 1994-07-05 Mitsubishi Kasei Corp Production of activated carbon
JPH11171524A (en) * 1997-10-03 1999-06-29 Katsuhiro Shimada Active carbon made from waste paper and its production
WO2000024671A1 (en) * 1998-10-28 2000-05-04 Ebara Corporation Waste carbonizing method
JP2003253272A (en) * 2002-02-28 2003-09-10 Ishikawajima Harima Heavy Ind Co Ltd Gasification treatment for organic substance
JP2004161574A (en) * 2002-11-15 2004-06-10 Tsukishima Kikai Co Ltd Method and equipment for obtaining activated carbon from woody biomass
WO2004087619A2 (en) * 2003-03-28 2004-10-14 Ab-Cwt, Llc Process and apparatus for conversion of organic, waste, or low-value materials into useful products
JP2007524498A (en) * 2003-03-28 2007-08-30 エービー−シーダブリューティー,エルエルシー Method and apparatus for converting organic materials, waste materials or low value materials into useful products

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009299196A (en) * 2007-06-14 2009-12-24 Hitoshi Murakami Method for treating black liquor, apparatus for treating black liquor, and power generation system
JP2009029796A (en) * 2007-07-04 2009-02-12 Hitoshi Murakami Method and system for producing polysaccharide-derived compound
KR101439504B1 (en) 2012-10-09 2014-09-15 주식회사 포스코 Method of active carbon for removing hydrogen sulfide and active carbon manufactured by the same
JP2017532465A (en) * 2014-10-15 2017-11-02 キャンフォー パルプ リミティド Integrated kraft pulp mill and thermochemical conversion system
US11306435B2 (en) 2014-10-15 2022-04-19 Licella Pty Ltd. Integrated Kraft pulp mill and thermochemical conversion system
US11834783B2 (en) 2014-10-15 2023-12-05 Canfor Pulp Ltd. Integrated kraft pulp mill and thermochemical conversion system
JP2022087826A (en) * 2020-12-01 2022-06-13 正城 山地 Biochar production system, biochar production method and control program of biochar production system
JP7382572B2 (en) 2020-12-01 2023-11-17 正城 山地 Biochar production system and biochar production system control program

Also Published As

Publication number Publication date
JP4919253B2 (en) 2012-04-18

Similar Documents

Publication Publication Date Title
Sri Shalini et al. Biochar from biomass waste as a renewable carbon material for climate change mitigation in reducing greenhouse gas emissions—a review
Kwon et al. Pyrolysis of waste feedstocks in CO2 for effective energy recovery and waste treatment
Xu et al. Mini-review on char catalysts for tar reforming during biomass gasification: the importance of char structure
Yuan et al. Pyrolysis and combustion kinetics of lignocellulosic biomass pellets with calcium-rich wastes from agro-forestry residues
Rashidi et al. A review on recent technological advancement in the activated carbon production from oil palm wastes
Ge et al. Hydrogen production by catalytic gasification of coal in supercritical water with alkaline catalysts: Explore the way to complete gasification of coal
Shen et al. Advances in in situ and ex situ tar reforming with biochar catalysts for clean energy production
Feng et al. Roles and fates of K and Ca species on biochar structure during in-situ tar H2O reforming over nascent biochar
Zhang et al. Potassium catalytic hydrogen production in sorption enhanced gasification of biomass with steam
Li et al. Recent advances in hydrogen production by thermo-catalytic conversion of biomass
Song et al. CO2-assisted co-pyrolysis of textile dyeing sludge and hyperaccumulator biomass: dynamic and comparative analyses of evolved gases, bio-oils, biochars, and reaction mechanisms
Sakhiya et al. Suitability of rice straw for biochar production through slow pyrolysis: product characterization and thermodynamic analysis
Iwuozor et al. A review on the thermochemical conversion of sugarcane bagasse into biochar
Zeng et al. Molten salt pyrolysis of biomass: The evaluation of molten salt
Hu et al. Optimal conditions for the catalytic and non-catalytic pyrolysis of water hyacinth
Narzari et al. Biochar: an overview on its production, properties and potential benefits
JP4919253B2 (en) Biological organic resource processing method and system
CN108314040A (en) A kind of method of wood substance grain gasifying electricity generation co-producing active carbon
Yu et al. Steam gasification of biochars derived from pruned apple branch with various pyrolysis temperatures
Murugesan et al. Food waste valorisation via gasification–A review on emerging concepts, prospects and challenges
CN106398771A (en) Solid organic waste gasifying process capable of reducing dioxin emission
Fan et al. Pyrolysis of cellulose: Correlation of hydrophilicity with evolution of functionality of biochar
Su et al. Supercritical water gasification of hyperaccumulators for hydrogen production and heavy metal immobilization with alkali metal catalysts
Mohamed et al. Biofuel production by co-pyrolysis of sewage sludge and other materials: a review
John et al. Biomass-based hydrothermal carbons for catalysis and environmental cleanup: A review

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120125

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees