JP2007037434A - ARTIFICIAL PROTEIN EXPRESSED PANCREATIC beta-CELL-SPECIFICALLY, REPORTER GENE ENCODING THE PROTEIN AND METHOD FOR MEASURING AMOUNT OF PANCREATIC betaCELL - Google Patents

ARTIFICIAL PROTEIN EXPRESSED PANCREATIC beta-CELL-SPECIFICALLY, REPORTER GENE ENCODING THE PROTEIN AND METHOD FOR MEASURING AMOUNT OF PANCREATIC betaCELL Download PDF

Info

Publication number
JP2007037434A
JP2007037434A JP2005223696A JP2005223696A JP2007037434A JP 2007037434 A JP2007037434 A JP 2007037434A JP 2005223696 A JP2005223696 A JP 2005223696A JP 2005223696 A JP2005223696 A JP 2005223696A JP 2007037434 A JP2007037434 A JP 2007037434A
Authority
JP
Japan
Prior art keywords
cells
pancreatic
reporter gene
protein
vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005223696A
Other languages
Japanese (ja)
Inventor
Yukio Tanizawa
幸生 谷澤
Atsushi Matsubara
淳 松原
Katsuya Tanabe
勝也 田部
Mutsuko Miyazaki
睦子 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaguchi University NUC
Original Assignee
Yamaguchi University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaguchi University NUC filed Critical Yamaguchi University NUC
Priority to JP2005223696A priority Critical patent/JP2007037434A/en
Publication of JP2007037434A publication Critical patent/JP2007037434A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Peptides Or Proteins (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for simply measuring pancreatic β-cells, comprising making a reporter gene structurally expressed in the pancreatic β-cells and secreted in blood, and transducing the reporter gene into each of various recipient cells as a transgene. <P>SOLUTION: The artificial reporter gene prepared by fusing a human albumin gene containing a signal sequence with human C-peptide, and a vector incorporated with the artificial reporter gene, and an artificial protein encoding the vector. The amount of the pancreatic β-cells can be estimated by measuring the artificial protein secreted by the recipient cells. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、膵臓に存在するβ細胞量の定量に関するものであり、詳しくは、膵β細胞で特異的にかつ構成的に発現され、調節を受けずに分泌されるレポータータンパク質を用い、その血中濃度等を測定することにより、生体内においてβ細胞量を定量的に推定するモデルを提供するものである。   The present invention relates to the quantification of the amount of β-cells present in the pancreas, and more specifically, using a reporter protein that is specifically and constitutively expressed in pancreatic β-cells and secreted without regulation, and the blood The present invention provides a model for quantitatively estimating the amount of β cells in a living body by measuring an intermediate concentration or the like.

本出願において「遺伝子」とは、mRNAとして転写される配列に加え、その上流及び下流に位置し前記mRNAの転写調節に関与している配列を含んだ塩基配列全体、と定義する。また本出願において、膵臓β細胞は、膵β細胞またはβ細胞と略す。   In the present application, the “gene” is defined as the entire base sequence including a sequence that is located upstream and downstream in addition to a sequence that is transcribed as mRNA and that is involved in transcriptional regulation of the mRNA. In the present application, pancreatic β cells are abbreviated as pancreatic β cells or β cells.

膵臓β細胞の量的変化を計測することは、糖尿病の発症予知や発症後の経過観察に対して有用であるが、生体内における測定は非常に困難であり、その方法も限定されている(特許文献1,2、非特許文献1)。   Measuring the quantitative change of pancreatic β cells is useful for predicting the onset of diabetes and for the follow-up after onset, but it is very difficult to measure in vivo and its method is limited ( Patent Documents 1 and 2, Non-Patent Document 1).

インスリン分泌障害は、1型のみならず2型糖尿病の発症要因の一つとしても必須のものである。2型糖尿病では、インスリン抵抗性が同時に存在しうるが、インスリン分泌の亢進による代償が破綻してはじめて糖尿病を発症すると考えられる。   Insulin secretion disorders are indispensable not only as type 1 but also as one of the onset factors of type 2 diabetes. In type 2 diabetes, insulin resistance may exist at the same time, but it is thought that diabetes develops only when the compensation due to increased insulin secretion breaks down.

インスリン分泌障害には2つの要素が考えられる。すなわち、β細胞機能の質的障害と、β細胞量の不足である。1型糖尿病はβ細胞量の減少によって発症する。2型糖尿病においてはこれら2つの要素がどの程度の比率で関与するかは明らかでないが、β細胞の質的障害(ブドウ糖応答性の障害)に加え、代償的に肥大または過形成する能力の障害も含めたβ細胞量も発症に影響を持つことは疑いない。また、β細胞量は糖尿病発症後も1次的、2次的に減少することが知られている。   Two factors can be considered for impaired insulin secretion. That is, the qualitative disorder of β cell function and the lack of β cell amount. Type 1 diabetes is caused by a decrease in β-cell mass. It is not clear to what extent these two factors are involved in type 2 diabetes, but in addition to beta cell qualitative impairment (deficiency of glucose responsiveness), impaired compensatory hypertrophy or hyperplasia There is no doubt that the amount of β-cells, including, also affects the onset. In addition, it is known that the amount of β-cells decreases primary and secondary after the onset of diabetes.

この様に、β細胞量の変化は糖尿病発症の予知や発症後の経過観察に有用であるが、実際には、これまでのところ動物モデルにおいてさえその測定は極めて困難である。直接的には膵摘出標本での組織学的検査が可能ではあるが、生体に行うことは難しい。従って、生体では定常状態または各種刺激下(例えば、グルカゴン刺激)でのインスリン分泌量等からβ細胞量を推測することが、現時点で取り得る数少ない方法である(特許文献3)。
特許3631764号 哺乳動物の膵細胞の分化状態を試験する新規な方法 特表2002−532088 肝臓細胞および膵臓細胞に共通の幹細胞/前駆細胞を同定するための動物モデル 特開2004−154136 β細胞機能不全改善薬の評価方法 Moore A,Bonner−Weir S,Weissleder R.(2001) Diabetes 50(10):2231−2236. Tanizawa Y,Ohta Y,Nomiyama J.et al.(1999) Diabetologia 42(7):887−891. Inoue H,Tanizawa Y,Wasson J.et al.(1998) Nature Genetics 20(2):143−148
Thus, changes in the amount of β cells are useful for predicting the onset of diabetes and observing the progress after the onset, but in practice it has been so far difficult to measure even in animal models. Although direct histological examination with pancreatic specimens is possible, it is difficult to perform in vivo. Therefore, in the living body, estimating the amount of β cells from the amount of secreted insulin under steady state or under various stimuli (for example, glucagon stimulation) is one of the few methods that can be taken at present (Patent Document 3).
Patent No. 3631864 A novel method for examining the differentiation state of mammalian pancreatic cells Animal model for identifying stem / progenitor cells common to liver cells and pancreatic cells Method for evaluating β-cell dysfunction-improving drug Moore A, Bonner-Weir S, Weissleder R. (2001) Diabetes 50 (10): 2231-2236. Tanizawa Y, Ohta Y, Nomiyayama J. et al. et al. (1999) Diabetologia 42 (7): 887-891. Inoue H, Tanizawa Y, Wasson J. et al. et al. (1998) Nature Genetics 20 (2): 143-148.

上記の現状に鑑み、本発明者らは、糖尿病の発症機構に着目して研究を進め、MODY(maturity onset diabetes of the young)の幾つかのタイプが膵β細胞に発現する転写因子の異常により発症することから、それらの一部ではインスリン分泌障害が関係することを示した(非特許文献2)。また本発明者らは、膵臓ランゲルハンス島からβ細胞が選択的に消失し、インスリン依存状態の糖尿病を発症する「Wolfram症候群」の原因遺伝子「WFS1」を世界に先駆けて同定し、その病態モデルとなるWFS1ノックアウトマウスを作成し、糖尿病の発症機序について研究を進めてきている(非特許文献3)。   In view of the above situation, the present inventors proceeded with research focusing on the pathogenesis of diabetes, and some types of MODY (maturity onset diabetics of the young) are caused by abnormal transcription factors expressed in pancreatic β cells. From the onset, it was shown that some of them are associated with impaired insulin secretion (Non-patent Document 2). In addition, the present inventors have identified, for the first time in the world, a causal model “WFS1” of “Wolfram syndrome” in which β-cells selectively disappear from pancreatic islets of Langerhans and develop diabetes in an insulin dependent state. The WFS1 knockout mouse is developed, and research on the pathogenesis of diabetes has been advanced (Non-patent Document 3).

これらの研究過程で、本発明者らは、膵β細胞量の変化を簡便に測定できる系の必要性と有用性に着目した。ここで重要なのは、β細胞量を増加させることは糖尿病の治療や予防の一手段となりうるが、この様な作用を持つ薬物や成長因子などの開発、スクリーニングには、簡便なβ細胞量の評価法が必須であるということである。すなわち本発明は、膵β細胞で構成的に発現され血液中に分泌される人工レポーター遺伝子を作成し、トランスジーンとして種々のレシピエント細胞に導入して、膵β細胞を簡便に計測する方法を提供することを課題とする。   In the course of these studies, the present inventors have focused on the necessity and usefulness of a system that can easily measure changes in pancreatic β cell mass. What is important here is that increasing the amount of β-cells can be a means of treating or preventing diabetes, but it is easy to evaluate the amount of β-cells for the development and screening of such drugs and growth factors. The law is essential. That is, the present invention provides a method for easily measuring pancreatic β cells by creating an artificial reporter gene that is constitutively expressed in pancreatic β cells and secreted into the blood, and introduced into various recipient cells as a transgene. The issue is to provide.

本発明は、膵β細胞で特異的にかつ構成的に発現され、調節を受けずに分泌されるレポータータンパク質(及びそれをコードする遺伝子)、および前記タンパク質を用い、その血中濃度等を測定することにより、生体内においてβ細胞量を定量的に推定するモデルを提供することを目的とする。   The present invention specifically and constitutively expresses in pancreatic β cells and is secreted without regulation, and a reporter protein (and a gene encoding the same), and its blood concentration is measured using the protein. It is an object of the present invention to provide a model for quantitatively estimating the amount of β cells in a living body.

すなわち本発明の第1の態様は、膵β細胞で特異的に且つ構成的に発現され、調節を受けずに分泌することを特徴とする人工タンパク質を提供することにある。   That is, the first aspect of the present invention is to provide an artificial protein characterized in that it is specifically and constitutively expressed in pancreatic β cells and secreted without being regulated.

本発明の第2の態様は、第1の発明に緒稀有人工タンパク質としてヒトアルブミン遺伝子のシグナル配列にヒトインスリン遺伝子のC−ペプチド又はルシフェラーゼを融合させた物質を提供するにある。   A second aspect of the present invention is to provide a substance in which a human insulin gene C-peptide or luciferase is fused to a human albumin gene signal sequence as a rare artificial protein according to the first invention.

本発明の第3の態様は、上記第1の態様、第2の態様における膵β細胞で特異的にかつ構成的に発現され、調節を受けずに分泌される人工タンパク質をコードしたレポーター遺伝子を提供する。膵β細胞特異的に発現するためのプロモーター配列を有することを特徴とする、レポーター遺伝子を提供する。   According to a third aspect of the present invention, there is provided a reporter gene encoding an artificial protein that is specifically and constitutively expressed in the pancreatic β cells in the first and second aspects and is secreted without being regulated. provide. A reporter gene characterized by having a promoter sequence for specific expression of pancreatic β cells is provided.

本発明の第4の態様は、第3の態様において膵β細胞特異的に発言するためのプロモーター配列を有するレポーター遺伝子を提供する。   The fourth aspect of the present invention provides a reporter gene having a promoter sequence for speaking specifically in pancreatic β cells in the third aspect.

本発明の第5の態様は、前記プロモーター配列がインスリンI遺伝子のプロモーター配列であるレポーター遺伝子を提供する。   According to a fifth aspect of the present invention, there is provided a reporter gene wherein the promoter sequence is an insulin I gene promoter sequence.

本発明の第6の態様は、前記レポーター遺伝子により発現される人工タンパク質が、種々の生理条件下でも、発現量が変化しないことを特徴とするレポーター遺伝子を提供する。   The sixth aspect of the present invention provides a reporter gene, wherein the artificial protein expressed by the reporter gene does not change in expression level even under various physiological conditions.

本発明の第7の態様は、前記第3乃至第6の態様として示したレポーター遺伝子を組み込んだベクターを提供する。   The seventh aspect of the present invention provides a vector incorporating the reporter gene shown as the third to sixth aspects.

本発明の第8の態様は、前記第7の態様において、ベクターとしてプラスミドまたはウイルスを用いられることを特徴とするベクターを提供する。   According to an eighth aspect of the present invention, there is provided the vector according to the seventh aspect, wherein a plasmid or a virus is used as the vector.

更に、本発明の第9の態様は、第8の態様におけるウイルスとしてレトロウイルスをベクターとすることを特徴とする発明である。   Furthermore, the ninth aspect of the present invention is an invention characterized in that a retrovirus is used as the vector in the eighth aspect.

本発明の第11の態様は、前記第7の態様乃至第9の態様のいずれかによるレポーター遺伝子をゲノム内に組み込んだモデル動物であって、前記レポーター遺伝子がコードする人工タンパク質を、膵β細胞で特異的にかつ構成的に発現することを可能としたモデル動物を提供する。   An eleventh aspect of the present invention is a model animal in which a reporter gene according to any one of the seventh to ninth aspects is incorporated into a genome, wherein an artificial protein encoded by the reporter gene is expressed in pancreatic β cells A model animal that can be expressed specifically and constitutively is provided.

本発明の第10の態様は、前記第1の態様又は第2の態様、すなわち膵β細胞で特異的にかつ構成的に発現され、調節を受けずに分泌されることを特徴とする、人工タンパク質を測定することを特徴とする膵β緒細胞量の計測である方法。   The tenth aspect of the present invention is the artificial aspect characterized in that it is specifically and constitutively expressed in the pancreatic β-cell and secreted without being regulated, according to the first aspect or the second aspect. A method for measuring the amount of pancreatic β cord cells, characterized by measuring a protein.

本発明の第12の態様は、膵β細胞で特異的にかつ構成的に発現され、調節を受けずに分泌されることを特徴とする、人工タンパク質の発現量または血中濃度、及び前記タンパク質をコードしたレポーター遺伝子の発現量を計測することを特徴とする、膵β細胞量の定量法を提供する。   In a twelfth aspect of the present invention, the expression level or blood concentration of an artificial protein, which is specifically and constitutively expressed in pancreatic β cells and secreted without being regulated, and the protein A method for quantifying the amount of pancreatic β-cells, comprising measuring the expression level of a reporter gene that encodes pancreatic β.

本発明の第13の態様は、前記第10の態様、又は第12の態様における膵β細胞量の定量法を用いた、膵β細胞を増加させる効果を持つ物質のスクリーニング方法を提供する。   A thirteenth aspect of the present invention provides a screening method for a substance having an effect of increasing pancreatic β cells, using the method for quantifying the amount of pancreatic β cells in the tenth aspect or the twelfth aspect.

本発明を利用した非侵襲的膵β細胞量定量法は、糖尿病発症、進展の病態の解明や発症予知のみならず、膵β細胞の減少を阻止する様な薬剤療法や再生医療の開発に寄与するものと期待される。   Noninvasive pancreatic β-cell quantification method using the present invention contributes to the development of drug therapy and regenerative medicine that prevent the decrease of pancreatic β-cells as well as elucidation and prediction of the pathogenesis of diabetes onset and progression Expected to do.

以下に本発明の実施の形態を詳述する。本発明の第1の態様は、膵β細胞で特異的に且つ構成的に発現され、調節を受けずに分泌されることを特徴とする人工タンパク質(レポーター分子)を提供する。本発明者らは、膵β細胞量の非侵襲的な計測を目的とし、膵β細胞で合成されるレポーター分子を用い、この濃度を測定することで、生体内において膵β細胞量が推定できるシステムを開発した。本発明のレポーター分子に必要とされる条件としては、(1)レポーター分子の発現が膵β細胞特異的である。(2)発現が構成的(constitutive)で、種々の条件下でも発現調節を受けない。(3)分子が構成的に血中に分泌される。(4)分泌されたレポーター分子は比較的安定で、且つ生理活性を持たない。(5)レポーター分子の血中濃度測定が容易である。の5点が挙げられる。   Hereinafter, embodiments of the present invention will be described in detail. The first aspect of the present invention provides an artificial protein (reporter molecule) that is specifically and constitutively expressed in pancreatic β cells and secreted without being regulated. The present inventors can estimate the amount of pancreatic β cells in vivo by measuring this concentration using a reporter molecule synthesized in pancreatic β cells for the purpose of noninvasive measurement of the amount of pancreatic β cells. A system was developed. The conditions required for the reporter molecule of the present invention are as follows: (1) Expression of the reporter molecule is specific to pancreatic β cells. (2) Expression is constitutive and is not subject to expression regulation under various conditions. (3) The molecule is constitutively secreted into the blood. (4) The secreted reporter molecule is relatively stable and has no physiological activity. (5) The blood concentration of the reporter molecule can be easily measured. Of 5 points.

本発明の第2から第6の態様においては、膵β細胞で特異的にかつ構成的に発現され、調節を受けずに分泌されることを特徴とする、人工タンパク質をコードしたレポーター遺伝子が提供される。ここでいうレポーター遺伝子は、膵β細胞特異的に発現するためのプロモーター配列を有し、より詳しくは発現が構成的で、種々の生理条件下でも発現量が変化しない遺伝子であって、更に詳しくは膵β細胞を計測しようとする対象生物に由来しない遺伝子で、そのコードする遺伝子産物が生理活性を持たないレポーター遺伝子である。前記レポーター遺伝子を更に具体的に例示すれば、インスリンI遺伝子のプロモーター配列を有し、そのコードするタンパク質がアルブミン遺伝子のシグナル配列にヒトインスリン遺伝子のC−ペプチドを融合させ、更にMycタグを付加した人工タンパク質、またはアルブミン遺伝子のシグナル配列にルシフェラーゼを融合させ、更にMycタグを付加した人工タンパク質であるレポーター遺伝子である。本発明におけるプロモーターと人工タンパク質の組み合わせは、上述のレポーター遺伝子に必要とされる条件を満たしていればその種類に特に限定は無く、またその組み合わせが本発明を限定するものでは無い。   In the second to sixth aspects of the present invention, there is provided a reporter gene encoding an artificial protein, characterized in that it is specifically and constitutively expressed in pancreatic β cells and secreted without being regulated. Is done. The reporter gene referred to here has a promoter sequence for specific expression of pancreatic β cells, more specifically a gene whose expression is constitutive and whose expression level does not change even under various physiological conditions. Is a gene not derived from the target organism for which pancreatic β cells are to be measured, and its encoded gene product is a reporter gene having no physiological activity. More specifically, the reporter gene has a promoter sequence of insulin I gene, a protein encoded by the C-peptide of human insulin gene is fused to the signal sequence of albumin gene, and a Myc tag is added. It is a reporter gene that is an artificial protein or an artificial protein in which a luciferase is fused to the signal sequence of an albumin gene and a Myc tag is further added. The combination of the promoter and artificial protein in the present invention is not particularly limited as long as it satisfies the conditions required for the above-mentioned reporter gene, and the combination does not limit the present invention.

本発明の第7から第9の態様においては、膵β細胞で特異的にかつ構成的に発現され、調節を受けずに分泌されることを特徴とする、人工タンパク質をコードしたレポーター遺伝子を組み込んだベクターが提供される。本発明におけるベクターは、詳しくは請求項2から請求項6のうちいずれか1項に記載のレポーター遺伝子を組み込んだベクターであり、より詳しくはプラスミドベクターまたはウイルスベクターのいずれかである。   In the seventh to ninth aspects of the present invention, a reporter gene encoding an artificial protein, which is specifically and constitutively expressed in pancreatic β cells and secreted without being regulated, is incorporated A vector is provided. Specifically, the vector in the present invention is a vector into which the reporter gene according to any one of claims 2 to 6 is incorporated, and more specifically, either a plasmid vector or a viral vector.

本発明の第10の態様においては、請求項7に記載のベクターを用い、請求項2から請求項6のいずれか1項に記載のレポーター遺伝子をゲノム内に組み込んだモデル動物であって、前記レポーター遺伝子がコードする人工タンパク質を、膵β細胞で特異的にかつ構成的に発現することを可能とした、モデル動物が提供される。このモデル動物の例としてはマウスが挙げられ、このマウスはゲノムDNA内に前記レポーター遺伝子を組み込んだものである。このマウスを他の糖尿病モデルマウスと交配させるなどにより、膵β細胞量の変化を追跡し糖尿病発症の病態解明に寄与することが期待される。   In a tenth aspect of the present invention, there is provided a model animal using the vector according to claim 7 and incorporating the reporter gene according to any one of claims 2 to 6 in the genome, Provided is a model animal that can specifically and constitutively express an artificial protein encoded by a reporter gene in pancreatic β cells. An example of this model animal is a mouse, which is a mouse in which the reporter gene is incorporated into genomic DNA. This mouse is expected to contribute to elucidation of the pathogenesis of diabetes by tracking changes in the amount of β-cells by mating with other diabetes model mice.

本発明の第11、第12の態様においては、膵β細胞で特異的にかつ構成的に発現され、調節を受けずに分泌される人工タンパク質(レポーター分子)の、発現量または血中濃度、及びレポーター遺伝子の発現量を計測することを特徴とする、膵β細胞量の定量法が提供される。実施例で述べるとおり、計測方法としては、例えば分泌されたタンパク質をELISA法等によって定量するなどの方法が考えられる。   In the eleventh and twelfth aspects of the present invention, the expression level or blood concentration of an artificial protein (reporter molecule) that is specifically and constitutively expressed in pancreatic β cells and secreted without regulation, And a method for quantifying the amount of pancreatic β cells characterized by measuring the expression level of a reporter gene. As described in the examples, as a measuring method, for example, a method of quantifying secreted protein by ELISA or the like can be considered.

本発明の第13の態様においては、請求項11または12に記載の膵β細胞量の定量法を用いた、膵β細胞を増加させる効果を持つ物質のスクリーニング方法が提供される。前述の通り、1型糖尿病では膵β細胞が経時的に減少、消失するが、2型糖尿病においてもまたその発症及び進展には膵β細胞量の減少が関わることが明らかになってきており、これを抑えるかまたは膵β細胞を増加させる効果を持つ物質が利用可能となれば、1型糖尿病のみならず2型糖尿病の治療に大きく寄与できると期待される。その様な物質のスクリーニングのために、例えば候補物質の投与前後におけるレポーター遺伝子または遺伝子産物を定量する、本発明の膵β細胞量の定量法は利用可能である。   In a thirteenth aspect of the present invention, there is provided a screening method for a substance having an effect of increasing pancreatic β cells, using the pancreatic β cell amount quantification method according to claim 11 or 12. As described above, pancreatic β-cells decrease and disappear over time in type 1 diabetes, but it has also become clear that in type 2 diabetes, the onset and progression of pancreatic β-cells are associated with a decrease in the amount of pancreatic β-cells. If a substance having an effect of suppressing this or increasing pancreatic β cells becomes available, it is expected to greatly contribute to the treatment of type 2 diabetes as well as type 1 diabetes. For screening such a substance, for example, the method for quantifying the amount of pancreatic β cells of the present invention for quantifying a reporter gene or a gene product before and after administration of a candidate substance can be used.

以下に本発明の実施例を述べるが、本実施例は本発明を限定するものでは無い。   Examples of the present invention will be described below, but the present examples are not intended to limit the present invention.

(レポーター遺伝子の作成と発現) ヒトアルブミン遺伝子のcDNA全長を、human hepatocellular carcinoma細胞株HepG2よりreverse transcription polymerase chain reaction(RT−PCR)法にて得た。また、ヒトC−ペプチドについては、合成オリゴヌクレオチドによりcDNA作成を行った。これらのcDNAを用い、表1のプライマーを用いたPCR法により、合成遺伝子Alb−hcを作成した(図1)。また、発現された人工タンパク質の検出をより容易にするために、Mycタグを挿入し、それぞれを発現するためのベクターを、プラスミドpcDNA3を基に構築した。作成した全てのDNAについては、シークエンシングを行いその塩基配列を確認した。

Figure 2007037434
(Creation and expression of reporter gene) The full length cDNA of the human albumin gene was obtained from human hepatocyte cellular carcinoma cell line HepG2 by the reverse transcription polymerase reaction (RT-PCR) method. For human C-peptide, cDNA was prepared with synthetic oligonucleotides. Using these cDNAs, a synthetic gene Alb-hc was prepared by PCR using the primers shown in Table 1 (FIG. 1). Further, in order to make it easier to detect the expressed artificial protein, a Myc tag was inserted, and a vector for expressing each was constructed based on the plasmid pcDNA3. All the prepared DNAs were sequenced to confirm their base sequences.
Figure 2007037434

(細胞培養) NHI3T3線維芽細胞、Cos7細胞、HEK293細胞及びPlatE細胞(東京大学医科学研究所・北村俊雄博士より供与)を、10%(v/v)fetal bovine serumを含むDulbecco‘s modified Eagle’s medium(25mM glucose,50mg/ml streptomycin,50units/ml penicillin)を用いて37℃,5%CO下で培養した。マウスインスリノーマ細胞株であるMIN6は、15%(v/v)fetal bovine serumを含む前記Dulbecco‘s modified Eagle’s medium(含50μM β−メルカプトエタノール)を用い、37℃,5%CO下で培養した。前述のレポーター遺伝子をリポフェクション法(FuGene,Roche Diagnotstics,CH)によりCos7及びHEK293細胞、PlatE細胞に導入し、人工タンパク質Alb−hcの発現を、抗Myc抗体を用いてWestern blotting法により確認した。トランスフェクションのコントロールとして、pcDNA3−GFPを使用した。実験は、トランスフェクションから48時間後の細胞を用いて行った。 (Cell culture) NHI3T3 fibroblasts, Cos7 cells, HEK293 cells and PlatE cells (provided by Dr. Toshio Kitamura, Institute of Medical Science, The University of Tokyo) 10% (v / v) Dulbecco's modified Eagle containing fat bovine serum It was cultured at 37 ° C. and 5% CO 2 using 's medium (25 mM glucose, 50 mg / ml streptomycin, 50 units / ml penicillin). MIN6, a mouse insulinoma cell line, uses the above-mentioned Dulbecco's modified Eagle's medium (containing 50 μM β-mercaptoethanol) containing 15% (v / v) fetal bovine serum at 37 ° C. and 5% CO 2 . Cultured. The aforementioned reporter gene was introduced into Cos7, HEK293 cells and PlatE cells by lipofection method (FuGene, Roche Diagnostics, CH), and the expression of artificial protein Alb-hc was confirmed by Western blotting method using anti-Myc antibody. PcDNA3-GFP was used as a transfection control. The experiment was performed using cells 48 hours after transfection.

(Western blotting assay) 細胞培養液をKrebs−Ringer bicarbonate(KRB)−HEPES bufer(120mM NaCl,4.7mM KCl,1.2mM MgSO,1.2mM KHPO,20mM NaHCO,20mM HEPES,2mM CaCl,pH7.4)に置き換え4時間培養を行った後、培養上清を一部回収した。Phosphate−buffered saline(PBS)で細胞を1回洗浄し、Lysis buffer(20mM Tris−HCl,0.5% NP40,250mM NaCl,3mM EGTA,3mM EDTA,1.0% aprotinin)を加えて細胞溶解液を作成した。細胞溶解液のタンパク質量をBCA Protein Assay Reagent(BioRad,USA)を用いて測定した。上清及び細胞溶解液にSample bufferを加え加熱処理した後、12%アクリルアミドゲルでSDS−PAGEを行い、泳動後のゲルからHybond membrane(Amersham Biosciences,USA)にタンパク質を転写した。メンブレンを5% Skim milk in 0.1% TBS−T(0.1% Tween 20,10mM Tris−HCl,150mM NaCl)でブロッキングした。1次抗体として抗Myc抗体を、2次抗体として抗マウスIg抗体を用い、ECL Western Blotting Detection System(Amersham Biosciences,USA)により検出した。 (Western blotting assay) Cell culture The Krebs-Ringer bicarbonate (KRB) -HEPES bufer (120mM NaCl, 4.7mM KCl, 1.2mM MgSO 4, 1.2mM KH 2 PO 4, 20mM NaHCO 3, 20mM HEPES, 2mM After replacing with CaCl 2 , pH 7.4) and culturing for 4 hours, a part of the culture supernatant was collected. Cells were washed once with phosphate-buffered saline (PBS), and then added with Lysis buffer (20 mM Tris-HCl, 0.5% NP40, 250 mM NaCl, 3 mM EGTA, 3 mM EDTA, 1.0% aprotinin) It was created. The amount of protein in the cell lysate was measured using BCA Protein Assay Reagent (BioRad, USA). Sample buffer was added to the supernatant and the cell lysate, followed by heat treatment. Then, SDS-PAGE was performed on a 12% acrylamide gel, and the protein was transferred from the gel after electrophoresis to Hybond membrane (Amersham Biosciences, USA). The membrane was blocked with 5% Skim milk in 0.1% TBS-T (0.1% Tween 20, 10 mM Tris-HCl, 150 mM NaCl). An anti-Myc antibody was used as a primary antibody and an anti-mouse Ig antibody was used as a secondary antibody, which was detected by ECL Western Blotting Detection System (Amersham Biosciences, USA).

(レトロウィルスによる遺伝子発現) 融合遺伝子Alb−hcを、レトロウィルスベクターであるpMXs(東京大学医科学研究所・北村俊雄博士より供与)へ組み込んだ。これをパッケージング細胞PlatEにリポフェクション法(FuGene)を用いて導入し、48時間後、ウィルスを含む細胞上清を回収した。70%confluentとなったNIH 3T3 fibroblastをレトロウィルス液で12時間培養した。感染48時間後よりpuromycin selection(2μg/ml)を行い、安定発現細胞株を作製した。MIN6細胞に対しても、同様の方法でレトロウィルスを用いた。但し、遺伝子の導入効率を上げるために初回感染から48時間後に2回目の感染を行った。2回目の感染から48時間後にpuromycin selection(1μg/ml)を行い、安定発現細胞株を作製した。   (Gene expression by retrovirus) The fusion gene Alb-hc was incorporated into a retrovirus vector pMXs (provided by Dr. Toshio Kitamura, Institute of Medical Science, University of Tokyo). This was introduced into the packaging cell Plat using the lipofection method (FuGene), and after 48 hours, the cell supernatant containing the virus was recovered. NIH 3T3 fibroblast which became 70% confluent was cultured in a retrovirus solution for 12 hours. Puromycin selection (2 μg / ml) was performed from 48 hours after infection to prepare a stable expression cell line. Retroviruses were used in the same manner for MIN6 cells. However, in order to increase the efficiency of gene transfer, the second infection was performed 48 hours after the first infection. Puromycin selection (1 μg / ml) was performed 48 hours after the second infection to produce a stable expression cell line.

(ヒトC−ペプチドELISAキットによるレポーター分子の測定) Cos7、293細胞及びNIH 3T3 fibroblastに融合遺伝子Alb−hcをトランスフェクションし、48時間後に実験を行った。Mediumを吸引、Krebs−Ringer bicarbonate (KRB−HEPES) buffer(120mM NaCl,4.7mM KCl,1.2mM MgSO,1.2mM KHPO,20mM NaHCO,20mM HEPES,2mM CaCl,pH7.4)で細胞を2回洗浄、lysis buffer(20mM Tris−HCl,0.1% NP40,250mM NaCl,3mM EGTA,3mM EDTA,1.0% aprotinin)を加え細胞溶解液を作製した。培養上清及び細胞溶解液を用いてELISA法(ヒトC−ペプチドELISAキット,LINCO,USA)にてC−ペプチド濃度を測定した。融合タンパク質を発現した安定細胞株3T3 fibroblastにおいては、6cm dishに蒔き、80% confluentとなった状態で上記と同様に行った。 (Measurement of Reporter Molecules by Human C-Peptide ELISA Kit) Cos7, 293 cells and NIH 3T3 fibroblast were transfected with the fusion gene Alb-hc, and an experiment was performed 48 hours later. Medium is aspirated, Krebs-Ringer bicarbonate (KRB-HEPES) buffer (120 mM NaCl, 4.7 mM KCl, 1.2 mM MgSO 4 , 1.2 mM KH 2 PO 4 , 20 mM NaHCO 3 , 20 mM HEPES, 2 mM CaCl 2 , pH 7 The cells were washed twice in 4), and lysis buffer (20 mM Tris-HCl, 0.1% NP40, 250 mM NaCl, 3 mM EGTA, 3 mM EDTA, 1.0% aprotinin) was added to prepare a cell lysate. The C-peptide concentration was measured by ELISA (human C-peptide ELISA kit, LINCO, USA) using the culture supernatant and cell lysate. In the stable cell line 3T3 fibroblast that expressed the fusion protein, the cells were plated in a 6 cm dish and 80% confluent.

(Cos7,HEK293細胞での融合タンパク質の発現) まず、3つの異なる位置にMyc−tagを付加した融合タンパク質Alb−hcを発現させるためのベクターを、pcDNA3を用いて作製した(図2)。これら発現ベクターをCos7細胞に導入し、Western Blotting法にて融合タンパク質の発現を確認した。30−33kDaにバンドが確認できたが、C−ペプチド部分の両端にmyc−tagを付加したAlb−hc(C:myc−cpep−myc,C:mcm)の検出が良好であり、以後これを実験に用いた(図3)。   (Expression of fusion protein in Cos7, HEK293 cells) First, a vector for expressing the fusion protein Alb-hc with Myc-tag added at three different positions was prepared using pcDNA3 (Fig. 2). These expression vectors were introduced into Cos7 cells, and the expression of the fusion protein was confirmed by Western blotting. Although a band was confirmed at 30-33 kDa, detection of Alb-hc (C: myc-cep-myc, C: mcm) with myc-tag added to both ends of the C-peptide portion was good, Used for the experiment (FIG. 3).

(Cos7細胞での融合タンパク質の分泌) 融合タンパク質Alb−hcを発現した細胞からAlb−hcが分泌されているかどうか検討するため、KRB−HEPES bufferで4時間培養し、上清の一部を用いてWestern Blotting法を行った(図4)。上清中にも、細胞溶解液中において検出されたバンドと同じサイズのバンドが検出された。Western blotting法の結果は、融合タンパク質Alb−hcが細胞から分泌されていることを示している。   (Secretion of fusion protein in Cos7 cells) In order to examine whether Alb-hc is secreted from cells expressing the fusion protein Alb-hc, the cells were cultured for 4 hours in KRB-HEPES buffer, and a part of the supernatant was used. The Western blotting method was performed (FIG. 4). A band having the same size as that detected in the cell lysate was also detected in the supernatant. The result of Western blotting shows that the fusion protein Alb-hc is secreted from the cells.

Alb−hcが既存の方法で測定可能かどうかを検討するために、ヒトC−ペプチド特異的抗体を用いたELISA法による検出を行った。細胞上清を用いて融合タンパク質の測定をヒトC−ペプチドELISAアッセイキットにより試みた結果、培養液中のC−ペプチドは検出・測定可能であった。Western blotting法での結果と同様、Alb−hc(C:mcm)でより高い値を示した(図5)。更にCos7細胞以外の細胞でも同様に発現分泌されるかどうかを確認するため、HEK293細胞にAlb−hc:mcmを発現させ同様の実験を行った。HEK293細胞においても培養上清中にAlb−hcが分泌され、Cos7細胞と同等の濃度のヒトC−ペプチドが確認された(図6)。   In order to examine whether Alb-hc can be measured by an existing method, detection by ELISA using a human C-peptide specific antibody was performed. As a result of an attempt to measure the fusion protein using the cell supernatant using a human C-peptide ELISA assay kit, it was possible to detect and measure the C-peptide in the culture solution. Similar to the result of Western blotting, Alb-hc (C: mcm) showed a higher value (FIG. 5). Furthermore, in order to confirm whether or not the expression and secretion were similarly performed in cells other than Cos7 cells, Alb-hc: mcm was expressed in HEK293 cells, and the same experiment was performed. Also in HEK293 cells, Alb-hc was secreted into the culture supernatant, and human C-peptide having a concentration equivalent to that of Cos7 cells was confirmed (FIG. 6).

本発明のレポーター遺伝子、人工タンパク質及びベクターを利用し、トランスジェニックマウスを作製することにより、ヒトC−ペプチドをマウスで発現させ、これによってマウス膵β細胞量を推定する事が可能になると考えられる。またこうして得られたマウスを他の糖尿病モデルマウスと交配させる事により、膵β細胞量変化を追うことで糖尿病発症の病態解明に寄与すると考えられる。また本発明は、膵β細胞の減少を防止し、その再生や増殖を促進する糖尿病治療薬のスクリーニングにも応用可能である。   By producing a transgenic mouse using the reporter gene, artificial protein and vector of the present invention, it is considered that human C-peptide can be expressed in the mouse and thereby the amount of mouse pancreatic β cells can be estimated. . In addition, by mating the mouse thus obtained with other diabetic model mice, it is considered to contribute to the elucidation of the pathogenesis of diabetes by tracking changes in the amount of pancreatic β cells. The present invention can also be applied to screening for antidiabetic drugs that prevent the decrease of pancreatic β cells and promote their regeneration and proliferation.

本発明に係るヒトアルブミンとヒトC−ペプチドの融合遺伝子の構成を示す。ヒトプレアルブミンのアミノ酸1−204をコードする領域と、ヒトプロインスリンのアミノ酸31−65をコードする領域を融合させた。1 shows the structure of a fusion gene of human albumin and human C-peptide according to the present invention. A region encoding amino acids 1-204 of human prealbumin and a region encoding amino acids 31-65 of human proinsulin were fused. 融合遺伝子Alb−hcの構造を示す。ヒトアルブミンシグナル配列(矢印)を含むドメインとヒトC−ペプチドドメインを融合させた。AはC−ペプチドのC末端側にmyc−tagを付加(cm)、BはC−ペプチドのN末端側に(mc)、CはN,C両末端にmyc−tagを付加(mcm)している。The structure of the fusion gene Alb-hc is shown. A domain containing a human albumin signal sequence (arrow) and a human C-peptide domain were fused. A adds myc-tag to the C-terminal side of C-peptide (cm), B adds (mc) to the N-terminal side of C-peptide, C adds myc-tag to both N and C terminals (mcm) ing. Cos7細胞での融合タンパク質の発現を示す。発現ベクターをトランスフェクション後48時間で回収した細胞溶解液を12%アクリルアミドゲルにて泳動し抗Myc抗体を用いてWestern blottingを行った。A:cm,B:mc,C:mcm.The expression of the fusion protein in Cos7 cells is shown. The cell lysate collected 48 hours after transfection of the expression vector was electrophoresed on a 12% acrylamide gel and Western blotting was performed using an anti-Myc antibody. A: cm, B: mc, C: mcm. Cos7細胞におけるAlb−hcの分泌を確認した。発現ベクターをトランスフェクションした細胞の培養上清を12%アクリルアミドゲルにて泳動し、抗Myc抗体を用いてWestern blottingを行った。トランスフェクション細胞において、抗Myc抗体が認識する35kDaのバンドが検出された。The secretion of Alb-hc in Cos7 cells was confirmed. The culture supernatant of cells transfected with the expression vector was run on a 12% acrylamide gel, and Western blotting was performed using an anti-Myc antibody. A 35 kDa band recognized by the anti-Myc antibody was detected in the transfected cells. Cos7細胞の培養上清に分泌された融合タンパク質のELISAアッセイの結果を示す。Alb−hcを発現する3つのコンストラクトをトランスフェクションしたCos7培養上清を、ヒトC−ペプチドELISAキットで測定した。単位はヒトC−ペプチドとしての濃度で表記した。トランスフェクション細胞において、C−ペプチドが検出された。The result of the ELISA assay of the fusion protein secreted into the culture supernatant of Cos7 cells is shown. Cos7 culture supernatants transfected with three constructs expressing Alb-hc were measured with a human C-peptide ELISA kit. The unit was expressed as the concentration as a human C-peptide. C-peptide was detected in the transfected cells. HEK293細胞上清への、Alb−hcの分泌を示す。HEK293細胞、Cos7細胞にAlb−hc(mcm)を発現させ、培養上清中のAlb−hcをヒトC−ペプチドELISAキットで測定した。単位はヒトC−ペプチドとしての濃度で表した。Cos7細胞と同様、HEK293細胞においてもC−ペプチドが検出された。GFPを発現するコントロールベクターをトランスフェクションした細胞の培養上清でのC−ペプチド値は、測定のバックグラウンドである。2 shows secretion of Alb-hc into HEK293 cell supernatant. Alb-hc (mcm) was expressed in HEK293 cells and Cos7 cells, and Alb-hc in the culture supernatant was measured with a human C-peptide ELISA kit. The unit was expressed as a concentration as a human C-peptide. Similar to Cos7 cells, C-peptide was also detected in HEK293 cells. The C-peptide value in the culture supernatant of cells transfected with a control vector expressing GFP is the measurement background.

Claims (13)

膵β細胞特異的に、且つ構成的に発現され、調節を受けずに分泌されることを特徴とする人工タンパク質。   An artificial protein characterized by being expressed specifically and constitutively in pancreatic β cells and secreted without being regulated. ヒトアルブミン遺伝子のシグナル配列にヒトインスリン遺伝子のC−ペプチド又はルシフェラーゼを融合させた物質である請求項1に記載の人工タンパク質。   The artificial protein according to claim 1, which is a substance obtained by fusing a human insulin gene C-peptide or luciferase to a signal sequence of a human albumin gene. 請求項1又は2に記載の人工タンパク質をコードしたレポーター遺伝子。   A reporter gene encoding the artificial protein according to claim 1 or 2. 膵β細胞特異的に発現するためのプロモーター配列を有することを特徴とする請求項3に記載のレポーター遺伝子。   4. The reporter gene according to claim 3, which has a promoter sequence for specifically expressing pancreatic β cells. 前記プロモーター配列がインスリンI遺伝子のプロモーター配列である請求項4に記載のレポーター遺伝子。   The reporter gene according to claim 4, wherein the promoter sequence is an insulin I gene promoter sequence. 種々の生理条件下でも、発現量が変化しないことを特徴とする請求項3乃至5のいずれかの項に記載のレポーター遺伝子。   The reporter gene according to any one of claims 3 to 5, wherein the expression level does not change even under various physiological conditions. 請求項3乃至6のいずれかの項に記載のレポーター遺伝子を組み込んだベクター。   A vector incorporating the reporter gene according to any one of claims 3 to 6. 請求項7に記載のベクターがプラスミドまたはウイルスであることを特徴とするベクター。   A vector according to claim 7, wherein the vector is a plasmid or a virus. 請求項8に記載のウイルスがレトロウイルスであるベクター。   A vector wherein the virus according to claim 8 is a retrovirus. 請求項7乃至9のいずれかの項に記載のベクターを用い、請求項3乃至6のいずれか1項に記載のレポーター遺伝子をゲノム内に組み込んだモデル動物であって、前記レポーター遺伝子がコードする人工タンパク質を、膵β細胞特異的にかつ構成的に発現することを可能とした、モデル動物。   A model animal in which the reporter gene according to any one of claims 3 to 6 is incorporated into a genome using the vector according to any one of claims 7 to 9, and the reporter gene encodes the animal model. A model animal that enables an artificial protein to be expressed specifically and constitutively in pancreatic β cells. 請求項1又は2に記載の人工タンパク質を測定することを特徴とする膵β細胞量の計測方法。   A method for measuring the amount of pancreatic β cells, comprising measuring the artificial protein according to claim 1 or 2. 膵β細胞特異的にかつ構成的に発現され、調節を受けずに分泌されることを特徴とする、人工タンパク質の発現量または血中濃度、及び前記タンパク質をコードしたレポーター遺伝子の発現量を計測することを特徴とする、膵β細胞量の定量法。   Measures the expression level of the artificial protein or blood concentration, and the expression level of the reporter gene encoding the protein, characterized in that it is expressed specifically and constitutively in pancreatic β cells and secreted without being regulated A method for quantifying pancreatic β-cell mass, characterized by comprising: 請求項10又は12に記載の膵β細胞量の定量法を用いた、膵β細胞を増加させる効果を持つ物質のスクリーニング方法。   A screening method for a substance having an effect of increasing pancreatic β cells, using the method for quantifying the amount of pancreatic β cells according to claim 10 or 12.
JP2005223696A 2005-08-02 2005-08-02 ARTIFICIAL PROTEIN EXPRESSED PANCREATIC beta-CELL-SPECIFICALLY, REPORTER GENE ENCODING THE PROTEIN AND METHOD FOR MEASURING AMOUNT OF PANCREATIC betaCELL Pending JP2007037434A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005223696A JP2007037434A (en) 2005-08-02 2005-08-02 ARTIFICIAL PROTEIN EXPRESSED PANCREATIC beta-CELL-SPECIFICALLY, REPORTER GENE ENCODING THE PROTEIN AND METHOD FOR MEASURING AMOUNT OF PANCREATIC betaCELL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005223696A JP2007037434A (en) 2005-08-02 2005-08-02 ARTIFICIAL PROTEIN EXPRESSED PANCREATIC beta-CELL-SPECIFICALLY, REPORTER GENE ENCODING THE PROTEIN AND METHOD FOR MEASURING AMOUNT OF PANCREATIC betaCELL

Publications (1)

Publication Number Publication Date
JP2007037434A true JP2007037434A (en) 2007-02-15

Family

ID=37795969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005223696A Pending JP2007037434A (en) 2005-08-02 2005-08-02 ARTIFICIAL PROTEIN EXPRESSED PANCREATIC beta-CELL-SPECIFICALLY, REPORTER GENE ENCODING THE PROTEIN AND METHOD FOR MEASURING AMOUNT OF PANCREATIC betaCELL

Country Status (1)

Country Link
JP (1) JP2007037434A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010058605A1 (en) 2008-11-21 2010-05-27 国立大学法人 北海道大学 Method for evaluating state of cells

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004537970A (en) * 2000-12-18 2004-12-24 アライバ ファーマシューティカルズ,インコーポレイティド Multifunctional protease inhibitors and their use in treating diseases

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004537970A (en) * 2000-12-18 2004-12-24 アライバ ファーマシューティカルズ,インコーポレイティド Multifunctional protease inhibitors and their use in treating diseases

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010058605A1 (en) 2008-11-21 2010-05-27 国立大学法人 北海道大学 Method for evaluating state of cells

Similar Documents

Publication Publication Date Title
Myojin et al. Hepatic stellate cells in hepatocellular carcinoma promote tumor growth via growth differentiation factor 15 production
Rahnefeld et al. Ubiquitin-like protein ISG15 (interferon-stimulated gene of 15 kDa) in host defense against heart failure in a mouse model of virus-induced cardiomyopathy
Masamune et al. Nuclear expression of interleukin-33 in pancreatic stellate cells
Aggad et al. In vivo analysis of Ifn-γ1 and Ifn-γ2 signaling in zebrafish
Kukita et al. RANKL-induced DC-STAMP is essential for osteoclastogenesis
Witwicka et al. Studies of OC-STAMP in osteoclast fusion: a new knockout mouse model, rescue of cell fusion, and transmembrane topology
Schäfer et al. Ataxin-10 is part of a cachexokine cocktail triggering cardiac metabolic dysfunction in cancer cachexia
Nakagawa et al. MiR30‐GALNT 1/2 axis‐mediated glycosylation contributes to the increased secretion of inactive human prohormone for brain natriuretic peptide (proBNP) from failing hearts
Makarevich et al. Angiogenic and pleiotropic effects of VEGF165 and HGF combined gene therapy in a rat model of myocardial infarction
Pujari et al. Human T-cell leukemia virus type 1 (HTLV-1) tax requires CADM1/TSLC1 for inactivation of the NF-κB inhibitor A20 and constitutive NF-κB signaling
Mehta et al. Mechanical forces regulate endothelial-to-mesenchymal transition and atherosclerosis via an Alk5-Shc mechanotransduction pathway
Chen et al. Hepatic activation of the FAM3C-HSF1-CaM pathway attenuates hyperglycemia of obese diabetic mice
Wagner et al. HO-1 inhibits preadipocyte proliferation and differentiation at the onset of obesity via ROS dependent activation of Akt2
Chiovaro et al. Transcriptional regulation of tenascin‐W by TGF‐beta signaling in the bone metastatic niche of breast cancer cells
US20070275401A1 (en) USE OF Mx GTPASES IN THE PROGNOSIS AND TREATMENT OF CANCER
Aryal et al. A switch in the dynamics of intra-platelet VEGF-A from cancer to the later phase of liver regeneration after partial hepatectomy in humans
US10828377B2 (en) Method for determining presence or absence of suffering from malignant lymphoma or leukemia, and agent for treatment and/or prevention of leukemia
Xiaozhen et al. Novel truncating and missense variants in SEMA6B in patients with early-onset epilepsy
Zhang et al. NULP1 alleviates cardiac hypertrophy by suppressing NFAT3 transcriptional activity
Rasouli et al. Engineering an L-cell line that expresses insulin under the control of the glucagon-like peptide-1 promoter for diabetes treatment
Yu et al. Biglycan promotes hepatic fibrosis through activating heat shock protein 47
Carlier et al. Human fucci pancreatic Beta cell lines: new tools to study Beta cell cycle and terminal differentiation
Yuan et al. Agonist c-Met monoclonal antibody augments the proliferation of hiPSC-derived hepatocyte-like cells and improves cell transplantation therapy for liver failure in mice
Miyaoka et al. A novel regulatory mechanism for Fgf18 signaling involving cysteine-rich FGF receptor (Cfr) and delta-like protein (Dlk)
Bühler et al. Lipocalin 13 enhances insulin secretion but is dispensable for systemic metabolic control

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111018