JP2007036077A - Pn-junction-type light-emitting diode - Google Patents

Pn-junction-type light-emitting diode Download PDF

Info

Publication number
JP2007036077A
JP2007036077A JP2005220007A JP2005220007A JP2007036077A JP 2007036077 A JP2007036077 A JP 2007036077A JP 2005220007 A JP2005220007 A JP 2005220007A JP 2005220007 A JP2005220007 A JP 2005220007A JP 2007036077 A JP2007036077 A JP 2007036077A
Authority
JP
Japan
Prior art keywords
electrode
light emitting
emitting diode
pedestal
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005220007A
Other languages
Japanese (ja)
Other versions
JP4787561B2 (en
Inventor
Hisayuki Miki
久幸 三木
Takashi Udagawa
隆 宇田川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2005220007A priority Critical patent/JP4787561B2/en
Publication of JP2007036077A publication Critical patent/JP2007036077A/en
Application granted granted Critical
Publication of JP4787561B2 publication Critical patent/JP4787561B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve withstand voltage characteristics by preventing the short-circuiting circulation of a element drive current between electrodes in a pn-junction-type light-emitting diode. <P>SOLUTION: First, a laminated structure is formed, where it comprises a crystal substrate, a first conductive layer made of a first-conductivity-type compound semiconductor, a luminous layer made of a compound semiconductor, and a second conductive layer made of a second-conductivity-type compound semiconductor being present in a direction for taking out light emitted from the luminous layer to the outside successively on the surface of the crystal substrate. Then, a second ohmic electrode made of a conductive thin film in which an opening is provided, and a second pad electrode provided by making continuity with the second ohmic electrode are arranged on the second conductive layer. Then, a first pad electrode is arranged on the first conductive layer while the first pad electrode opposes the second one. The pn-junction-type light-emitting diode has a supplementary electrode that is extended in the direction of the fringe of the light-emitting diode from the second pad electrode and is made of a conductive thin band in contact with the second ohmic electrode. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、pn接合型発光ダイオード、特に、外部への発光の取り出し効率と、耐電圧に優れる化合物半導体のpn接合型発光ダイオ−ドに関する。   The present invention relates to a pn-junction light-emitting diode, and more particularly to a compound semiconductor pn-junction light-emitting diode excellent in the efficiency of extracting light emitted to the outside and having a high withstand voltage.

最近では、比較的短波長の可視光を発するpn接合型構造の発光ダイオード(LED)が、様々なIII−V族化合物半導体材料を利用して構成されている(例えば、非特許文献1参照)。例えば、燐化アルミニウム・ガリウム・インジウム混晶(組成式AlXGaYInZP:0≦X,Y,Z≦1,X+Y+Z=1)材料は、黄橙色帯から黄緑色帯の短波長可視光を発するLEDを構成するための発光層やクラッド(clad)層を構成するに利用されている。また、青色帯或いは緑色帯の発光を放射する短波長LED用の半導体材料としてAlXGaYInZN(0≦X,Y,Z≦1,X+Y+Z=1)等の窒化ガリウム(GaN)系化合物半導体が知られている(例えば、特許文献1参照)。 Recently, a light emitting diode (LED) having a pn junction structure that emits visible light having a relatively short wavelength is configured using various III-V group compound semiconductor materials (for example, see Non-Patent Document 1). . For example, an aluminum phosphide / gallium / indium mixed crystal (compositional formula Al X Ga Y In Z P: 0 ≦ X, Y, Z ≦ 1, X + Y + Z = 1) is a material having a short wavelength visible from a yellow-orange band to a yellow-green band. It is used to construct a light emitting layer or a clad layer for constructing an LED that emits light. Further, as a semiconductor material for a short wavelength LED that emits light of a blue band or a green band, a gallium nitride (GaN) system such as Al X Ga Y In ZN (0 ≦ X, Y, Z ≦ 1, X + Y + Z = 1) or the like. Compound semiconductors are known (see, for example, Patent Document 1).

LEDは、上記の様なIII−V族化合物半導体層に、正(+)極及び負(−)極のオーミック(Ohmic)電極を設けて構成される。特に、AlXGaYInZPやAlXGaYInZN等のワイドバンドギャップ(広禁止帯幅)材料では、素子駆動電流を広範囲に亘って、例えば発光層の略全面に平面的に拡散させ難い。このため、発光の外部への取り出し方向に在る、禁止帯幅が比較的に高いIII族窒化物半導体層には、その表面の略全域に金属薄膜からなるオーミック電極として設けてLEDが構成されている(例えば、特許文献2参照)。例えば、発光の取り出し方向に在るp型GaN層の表面の略全面に、金属の薄膜からp型オーミック電極を設けてGaN形pn接合型発光ダイオードが構成されている(特許文献2参照)。 The LED is configured by providing positive (+) and negative (−) ohmic electrodes on the III-V group compound semiconductor layer as described above. In particular, in a wide band gap (wide band gap) material such as Al X Ga Y In Z P or Al X Ga Y In Z N, the device driving current is spread over a wide range, for example, substantially over the entire surface of the light emitting layer. Difficult to diffuse. For this reason, a group III nitride semiconductor layer having a relatively high forbidden band width in the direction of light emission to the outside is provided as an ohmic electrode made of a metal thin film over almost the entire surface thereof to constitute an LED. (For example, refer to Patent Document 2). For example, a GaN pn junction type light emitting diode is configured by providing a p-type ohmic electrode from a metal thin film on substantially the entire surface of a p-type GaN layer in the light extraction direction (see Patent Document 2).

ワイドバンドギャップの化合物半導体については、開口部を有する金属膜からオーミック電極を構成する技術も知れている(例えば、特許文献3参照)。開口部を有するオーミック電極とは、具体的には、網(net)状或いは櫛型状の電極である(前出の特許文献3参照)。発光の外部への取り出し方向に設けるオーミック電極に開口部を設けて、発光層から放射される発光が電極材料に吸収される度合いを低減し、外部へ効率的に発光を取り出すためである。   As for a wide band gap compound semiconductor, a technique of forming an ohmic electrode from a metal film having an opening is also known (see, for example, Patent Document 3). Specifically, the ohmic electrode having an opening is a net-like or comb-like electrode (see the above-mentioned Patent Document 3). This is because an opening is provided in the ohmic electrode provided in the direction of taking out the emitted light to reduce the degree to which the light emitted from the light emitting layer is absorbed by the electrode material, and the emitted light is efficiently taken out to the outside.

特公昭55−3834号公報Japanese Patent Publication No.55-3834 特開平6−314822号公報JP-A-6-314822 特開平6−69546号公報JP-A-6-69546 深海 登世司監修、「半導体工学」、東京電機大学出版局、1993年3月20日発行、第1版第7刷、206〜208頁Supervised by Toshika Fukaumi, “Semiconductor Engineering”, Tokyo Denki University Press, published on March 20, 1993, first edition, 7th edition, pp. 206-208

ワイドバンドギャップの化合物半導体層の表面の全域に例えば、発光の取り出し効率を考慮して、開口部を設けた金属膜からなるオーミック電極を設けても、開口部を略一様な密度で存在させている限り、必ずしも化合物半導体層の内部に均等に素子駆動電流を流通できるとは限らない。オーミック電極が、一様に均等に開口部を設けた金属膜から構成されていても、従来では、他の極性の電極に最も近接している領域を通じて短絡的に素子駆動電流の流通が起きてしまうのが通常である。このため、狭い領域で素子駆動電流の集中的な流通が起こるため、電流密度が増大して、電極が熱的に破壊される不都合が生じている。   Even if an ohmic electrode made of a metal film with openings is provided over the entire surface of the wide band gap compound semiconductor layer, for example, considering the light extraction efficiency, the openings should be present at a substantially uniform density. As long as the device driving current can be evenly distributed in the compound semiconductor layer, the device driving current is not necessarily distributed. Even if the ohmic electrode is composed of a metal film having openings uniformly and evenly, conventionally, the element drive current flows in a short circuit through the region closest to the electrode of another polarity. It is normal. For this reason, since the element drive current is concentrated in a narrow region, the current density is increased and the electrode is thermally destroyed.

また、素子駆動電流の短絡的で集中的な流通を生ずる様な構成及び配置からなる電極を備えたpn接合型発光ダイオードは、総じて、高電圧の不用意な印加に対する耐電圧性もないものなっている。特に、電気的に絶縁性の高い、例えば、サファイア(α−Al23単結晶)やリチウム酸ガリウム(LiGaO2)、リチウム酸アルミニウム(LiAlO2)等の絶縁性結晶を基板として備えた従来のpn接合型発光ダイオードでは、耐電圧は特に、低いのが問題となっている。このため、従来では、発光ダイオードに別途、Siサージ(surge)ダイオード等を外部素子として煩雑にも付加して耐電圧対策としているのが現状である。 In addition, pn junction type light emitting diodes having electrodes configured and arranged so as to cause short-circuiting and concentrated distribution of element driving current generally have no withstand voltage against inadvertent application of a high voltage. ing. In particular, a conventional substrate having an insulating crystal such as sapphire (α-Al 2 O 3 single crystal), gallium lithium acid (LiGaO 2 ), aluminum lithium acid (LiAlO 2 ) or the like having high electrical insulation. In the pn junction type light emitting diode, the withstand voltage is particularly low. For this reason, the current situation is that, as a countermeasure against withstand voltage, a Si surge diode or the like is added to the light emitting diode as an external element.

上記の如くの電極の熱的損傷或いは耐電圧不良を防止するには、一方の極性の電極から、他方の極性の電極への短絡的な流通を回避する必要がある。
本発明の目的は、電極間での素子駆動電流の短絡的で集中的な流通を回避して、外部への発光の取り出しを妨げることなく、尚且つ、耐電圧特性に優れるpn接合型発ダイオード素子を提供することにある。
In order to prevent the thermal damage or the withstand voltage failure of the electrode as described above, it is necessary to avoid a short-circuit flow from one polarity electrode to the other polarity electrode.
An object of the present invention is to avoid a short-circuit and concentrated distribution of element driving current between electrodes, and does not hinder the extraction of emitted light to the outside, and has excellent withstand voltage characteristics. It is to provide an element.

本発明は上記の課題を解決するためになされたもので、以下の各項の発明からなる。
(1)第1の伝導型の化合物半導体からなる第1の導電層と、化合物半導体からなる発光層と、発光層からの発光を外部に取り出す方向に在る第2の伝導型の化合物半導体からなる第2の導電層とを備えた積層構造体と、上記の第2の導電層上に、開口部を設けた導電性薄膜からなる第2のオーミック(Ohmic)電極と、第2のオーミック電極に電気的に導通させて設けた第2の台座(pad)電極と、その第2の台座電極に対向して、第1の導電層上に第1の台座電極とが配置されているpn接合型発光ダイオードに於いて、第2の台座電極から発光ダイオード素子の外縁方向に延在し、第2のオーミック電極に接触する導電性薄帯からなる付帯電極が設けられていることを特徴とするpn接合型発光ダイオード。
The present invention has been made to solve the above-described problems, and includes the inventions of the following items.
(1) From a first conductive layer made of a compound semiconductor of the first conductivity type, a light emitting layer made of a compound semiconductor, and a second conductive type compound semiconductor in the direction of taking out light emitted from the light emitting layer to the outside A laminated structure including a second conductive layer, a second ohmic electrode made of a conductive thin film having an opening provided on the second conductive layer, and a second ohmic electrode A pn junction in which a second pedestal (pad) electrode provided in electrical conduction with the first pedestal electrode is disposed on the first conductive layer so as to face the second pedestal electrode In the type light emitting diode, an incidental electrode made of a conductive thin strip that extends from the second pedestal electrode toward the outer edge of the light emitting diode element and contacts the second ohmic electrode is provided. A pn junction type light emitting diode.

(2)第2の台座電極が発光素子のコーナー部に配置され、第1の台座電極が第2の台座電極の対角線上のコーナーに配置され、付帯電極が第2の台座電極から発光素子の両辺の外縁方向に延在していることを特徴とする上記(1)に記載のpn接合型発光ダイオード。
(3)第2の台座電極が発光素子の辺部に配置され、第1の台座電極が第2の台座電極の相対する辺に配置され、付帯電極が第2の台座電極から発光素子の外縁方向に延在していることを特徴とする上記(1)に記載のpn接合型発光ダイオード。
(4)付帯電極の第1の台座電極と対面する側の形状と第1の台座電極の付帯電極に対面する側の形状とが相似形であることを特徴とする上記(1)〜(3)のいずれかに記載のpn接合型発光ダイオード。
(2) The second pedestal electrode is disposed at the corner of the light emitting element, the first pedestal electrode is disposed at the corner on the diagonal line of the second pedestal electrode, and the incidental electrode is connected to the light emitting element from the second pedestal electrode. The pn junction type light emitting diode according to (1), wherein the pn junction type light emitting diode extends in an outer edge direction on both sides.
(3) The second pedestal electrode is disposed on the side of the light emitting element, the first pedestal electrode is disposed on the opposite side of the second pedestal electrode, and the incidental electrode extends from the second pedestal electrode to the outer edge of the light emitting element. The pn junction type light-emitting diode according to (1), which extends in a direction.
(4) The above (1) to (3), wherein the shape of the side of the auxiliary electrode facing the first pedestal electrode is similar to the shape of the side of the first pedestal electrode facing the auxiliary electrode. Pn junction type light emitting diode in any one of 1).

(5)第2のオーミック電極の開口部の開口率が、第2の台座電極から第1の台座電極の方向に向けて、減少していることを特徴とする上記(1)〜(4)のいずれかに記載のpn接合型発光ダイオード。
(6)付帯電極及び第2のオーミック電極を、発光層からの発光を透過する導電性材料から構成した、ことを特徴とする上記(1)〜(5)のいずれかに記載のpn接合型発光ダイオード。
(7)上記(1)〜(6)のいずれかに記載の発光ダイオードと蛍光体を組み合わせた発光ダイオード
(8)上記(7)に記載の発光ダイオードを用いた照明器具。
(5) The aperture ratio of the opening of the second ohmic electrode decreases from the second pedestal electrode toward the first pedestal electrode. (1) to (4) above A pn junction type light emitting diode according to any one of the above.
(6) The pn junction type according to any one of the above (1) to (5), wherein the incidental electrode and the second ohmic electrode are made of a conductive material that transmits light emitted from the light emitting layer. Light emitting diode.
(7) A light emitting diode comprising a combination of the light emitting diode according to any one of (1) to (6) and a phosphor.
(8) A lighting fixture using the light emitting diode according to (7).

本発明に依れば、台座電極に、台座電極から供給される素子駆動電流を均一にオーミック電極に分散できる付帯電極を電気的に導通させて設けることとしたので、電極間での局所的で且つ短絡的な素子動作電流の流通が回避され、耐電圧に優れるpn接合型発光ダイオードを提供できる。
また、オーミック電極を開口部を有する導電性薄膜から構成することとしたので、その開口部から、発光を直接、外部へ透過できるため、外部への発光の取り出し効率に優れるpn接合型化合物半導体発光ダイオードを提供できる。
その上に、光を取り出す電極に導通する台座電極に外縁方向に延在している付帯電極を設けることで、耐静電破壊性を向上させた。
According to the present invention, the pedestal electrode is provided with the incidental electrode that can uniformly distribute the element driving current supplied from the pedestal electrode to the ohmic electrode. In addition, it is possible to provide a pn-junction light-emitting diode that is excellent in withstand voltage by avoiding a short-circuit element operating current.
In addition, since the ohmic electrode is composed of a conductive thin film having an opening, light emission can be directly transmitted from the opening to the outside, so that a pn junction type compound semiconductor light emitting device with excellent emission efficiency to the outside is provided. A diode can be provided.
On top of that, the electrostatic breakdown resistance was improved by providing an auxiliary electrode extending in the direction of the outer edge of the pedestal electrode that conducts to the electrode from which light is extracted.

本発明の発光ダイオードはpn接合型発光ダイオードを構成する積層構造体に公知の電極の他に特定の付帯電極を設けたことを特徴とする。積層構造体は結晶基板の表面上に、順次、形成された、第1の伝導型の化合物半導体である第1の導電層と、化合物半導体からなる発光層と、第2の伝導型の化合物半導体である第1の導電層とからなる。そして第2の伝導型の化合物半導体からなる第2の導電層は発光層からの発光を外部に取り出す方向に在る。上記の第1の導電型、第2の導電型はp型、n型の何れも取ることが出来、第1の導電型がn型の場合、第2の導電型はp型となり、第1の導電型がp型の場合、第2の導電型はn型となる。発光層はp型、n型あるいはノンドープ型いずれも可能である。   The light emitting diode of the present invention is characterized in that a specific incidental electrode is provided in addition to a known electrode in a laminated structure constituting a pn junction type light emitting diode. The stacked structure is formed on the surface of the crystal substrate in sequence, a first conductive layer that is a compound semiconductor of the first conductivity type, a light emitting layer made of the compound semiconductor, and a compound semiconductor of the second conductivity type. The first conductive layer. The second conductive layer made of the compound semiconductor of the second conductivity type is in a direction to extract light emitted from the light emitting layer to the outside. The first conductivity type and the second conductivity type can be either p-type or n-type. When the first conductivity type is n-type, the second conductivity type is p-type. When the conductivity type is p-type, the second conductivity type is n-type. The light emitting layer can be p-type, n-type or non-doped.

化合物半導体としてはIII−V族化合物半導体、II−VI族化合物半導体などを用いることができるが、III−V族化合物半導体、中でも窒化ガリウム系等のIII族窒化物半導体が好ましい。
上記の積層構造体の第2の導電層上に、開口部を設けた導電性薄膜からなる第2のオーミック(Ohmic)電極が形成されている。そして第2のオーミック電極に電気的に導通させて第2の台座(pad)電極が、さらにその第2の台座電極に対向して、第1の導電層上に第1のオーミック電極及び第1の台座電極が配置されている。この第1の台座電極は第1のオーミック電極を兼ねても良い。以下これらについて詳しく説明する。
As the compound semiconductor, a III-V compound semiconductor, a II-VI group compound semiconductor, or the like can be used, and a III-V group compound semiconductor, particularly a gallium nitride group III nitride semiconductor is preferable.
A second ohmic electrode made of a conductive thin film having an opening is formed on the second conductive layer of the laminated structure. Then, the second ohmic electrode is electrically connected to the second pedestal (pad) electrode so as to face the second pedestal electrode, and the first ohmic electrode and the first Pedestal electrodes are arranged. The first pedestal electrode may also serve as the first ohmic electrode. These will be described in detail below.

上記におけるn型(例えば第1導電型)及びp型(例えば第2導電型)オーミック電極は、n型及びp型クラッド層の表面に直接、接触させて設ける。または、一方のクラッド層の上面または他方のクラッド層の下面に接合させて設けた、クラッド層と同一の伝導型のコンタクト層に接触させて設ける。本発明では、n型、p型何れかの極性のオーミック電極には、その極性にあわせて台座電極が設けられる。
本発明の発光素子は第2の台座電極から発光ダイオード素子の外縁方向に延在する付帯電極が設けられている。付帯電極は導電性薄帯からなり、第2の台座電極及び第2のオーミック電極に接触している。
The n-type (for example, first conductivity type) and p-type (for example, second conductivity type) ohmic electrodes are provided in direct contact with the surfaces of the n-type and p-type cladding layers. Alternatively, it is provided in contact with a contact layer of the same conductivity type as that of the cladding layer, which is bonded to the upper surface of one cladding layer or the lower surface of the other cladding layer. In the present invention, a pedestal electrode is provided in accordance with the polarity of the n-type or p-type ohmic electrode.
The light emitting device of the present invention is provided with an incidental electrode extending from the second pedestal electrode toward the outer edge of the light emitting diode device. The auxiliary electrode is made of a conductive thin ribbon and is in contact with the second pedestal electrode and the second ohmic electrode.

本発明のpn接合型発光ダイオードを構成するための積層構造体は、サファイア(α−Al23単結晶)、4H結晶型または6H結晶型の六方晶(hexagonal)炭化珪素(SiC)やウルツ鉱結晶型(Wurtzite)窒化ガリウム(GaN)や酸化亜鉛(ZnO)などの六方晶の単結晶を基板として形成する。また、燐化ガリウム(GaP)、砒化ガリウム(GaAs)及び珪素(Si)等の閃亜鉛鉱結晶型(zinc-blende)の半導体単結晶を基板として形成する。 The laminated structure for constituting the pn junction type light emitting diode of the present invention includes sapphire (α-Al 2 O 3 single crystal), 4H crystal type or 6H crystal type hexagonal silicon carbide (SiC) or wurtzite. A hexagonal single crystal such as a mineral crystal type (Wurtzite) gallium nitride (GaN) or zinc oxide (ZnO) is formed as a substrate. Further, a zinc-blende semiconductor single crystal such as gallium phosphide (GaP), gallium arsenide (GaAs), and silicon (Si) is formed as a substrate.

本発明のpn接合型化合物半導体発光ダイオードを構成する積層構造体には、単一異種接合(single hetero)構造でも良いが、より高い強度の発光を得るために、2重異種接合(double hetero:DH)構造の発光部を備えさせる。発光部とは、発光層と、発光層を両側(上面側及び下面側)から挟持して障壁作用を及ぼす、n型クラッド層(例えば第1導電型)及びp型クラッド層(例えば第2導電型)とから構成されるpn接合構造部である。   The laminated structure constituting the pn junction type compound semiconductor light emitting diode of the present invention may have a single heterojunction (single heterojunction) structure, but in order to obtain higher intensity light emission, a double heterojunction (double hetero: A light emitting portion having a (DH) structure is provided. The light emitting part is an n-type cladding layer (for example, the first conductivity type) and a p-type cladding layer (for example, the second conductivity type) that sandwiches the light emitting layer from both sides (upper surface side and lower surface side) and exerts a barrier action. Pn junction structure part.

発光層は、例えば、燐化ガリウム・インジウム(組成式GaYInZP:0≦Y,Z≦1、Y+Z=1)、砒化アルミニウム・ガリウム(組成式AlXGaYAs:0≦X,Y≦1、X+Y=1)、窒化ガリウム・インジウム(組成式GaYInZN:0≦Y,Z≦1、Y+Z=1)、また窒化燐化ガリウム(組成式GaN1-aa:0≦a<1)などの直接遷移型のIII−V族化合物半導体材料から形成する。また、セレン化硫化亜鉛(組成式ZnSe1-QQ:0≦Q≦1)等のII−VI族化合物半導体材料から構成する。 For example, the light-emitting layer includes gallium phosphide indium (composition formula Ga Y In Z P: 0 ≦ Y, Z ≦ 1, Y + Z = 1), aluminum gallium arsenide (composition formula Al X Ga Y As: 0 ≦ X, Y ≦ 1, X + Y = 1), gallium indium nitride (compositional formula Ga Y In Z N: 0 ≦ Y, Z ≦ 1, Y + Z = 1), also nitride gallium phosphide (compositional formula GaN 1-a P a: It is formed from a direct transition type III-V group compound semiconductor material such as 0 ≦ a <1). Further, it is composed of a II-VI group compound semiconductor material such as zinc selenide sulfide (compositional formula ZnSe 1 -Q S Q : 0 ≦ Q ≦ 1).

発光層は、単一層のみから構成しても良くが、より単色性に優れる発光を得るために量子井戸構造とする。単一量子井戸構造(SQW)よりは多重量子井戸構造(MQW)から構成する。青色帯或いは緑色帯の光を発する量子井戸構造の発光層は、例えば、AlXGaYN(0≦X,Y≦1、X+Y=1)からなる障壁層と、GaYInZN(0≦Y,Z≦1、Y+Z=1)からなる井戸層とを交互に積層させて構成する。また例えば、直接遷移型の窒化燐化ガリウム(組成式GaN1-aa:0≦a<1)からなる井戸層(well)と、より禁止帯幅の大きなGaN1-aa(0≦a<1)からなる障壁(barrier)層とを交互に周期的に積層させて構成する。
緑色帯の光を発する量子井戸構造の発光層は、また、ZnSe1-QQ(0≦Q≦1)等のII−VI族化合物半導体材料からも構成できる。
The light emitting layer may be composed of only a single layer, but has a quantum well structure in order to obtain light emission with more excellent monochromaticity. It consists of multiple quantum well structure (MQW) rather than single quantum well structure (SQW). The light emitting layer having a quantum well structure that emits light in a blue band or a green band includes, for example, a barrier layer made of Al X Ga Y N (0 ≦ X, Y ≦ 1, X + Y = 1), and Ga Y In Z N (0 ≦ Y, Z ≦ 1, Y + Z = 1) and the well layers are alternately stacked. Further, for example, direct transition type nitride gallium phosphide (compositional formula GaN 1-a P a: 0 ≦ a <1) consisting of a well layer and (well), more of the band gap large GaN 1-a P a (0 A barrier layer composed of ≦ a <1) is alternately and periodically stacked.
The light emitting layer having a quantum well structure that emits light in the green band can also be composed of a II-VI group compound semiconductor material such as ZnSe 1 -Q S Q (0 ≦ Q ≦ 1).

GaN系III−V族化合物半導体材料から多重量子井戸構造を構成する場合、交互に積層させる際の周期数は、3以上で20以下、更に好ましくは、5以上で10以下とする。AlXGaYAs(0≦X,Y≦1、X+Y=1)から多重量子井戸構造を構成する場合、より周期数を多くして5以上で20以下としても、表面の平坦な発光層が得られる。この障壁層と井戸層とは、キャリア濃度は相違しても差し支えはないが、伝導型は同一とする。量子井戸構造の始端及び終端は、何れも、井戸層であっても障壁層であっても構わない。また、始端が障壁層で、終端が井戸層であるか、またはその逆であっても差し支えはない。 When a multiple quantum well structure is composed of a GaN-based III-V group compound semiconductor material, the number of periods when alternately stacked is 3 or more and 20 or less, more preferably 5 or more and 10 or less. When a multiple quantum well structure is formed from Al X Ga Y As (0 ≦ X, Y ≦ 1, X + Y = 1), even if the number of periods is increased to 5 or more and 20 or less, a light emitting layer with a flat surface can be obtained. can get. The barrier layer and the well layer may have different carrier concentrations, but have the same conductivity type. The start and end of the quantum well structure may be either a well layer or a barrier layer. Also, it does not matter if the starting end is a barrier layer and the end is a well layer, or vice versa.

例えば、GaN系等のIII−V族化合物半導体から量子井戸構造をなす井戸層を構成する場合、井戸層の層厚は、2nm以上で12nm以下であるのが好まれる。従来の如く膜厚を略均一とするのではなく、領域的(部分的)に層厚を薄くした層厚を不均一とする、例えば、GaYInZN(0≦Y,Z≦1、Y+Z=1)から井戸層を用いて量子井戸構造を構成すると、順方向電圧の低いpn接合型化合物半導体発光ダイオードが得られる。層厚が1.5nm以下である領域を部分的に含むGaYInZNから構成された井戸層は低順方向電圧の発光ダイオードを得るに特に、好適に利用できる。部分的に膜厚が薄い領域を含む、層厚を不均一とする井戸層と、不純物をドーピングして低抵抗とした障壁層とからなる量子井戸構造では、障壁層から井戸層へ及ぼされるピエゾ(piezo)効果に因る歪みが低減され、波長の安定した発光をもたす発光層を構成できる。 For example, when forming a well layer having a quantum well structure from a GaN-based III-V group compound semiconductor, the thickness of the well layer is preferably 2 nm or more and 12 nm or less. Rather than making the film thickness substantially uniform as in the prior art, the layer thickness is reduced locally (partially) to make the layer thickness non-uniform, for example, Ga Y In Z N (0 ≦ Y, Z ≦ 1, When a quantum well structure is formed using a well layer from Y + Z = 1), a pn junction type compound semiconductor light emitting diode having a low forward voltage is obtained. A well layer composed of Ga Y In Z N partially including a region having a layer thickness of 1.5 nm or less can be particularly preferably used to obtain a light emitting diode having a low forward voltage. In a quantum well structure consisting of a well layer with a non-uniform thickness including a partially thin film region and a barrier layer doped with impurities to reduce resistance, the piezoelectric layer extending from the barrier layer to the well layer is used. Distortion due to the (piezo) effect is reduced, and a light-emitting layer that emits light with a stable wavelength can be formed.

例えば、GaN系等のIII−V族化合物半導体からなる発光層について、n型またはp型クラッド層は、発光層よりも禁止帯幅を大とする、例えば、組成式AlXGaYInZ1-aa(0≦X,Y,Z≦1、X+Y+Z=1、記号Mは窒素以外の第V族元素を表し、0≦a<1である。)で表せるGaN系III−V族化合物半導体から構成する。また、リン(P)と硼素(B)とを構成元素として含む、燐化硼素(BP)系III−V族化合物半導体材料から構成できる。n型クラッド層は、例えば、珪素(Si)或いはゲルマニウム(Ge)等の第IV族元素、或いはセレン(Se)等の第VI族元素をドーピングして形成する。p型クラッド層は、マグネシウム(Mg)やベリリウム(Be)等の第II族元素をp型不純物としてドーピングして形成する。 For example, for a light-emitting layer made of a GaN-based III-V group compound semiconductor, the n-type or p-type cladding layer has a larger forbidden band than the light-emitting layer. For example, the composition formula Al x Ga y In z N 1-a M a (0 ≦ X, Y, Z ≦ 1, X + Y + Z = 1, M represents a group V element other than nitrogen, 0 ≦ a <a 1.) GaN-based III-V representable It consists of a compound semiconductor. Further, it can be composed of a boron phosphide (BP) III-V compound semiconductor material containing phosphorus (P) and boron (B) as constituent elements. The n-type cladding layer is formed by doping a group IV element such as silicon (Si) or germanium (Ge) or a group VI element such as selenium (Se), for example. The p-type cladding layer is formed by doping a Group II element such as magnesium (Mg) or beryllium (Be) as a p-type impurity.

クラッド層をなす化合物半導体層のキャリア濃度は、1×1017cm-3〜5×1018cm-3の範囲とするのが望ましい。単量体の燐化硼素(BP)からは、不純物を敢えてドーピングせずとも、アンドープ(undope)のアズ−ローン(as-grown)状態で上記の好ましい範囲のキャリア濃度を有するn型及びp型導電層を得ることが出来る。クラッド層の膜厚は、0.1μm以上で5μm以下であるのが好適である。 The carrier concentration of the compound semiconductor layer forming the cladding layer is preferably in the range of 1 × 10 17 cm −3 to 5 × 10 18 cm −3 . From monomeric boron phosphide (BP), n-type and p-type having a carrier concentration in the above-mentioned preferable range in an undoped as-grown state without doping impurities. A conductive layer can be obtained. The thickness of the cladding layer is preferably 0.1 μm or more and 5 μm or less.

本発明に係わる発光ダイオードを形成するための発光層やクラッド層、或いは後述するコンタクト(contact)層等の、積層構造体を構成する各層は、MOCVD法に加え、例えば、分子線エピタキシャル(MBE)法、ハイドライド(水素化物)気相エピタキシャル成長(VPE)法等の気相成長手段で形成できる。珪素(Si)やゲルマニウム(Ge)をドーピングした障壁層を形成するには、気相成長時にシラン(分子式:SiH4)やジシラン(分子式:Si26)、ゲルマン(分子式:GeH4)等をドーピングガスとして利用して添加する。障壁層をGaN層とし、井戸層をGaYInZN層とする量子井戸構造を形成するには、650℃〜900℃が適する。この構成からなる量子井戸構造の場合、障壁層と井戸層とは略同一の成長温度で形成できる。障壁層を、GaNに代替して、アルミニウム(Al)を含むAlXGaYNから構成する際には、成長温度を、GaN障壁層の場合より高温として形成する。 In addition to the MOCVD method, each layer constituting the laminated structure, such as a light emitting layer, a clad layer, or a contact layer to be described later, for forming a light emitting diode according to the present invention is, for example, molecular beam epitaxial (MBE). And vapor phase growth means such as hydride (hydride) vapor phase epitaxial growth (VPE) method. In order to form a barrier layer doped with silicon (Si) or germanium (Ge), silane (molecular formula: SiH 4 ), disilane (molecular formula: Si 2 H 6 ), germane (molecular formula: GeH 4 ), etc. are used during vapor phase growth. Is added as a doping gas. In order to form a quantum well structure in which the barrier layer is a GaN layer and the well layer is a Ga Y In Z N layer, 650 ° C. to 900 ° C. is suitable. In the case of a quantum well structure having this configuration, the barrier layer and the well layer can be formed at substantially the same growth temperature. When the barrier layer is made of Al x Ga y N containing aluminum (Al) instead of GaN, the growth temperature is set higher than that of the GaN barrier layer.

本発明では、発光層からの発光を外部へ取り出す方向に第2オーミック電極と上記の付帯電極を設ける。例えば、nサイドアップ(n-side up)型のpn接合型発光ダイオードにあっては、n型オーミック電極(負極)を第2オーミック電極とする。逆に、pサイドアップ型のpn接合型LEDでは、p型オーミック電極(正極)を第2オーミック電極とする。   In the present invention, the second ohmic electrode and the incidental electrode are provided in a direction in which light emitted from the light emitting layer is extracted to the outside. For example, in an n-side up pn junction type light emitting diode, the n-type ohmic electrode (negative electrode) is used as the second ohmic electrode. Conversely, in a p-side-up pn junction LED, the p-type ohmic electrode (positive electrode) is the second ohmic electrode.

第2のオーミック電極上の第2の台座電極に機械的にも電気的にも接触させて付帯電極が設けられる。付帯電極は台座電極の両側から発光素子の外縁方向に延在させて設けられる。これらについて図1、図2に例示する平面正方形のpn接合LEDを基に説明する。台座電極12は発光素子のコーナー部に設けられる。また発光素子の辺に対向して設けることも出来る。付帯電極14は素子の外縁15に沿って、一方の極性の台座電極12から、二方向の15a、15bに延在させた例えば、帯状の金属連続膜(導電性薄帯)から構成する。付帯電極14は、台座電極12を給電点として供給される素子駆動電流を後述のオーミック電極に一様に均等に分散させる作用を有する。   The incidental electrode is provided in mechanical and electrical contact with the second pedestal electrode on the second ohmic electrode. The auxiliary electrode is provided so as to extend from both sides of the base electrode toward the outer edge of the light emitting element. These will be described based on the planar square pn junction LED illustrated in FIGS. The base electrode 12 is provided at a corner portion of the light emitting element. Further, it can be provided so as to face the side of the light emitting element. The auxiliary electrode 14 is constituted by, for example, a band-like continuous metal film (conductive thin band) extending from the pedestal electrode 12 of one polarity to the two directions 15a and 15b along the outer edge 15 of the element. The auxiliary electrode 14 has a function of uniformly and evenly distributing an element driving current supplied from the pedestal electrode 12 as a feeding point to an ohmic electrode described later.

素子駆動電流を供給するための導線を結線するための台座電極12は、層厚(多層の場合はその合計の層厚)を0.5μm以上で5μm以下とする金属材料の厚膜から構成するのが好ましい。金属膜を多層に重層させ、台座電極を構成する場合、表面は、結線を容易になすため、金(Au)またはその合金膜から構成するのが好ましい。台座電極12と、付帯電極14とは電気的に接触させて設ける。
第2の台座電極の平面図における対角線上に第1のオーミック電極形成部13aが設けられ、その13a内に第2の台座電極13が配置される。第1のオーミック電極形成部13aは半導体層を第1の導電体層が露出するまでエッチングした部分である。露出した第1のオーミック電極形成部には第1のオーミック電極を介し、或いは直接に第1の導電体層に第1の台座電極が形成される。
The pedestal electrode 12 for connecting a conductor for supplying an element driving current is formed of a thick film of a metal material having a layer thickness (total layer thickness in the case of a multilayer) of 0.5 μm or more and 5 μm or less. Is preferred. When metal electrodes are stacked in multiple layers to form a pedestal electrode, the surface is preferably composed of gold (Au) or an alloy film thereof for easy connection. The base electrode 12 and the auxiliary electrode 14 are provided in electrical contact.
A first ohmic electrode forming portion 13a is provided on a diagonal line in the plan view of the second pedestal electrode, and the second pedestal electrode 13 is arranged in the 13a. The first ohmic electrode forming portion 13a is a portion obtained by etching the semiconductor layer until the first conductor layer is exposed. A first pedestal electrode is formed on the exposed first ohmic electrode forming portion via the first ohmic electrode or directly on the first conductor layer.

付帯電極14の、台座電極13に対向する側の面14aの形状は、第1のオーミック電極形成部13aの形状と略相似形(同一形状を含む)とするのが好ましい。即ち、形状が似ておれば大きさは異なってもよい。オーミック電極形成部13aと付帯電極14との距離を一定の間隔に保持するためである。例えば、図のように両者とも直線形状で平行関係にあるようにする。また第1のオーミック電極形成部13aが1/4円状であれば、付帯電極14の内側の面14aの形状はこれと略相似形の円弧状とする。これによって、第1のオーミック電極形成部と付帯電極14の内側の面13aとの間隔が一定に保たれる。ここで付帯電極14は、第2のオーミック電極と同じ材料から構成する必要は必ずしも無い。   The shape of the surface 14a of the auxiliary electrode 14 on the side facing the pedestal electrode 13 is preferably substantially similar to the shape of the first ohmic electrode forming portion 13a (including the same shape). That is, as long as the shapes are similar, the sizes may be different. This is to keep the distance between the ohmic electrode forming portion 13a and the incidental electrode 14 at a constant interval. For example, as shown in the drawing, both are linear and have a parallel relationship. Further, if the first ohmic electrode forming portion 13a is a ¼ circle, the shape of the inner surface 14a of the auxiliary electrode 14 is a substantially similar arc shape. As a result, the distance between the first ohmic electrode forming portion and the inner surface 13a of the auxiliary electrode 14 is kept constant. Here, the auxiliary electrode 14 does not necessarily need to be made of the same material as the second ohmic electrode.

付帯電極14が占有する平面積は、発光面(発光を呈する平面領域)の平面積の1/2以下、更に望ましく1/4以下である。多大な平面積の付帯電極を設けると、外部への発光の取り出し効率が低下するからである。   The plane area occupied by the auxiliary electrode 14 is ½ or less, more preferably ¼ or less, of the plane area of the light emitting surface (planar region exhibiting light emission). This is because if an incidental electrode having a large flat area is provided, the efficiency of taking out emitted light to the outside decreases.

付帯電極14には、電気的に導通する開口部11を設けた導電性薄膜からなるオーミック電極が接触している。開口部11の平面形状は、正方形、長方形、平行四辺形、菱形、正六角形或いは正八角形等の正多角形等、任意に選択する。発光層からの発光を外部に効率的に取り出せる形状であって、尚且つ、その形状の開口部を設けることに因り、素子駆動電流の発光部への平面的で均等な拡散を妨げないものであれば良い。開口部の平面形状は、同形で同一としても良く、また、領域毎に異なっていても構わない。例えば、付帯電極の近傍領域に正方形の開口部を設け、その他の領域に設ける開口部が円形である場合を例示できる。   The auxiliary electrode 14 is in contact with an ohmic electrode made of a conductive thin film provided with an electrically conductive opening 11. The planar shape of the opening 11 is arbitrarily selected from squares, rectangles, parallelograms, rhombuses, regular hexagons, regular polygons such as regular octagons, and the like. It has a shape that can efficiently extract light emitted from the light emitting layer to the outside, and it does not prevent planar and even diffusion of the element driving current to the light emitting portion by providing an opening of that shape. I just need it. The planar shape of the opening may be the same and the same, or may be different for each region. For example, a case where a square opening is provided in a region near the incidental electrode and an opening provided in another region is circular can be exemplified.

付帯電極14及びオーミック電極10を、発光を透過できる薄い金属膜等の導電性の薄膜から構成することとすると、外部への発光の取り出し効率により優れるpn接合型発光ダイオードが得られる。発光の外部への透過性を充分に確保するには、導電性薄膜の膜厚は、1nm以上で100nm以下の範囲とするのが望ましい。1nm未満の厚さの極薄膜は、発光の透過率に優れるものの、素子駆動電流を通流する際の抵抗が増加するため、素子駆動電流を発光部へ平面的に拡散させるに十分な作用を及ぼさない。また、電極形成プロセスに於いて、損傷を被り易くなる不都合を生ずる。このため、透光性のオーミック電極をなす導電性薄膜は、発光層からの発光に対して30%から80%の範囲の透過率を与える膜厚を有しているのが好ましい。付帯電極14及びオーミック電極10の材料は遷移金属等の各種の金属、合金の他金属酸化物なども用いることができる。これらは多層にしてもよく、その場合も膜厚は1nm以上で100nm以下の範囲とするのが望ましい。このような薄膜は、高周波スパッリング法や真空蒸着法などの薄膜形成手段で形成できる。   When the auxiliary electrode 14 and the ohmic electrode 10 are formed of a conductive thin film such as a thin metal film that can transmit light, a pn junction type light emitting diode that is superior in the efficiency of extracting light emitted to the outside can be obtained. In order to ensure sufficient transmission of light emission to the outside, the thickness of the conductive thin film is preferably in the range of 1 nm to 100 nm. An ultra-thin film with a thickness of less than 1 nm is excellent in light emission transmittance, but increases resistance when passing element driving current, and therefore has sufficient action to diffuse the element driving current to the light emitting portion in a plane. Does not reach. In addition, in the electrode forming process, there arises a disadvantage that it is easily damaged. For this reason, it is preferable that the electroconductive thin film which comprises a translucent ohmic electrode has the film thickness which provides the transmittance | permeability of the range of 30% to 80% with respect to the light emission from a light emitting layer. As the materials for the auxiliary electrode 14 and the ohmic electrode 10, various metals such as transition metals, alloys, and metal oxides can be used. These layers may be multi-layered, and in that case, the film thickness is preferably in the range of 1 nm to 100 nm. Such a thin film can be formed by thin film forming means such as high-frequency sputtering or vacuum deposition.

本発明では、図2に例示する様に、第2のオーミック電極の開口率を、台座電極12から台座電極13の方向に向けて、減少させた例えば金属膜からオーミック電極10を構成することができる。開口率とは、オーミック電極10をなす導電性薄膜が敷設されている開口部を含む領域の平面積(オーミック電極10の敷設面積)に対する、開口部11の合計の平面積の比率である。
第2のオーミック電極の開口部は、全体(平均)としては開口率20〜80%が好ましい。
付帯電極14の近傍での領域での開口率は、10%以上で90%以下、更には15%以上で85%以下とするのが好適である。近傍とは、付帯電極から付帯電極の幅の2倍以下の距離で囲まれた領域をいう。
第1の台座電極の近傍では、開口率は20〜80%とするのが好ましい。
In the present invention, as illustrated in FIG. 2, for example, the ohmic electrode 10 can be configured from a metal film in which the aperture ratio of the second ohmic electrode is decreased from the pedestal electrode 12 toward the pedestal electrode 13. it can. The aperture ratio is the ratio of the total plane area of the openings 11 to the plane area of the region including the openings where the conductive thin film forming the ohmic electrode 10 is installed (laying area of the ohmic electrode 10).
The opening ratio of the second ohmic electrode is preferably 20 to 80% as a whole (average).
The aperture ratio in the region in the vicinity of the incidental electrode 14 is preferably 10% or more and 90% or less, and more preferably 15% or more and 85% or less. The vicinity means a region surrounded by a distance that is not more than twice the width of the incidental electrode from the incidental electrode.
In the vicinity of the first pedestal electrode, the aperture ratio is preferably 20 to 80%.

導電性薄膜の開口率が一方の台座電極から他方の台座電極に向けた領域により異なる場合、開口率を相違する異なる材料を組み合わせて構成する必要は無い。例えば、開口率が領域により異なる開口部を設けた導電性薄膜は、その開口率をもって開口部の形状が描画されているフォトマスクを利用して、公知のフォトリソグラフィー技術に依り、フォトレジスト材料をパターンニングし、選択エッチングを施せば同一の材料から簡便に形成できる。   When the aperture ratio of the conductive thin film is different depending on the region from one pedestal electrode to the other pedestal electrode, it is not necessary to combine different materials having different aperture ratios. For example, a conductive thin film provided with an opening having a different opening ratio depending on the region uses a photomask in which the shape of the opening is drawn with the opening ratio, and a photoresist material is applied by a known photolithography technique. By patterning and selective etching, it can be easily formed from the same material.

オーミック電極及び付帯電極を形成するに適するn型オーミック電極(負極)材料には、例えば、アルミニウム(Al)、チタン(Ti)、ニッケル(Ni)、金(Au)、クロム(Cr)、タングステン(W)、及びバナジウム(V)などがある。p型オーミック電極及び付帯電極(正極)は、例えば、白金(Pt)、パラジウム(Pd)、金(Au)クロム(Cr)、ニッケル(Ni)、銅(Cu)、及びコバルト(Co)などの薄膜から構成できる。またいずれの電極もNiO、CoO(これらはOとの比が1:1とは限らない)等の酸化物なども用いることができる。
第2のオーミック電極の第1の台座電極側において、開口率を特に小とした場合、その領域に在る導電性薄膜と、付帯電極とは位置的に直接、接触させて配置しない方がよい。台座電極12を介して付帯電極14に供給される素子駆動電流が、直接、開口率の小さな金属膜に短絡的に流入するのを避けるためである。また、しいては、開口率の小さな導電性薄膜を介しての台座電極12と他方の極性の台座電極13との間の短絡的な素子駆動電流の流通を回避するためである。
他方の第1の台座電極、オーミック電極(台座電極が兼ねる場合もある)はTi、Zr、W、Mo、Cr、Al、Ni、Au、Sn、などおよびその合金や積層構造を用いることができる。最表面層は、ボンディング性を良くするため、AuかAlとすることが望ましい。
Examples of the n-type ohmic electrode (negative electrode) material suitable for forming the ohmic electrode and the auxiliary electrode include aluminum (Al), titanium (Ti), nickel (Ni), gold (Au), chromium (Cr), tungsten ( W) and vanadium (V). The p-type ohmic electrode and the incidental electrode (positive electrode) are, for example, platinum (Pt), palladium (Pd), gold (Au) chromium (Cr), nickel (Ni), copper (Cu), and cobalt (Co). It can be composed of a thin film. In addition, oxides such as NiO and CoO (the ratio of O to O is not necessarily 1: 1) can be used for any electrode.
When the aperture ratio is particularly small on the first pedestal electrode side of the second ohmic electrode, it is better not to place the conductive thin film in the region and the incidental electrode in direct contact with each other. . This is to prevent the element drive current supplied to the auxiliary electrode 14 via the base electrode 12 from flowing directly into the metal film having a small aperture ratio. In addition, this is for avoiding a short-circuited element driving current between the pedestal electrode 12 and the pedestal electrode 13 having the other polarity via the conductive thin film having a small aperture ratio.
Ti, Zr, W, Mo, Cr, Al, Ni, Au, Sn, etc., and their alloys and laminated structures can be used for the other first pedestal electrode and ohmic electrode (the pedestal electrode may also serve). . The outermost surface layer is preferably made of Au or Al in order to improve bonding properties.

(作用)
付帯電極に導通させて設けた導電性薄膜からなるオーミック電極により、付帯電極は、台座電極より供給される素子駆動電流をオーミック電極に均等に分散させる作用を有する。
オーミック電極に設けた開口部は、発光層からの発光を外部へ透過する作用を有する。
第1のオーミック電極側に向けて開口率を小とする導電性薄膜は、該電極に近接する領域の電位を均等化する作用を発揮する。
(Function)
With the ohmic electrode made of a conductive thin film provided in conduction with the auxiliary electrode, the auxiliary electrode has an action of evenly distributing the element driving current supplied from the pedestal electrode to the ohmic electrode.
The opening provided in the ohmic electrode has a function of transmitting light emitted from the light emitting layer to the outside.
The conductive thin film whose aperture ratio decreases toward the first ohmic electrode side exhibits an effect of equalizing the potential in a region adjacent to the electrode.

窒化物系化合物半導体からなる青色発光素子を以下のとおり作製した。
サファイア基板上にAlN層を介してアンドープGaNからなる厚さ4μmの下地層、Geドープ(濃度1×1019/cm3)GaNからなる厚さ2μmのn側コンタクト層、Siドープ(濃度1×1018/cm3)In0.1Ga0.9Nからなる厚さ12.5nmのn側クラッド層、GaNからなる厚さ16nmの障壁層とIn0.2Ga0.8Nからなる厚さ2.5nmの井戸層を交互に5回積層させた後、最後に障壁層を設けた多重量子井戸構造の発光層、Mgドープ(濃度1×1020/cm3)Al0.07Ga0.93Nからなる厚さ2.5nmのp側クラッド層およびMgドープ(濃度8×1019/cm3)Al0.02Ga0.98Nからなる厚さ0.16μmのp側コンタクト層を順次積層して窒化物系化合物半導体積層構造を形成した。
A blue light emitting device made of a nitride compound semiconductor was produced as follows.
A 4 μm-thick underlayer made of undoped GaN on an sapphire substrate via an AlN layer, a 2 μm-thick n-side contact layer made of Ge-doped (concentration 1 × 10 19 / cm 3 ), Si-doped (concentration 1 × 10 18 / cm 3 ) An n-side cladding layer made of In 0.1 Ga 0.9 N having a thickness of 12.5 nm, a barrier layer made of GaN having a thickness of 16 nm, and a well layer made of In 0.2 Ga 0.8 N having a thickness of 2.5 nm. After alternately laminating five times, a light emitting layer having a multi-quantum well structure finally provided with a barrier layer, Mg doped (concentration 1 × 10 20 / cm 3 ) Al 0.07 Ga 0.93 N, 2.5 nm thick p A nitride compound semiconductor multilayer structure was formed by sequentially laminating a side cladding layer and a p-side contact layer made of Mg-doped (concentration 8 × 10 19 / cm 3 ) Al 0.02 Ga 0.98 N and having a thickness of 0.16 μm.

この窒化物系化合物半導体積層構造のp側コンタクト層上の所定の位置に公知のフォトリソグラフィー技術およびリフトオフ技術を用いて、図2のパターンの正極を形成した。正極は、p側コンタクト層側から順にPtおよびAuを積層した構造とした。正極を構成する付帯電極14は幅を50μmとし、網状の電極10は幅を6μmとした。網状電極の開口率は付帯電極14の近傍で50%、第1のオーミック電極形成部13aの近傍で10%とした。そして全体の平均開口率は50%であった。
続いて、公知のフォトリソグラフィー技術を用い、半導体側からAu/Ti/Al/Ti/Au層構造よりなる正極ボンディング用パッドを形成した。
A positive electrode having the pattern of FIG. 2 was formed at a predetermined position on the p-side contact layer of the nitride-based compound semiconductor multilayer structure by using a known photolithography technique and lift-off technique. The positive electrode has a structure in which Pt and Au are laminated in order from the p-side contact layer side. The incidental electrode 14 constituting the positive electrode has a width of 50 μm, and the mesh electrode 10 has a width of 6 μm. The aperture ratio of the mesh electrode was 50% in the vicinity of the incidental electrode 14 and 10% in the vicinity of the first ohmic electrode forming portion 13a. The overall average aperture ratio was 50%.
Subsequently, a positive electrode bonding pad having an Au / Ti / Al / Ti / Au layer structure was formed from the semiconductor side using a known photolithography technique.

続いて、反応性イオンエッチング法によって負極を形成する部分のn型GaNコンタクト層を露出させ、露出したn型GaNコンタクト層上に負極を以下の手順により形成した。レジストを全面に一様に塗布した後、公知リソグラフィー技術を用いて、露出したn型GaNコンタクト層上の負極形成部分からレジストを除去して、通常用いられる真空蒸着法で半導体側から順にTiが100nm、Auが200nmよりなる負極を形成した。その後レジストを公知の方法で除去した。
然る後、350μm角の正方形のLEDチップに切断し、リードフレーム上に載置し、金導線をリードフレームに結線して、リードフレームよりLEDチップへ素子駆動電流を流せる様にした。
リードフレームを介して正極10および負極13間に順方向に素子駆動電流を流した。順方向電流を20mAとした際の順方向電圧は3.5Vであった。また、20mAの順方向電流を流した際の出射される青色帯発光の中心波長は460nmであった。また、一般的な積分球を使用して測定される発光の強度は、5mWに達し、高い強度の発光をもたらすIII族窒化物半導体発光素子が得られた。
また、得られた発光素子の静電耐圧測定(ESD)をヒュウマンボディモデル(HBモデル)によって行なった結果、面内20点中20点全てが2000V以上であった。
Subsequently, the n-type GaN contact layer where the negative electrode was to be formed was exposed by reactive ion etching, and the negative electrode was formed on the exposed n-type GaN contact layer by the following procedure. After uniformly applying the resist to the entire surface, the resist is removed from the negative electrode forming portion on the exposed n-type GaN contact layer using a known lithography technique, and Ti is sequentially applied from the semiconductor side by a commonly used vacuum deposition method. A negative electrode having a thickness of 100 nm and Au of 200 nm was formed. Thereafter, the resist was removed by a known method.
After that, it was cut into a 350 μm square LED chip, placed on a lead frame, and a gold lead was connected to the lead frame so that an element driving current could flow from the lead frame to the LED chip.
An element driving current was passed between the positive electrode 10 and the negative electrode 13 in the forward direction via the lead frame. When the forward current was 20 mA, the forward voltage was 3.5V. Further, the central wavelength of emitted blue band light when a forward current of 20 mA was passed was 460 nm. In addition, the intensity of light emission measured using a general integrating sphere reached 5 mW, and a group III nitride semiconductor light-emitting device that gave high intensity light emission was obtained.
Moreover, as a result of performing electrostatic withstand voltage measurement (ESD) of the obtained light-emitting element by the Human body model (HB model), all of 20 points in the plane were 2000 V or more.

(比較例)
実施例と同じ積層構造のウエーハを用い、p層の積層の構造は同じとして、但し、p層は開口部を設けずに全面を覆うようにp側電極のパターンを変更して素子を作製した。n電極のパターンや積層構造は実施例と同じとした。
得られた発光素子を実施例と同様に評価したところ、順方向電流を20mAとした際の順方向電圧は3.5Vであった。また、20mAの順方向電流を流した際の出射される青色帯発光の中心波長は460nmであった。また、一般的な積分球を使用して測定される発光の強度は、3mWであり、発光の強度は明らかに実施例よりも弱かった。
更に、静電耐圧測定(ESD)においては、2000V以上示したのは面内20点中3点のみであった。
(Comparative example)
A wafer having the same layered structure as in the example was used, and the layered structure of the p-layer was the same, except that the p-side electrode pattern was changed so as to cover the entire surface without providing an opening, and a device was fabricated. . The n-electrode pattern and the laminated structure were the same as in the example.
When the obtained light emitting device was evaluated in the same manner as in the example, the forward voltage was 3.5 V when the forward current was 20 mA. Further, the central wavelength of emitted blue band light when a forward current of 20 mA was passed was 460 nm. The intensity of light emission measured using a general integrating sphere was 3 mW, and the intensity of light emission was clearly weaker than in the examples.
Furthermore, in electrostatic withstand voltage measurement (ESD), only 3 points out of 20 points in the plane showed 2000 V or more.

本発明に依れば、電極間での局所的で且つ短絡的な素子動作電流の流通が回避され、耐電圧に優れるpn接合型発光ダイオードが得られ、また開口部から、発光を直接、外部へ透過できるため、外部への発光の取り出し効率に優れるpn接合型化合物半導体発光ダイオードなので、各種のディスプレイ等や各種のインジケータ類、各種の交通信号機、自動車のウインカ、リアライト類、デイタイムライト等に好適に利用できる。
またこの発光ダイオードと蛍光体とを組み合わせて、白色光等の発光ダイオードとして自動車のヘッドランプ、またはスポットライトや天井灯、街灯などの照明器具等に利用できる。
According to the present invention, it is possible to obtain a pn junction type light emitting diode having excellent withstand voltage by avoiding local and short-circuited element operating current flow between the electrodes, and emitting light directly from the opening to the outside. Pn-junction compound semiconductor light-emitting diode with excellent light extraction efficiency, so it can be transmitted to the outside, so various displays, various indicators, various traffic signals, automobile blinkers, rear lights, daytime lights, etc. Can be suitably used.
Further, by combining this light emitting diode and a phosphor, it can be used as a light emitting diode for white light or the like in an automobile headlamp, or a lighting device such as a spotlight, a ceiling light, or a streetlight.

本発明の電極の構成を説明するためのLEDの平面模式図である。It is a plane schematic diagram of LED for demonstrating the structure of the electrode of this invention. 本発明の電極の開口部の構成を説明するためのLEDの平面模式図である。It is a plane schematic diagram of LED for demonstrating the structure of the opening part of the electrode of this invention.

符号の説明Explanation of symbols

10 開口部を設けた金属オーミック電極
11 開口部
12 第2の台座電極
13 第1の台座電極
13a 第1のオーミック電極形成部
14 付帯電極
14a 付帯電極の内側面
15 発光ダイオードの外縁
15a 発光ダイオードの外縁の一方向
15b 発光ダイオードの外縁の他の方向
DESCRIPTION OF SYMBOLS 10 Metal ohmic electrode which provided opening 11 Opening part 12 2nd base electrode 13 1st base electrode 13a 1st ohmic electrode formation part 14 Auxiliary electrode 14a Inner side surface of an accompanying electrode 15 Outer edge of a light emitting diode 15a One direction of outer edge 15b Other direction of outer edge of light emitting diode

Claims (8)

第1の伝導型の化合物半導体からなる第1の導電層と、化合物半導体からなる発光層と、発光層からの発光を外部に取り出す方向に在る第2の伝導型の化合物半導体からなる第2の導電層とを備えた積層構造体と、上記の第2の導電層上に、開口部を設けた導電性薄膜からなる第2のオーミック(Ohmic)電極と、第2のオーミック電極に電気的に導通させて設けた第2の台座(pad)電極と、その第2の台座電極に対向して、第1の導電層上に第1の台座電極とが配置されているpn接合型発光ダイオードに於いて、第2の台座電極から発光ダイオード素子の外縁方向に延在し、第2のオーミック電極に接触する導電性薄帯からなる付帯電極が設けられていることを特徴とするpn接合型発光ダイオード。   A first conductive layer made of a compound semiconductor of the first conductivity type, a light emitting layer made of a compound semiconductor, and a second made of a compound semiconductor of the second conductivity type in the direction of taking out light emitted from the light emitting layer to the outside. And a second ohmic electrode made of a conductive thin film having an opening on the second conductive layer, and a second ohmic electrode electrically A pn-junction light emitting diode in which a second pedestal (pad) electrode provided in conduction with the first pedestal electrode is disposed on the first conductive layer so as to face the second pedestal electrode In this case, a pn junction type is provided, which is provided with an auxiliary electrode made of a conductive ribbon extending from the second pedestal electrode in the direction of the outer edge of the light-emitting diode element and in contact with the second ohmic electrode. Light emitting diode. 第2の台座電極が発光素子のコーナー部に配置され、第1の台座電極が第2の台座電極の対角線上のコーナーに配置され、付帯電極が第2の台座電極から発光素子の両辺の外縁方向に延在していることを特徴とする請求項1に記載のpn接合型発光ダイオード。   The second pedestal electrode is disposed at a corner portion of the light emitting element, the first pedestal electrode is disposed at a diagonal corner of the second pedestal electrode, and the auxiliary electrode is disposed at the outer edges of both sides of the light emitting element from the second pedestal electrode. The pn junction type light emitting diode according to claim 1, which extends in a direction. 第2の台座電極が発光素子の辺部に配置され、第1の台座電極が第2の台座電極の相対する辺に配置され、付帯電極が第2の台座電極から発光素子の外縁方向に延在していることを特徴とする請求項1に記載のpn接合型発光ダイオード。   The second pedestal electrode is disposed on the side of the light emitting element, the first pedestal electrode is disposed on the opposite side of the second pedestal electrode, and the auxiliary electrode extends from the second pedestal electrode toward the outer edge of the light emitting element. The pn junction type light emitting diode according to claim 1, wherein the pn junction type light emitting diode is present. 付帯電極の第1の台座電極と対面する側の形状と第1の台座電極の付帯電極に対面する側の形状とが相似形であることを特徴とする請求項1〜3のいずれかにに記載のpn接合型発光ダイオード。   The shape of the side facing the first pedestal electrode of the incidental electrode and the shape of the side facing the incidental electrode of the first pedestal electrode are similar in any one of claims 1 to 3. The pn junction type light emitting diode as described. 第2のオーミック電極の開口部の開口率が、第2の台座電極から第1の台座電極の方向に向けて、減少していることを特徴とする請求項1〜4のいずれかに記載のpn接合型発光ダイオード。   The aperture ratio of the opening part of a 2nd ohmic electrode is reducing toward the direction of a 1st base electrode from a 2nd base electrode, The one in any one of Claims 1-4 characterized by the above-mentioned. A pn junction type light emitting diode. 付帯電極及び第2のオーミック電極を、発光層からの発光を透過する導電性材料から構成した、ことを特徴とする請求項1〜5のいずれかに記載のpn接合型発光ダイオード。   The pn junction light emitting diode according to any one of claims 1 to 5, wherein the auxiliary electrode and the second ohmic electrode are made of a conductive material that transmits light emitted from the light emitting layer. 請求項1〜6のいずれかに記載の発光ダイオードと蛍光体を組み合わせた発光ダイオード   A light emitting diode comprising a combination of the light emitting diode according to claim 1 and a phosphor. 請求項7に記載の発光ダイオードを用いた照明器具。

The lighting fixture using the light emitting diode of Claim 7.

JP2005220007A 2005-07-29 2005-07-29 pn junction light emitting diode Expired - Fee Related JP4787561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005220007A JP4787561B2 (en) 2005-07-29 2005-07-29 pn junction light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005220007A JP4787561B2 (en) 2005-07-29 2005-07-29 pn junction light emitting diode

Publications (2)

Publication Number Publication Date
JP2007036077A true JP2007036077A (en) 2007-02-08
JP4787561B2 JP4787561B2 (en) 2011-10-05

Family

ID=37794931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005220007A Expired - Fee Related JP4787561B2 (en) 2005-07-29 2005-07-29 pn junction light emitting diode

Country Status (1)

Country Link
JP (1) JP4787561B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012114329A (en) * 2010-11-26 2012-06-14 Toshiba Corp Semiconductor light-emitting element and method of manufacturing the same
US9099594B2 (en) 2012-07-12 2015-08-04 Kabushiki Kaisha Toshiba Nitride semiconductor light-emitting element

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10275934A (en) * 1997-03-28 1998-10-13 Rohm Co Ltd Semiconductor light-emitting element
JP2000174339A (en) * 1998-12-04 2000-06-23 Mitsubishi Cable Ind Ltd GaN-BASED SEMICONDUCTOR LIGHT-EMITTING ELEMENT AND GaN- BASED SEMICONDUCTOR PHOTODETECTING ELEMENT
JP2002094118A (en) * 2000-09-04 2002-03-29 Samsung Electro Mech Co Ltd Blue light emitting device with current density dispersing electrode structure
JP2002118288A (en) * 2000-10-12 2002-04-19 Tokai Rika Co Ltd Semiconductor optical device
WO2003007390A1 (en) * 2001-07-12 2003-01-23 Nichia Corporation Semiconductor device
JP2005039264A (en) * 2003-06-30 2005-02-10 Nichia Chem Ind Ltd Semiconductor light emitting element and light emitting device employing it
JP2005086137A (en) * 2003-09-11 2005-03-31 Mitsubishi Cable Ind Ltd GaN-BASED LIGHT EMITTING DIODE

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10275934A (en) * 1997-03-28 1998-10-13 Rohm Co Ltd Semiconductor light-emitting element
JP2000174339A (en) * 1998-12-04 2000-06-23 Mitsubishi Cable Ind Ltd GaN-BASED SEMICONDUCTOR LIGHT-EMITTING ELEMENT AND GaN- BASED SEMICONDUCTOR PHOTODETECTING ELEMENT
JP2002094118A (en) * 2000-09-04 2002-03-29 Samsung Electro Mech Co Ltd Blue light emitting device with current density dispersing electrode structure
JP2002118288A (en) * 2000-10-12 2002-04-19 Tokai Rika Co Ltd Semiconductor optical device
WO2003007390A1 (en) * 2001-07-12 2003-01-23 Nichia Corporation Semiconductor device
JP2005039264A (en) * 2003-06-30 2005-02-10 Nichia Chem Ind Ltd Semiconductor light emitting element and light emitting device employing it
JP2005086137A (en) * 2003-09-11 2005-03-31 Mitsubishi Cable Ind Ltd GaN-BASED LIGHT EMITTING DIODE

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012114329A (en) * 2010-11-26 2012-06-14 Toshiba Corp Semiconductor light-emitting element and method of manufacturing the same
US9099594B2 (en) 2012-07-12 2015-08-04 Kabushiki Kaisha Toshiba Nitride semiconductor light-emitting element

Also Published As

Publication number Publication date
JP4787561B2 (en) 2011-10-05

Similar Documents

Publication Publication Date Title
JP4378070B2 (en) Nitride semiconductor device
JP4604488B2 (en) Nitride semiconductor light emitting device and manufacturing method thereof
KR100993074B1 (en) Light emitting device, method for fabricating the same and light emitting device package
JP2005244207A (en) Nitride gallium based compound semiconductor luminous element
TWI425664B (en) Semiconductor light-emitting device and method for producing the same
TWI458120B (en) Light emitting diode, light emitting diode lamp and lighting system
KR101646664B1 (en) Light emitting device, method for fabricating the light emitting device and light emitting device package
US20110121259A1 (en) Nitride semiconductor light emitting device
JP2007184411A (en) Light emitting diode and its manufacturing method, integrated light emitting diode and its manufacturing method, light emitting diode backlight, light emitting diode lighting apparatus, light emitting diode display, electronic equipment, and electronic device and its manufacturing method
US20130134475A1 (en) Semiconductor light emitting device
JP2007214384A (en) Nitride semiconductor element
JP2010171391A (en) Semiconductor light-emitting element
EP1530242B1 (en) Semiconductor light emitting device
KR20070028095A (en) Light emitting diode having low resistance
JP3989658B2 (en) Semiconductor light emitting diode
JP4890801B2 (en) Light emitting diode
KR20110044020A (en) Light emitting device and method for fabricating the same
JP4787561B2 (en) pn junction light emitting diode
JP4787562B2 (en) pn junction light emitting diode
JP4918235B2 (en) pn junction type compound semiconductor light emitting diode
JP2001144330A (en) Semiconductor light-emitting diode
TWI744622B (en) Optoelectronic device
KR102340717B1 (en) Light Emitting Device and Method for the same
KR20100133157A (en) Semiconductor light emitting device and manufacturing method of the same
KR20110092728A (en) Light emitting device, method for fabricating the light emitting device and light emitting device package

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110106

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110715

R150 Certificate of patent or registration of utility model

Ref document number: 4787561

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees