JP2007035980A - Laminated electromagnetic coil and method for manufacturing the same - Google Patents

Laminated electromagnetic coil and method for manufacturing the same Download PDF

Info

Publication number
JP2007035980A
JP2007035980A JP2005218183A JP2005218183A JP2007035980A JP 2007035980 A JP2007035980 A JP 2007035980A JP 2005218183 A JP2005218183 A JP 2005218183A JP 2005218183 A JP2005218183 A JP 2005218183A JP 2007035980 A JP2007035980 A JP 2007035980A
Authority
JP
Japan
Prior art keywords
electromagnetic coil
laminated
coil
alpha
thickness direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005218183A
Other languages
Japanese (ja)
Inventor
Yuji Asanuma
佑治 浅沼
Nobuyuki Kobayashi
延行 小林
Komei Kato
耕明 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SELCO CO Ltd
Original Assignee
SELCO CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SELCO CO Ltd filed Critical SELCO CO Ltd
Priority to JP2005218183A priority Critical patent/JP2007035980A/en
Publication of JP2007035980A publication Critical patent/JP2007035980A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coils Of Transformers For General Uses (AREA)
  • Transformer Cooling (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing in which an electromagnetic coil is laminated, having a concave-convex groove for cooling. <P>SOLUTION: A plurality of alpha winding electromagnetic coils having different inside and outside diameters is stuck together with a melting wire so as to make a groove in which a cooling pipe can be mounted. For dimensional accuracy and high reliability, it is thermal-pressed to form a laminated electromagnetic coil, having the concave-convex groove for cooling in the outer shape and inner shape, thereby largely increasing the current of the electromagnetic coil to obtain a large magnetomotive force, and making it possible to manufacture the laminated electromagnetic coil which can significantly improve the performance of an electric/electronic equipment and the like. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、融着導線を用い空芯アルファ巻きでコイル外形および内形面に凹凸溝を設けたことを特徴とする積層電磁コイルおよび製造方法に関するものである。   The present invention relates to a laminated electromagnetic coil and a manufacturing method, characterized in that a concave and convex groove is provided in the outer shape and inner shape of the coil with an air core alpha winding using a fusion lead.

電磁力を利用した機器の性能向上のためには電磁コイルに流す電流を増加させ、起磁力を増加させる方法が一般的であるが、電流増加により電力損失が電流の二乗に比例して増大する。電力損失の増大は大きな温度上昇をまねき、大きな温度上昇は、機器の寿命、信頼性に大きく影響する。従って当該機器の高性能および、信頼性確保のため機器本体を冷却または間接的に電磁コイルを冷却する方法が一般的に知られている。   In order to improve the performance of equipment using electromagnetic force, it is common to increase the current flowing through the electromagnetic coil and increase the magnetomotive force, but the power loss increases in proportion to the square of the current due to the increase in current. . An increase in power loss causes a large temperature rise, and the large temperature rise greatly affects the life and reliability of the device. Therefore, a method for cooling the device main body or indirectly cooling the electromagnetic coil is generally known to ensure high performance and reliability of the device.

当該機器本体を冷却する方法は水冷、空冷、冷媒、電子冷却と色々と工夫されているが、電磁コイル本体を直接冷却する方法は電磁コイルの構造から極めて難しく実現できていない。また電磁コイル外周を冷却するにも寸法増大、コイル面へ密着性が難しく、冷却効率低下等の問題があり実現できていない。 Various methods have been devised for cooling the device main body, such as water cooling, air cooling, refrigerant, and electronic cooling, but the method of directly cooling the electromagnetic coil main body has not been realized very difficult due to the structure of the electromagnetic coil. Moreover, even when the outer periphery of the electromagnetic coil is cooled, it has not been realized due to problems such as an increase in size, difficulty in adhesion to the coil surface, and a decrease in cooling efficiency.

解決しようとする問題点は、電磁コイルの外形、内形に冷却用凹凸溝を設ける事にある。一般的に外形、および内形に凹凸溝を作りながらコイルを巻く事は極めて困難で、巻けたととしても凹凸溝の境は不規則になるため、占積率が極めて低く、更に十分なスペースを確保することが出来ない、冷却用パイプを設置したとしても接触面が限られ、熱伝導性が悪く十分な冷却効果が得られない等の問題がある。本発明は、占積率を低下することなしに冷却効果を高めるための凹凸溝を設けた電磁コイルおよび製造方法である。 The problem to be solved is that a cooling uneven groove is provided in the outer shape and inner shape of the electromagnetic coil. In general, it is extremely difficult to wind a coil while forming a concave and convex groove on the outer shape and the inner shape, and even if it is wound, the boundary of the concave and convex groove becomes irregular, so the space factor is extremely low and more space is required. Even if a cooling pipe is installed, there is a problem that the contact surface is limited, the thermal conductivity is poor, and a sufficient cooling effect cannot be obtained. The present invention is an electromagnetic coil provided with a concave and convex groove and a manufacturing method for enhancing the cooling effect without reducing the space factor.

本発明は、上記問題を解決するために、融着導線を内径、外径または巻き回数の異なった複数個の電磁コイル予め製作し、コイル寸法のバラツキを加熱押し圧加工することにより、容易に寸法のバラツキを極めて小さくし、厚さ方向の平滑度を高め、内径、外径及び巻回数の異なる複数個の電磁コイルを容易に貼合わせる事が出来ると共に出来上がり寸法バラツキも極めて小さく出来る。また厚さ方向、あるいは厚さ方向に直交する方向の少なくともいずれか一面を湾曲加工する場合にも加熱押し圧することにより、容易に湾曲加工、積層が出来る。すなわち、上記記載のコイルを貼り合わせることにより、冷却用凹凸溝を有した積層電磁コイルを容易に提供することにある。 In order to solve the above-mentioned problem, the present invention makes it easy to manufacture a plurality of electromagnetic coils having different inner diameters, outer diameters, or winding numbers in advance, and to heat and press the variations in coil dimensions. The variation in dimensions can be made extremely small, the smoothness in the thickness direction can be increased, and a plurality of electromagnetic coils having different inner diameters, outer diameters, and winding times can be easily bonded together, and the variation in finished dimensions can be made extremely small. Also, when bending at least one surface in the thickness direction or the direction orthogonal to the thickness direction, bending and laminating can be easily performed by heating and pressing. That is, by laminating the above-described coils, it is easy to provide a laminated electromagnetic coil having a cooling concave and convex groove.

また、内径、外径及び巻回数の異なる複数個のアルファ巻き電磁コイル単体を高精度加工せずに、積層工程において積層冶具に装着固定し、抵抗、赤外線、熱風等の加熱手段を設けることにより、巻き上がり時に発生した巻き歪みよる寸法バラツキを加熱押し圧することにより、積層コイルの寸法精度バラツキを除去しながら冷却用凹凸溝を有した電磁コイルを積層する製造方法を提供する。 In addition, by attaching a plurality of alpha wound electromagnetic coils having different inner diameters, outer diameters and winding numbers to a laminating jig in the laminating process without high precision processing, and providing heating means such as resistance, infrared rays, hot air, etc. A manufacturing method for laminating electromagnetic coils having concave and convex grooves for cooling while removing the dimensional accuracy variation of the laminated coil by heating and pressing the dimensional variation due to winding distortion generated at the time of winding is provided.

本発明の融着導線アルファ巻電磁コイルは、一般的に使用されている融着線を用い任意の内径、外径及び任意の巻数で長方形型又は円形型に巻き、巻取り時又は巻取り後コイルを加熱押し圧し厚さ方向の面部分を均一化させ、内径、外径及び巻回数の異なる複数個のコイルを積層し直列または並列接続した電磁コイル、および厚さ方向、または厚さ方向に直交する方向の少なくともいずれか一方を湾曲加工後積層し直列または並列接続した積層電磁コイル。従来電磁コイルはコイル自体を直接冷却出来なかったが、本発明の凹凸溝着き積層電磁コイルは直接電磁コイルに冷却パイプを巻くことが出来る。また積層コイル張合わせ組立工程において、冷却パイプを同時に組立冷却パイプ付積層電磁コイルにすることが出来る。従って直接電磁コイルを冷却する事が可能となり、冷却効率が向上し電磁コイルに流す電流を増加することが出来、電気機器の出力、トルク向上になり、電気機器の小型高性能および高信頼性が可能となる。   The fused conducting wire alpha-wound electromagnetic coil of the present invention is wound on a rectangular shape or a circular shape with an arbitrary inner diameter, outer diameter and arbitrary number of turns using a commonly used fused wire, and at the time of winding or after winding The coil is heated and pressed to make the surface portion in the thickness direction uniform, and a plurality of coils having different inner diameters, outer diameters, and winding numbers are stacked and connected in series or in parallel, and in the thickness direction or thickness direction. A laminated electromagnetic coil in which at least one of the directions orthogonal to each other is curved and laminated and connected in series or in parallel. Conventionally, the coil itself cannot be cooled directly, but the concave and convex grooved laminated electromagnetic coil of the present invention can directly wind a cooling pipe around the electromagnetic coil. Further, in the laminated coil lamination assembly process, the cooling pipe can be simultaneously formed into a laminated electromagnetic coil with an assembly cooling pipe. Therefore, the electromagnetic coil can be directly cooled, the cooling efficiency can be improved, the current flowing through the electromagnetic coil can be increased, the output and torque of the electric device can be improved, and the small size, high performance and high reliability of the electric device can be achieved. It becomes possible.

融着線を用い内径、外径の異なる長方形型又は円形型に巻数の異なるアルファ巻きを実施し、アルファ巻きしたコイルを加熱にて厚さ方向、厚さ方向に直交する方向の少なくともいずれか一方向を押し圧する事で、巻き線間の隙間を密着させ、押し圧された事により電磁コイルの歪みが無くなり、コイル積層時コイル相互間の隙間が無くなり寸法精度に優れ、絶縁劣化の無い凹凸溝を有した積層電磁コイルが実現した。   Alpha winding with different number of turns is applied to a rectangular shape or circular shape with different inner and outer diameters using a fusion wire, and the alpha-wound coil is heated to at least one of the thickness direction and the direction orthogonal to the thickness direction. By pressing the direction, the gaps between the windings are brought into close contact, and by pressing, the distortion of the electromagnetic coil is eliminated, and there is no gap between the coils when laminating the coils, resulting in excellent dimensional accuracy and no deterioration in insulation. A laminated electromagnetic coil having

図1は、本発明の電磁コイルで加熱押し圧前の立体図であって、1はコイル上面の凸凹、2は引出しリード線、3は融着導線、4はコイル断面を示す。図2は加熱押し圧後の立体図であって、1はコイル上面の凸凹、2は引出しリード線、3は融着導線、4はコイルの断面、5は長辺方向、6は厚さ方向、7は幅方向を示す。   FIG. 1 is a three-dimensional view of the electromagnetic coil of the present invention before heating and pressing, wherein 1 is unevenness on the upper surface of the coil, 2 is a lead wire, 3 is a fusion lead, and 4 is a cross section of the coil. FIG. 2 is a three-dimensional view after pressing with heat, where 1 is unevenness on the top surface of the coil, 2 is a lead wire, 3 is a fused wire, 4 is a cross section of the coil, 5 is a long side direction, and 6 is a thickness direction. , 7 indicates the width direction.

図3は、図1の断面図であって、8は導線、9は絶縁皮膜、10は融着皮膜、11は線間の隙間を示す。図4は、図2の断面図であって、8は導線、9は絶縁皮膜、10は融着皮膜、11は線間の隙間を示す。 3 is a cross-sectional view of FIG. 1, in which 8 is a conductor, 9 is an insulating film, 10 is a fusion film, and 11 is a gap between the lines. 4 is a cross-sectional view of FIG. 2, in which 8 is a conductor, 9 is an insulating film, 10 is a fusion film, and 11 is a gap between the lines.

図5は、本発明外形凹溝電磁コイルの立体図であって、12は融着導線、13は引出しリード線、14は接続部分、15は外形凹部分を示す。図6は本発明の内形凹溝電磁コイルの立体図であって、12は融着導線、13は引出しリード線、14は接続部分、16は内形凹部分を示す。図7は、本発明の内形、外形凹溝電磁コイルであって、12は融着導線、13は引出しリード線、14は接続部分、15は外形凹部分、16は内形凹部分を示す。   FIG. 5 is a three-dimensional view of the external concave groove electromagnetic coil of the present invention, wherein 12 is a fusion lead, 13 is a lead wire, 14 is a connecting portion, and 15 is an external concave portion. FIG. 6 is a three-dimensional view of the inner grooved electromagnetic coil of the present invention, in which 12 is a fused lead, 13 is a lead wire, 14 is a connecting portion, and 16 is an inner recessed portion. FIG. 7 shows an inner shape and outer shape concave groove electromagnetic coil according to the present invention, wherein 12 is a fusion lead, 13 is a lead wire, 14 is a connecting portion, 15 is an outer shape concave portion, and 16 is an inner shape concave portion. .

図8は、従来の電磁コイルの立体図であって、12は融着導線、13は引出しリード線、14は接続部分、17は積層面、18は内径を示す。 FIG. 8 is a three-dimensional view of a conventional electromagnetic coil, wherein 12 is a fusion-bonding wire, 13 is a lead wire, 14 is a connecting portion, 17 is a laminated surface, and 18 is an inner diameter.

図9は、本発明の電磁コイル応用例1であって冷却パイプを実装した立体図を示し、19は冷却パイプ、20は流入口、21は排出口を示す。図10は冷却パイプ立体図を示し、22はコイル接触面、20は流入口、21は排出口を示す。   FIG. 9 is a three-dimensional view in which a cooling pipe is mounted as an electromagnetic coil application example 1 of the present invention, wherein 19 is a cooling pipe, 20 is an inlet, and 21 is an outlet. FIG. 10 shows a three-dimensional view of the cooling pipe, 22 is a coil contact surface, 20 is an inlet, and 21 is an outlet.

図11は、本発明の電磁コイル応用例2であって凹溝に磁性体を一体化した立体図を示し、23は磁性体、24は磁性体接着面、25は積層面を示す。図12は断面図を示し23は磁性体、25は積層面、3は融着導線。   FIG. 11 shows a three-dimensional view of an electromagnetic coil application example 2 according to the present invention, in which a magnetic material is integrated into a groove, 23 is a magnetic material, 24 is a magnetic material bonding surface, and 25 is a laminated surface. FIG. 12 shows a cross-sectional view, 23 is a magnetic body, 25 is a laminated surface, and 3 is a fusion-bonding wire.

図13、図14は角錐台、円錐台型の断面図を示す。15は外形凹部、16は内形凹部、12は融着導線を示す。 13 and 14 are cross-sectional views of a truncated pyramid and truncated cone type. Reference numeral 15 denotes an external recess, 16 denotes an internal recess, and 12 denotes a fusion lead.

本発明のアルファ巻きをした電磁コイルの積層方法は通電、熱風、赤外線で60〜230℃に加熱し、押し圧冶具に装着しタテ、ヨコ両方向またはヨコあるいはタテいずれかを押し圧し隙間部分を減少させ融着線間を密着させる。   The lamination method of the electromagnetic coil wound with alpha of the present invention is heated to 60 to 230 ° C. with energization, hot air and infrared rays, and is attached to a pressing jig to press the vertical, horizontal direction or horizontal or vertical to reduce the gap portion. And let the fused wires be in close contact.

該アルファ巻きした電磁コイルを60〜230℃に加熱した金型に装着しタテ,ヨコ両方向またはタテあるいはヨコいずれかを押し圧し隙間部分を減少させ融着線間を密着させる。 The alpha-wound electromagnetic coil is mounted on a mold heated to 60 to 230 ° C., and the vertical and horizontal directions or either vertical or horizontal pressure is pressed to reduce the gap and bring the fused wires into close contact.

本発明のアルファ巻き積層電磁コイルの平衡度は押し圧金型精度に近似する、従って隙間部分が大幅に減少する事により電磁コイルの高密度化ができるとともに、寸法精度が著しく改善され精密電子機器、電気機器の性能向上に貢献する。   The balance degree of the alpha winding laminated electromagnetic coil of the present invention is close to the accuracy of the pressing die. Therefore, the gap portion is greatly reduced, so that the density of the electromagnetic coil can be increased and the dimensional accuracy is remarkably improved. Contributes to improving the performance of electrical equipment.

本発明の電磁コイルの応用例として電磁コイル冷却によりより一層大きな電流を流す事ができ、損失が少なくより大きな起磁力が得られる電磁コイルを提供する。またコイル組立時に凹溝に磁性体を装着し一体に組立ることにより、磁束密度の異なった磁界が得られ、電磁コイル内を移動する磁性体の速度コントロールが可能となる、また電磁コイル内を通過する電子の収束、拡散においても従来とは異なる磁界でのコントロールが可能となる。またコイルの内径を摺動面として使用する場合においても内形の凹溝に内径より若干大きなリングを入れて組立ることにより、コイル内径部分の絶縁なしで磁性体を上下することが可能となる。   As an application example of the electromagnetic coil of the present invention, there is provided an electromagnetic coil capable of allowing a larger current to flow by cooling the electromagnetic coil and obtaining a larger magnetomotive force with less loss. In addition, when a coil is assembled, a magnetic body is attached to the groove and assembled together, so that magnetic fields with different magnetic flux densities can be obtained, and the speed of the magnetic body moving in the electromagnetic coil can be controlled. Convergence and diffusion of passing electrons can be controlled with a magnetic field different from the conventional one. Even when the inner diameter of the coil is used as a sliding surface, it is possible to move the magnetic body up and down without insulation of the inner diameter portion of the coil by assembling the inner concave groove with a ring slightly larger than the inner diameter. .

アルファ巻き凹溝付電磁コイルは、凹溝を冷却用、磁束の収束、拡散、および電子線の収束、拡散、摺動面として活用でき、その用途によってそれぞれの優れた特徴を生かす事が出来る。第一に冷却用としての利用は温度上昇を抑え大きな電流が流せる事で大きな起磁力が得られ、電気機器の小型化高性能、高信頼性を可能にする。また、凹溝に磁性体を装着することにより磁束の収束、拡散が可能となり、従来のコイルではコントロールの出来なかった特殊なコントロールが可能となる。更に内径を摺動面として利用する場合、内径部分を絶縁なしで利用でき鉄心とコイル面の隙間が極めて小さくでき電磁損失を小さくすることが出来る。電子・電気機器、精密機器の性能向上、小型化用として広く活用できる。   The alpha coiled grooved electromagnetic coil can be used as a cooling surface for cooling, convergence of magnetic flux, diffusion, and convergence, diffusion, and sliding of electron beams, and can take advantage of the excellent features of each. First, the use for cooling can suppress a temperature rise and a large magnetomotive force is obtained by allowing a large current to flow, thereby enabling downsizing, high performance, and high reliability of electrical equipment. In addition, by attaching a magnetic material to the concave groove, the magnetic flux can be converged and diffused, and special control that cannot be controlled by a conventional coil becomes possible. Further, when the inner diameter is used as a sliding surface, the inner diameter portion can be used without insulation, and the gap between the iron core and the coil surface can be made extremely small, and the electromagnetic loss can be reduced. It can be widely used to improve the performance and miniaturization of electronic / electrical equipment and precision equipment.

本発明の電磁コイルで加熱押し圧前の立体図。The three-dimensional figure before a heating press with the electromagnetic coil of this invention. 本発明の電磁コイルで加熱押し圧後の立体図。The three-dimensional figure after a heating press with the electromagnetic coil of this invention. 本発明の図1の断面図。FIG. 2 is a sectional view of FIG. 1 according to the present invention. 本発明の図2の断面図。Sectional drawing of FIG. 2 of this invention. 本発明の外形凹溝電磁コイルの立体図。FIG. 3 is a three-dimensional view of the external groove electromagnetic coil of the present invention. 本発明の内形凹溝電磁コイルの立体図。The three-dimensional view of the inner shape concave groove electromagnetic coil of this invention. 本発明の内形、外形凹溝電磁コイルの立体図断面。The solid figure cross section of the inner shape of this invention, and an external shape concave groove electromagnetic coil. 従来の電磁コイルの立体図。The three-dimensional view of the conventional electromagnetic coil. 本発明の電磁コイルの応用例1の立体図。The solid diagram of the application example 1 of the electromagnetic coil of this invention. 本発明の電磁コイルの応用例1の冷却パイプ。The cooling pipe of the application example 1 of the electromagnetic coil of this invention. 本発明の電磁コイルの応用例2の立体図。The solid diagram of the application example 2 of the electromagnetic coil of this invention. 本発明の電磁コイルの応用例2の断面図。Sectional drawing of the application example 2 of the electromagnetic coil of this invention. 本発明の角錐台、円錐台の電磁コイルの断面図。Sectional drawing of the pyramid frustum of this invention and the electromagnetic coil of a truncated cone. 本発明の角錐台、円錐台の電磁コイルの断面図。Sectional drawing of the pyramid frustum of this invention and the electromagnetic coil of a truncated cone.

符号の説明Explanation of symbols

1 コイル上面の凸凹
2、13 引き出しリード線
3、12 融着導線
4 コイルの断面
5 長辺方向
6 厚さ方向
7 幅方向
8 導線
9 絶縁皮膜
10 融着皮膜
11 線間の隙間
14 接続部分
15 外形凹部分
16 内形凹部分
17、25 積層面
18 内径
19 冷却パイプ
20 コイル接触面
21 流入口
22 排出口
23 磁性体
24 磁性体接着面

DESCRIPTION OF SYMBOLS 1 Unevenness of coil upper surface 2, 13 Lead-out lead wire 3, 12 Fusion lead 4 Coil cross section 5 Long side direction 6 Thickness direction 7 Width direction 8 Lead wire 9 Insulating film 10 Fusion film 11 Gap 14 between wires 14 Connection part 15 Outer concave portion 16 Inner concave portion 17, 25 Laminating surface 18 Inner diameter 19 Cooling pipe 20 Coil contact surface 21 Inlet port 22 Outlet port 23 Magnetic body 24 Magnetic body bonding surface

Claims (5)

導線と、該導線の周りを被覆する絶縁皮膜と、該絶縁皮膜の周りをさらに被覆する融着皮膜とを備える融着導線をもちいアルファ巻にした電磁コイルにおいて、外形および内形のいずれか一方または両方に凹凸溝を有していることを特徴とする積層電磁コイル。 In an electromagnetic coil having an alpha winding using a fusion conducting wire comprising a conducting wire, an insulating coating covering the periphery of the conducting wire, and a fusion coating further covering the insulating coating, either the outer shape or the inner shape Or the laminated electromagnetic coil characterized by having an uneven | corrugated groove | channel on both. アルファ巻電磁コイルにおいて外径および内径が異なり、また巻回数の異なる複数個で構成された電磁コイルにおいて、外形および内形に凹凸溝を設けた角錐台又は円錐台形状にした事を特徴とする積層電磁コイル。 The alpha winding electromagnetic coil is characterized in that the outer diameter and inner diameter are different, and the electromagnetic coil is composed of a plurality of different numbers of turns, and is formed into a truncated pyramid or truncated cone shape with concave and convex grooves on the outer shape and inner shape. Laminated electromagnetic coil. 巻き外径および内径の異なった複数個のアルファ巻き電磁コイルを、該空芯電磁コイルの厚さ方向、または厚さ方向に直交する方向の少なくともいずれか一方に、上記導線の弾性変形範囲内で加熱押し圧されたことを特徴とする請求項1から2記載の積層電磁コイルの製造方法。 A plurality of alpha-wound electromagnetic coils having different winding outer diameters and inner diameters are arranged within the elastic deformation range of the conducting wire in at least one of the thickness direction of the air-core electromagnetic coil and the direction orthogonal to the thickness direction. 3. The method of manufacturing a laminated electromagnetic coil according to claim 1, wherein the laminated electromagnetic coil is heated and pressed. アルファ巻き空芯電磁コイルは、空芯で巻上げた後、電磁コイルに加熱手段にて加熱し厚さ方向、厚さ方向に直交する方向の少なくともいずれか一方向を押し圧した事を特徴とする請求項1から3記載の積層電磁コイルの製造方法。 The alpha-winding air core electromagnetic coil is characterized in that after being wound with an air core, the electromagnetic coil is heated by a heating means and pressed in at least one of the thickness direction and the direction orthogonal to the thickness direction. A method for manufacturing a laminated electromagnetic coil according to claim 1. 加熱手段を、電磁コイルに通電し抵抗加熱する、加熱した金型に電磁コイルを装着する、電磁コイルに赤外線または熱風加熱する、のいずれか或いは組み合わせにより電磁コイルを加熱することを特徴とする請求項4記載の積層電磁コイルの製造方法。
The heating means is configured to heat the electromagnetic coil by any one or a combination of energizing the electromagnetic coil and resistance heating, attaching the electromagnetic coil to a heated mold, or heating the electromagnetic coil with infrared rays or hot air. Item 5. A method for manufacturing a laminated electromagnetic coil according to Item 4.
JP2005218183A 2005-07-28 2005-07-28 Laminated electromagnetic coil and method for manufacturing the same Pending JP2007035980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005218183A JP2007035980A (en) 2005-07-28 2005-07-28 Laminated electromagnetic coil and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005218183A JP2007035980A (en) 2005-07-28 2005-07-28 Laminated electromagnetic coil and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2007035980A true JP2007035980A (en) 2007-02-08

Family

ID=37794857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005218183A Pending JP2007035980A (en) 2005-07-28 2005-07-28 Laminated electromagnetic coil and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2007035980A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107027241A (en) * 2016-02-02 2017-08-08 景硕科技股份有限公司 Has the increasing layer carrying board structure of magnetic induction coil and soft board
US10256028B2 (en) 2016-03-31 2019-04-09 Kinsus Interconnect Technology Corp. Buildup board structure
CN111615733A (en) * 2018-01-18 2020-09-01 株式会社达谊恒 Inductor, device provided with inductor, and method for manufacturing inductor
CN112735728A (en) * 2020-12-22 2021-04-30 四川君健万峰医疗器械有限责任公司 Transcranial magnetic stimulation coil and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107027241A (en) * 2016-02-02 2017-08-08 景硕科技股份有限公司 Has the increasing layer carrying board structure of magnetic induction coil and soft board
CN107027241B (en) * 2016-02-02 2019-07-02 景硕科技股份有限公司 Has the increasing layer carrying board structure of magnetic induction coil and soft board
US10256028B2 (en) 2016-03-31 2019-04-09 Kinsus Interconnect Technology Corp. Buildup board structure
CN111615733A (en) * 2018-01-18 2020-09-01 株式会社达谊恒 Inductor, device provided with inductor, and method for manufacturing inductor
CN112735728A (en) * 2020-12-22 2021-04-30 四川君健万峰医疗器械有限责任公司 Transcranial magnetic stimulation coil and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP6397444B2 (en) Inductive components with improved core characteristics
TWI594274B (en) Magnetic element
KR101581483B1 (en) Coil for an electric machine and method for producing a coil
JP2015516138A (en) Device and method for cooling an electrical device having a modular stator
US20160276888A1 (en) Windings for electrical machines
JP2007035980A (en) Laminated electromagnetic coil and method for manufacturing the same
JP2010035366A (en) Stator for use in electric rotary machine and electric machine
JP2007201203A (en) Reactor
US20180286567A1 (en) Pseudo edge-wound winding using single pattern turn
JP2006158024A (en) Coil and its manufacturing method
JP2007027345A (en) Lamination electromagnetic coil and its manufacturing method
JP4474426B2 (en) Coil forming method and coil manufactured by the method
JP2007028777A (en) Laminated electromagnetic coil with different inside diameter shape and method for manufacturing the same
JP2007173263A (en) Edgewise winding electromagnetic coil and its manufacturing method
CN115378174A (en) Linear motor coil winding, manufacturing method thereof and linear motor
KR20190084632A (en) Manufacturing method of the winding coil for the transformer
JP4838842B2 (en) Transformer having laminated winding structure
JPS5810945B2 (en) Dendoukiyoukoteishi Oyobi Sono Seizouhouhou
TWI408873B (en) Linear motor coil assembly construction
JP2015192090A (en) reactor
JP2016039322A (en) Coil and coil component
JP2015053369A (en) Coil component and power supply device using the same
CN212462896U (en) Motor stator structure based on powdery material Somaloy
JP2007188988A (en) Edgewise wound electromagnetic coil and method for manufacturing same
JP2008270403A (en) Thin high frequency coil and manufacturing method