JP2007033848A - Charging process evaluation method - Google Patents

Charging process evaluation method Download PDF

Info

Publication number
JP2007033848A
JP2007033848A JP2005216761A JP2005216761A JP2007033848A JP 2007033848 A JP2007033848 A JP 2007033848A JP 2005216761 A JP2005216761 A JP 2005216761A JP 2005216761 A JP2005216761 A JP 2005216761A JP 2007033848 A JP2007033848 A JP 2007033848A
Authority
JP
Japan
Prior art keywords
charging
charging roller
discharge
evaluation method
charged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005216761A
Other languages
Japanese (ja)
Other versions
JP4801946B2 (en
Inventor
Toshiyuki Kahata
利幸 加幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2005216761A priority Critical patent/JP4801946B2/en
Publication of JP2007033848A publication Critical patent/JP2007033848A/en
Application granted granted Critical
Publication of JP4801946B2 publication Critical patent/JP4801946B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cleaning In Electrography (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Control Or Security For Electrophotography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a charging process evaluation method capable of easily and properly evaluating whether an electrostatic charging process is satisfactory or not. <P>SOLUTION: At least a photoreceptor 1 or a charging roller 13 disposed without being in electrical contact with the photoreceptor 1 is stopped. An AC voltage overlapped by a DC voltage for a fixed period of time is applied to the charging roller 13 and thereby the photoreceptor 1 is charged. Then, from information about the width of the trace of discharge caused in the photoreceptor 1 or charging roller 13 and information about its depth, whether a charging process is satisfactory or not is evaluated in terms of, for example, validity for electrostatic charging conditions, the electrical characteristics of the photoreceptor 1 and charging roller 13, and a gap G between the photoreceptor 1 and charging roller 13. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、帯電部材により被帯電部材を帯電させる帯電工程の評価方法に関する。   The present invention relates to a method for evaluating a charging process in which a member to be charged is charged by a charging member.

電子写真プロセスを用いた画像形成装置では、像担持体である感光体を一様に帯電させる帯電工程、画像情報に基づき静電潜像を形成する露光工程、静電潜像をトナーによって顕像化する現像工程を経て感光体上にトナー像が形成される。そして、トナー像を転写材に転写する転写工程、転写材上のトナー像を定着させる定着工程を経て転写材上に画像が形成される。上記帯電工程では、従来からスコロトロン帯電器等の非接触方式の帯電装置が用いられてきたが、コロナ放電に伴いオゾン、NOx等の有害ガスが発生する。そこで、帯電部材である帯電ローラを感光体に当接させることによって、感光体を帯電させる接触帯電方式の帯電装置が用いられている。この接触帯電方式の帯電装置では、オゾン、NOx等の有害ガスの発生が少なく、装置を小型化することができる。しかし、転写後の残トナーが感光体から完全に除去されず残留した場合には、残トナーが帯電ローラに付着して帯電ローラの抵抗にバラツキが生じ、感光体の帯電電位にバラツキが生じて画像濃度ムラを引き起こす原因になっていた。   In an image forming apparatus using an electrophotographic process, a charging process for uniformly charging a photoconductor as an image carrier, an exposure process for forming an electrostatic latent image based on image information, and developing the electrostatic latent image with toner. A toner image is formed on the photoreceptor through a developing step. Then, an image is formed on the transfer material through a transfer process for transferring the toner image to the transfer material and a fixing process for fixing the toner image on the transfer material. In the charging process, a non-contact charging device such as a scorotron charger has been used conventionally, but harmful gases such as ozone and NOx are generated with corona discharge. Therefore, a contact charging type charging device is used in which a charging roller as a charging member is brought into contact with the photosensitive member to charge the photosensitive member. In this contact charging type charging device, generation of harmful gases such as ozone and NOx is small, and the device can be miniaturized. However, if the residual toner after transfer is not completely removed from the photoreceptor, the residual toner adheres to the charging roller, resulting in variations in the resistance of the charging roller, and variations in the charging potential of the photoreceptor. This was the cause of uneven image density.

そこで、帯電ローラを感光体に電気的に非接触となるように近接させて配置する近接帯電方式の帯電装置が提案されている(例えば、特許文献1,2,3)。この近接帯電方式の帯電装置では、帯電ローラと感光体との間にギャップが形成されるので、帯電部材に残トナーが付着しにくい。   In view of this, there has been proposed a charging device of a proximity charging system in which a charging roller is disposed in proximity to a photosensitive member so as not to be in electrical contact (eg, Patent Documents 1, 2, and 3). In this proximity charging type charging device, a gap is formed between the charging roller and the photosensitive member, so that the residual toner hardly adheres to the charging member.

特開2002−108095号公報JP 2002-108095 A 特開2004−264792号公報JP 2004-264792 A 特開2005−4000号公報JP-A-2005-4000

上述した近接帯電方式においては、帯電ローラに直流電圧を重畳した交流電圧を印加することにより、感光体の帯電電位を目標の電圧にすることができる。このときの帯電条件のパラメータとしては、印加する直流電圧及び交流電圧とその周波数、感光体や帯電ローラの電気特性、感光体と帯電ローラとの間隔がある。印加する交流電圧は、放電を起こすことができる感光体と帯電ローラの距離を決める。印加する交流電圧が大きいほど、感光体と帯電ローラの間隔が大きくなっても放電を起こすことができる。つまり、印加する交流の電圧が大きいほど、帯電ローラの広い場所で放電が起き、感光体の帯電ムラを小さくすることができる。よって、現実には、感光体や帯電ローラに電気特性のバラツキ(抵抗ムラ等)があるため、印加する交流電圧は高めに設定されることが多い。しかし、放電はイオンや電子等の荷電粒子を感光体及び帯電ローラに浴びせることであるので、感光体及び帯電ローラの酸化劣化が生じる。印加する交流電圧が大きいと、荷電粒子の発生量は特に感光体と帯電ローラとの間隔が小さいところで多くなるため、その部分で感光体及び帯電ローラの酸化劣化が激しくなり、感光体及び帯電ローラを早期に交換しなければならなくなる。また、印加する交流電圧の周波数は、単位時間当たりに放電の起こすことができる回数を決める。つまり、印加する交流電圧の周波数が大きいほど感光体の帯電ムラを小さくすることができる。よって、前述したように、現実には、感光体や帯電ローラに電気特性のバラツキがあるため、印加する交流電圧の周波数は高めに設定されることが多い。しかし、交流電圧の周波数が大きいと感光体及び帯電ローラの酸化劣化が激しくなり、感光体及び帯電ローラを早期に交換しなければならなくなる。   In the proximity charging method described above, the charging potential of the photosensitive member can be set to a target voltage by applying an AC voltage in which a DC voltage is superimposed on the charging roller. The parameters of the charging conditions at this time include the DC voltage and AC voltage to be applied and their frequencies, the electrical characteristics of the photosensitive member and the charging roller, and the interval between the photosensitive member and the charging roller. The applied AC voltage determines the distance between the photosensitive member and the charging roller that can cause discharge. The larger the AC voltage applied, the more the discharge can occur even if the distance between the photosensitive member and the charging roller is increased. That is, as the alternating voltage applied is larger, discharge occurs in a wider area of the charging roller, and the charging unevenness of the photosensitive member can be reduced. Therefore, in reality, since there are variations in electrical characteristics (resistance unevenness, etc.) in the photoconductor and the charging roller, the applied AC voltage is often set high. However, since discharging is a process in which charged particles such as ions and electrons are exposed to the photosensitive member and the charging roller, oxidation deterioration of the photosensitive member and the charging roller occurs. When the alternating voltage to be applied is large, the amount of charged particles generated increases especially where the distance between the photoconductor and the charging roller is small. Therefore, the oxidative deterioration of the photoconductor and the charging roller becomes severe at that portion, and the photoconductor and the charging roller. Must be replaced early. Further, the frequency of the AC voltage to be applied determines the number of times that discharge can occur per unit time. That is, the charging unevenness of the photosensitive member can be reduced as the frequency of the applied AC voltage is increased. Therefore, as described above, in reality, there are variations in electrical characteristics between the photoconductor and the charging roller, and therefore the frequency of the applied AC voltage is often set high. However, when the frequency of the AC voltage is large, the photoconductor and the charging roller are oxidatively deteriorated, and the photoconductor and the charging roller must be replaced early.

また、感光体と帯電ローラとの距離が近すぎると放電は生じなくなり、パッシェン則によれば約7μm以下では放電は起こらない。現実には感光体の電気容量や帯電ローラの抵抗のため、放電が起こりはじめる感光体と帯電ローラの距離は大凡20μm以上といわれている。感光体と帯電ローラとの距離をμm単位で制御することが重要となるが、現実には帯電ローラはμm単位の表面粗さを持っているため、感光体の帯電ムラがなくなるように、印加する交流電圧とその周波数の値は高めに設定されることが多い。   In addition, if the distance between the photosensitive member and the charging roller is too short, no discharge occurs, and no discharge occurs below about 7 μm according to Paschen's law. In reality, due to the electric capacity of the photoconductor and the resistance of the charging roller, it is said that the distance between the photoconductor and the charging roller where discharge begins to occur is approximately 20 μm or more. Although it is important to control the distance between the photoconductor and the charging roller in units of μm, in reality, the charging roller has a surface roughness in units of μm. In many cases, the AC voltage and the frequency value are set higher.

このように、帯電工程では帯電ムラのない帯電条件を選ぶ必要があり、感光体や帯電ローラの電気特性や寸法のバラツキも考慮しながら帯電条件を決定するため、どうしても感光体や帯電ローラの劣化が生じやすい帯電条件を選びやすい。そのため、感光体や帯電ローラの寿命を短めに設定し、短い周期で感光体や帯電ローラを交換しなければいけなかった。   In this way, it is necessary to select charging conditions that do not cause uneven charging in the charging process, and the charging conditions are determined in consideration of variations in the electrical characteristics and dimensions of the photoreceptor and charging roller. It is easy to select the charging conditions that are likely to cause the phenomenon. Therefore, it is necessary to set the life of the photoconductor and the charging roller to be short and to replace the photoconductor and the charging roller in a short cycle.

しかしながら、メンテナンス費用や交換費用を低減させるために、できるだけ穏やかな帯電条件を設定したい。ところが、これまでは、帯電(放電)がどこで生じているかを正確に見ることが難しかった。そのため、帯電条件の妥当性や、感光体と帯電ローラとの距離のバラツキ(寸法精度)や、感光体や帯電ローラの電気特性のバラツキといった帯電工程の良否を評価することが難しかった。感光体の帯電電位を測定することで帯電工程の良否をある程度推定することもできるが、感光体の帯電電位も数カ所の限られた場所でしか測定できず、帯電工程の良否を適正に評価できるものではなかった。また実際の画像形成では、感光体と帯電ローラとを回転させながら放電を行うため、基本的に感光体と帯電ローラの表面全面が均一に酸化分解される。そのため、帯電工程の良否(感光体や帯電ローラの良否や寿命等)を評価しようとすると、感光体や帯電ローラの径の減少が確認できるまで放電を行わなければならず、非常に長い時間を要する。また、感光体や帯電ローラの径の減少量は小さいため、評価の信頼性が低かった。   However, in order to reduce maintenance costs and replacement costs, it is desirable to set charging conditions that are as gentle as possible. However, until now, it has been difficult to see exactly where charging (discharging) occurs. For this reason, it has been difficult to evaluate the quality of the charging process, such as appropriateness of charging conditions, variation in the distance between the photosensitive member and the charging roller (dimensional accuracy), and variation in electrical characteristics of the photosensitive member and the charging roller. Although it is possible to estimate the quality of the charging process to some extent by measuring the charging potential of the photoconductor, the charging potential of the photoconductor can also be measured only in a few limited places, and the quality of the charging process can be evaluated appropriately. It was not a thing. In actual image formation, discharge is performed while rotating the photosensitive member and the charging roller, so that the entire surface of the photosensitive member and the charging roller is basically uniformly oxidized and decomposed. For this reason, when trying to evaluate the quality of the charging process (quality or life of the photoconductor or charging roller), the discharge must be performed until a decrease in the diameter of the photoconductor or charging roller can be confirmed. Cost. In addition, since the amount of decrease in the diameter of the photoconductor and the charging roller is small, the reliability of the evaluation is low.

本発明は以上の問題点に鑑みなされたものであり、その目的とするところは、帯電工程の良否を容易にかつ適正に評価することができる帯電工程評価方法を提供することである。   The present invention has been made in view of the above problems, and an object thereof is to provide a charging process evaluation method capable of easily and appropriately evaluating the quality of a charging process.

上記目的を達成するために、請求項1の帯電工程評価方法は、帯電部材と該帯電部材に電気的に非接触で配置された被帯電体との少なくとも一方を停止させ、該帯電部材に一定時間直流電圧を重畳した交流電圧を印加して該被帯電体を帯電させ、該帯電部材又は該被帯電体に生じる放電痕により帯電工程の良否を評価することを特徴とするものである。
請求項2の帯電工程評価方法は、請求項1の帯電工程評価方法において、上記帯電部材又は上記被帯電体に生じる放電痕の幅情報により、上記帯電工程の良否を評価することを特徴とするものである。
請求項3の帯電工程評価方法は、請求項1の帯電工程評価方法において、上記帯電部材又は上記被帯電体に生じる放電痕の深さ情報により、上記帯電工程の良否を評価することを特徴とするものである。
請求項4の帯電工程評価方法は、請求項3の帯電工程評価方法において、上記帯電部材又は上記被帯電体に生じる放電痕の深さ情報により、該帯電部材又は該被帯電体の寿命を推定することを特徴とするものである。
請求項5の帯電工程評価方法は、請求項1,2、3又は4の帯電工程評価方法において、上記被帯電体は画像形成に用いる感光体であり、上記帯電部材は感光体に電気的に非接触に配置され、直流電圧を重畳した交流電圧を印加して感光体を帯電させる帯電ローラであることを特徴とするものである。
In order to achieve the above object, the charging process evaluation method according to claim 1 stops at least one of the charging member and a member to be charged that is electrically non-contacted with the charging member, and makes the charging member constant. The object to be charged is charged by applying an alternating voltage on which a time direct voltage is superimposed, and the quality of the charging process is evaluated based on the discharge mark generated on the charging member or the object to be charged.
The charging process evaluation method according to claim 2 is characterized in that, in the charging process evaluation method according to claim 1, the quality of the charging process is evaluated based on width information of discharge marks generated on the charging member or the body to be charged. Is.
The charging process evaluation method according to claim 3 is characterized in that, in the charging process evaluation method according to claim 1, the quality of the charging process is evaluated based on depth information of discharge marks generated on the charging member or the charged body. To do.
The charging process evaluation method according to claim 4 is the charging process evaluation method according to claim 3, wherein the life of the charging member or the member to be charged is estimated based on depth information of a discharge mark generated on the charging member or the member to be charged. It is characterized by doing.
A charging process evaluation method according to a fifth aspect is the charging process evaluation method according to the first, second, third, or fourth aspect, wherein the member to be charged is a photosensitive member used for image formation, and the charging member is electrically connected to the photosensitive member. The charging roller is disposed in a non-contact manner, and is a charging roller that charges the photosensitive member by applying an AC voltage on which a DC voltage is superimposed.

本発明者らは、帯電工程が良好に作動しているかどうかを容易に評価する方法がないか、鋭意検討を重ねた結果、以下のことを見出した。被帯電体に電気的に非接触で配置された帯電部材に直流電圧を重畳した交流電圧を印加することにより被帯電体を帯電する帯電工程では、放電による一部のエネルギーは被帯電体や帯電部材の有機物のC−C結合を切断するほど高い。そのため、被帯電体と帯電部材との少なくとも一方を停止させ直流電圧を重畳した交流電圧を印加すれば、被帯電体や帯電部材とが対向する箇所だけで放電が起こり他の箇所では放電が起きず、停止している被帯電体や帯電部材にスジ状の欠陥部いわゆる放電痕が発生する。この放電痕を見れば、例えば帯電条件の妥当性、被帯電体と帯電部材との電気特性のバラツキ、被帯電体と帯電部材との距離のバラツキ等といった帯電工程の良否を容易且つ適正に評価することができる。   As a result of intensive investigations, the present inventors have found the following as to whether there is a method for easily evaluating whether or not the charging process is operating well. In a charging process in which a charged member is charged by applying an AC voltage superimposed with a DC voltage to a charging member that is arranged in a non-contacting manner with the charged member in a non-contact manner, a part of the energy from the discharge is charged to the charged member or the charged member. The higher the C—C bond of the organic material of the member is cut. Therefore, if at least one of the member to be charged and the charging member is stopped and an AC voltage on which a DC voltage is superimposed is applied, a discharge occurs only at a portion where the member to be charged and the charging member face each other, and a discharge occurs at the other portion. In other words, streaky defect portions, so-called discharge marks, are generated on the charged object and the charging member that are stopped. By looking at the discharge marks, it is possible to easily and appropriately evaluate the quality of the charging process, such as the validity of the charging conditions, variations in the electrical characteristics between the charged body and the charging member, and variations in the distance between the charged body and the charging member. can do.

本発明によれば、帯電工程の良否を容易にかつ適正に評価することができる帯電工程評価方法を提供できるという優れた効果がある。   According to the present invention, there is an excellent effect that a charging process evaluation method capable of easily and appropriately evaluating the quality of a charging process can be provided.

以下、本実施形態に係る帯電工程の評価方法について説明する。先ず、本実施で評価される被帯電体である感光体及び帯電部材である帯電ローラが搭載される画像形成装置の構成について説明する。図1は、画像形成装置の一実施形態を示す概略構成図である。図1に示す画像形成装置は、複写機、プリンタ、ファクシミリ或いはこれらの少なくとも2つの機能を備えた複合機等として構成される。この画像形成装置は、図示しない本体筐体内に被帯電である感光体1が配置され、図1中時計方向に回転駆動され、その表面が矢印A方向に移動する。この感光体1は、ドラム状の導電性ベース2の外周面に感光層3が積層された感光体より成る。なお、感光体としては、複数のローラに巻きかけられて走行駆動されるベルト状の感光体や、誘電体よりなるドラム状又はベルト状の感光体を用いることもできる。この感光体1の周囲には、除電ランプ4,帯電装置5、レーザ書き込みユニット6、現像装置7、転写装置8、クリーニング装置12が配置される。   Hereinafter, the evaluation method of the charging process according to the present embodiment will be described. First, the configuration of an image forming apparatus on which a photosensitive member that is a member to be evaluated and a charging roller that is a charging member that are evaluated in the present embodiment will be described. FIG. 1 is a schematic configuration diagram illustrating an embodiment of an image forming apparatus. The image forming apparatus shown in FIG. 1 is configured as a copier, a printer, a facsimile, or a multifunction machine having at least two of these functions. In this image forming apparatus, a photosensitive member 1 to be charged is arranged in a main body housing (not shown), and is rotated in the clockwise direction in FIG. 1, and its surface moves in the direction of arrow A. The photoreceptor 1 is composed of a photoreceptor in which a photosensitive layer 3 is laminated on the outer peripheral surface of a drum-shaped conductive base 2. The photosensitive member may be a belt-shaped photosensitive member that is driven by being wound around a plurality of rollers, or a drum-shaped or belt-shaped photosensitive member made of a dielectric. Around the photoreceptor 1, a static elimination lamp 4, a charging device 5, a laser writing unit 6, a developing device 7, a transfer device 8, and a cleaning device 12 are arranged.

上記構成の画像形成装置において、画像形成動作時には感光体1が回転駆動され、感光体1表面に除電ランプ4からの光が照射されてその表面が初期化され、次いで後述する帯電装置5によって感光体1表面が所定の極性に帯電される。帯電装置5によって帯電された感光体1表面には、露光装置の一例であるレーザ書き込みユニット6から出射する光変調されたレーザ光Lが照射され、これによって感光体1表面に静電潜像が形成される。次いで、この静電潜像は、現像装置7を通るとき、所定の極性に帯電されたトナーによってトナー像として可視像化される。一方、感光体1に対置された転写装置8と感光体1との間に、所定のタイミングで、例えば転写紙より成る転写材Pが給送され、このとき感光体1上に形成されたトナー像が転写材P上に静電的に転写される。トナー像を転写された転写材Pは、引き続き定着装置9の定着ローラ10と加圧ローラ11の間を通り、このとき熱と圧力の作用によってトナー像が転写材P上に定着される。転写材Pに転写されずに感光体1表面に残された転写残トナーは、クリーニング装置12によって除去される。   In the image forming apparatus having the above-described configuration, the photosensitive member 1 is rotationally driven during the image forming operation, the surface of the photosensitive member 1 is irradiated with light from the static elimination lamp 4, and the surface thereof is initialized. The surface of the body 1 is charged with a predetermined polarity. The surface of the photosensitive member 1 charged by the charging device 5 is irradiated with light-modulated laser light L emitted from a laser writing unit 6 which is an example of an exposure device, whereby an electrostatic latent image is formed on the surface of the photosensitive member 1. It is formed. Next, the electrostatic latent image is visualized as a toner image by toner charged to a predetermined polarity when passing through the developing device 7. On the other hand, a transfer material P made of, for example, transfer paper is fed between the transfer device 8 and the photoconductor 1 facing the photoconductor 1 at a predetermined timing. At this time, the toner formed on the photoconductor 1 The image is electrostatically transferred onto the transfer material P. The transfer material P to which the toner image has been transferred continues to pass between the fixing roller 10 and the pressure roller 11 of the fixing device 9, and at this time, the toner image is fixed on the transfer material P by the action of heat and pressure. The transfer residual toner that is not transferred to the transfer material P and remains on the surface of the photoreceptor 1 is removed by the cleaning device 12.

上記帯電装置5は、移動する帯電体面、図示した例では感光体1の表面に対向配置された帯電部材である帯電ローラ13と、その帯電ローラ13に電圧を印加する電源14とを有している。この電源14により、直流電圧を重畳した交流電圧が帯電ローラ13に印加され、帯電ローラ13と感光体1表面との間に放電を生じさせて感光体1表面を所定の極性に帯電する。帯電ローラ13は、例えば、円柱状の導電性の芯金(ステンレス鋼等)から構成される。帯電ローラの組み付け時等に、感光体と接触することにより感光体を傷つけてしまうことがあるため、芯金の外側にゴムあるいはプラスチックの材質からなる弾性層を設けてもよい。また、弾性層の上に高抵抗の薄層を設けてもよい。   The charging device 5 includes a charging roller 13 that is a charging member disposed opposite to a moving charging member surface, in the illustrated example, the surface of the photosensitive member 1, and a power source 14 that applies a voltage to the charging roller 13. Yes. The power supply 14 applies an AC voltage superimposed with a DC voltage to the charging roller 13, and generates a discharge between the charging roller 13 and the surface of the photoconductor 1 to charge the surface of the photoconductor 1 to a predetermined polarity. The charging roller 13 is made of, for example, a cylindrical conductive core bar (stainless steel or the like). An elastic layer made of a rubber or plastic material may be provided on the outer side of the metal core because the photoconductor may be damaged by contact with the photoconductor when the charging roller is assembled. Further, a high resistance thin layer may be provided on the elastic layer.

上記帯電ローラ13は、感光体1表面に対して、電気的に非接触となるように例えば10μm乃至150μmの微小ギャップGをあけて対置されている。図2は、帯電ローラ13を感光体1表面から微小ギャップGをあけて対置させるための一構成例を示す構成図である。図2に示すように、例えば、帯電ローラ13には、その長手方向各端部領域にテープ20より成るスペーサが貼り付けられ、テープ20が感光体1表面に当接することによって、帯電ローラ13が感光体1表面に対して微小ギャップGを保っている。また、フランジ等を用いて、微小ギャップを確保することもできる。   The charging roller 13 is opposed to the surface of the photoreceptor 1 with a minute gap G of, for example, 10 μm to 150 μm so as not to be in electrical contact. FIG. 2 is a configuration diagram showing a configuration example for placing the charging roller 13 on the surface of the photosensitive member 1 with a minute gap G therebetween. As shown in FIG. 2, for example, a spacer made of a tape 20 is attached to each end region in the longitudinal direction of the charging roller 13, and the charging roller 13 is brought into contact with the surface of the photoreceptor 1. A minute gap G is maintained with respect to the surface of the photoreceptor 1. In addition, a minute gap can be secured using a flange or the like.

本実施形態では、上記帯電装置5において帯電工程が良好に作動するかを、以下に示す方法により評価する。すなわち、感光体1と帯電ローラ13のどちらか一方又は両方を回転させずに、帯電ローラ13に一定時間直流電圧を重畳した交流電圧を印加すると、放電によるエネルギーの一部が感光体1や帯電ローラ13の有機物のC−C結合を切断し、感光体1と帯電ローラとが対向する場所のみに放電痕を形成する。この放電痕により帯電工程の良否を評価する。図3は、感光体表面の放電痕の形状を示す概念図である。図4は、感光体表面の放電痕の別の形状を示す概念図である。図3に示すように、例えば感光体1の表面に、感光体1の周方向に幅aの放電痕が1本形成されたとする。感光体1と帯電ローラ13の微小ギャップGに軸方向でバラツキがなければ、図3に示すように幅aは軸方向で一定である。また、部分的に感光体と帯電ローラの微小ギャップが放電限界よりも小さくなれば、その部分は放電が起こらないので、図4に示すように、幅a’、a’’をもつ放電痕が二本形成される。一方、感光体1と帯電ローラ13の微小ギャップGに軸方向でバラツキがある場合、放電痕の幅a、a’、a’’は一定にはならない。同様に、感光体1の電気容量ムラや帯電ローラ13の抵抗ムラでも、放電痕の形状が変化する。このように、放電痕の形状により、感光体1と帯電ローラ13の寸法精度・組み付け精度や電気特性のバラツキを容易に検証することができる。その結果、これら感光体1や帯電ローラ13を用いて通常の帯電を行った場合の帯電電位ムラの発生のし易さを容易に予測でき、帯電工程が良好に作動するかを容易且つ適正に評価することができる。   In the present embodiment, whether the charging process works well in the charging device 5 is evaluated by the following method. That is, when an AC voltage in which a DC voltage is superimposed for a certain period of time is applied to the charging roller 13 without rotating either one or both of the photosensitive member 1 and the charging roller 13, a part of the energy generated by the discharge is charged to the photosensitive member 1 and the charging roller 13. The C—C bond of the organic substance of the roller 13 is cut, and a discharge mark is formed only at a place where the photoreceptor 1 and the charging roller face each other. The quality of the charging process is evaluated by this discharge mark. FIG. 3 is a conceptual diagram showing the shape of discharge marks on the surface of the photoreceptor. FIG. 4 is a conceptual diagram showing another shape of the discharge trace on the surface of the photoreceptor. As shown in FIG. 3, for example, it is assumed that one discharge mark having a width a is formed on the surface of the photoreceptor 1 in the circumferential direction of the photoreceptor 1. If there is no variation in the axial direction in the minute gap G between the photoconductor 1 and the charging roller 13, the width a is constant in the axial direction as shown in FIG. Further, if the small gap between the photosensitive member and the charging roller is partially smaller than the discharge limit, no discharge occurs in that portion, so that discharge traces having widths a ′ and a ″ are formed as shown in FIG. Two are formed. On the other hand, when the minute gap G between the photosensitive member 1 and the charging roller 13 varies in the axial direction, the widths a, a ′, and a ″ of the discharge marks are not constant. Similarly, the shape of the discharge mark also changes due to uneven electric capacity of the photoreceptor 1 and uneven resistance of the charging roller 13. As described above, it is possible to easily verify variations in dimensional accuracy / assembly accuracy and electrical characteristics between the photosensitive member 1 and the charging roller 13 by the shape of the discharge trace. As a result, it is possible to easily predict the ease of occurrence of charging potential unevenness when normal charging is performed using the photosensitive member 1 and the charging roller 13, and whether the charging process operates satisfactorily and appropriately. Can be evaluated.

また、上述した帯電工程の評価方法では、感光体1と帯電ローラ13とが対向する場所のみで放電が起き、その場所のみで感光体1と帯電ローラ13の表面が酸化分解して径が小さくなる。一方、放電が生じていない場所では感光体1及び帯電ローラ13に全く変化がない。そのため、放電が生じていない箇所を基準にすれば、放電痕の場所の深さ情報を得ることが容易である。放電痕の深さ情報は、直接感光体1又は帯電ローラ13が放電により受けたダメージと考えてよく、放電による感光体1又は帯電ローラ13の膜厚減少から寿命に到る時間を容易に予測することができる。具体的には、放電痕の幅がammと分かれば、感光体1又は帯電ローラ13の径をbmmとすると、π・b/a倍の加速試験と考えるができる。例えば径が30mmの感光体1上に幅1.5mmの放電痕が生じたとすれば、π×30/1.5=62.8倍の加速実験に相当する。実際の画像形成では感光体1及び帯電ローラ13は回転して常に帯電が行われていない部分が常に来るため、帯電工程の評価方法に比べて放電は起こり難い、そのため、本実施形態に係る帯電工程の評価方法はさらなる加速試験となる。   Further, in the charging method evaluation method described above, discharge occurs only at a location where the photoconductor 1 and the charging roller 13 face each other, and the surface of the photoconductor 1 and the charging roller 13 is oxidized and decomposed only at that location to reduce the diameter. Become. On the other hand, there is no change in the photosensitive member 1 and the charging roller 13 in a place where no discharge occurs. For this reason, it is easy to obtain depth information of the location of the discharge trace if the location where no discharge is generated is used as a reference. The depth information of the discharge trace may be considered as damage directly received by the photoreceptor 1 or the charging roller 13 due to the discharge, and the time from the decrease in the film thickness of the photoreceptor 1 or the charging roller 13 due to the discharge to the lifetime can be easily predicted. can do. Specifically, if the width of the discharge mark is known as amm, it can be considered that the acceleration test is π · b / a times when the diameter of the photoreceptor 1 or the charging roller 13 is bmm. For example, if a discharge trace having a width of 1.5 mm is generated on the photoreceptor 1 having a diameter of 30 mm, this corresponds to an acceleration experiment of π × 30 / 1.5 = 62.8 times. In actual image formation, the photosensitive member 1 and the charging roller 13 are always rotated and a portion where charging is not always performed always occurs. Therefore, discharge is less likely to occur compared to the evaluation method of the charging process. The process evaluation method is a further accelerated test.

また、上述した帯電工程の評価方法では、放電痕の幅をa(mm)、感光体1の線速をv(mm/s)、印加する交流電圧の周波数をf(Hz)とすると、v/f<aでないと帯電電位ムラが生じやすいことがわかる。図5は、感光体上で帯電電位ムラが生じない場合の放電痕の形状を示す概念図である。図6は、感光体上で帯電電位ムラが生じる場合の放電痕の形状を示す概念図である。図7は、放電痕が2本に分割され帯電電位ムラが生じる場合の放電痕の形状を示す概念図である。図5に示すように、放電痕がv/f<aを満たす場合には、帯電電位ムラが発生しにくく、感光体1の周方向で略均一な帯電電位を得ることができる。これに対して、図6に示すように、放電痕がv/f>aとなる場合には、感光体1の周方向で帯電電位ムラが生じやすく好ましくない。また、図7に示すように、感光体1と帯電ローラ13との間隔が小さく放電痕が2本に分割されてしまうような場合には、v/f>aであっても帯電電位ムラが生じてしまう。このような場合には、放電幅は幅a’、a’’(図4を参照)を用いるべきである。   In the above-described evaluation method of the charging process, if the width of the discharge mark is a (mm), the linear velocity of the photosensitive member 1 is v (mm / s), and the frequency of the applied AC voltage is f (Hz), v It can be seen that charging potential unevenness is likely to occur unless / f <a. FIG. 5 is a conceptual diagram showing the shape of a discharge mark when charging potential unevenness does not occur on the photoconductor. FIG. 6 is a conceptual diagram showing the shape of a discharge mark when charging potential unevenness occurs on the photoreceptor. FIG. 7 is a conceptual diagram showing the shape of the discharge trace when the discharge trace is divided into two and uneven charging potential occurs. As shown in FIG. 5, when the discharge trace satisfies v / f <a, uneven charging potential hardly occurs and a substantially uniform charging potential can be obtained in the circumferential direction of the photoreceptor 1. On the other hand, as shown in FIG. 6, when the discharge trace satisfies v / f> a, charging potential unevenness is likely to occur in the circumferential direction of the photoreceptor 1, which is not preferable. In addition, as shown in FIG. 7, when the interval between the photosensitive member 1 and the charging roller 13 is small and the discharge trace is divided into two, even if v / f> a, charging potential unevenness occurs. It will occur. In such a case, the widths a ′ and a ″ (see FIG. 4) should be used as the discharge width.

また、実際には放電痕、すなわち放電が起こっている場所でも、感光体と帯電ローラとの距離が近い場所の方が遠い場所に比べて放電の密度が高いため、帯電電位に差が生じている。そのため、画像形成装置によって帯電電位の均一性の規格から、放電痕の幅aの値が小さく設定されることもある。この場合は、例えば放電痕の深さ情報から、一定の深さとなるような幅aを規定することができる。   Also, in fact, even in the discharge trace, that is, where the discharge is occurring, the density of the discharge is higher in the place where the distance between the photoconductor and the charging roller is closer than in the place where the distance is far, so there is a difference in the charging potential. Yes. For this reason, the value of the width a of the discharge trace may be set small from the standard of uniformity of the charging potential by the image forming apparatus. In this case, for example, from the depth information of the discharge trace, it is possible to define a width a that gives a certain depth.

放電痕の幅aを大きくするためには、印加する交流電圧(Vpp)を大きくしたり、感光体1と帯電ローラ13との間隔を小さくしたり、帯電ローラ13の径を大きくしたりすることが有効である。ただし、印加する交流電圧Vppを大きくしすぎると、感光体1と帯電ローラ13との距離が近い場所と遠い場所とで放電の起こる密度が異なり、放電が起こっている場所での帯電電位のムラがさらに大きくなる。そのため、不用意に印加する交流電圧Vppを大きくすることは好ましくない。本実施形態では、上述しように放電痕の深さ情報から放電が生じている場所での放電の強さを容易に求めることができるため、放電痕の深さ情報から印加する交流電圧Vppの妥当性を評価するとよい。   In order to increase the width a of the discharge mark, the applied AC voltage (Vpp) is increased, the interval between the photosensitive member 1 and the charging roller 13 is decreased, or the diameter of the charging roller 13 is increased. Is effective. However, if the AC voltage Vpp to be applied is too large, the density at which discharge occurs is different between a place where the distance between the photoconductor 1 and the charging roller 13 is near and a place where the charge roller 13 is far away, and uneven charging potential at the place where the discharge occurs. Becomes even larger. For this reason, it is not preferable to increase the alternating voltage Vpp applied carelessly. In the present embodiment, as described above, the intensity of the discharge at the place where the discharge is generated can be easily obtained from the depth information of the discharge trace, so that the appropriateness of the AC voltage Vpp applied from the depth information of the discharge trace can be determined. It is good to evaluate sex.

このように、本実施形態に係る帯電工程の評価方法によれば、放電痕をみれば、感光体や帯電ローラの電気特性のバラツキや寸法精度、また帯電ローラに印加する交流電圧やその周波数、及び感光体と帯電ローラとの間の微小ギャップ等の帯電条件の妥当性を容易に検証できる。また、感光体及び帯電ローラの放電痕の深さ情報により、各部材の寿命を予測することができる。さらには、帯電工程における感光体や帯電ローラそのものの良否を評価することもできる。具体的には、感光体や帯電ローラの様々な処方や、製造方法、保管条件を評価することができる。処方や製造方法が決まっている場合には、例えば各製造ロットでの納入検査等にも好適に用いることができる。   As described above, according to the evaluation method of the charging process according to the present embodiment, if the discharge trace is observed, the electrical characteristics of the photoconductor and the charging roller are varied and the dimensional accuracy is changed, the AC voltage applied to the charging roller and its frequency, In addition, the validity of charging conditions such as a minute gap between the photosensitive member and the charging roller can be easily verified. Further, the lifetime of each member can be predicted based on the depth information of the discharge marks of the photosensitive member and the charging roller. Furthermore, the quality of the photoconductor and the charging roller itself in the charging process can be evaluated. Specifically, various prescriptions, manufacturing methods, and storage conditions of the photoreceptor and the charging roller can be evaluated. When the prescription and the manufacturing method are determined, it can be suitably used for delivery inspection in each manufacturing lot, for example.

なお、本実施形態に係る帯電工程の評価方法においては、感光体1と帯電ローラ13の対向している部分以外は、何ら変化はないため、一組の感光体1と帯電ローラ13とを用いた評価を行った後、感光体1と帯電ローラ13とを僅かに回転させて、放電が起こっていない場所を対向させれば、新たな帯電工程の評価評価を行うことができる。なお、帯電工程の評価に用いた感光体1及び帯電ローラ13は放電痕が形成されているため、そのものが画像形成装置に搭載されるのでははなく新品の感光体1及び帯電ローラに替えられて画像形成装置に搭載されるのは言うまでもない。   In the evaluation method of the charging process according to the present embodiment, there is no change except for the portion where the photoconductor 1 and the charging roller 13 are opposed to each other. Therefore, a pair of the photoconductor 1 and the charging roller 13 is used. After the evaluation, the photosensitive member 1 and the charging roller 13 are slightly rotated so that the places where no discharge occurs are opposed to each other, so that a new charging process can be evaluated and evaluated. Since the photosensitive member 1 and the charging roller 13 used for the evaluation of the charging process have discharge marks, they are not mounted on the image forming apparatus but are replaced with a new photosensitive member 1 and a charging roller. Needless to say, it is mounted on the image forming apparatus.

また、本実施形態にかかる帯電工程の評価方法においては、帯電条件のパラメータに極端に大きな値を用いない限り、発熱等の異常は発生しない。しかし、長時間の試験をする場合等で、感光体1あるいは帯電ローラ13の有機物の部分が分解されてリークが発生することもあるので、評価に用いる電源には、過電流を検知すると電圧の供給を遮断する安全装置を完備していることが好ましい。   Also, in the charging method evaluation method according to the present embodiment, no abnormality such as heat generation occurs unless an extremely large value is used for the charging condition parameter. However, in the case of a long-time test or the like, the organic part of the photoreceptor 1 or the charging roller 13 may be decomposed and leak may occur. It is preferable to have a safety device that shuts off the supply.

以下、帯電工程の評価方法について具体的な実施例を説明する。
[実施例1]
画像形成装置(imagio Neo C385(リコー製))のブラック用感光体ユニットの帯電ローラとして、3種類の帯電ローラを評価した。帯電ローラは、ステンレスの円柱にエピクロロヒドリンゴムを主成分とする導電性ゴムを貼り付けた構成をしており、エピクロロヒドリンゴムのゴム硬度が65、73、76の3種類のものである。感光体と帯電ローラとの微小ギャップは、帯電ローラの端部より15mmの位置に、幅10mm、厚さ55μmのギャップテープを貼り付けることにより構成した。そして、感光体の真上に帯電ローラを配置し、スプリングで帯電ローラを感光体に押付け、感光体と帯電ローラを回転させない条件で、感光体と帯電ローラの間に、−600Vの直流電圧に周波数780Hz、2400Vの交流電圧を5分間印加した。その結果、帯電ローラ及び感光体上に白スジの放電痕が生じた。帯電ローラの中央付近の放電痕を観察したところ、ゴム硬度が72、77の帯電ローラの放電痕は幅約1.5mmの一本のスジであったが、ゴム硬度が65の帯電ローラの放電痕は幅約0.6μmの何も変化がない部分の両側に、幅約0.6μmの2本のスジが観察された。この結果から、ゴム硬度65の帯電ローラは、均一な帯電を行うためには、ゴム硬度73、76の帯電ローラよりも周波数を高くしなければならず、好ましくないと評価された。
Hereinafter, specific examples of the evaluation method of the charging process will be described.
[Example 1]
Three types of charging rollers were evaluated as charging rollers for a black photosensitive unit of an image forming apparatus (image Neo Neo C385 (manufactured by Ricoh)). The charging roller has a configuration in which a conductive rubber mainly composed of epichlorohydrin rubber is attached to a stainless steel cylinder, and the rubber hardness of the epichlorohydrin rubber is three types of 65, 73, and 76. . The minute gap between the photoconductor and the charging roller was formed by attaching a gap tape having a width of 10 mm and a thickness of 55 μm at a position 15 mm from the end of the charging roller. Then, a charging roller is disposed immediately above the photoconductor, the charging roller is pressed against the photoconductor with a spring, and a DC voltage of −600 V is applied between the photoconductor and the charging roller under the condition that the photoconductor and the charging roller are not rotated. An AC voltage having a frequency of 780 Hz and 2400 V was applied for 5 minutes. As a result, white streak discharge marks were generated on the charging roller and the photoreceptor. When the discharge mark near the center of the charging roller was observed, the discharge mark of the charging roller having a rubber hardness of 72 and 77 was a single streak having a width of about 1.5 mm. Two streaks having a width of about 0.6 μm were observed on both sides of a portion having no change in width of about 0.6 μm. From this result, it was evaluated that the charging roller having the rubber hardness of 65 had a higher frequency than the charging roller having the rubber hardness of 73 and 76 and was not preferable in order to perform uniform charging.

[実施例2]
実施例1のゴム硬度が65の帯電ローラについて、さらに20分帯電を行った。帯電ローラを観察したところ、ギャップテープを貼り付けた内側の15mmまでは放電痕は一本であったが、それより内側は2本であり、放電痕の間の何も変化のない領域の幅は帯電ローラの中央が最も広かった。
そこで、画像形成装置(imagio Neo C385(リコー製))にゴム硬度が65の新品の帯電ローラを搭載し、感光体と帯電ローラの両者を回転させ、−600Vの直流電圧に周波数780Hz、2400Vの交流電圧を印加して、すなわち通常の帯電を行った。帯電ローラの中央及びギャップテープを貼り付けた内側の15mmの位置に相当する感光体表面の帯電電位ムラを測定した。その結果、ギャップテープを貼り付けた内側の15mmの位置に相当する感光体表面の帯電電位ムラは8V以下であったが、中央に相当する感光体表面の帯電電位ムラは14Vであった。やはり、ゴム硬度が65の帯電ローラは本帯電工程では好ましくないと判断した。ゴム硬度が65の帯電ローラは、ギャップテープ付近ではギャップGを所定の大きさに維持できるが、硬度が小さく撓みやすいため中央付近ではギャップGが所定の大きさよりも小さくなってしまうからである。
[Example 2]
The charging roller having a rubber hardness of 65 in Example 1 was further charged for 20 minutes. When the charging roller was observed, there was only one discharge mark up to 15 mm on the inner side where the gap tape was attached, but there were two discharge marks inside, and the width of the area where there was no change between the discharge marks. The center of the charging roller was the widest.
Therefore, a new charging roller having a rubber hardness of 65 is mounted on the image forming apparatus (image Neo Neo C385 (manufactured by Ricoh)), both the photosensitive member and the charging roller are rotated, and a DC voltage of −600 V is applied to frequencies of 780 Hz and 2400 V. An alternating voltage was applied, that is, normal charging was performed. The charging potential unevenness on the surface of the photoreceptor corresponding to the position of 15 mm inside the center of the charging roller and the gap tape was measured. As a result, the charging potential unevenness on the surface of the photoreceptor corresponding to the position of 15 mm inside the gap tape was 8 V or less, but the charging potential unevenness on the surface of the photoreceptor corresponding to the center was 14 V. Again, it was determined that a charging roller with a rubber hardness of 65 was not preferred in this charging process. This is because a charging roller having a rubber hardness of 65 can maintain the gap G at a predetermined size in the vicinity of the gap tape, but since the hardness is small and it is easily bent, the gap G becomes smaller than the predetermined size near the center.

[実施例3]
ゴム硬度が73の帯電ローラについて、実施例1と同様の条件で25分間帯電を行った。帯電ローラの中央付近の放電痕の深さを測定したところ、帯電ローラのエピクロロヒドリンゴム中に分散されている0.2〜1μmの添加剤が完全に露出していた。このことから、25分帯電を行うことにより、帯電ローラは約1μmエッチングされることが分かった。
[比較例1]
画像形成装置(imagio Neo C385(リコー製))にゴム硬度が73の新品の帯電ローラを搭載し、感光体と帯電ローラの両者を回転させ、−600Vの直流電圧に周波数780Hz、2400Vの交流電圧を印加して、帯電のみを5時間行った。帯電ローラの外形の測定を試みたが、帯電による外形の変化を測定することはできなかった。
実施例3では、放電痕の深さによりエッチングの速さを求め、帯電ローラの寿命を容易に推定することができたのに対して、比較例1では、帯電ローラの径の減少が少なく寿命を推定することが難しかった。
[Example 3]
A charging roller having a rubber hardness of 73 was charged for 25 minutes under the same conditions as in Example 1. When the depth of the discharge mark near the center of the charging roller was measured, the 0.2 to 1 μm additive dispersed in the epichlorohydrin rubber of the charging roller was completely exposed. From this, it was found that the charging roller was etched by about 1 μm by charging for 25 minutes.
[Comparative Example 1]
A new charging roller with a rubber hardness of 73 is mounted on an image forming apparatus (image Neo Neo C385 (manufactured by Ricoh)), both the photosensitive member and the charging roller are rotated, and a DC voltage of −600 V is applied to a frequency of 780 Hz and an AC voltage of 2400 V. And only charging was performed for 5 hours. An attempt was made to measure the outer shape of the charging roller, but the change in the outer shape due to charging could not be measured.
In Example 3, the etching speed was obtained from the depth of the discharge trace, and the life of the charging roller could be easily estimated, whereas in Comparative Example 1, the life of the charging roller was small and the life was small. It was difficult to estimate.

[実施例4]
ゴム硬度が76の帯電ローラについて、実施例1と同様の条件で印加する交流の周波数を780、950Hzとして60分間帯電を行った。帯電ローラの中央付近の放電痕の深さをレーザ顕微鏡VK−9500(キーエンス製)で測定したところ、周波数が780、950Hzのときにそれぞれ、2.2μm、2.8μmエッチングされていた。周波数が780Hzの方が帯電ローラの寿命が長いと評価された。
画像形成装置(imagio Neo C385(リコー製))にゴム硬度が76の新品の帯電ローラを搭載し、感光体と帯電ローラの両者を回転させ、−600Vの直流電圧に周波数780及び950Hz、2400Vの交流電圧を印加して帯電を行った。帯電ローラの中央の帯電ムラを測定したところ、どちらの周波数でも8V以下であるため、帯電条件として780Hzを採用した。
[Example 4]
The charging roller having a rubber hardness of 76 was charged for 60 minutes under the same conditions as in Example 1, with the AC frequency applied being 780 and 950 Hz. When the depth of the discharge mark near the center of the charging roller was measured with a laser microscope VK-9500 (manufactured by Keyence), it was etched by 2.2 μm and 2.8 μm, respectively, when the frequencies were 780 and 950 Hz. It was evaluated that the life of the charging roller was longer when the frequency was 780 Hz.
A new charging roller having a rubber hardness of 76 is mounted on an image forming apparatus (image Neo Neo C385 (manufactured by Ricoh)), both the photosensitive member and the charging roller are rotated, a DC voltage of −600 V is applied to frequencies of 780 and 950 Hz, and 2400 V. An AC voltage was applied for charging. When charging unevenness at the center of the charging roller was measured and found to be 8 V or less at both frequencies, 780 Hz was adopted as the charging condition.

以上、本実施形態に係る帯電工程の評価方法によれば、被帯電体である感光体1又は帯電部材である帯電ローラ13に放電痕が形成されるため、放電が起きている場所が明瞭である。よって、帯電工程の良否を容易且つ適正に評価することができる。
また、本実施形態に係る帯電工程の評価方法によれば、放電痕の幅情報により、帯電電位ムラの発生や帯電条件の妥当性を検証でき、帯電工程の良否を容易且つ適正に評価することができる。
また、本実施形態に係る帯電工程の評価方法によれば、放電痕の深さ情報により、帯電電位ムラの発生や帯電条件の妥当性を検証でき、帯電工程の良否を容易且つ適正に評価することができる。
また、本実施形態に係る帯電工程の評価方法によれば、感光体や帯電ローラの寿命を予測することが容易であり、感光体や帯電ローラの交換時期を推定することが容易となる。
また、本実施形態に係る帯電工程の評価方法によれば、穏やかな帯電条件を選択でき、かつ適正な評価が行われた感光体や帯電ローラを画像形成装置に搭載することができる。
As described above, according to the evaluation method of the charging process according to the present embodiment, the discharge mark is formed on the photosensitive member 1 that is a member to be charged or the charging roller 13 that is a charging member. is there. Therefore, the quality of the charging process can be evaluated easily and appropriately.
Further, according to the evaluation method of the charging process according to the present embodiment, it is possible to verify the occurrence of charging potential unevenness and the validity of the charging condition from the information on the width of the discharge trace, and easily and appropriately evaluate the quality of the charging process. Can do.
Further, according to the evaluation method of the charging process according to the present embodiment, it is possible to verify the occurrence of charging potential unevenness and the validity of the charging conditions based on the depth information of the discharge trace, and easily and appropriately evaluate the quality of the charging process. be able to.
Further, according to the evaluation method of the charging process according to the present embodiment, it is easy to predict the life of the photoconductor and the charging roller, and it is easy to estimate the replacement time of the photoconductor and the charging roller.
Further, according to the evaluation method of the charging process according to the present embodiment, it is possible to select a gentle charging condition and mount a photoconductor and a charging roller that have been appropriately evaluated in the image forming apparatus.

画像形成装置の一実施形態を示す概略構成図。1 is a schematic configuration diagram illustrating an embodiment of an image forming apparatus. 感光体と帯電ローラとの構成を示す概略構成図。FIG. 2 is a schematic configuration diagram illustrating a configuration of a photoreceptor and a charging roller. 感光体表面の放電痕の形状を示す概念図。The conceptual diagram which shows the shape of the discharge trace on the surface of a photoreceptor. 感光体表面の放電痕の別の形状を示す概念図。The conceptual diagram which shows another shape of the discharge trace on the surface of a photoreceptor. 感光体上で帯電電位ムラが生じない場合の放電痕の形状を示す概念図。FIG. 3 is a conceptual diagram illustrating a shape of a discharge mark when charging potential unevenness does not occur on a photoconductor. 感光体上で帯電電位ムラが生じる場合の放電痕の形状を示す概念図。FIG. 3 is a conceptual diagram illustrating a shape of a discharge mark when charging potential unevenness occurs on a photoreceptor. 放電痕が2本で帯電電位ムラが生じる場合の放電痕の形状を示す概念図。The conceptual diagram which shows the shape of the discharge trace in case a charging potential nonuniformity arises with two discharge traces.

符号の説明Explanation of symbols

1 感光体
13 帯電ローラ
20 テープ
1 Photoconductor 13 Charging roller 20 Tape

Claims (5)

帯電部材と該帯電部材に電気的に非接触で配置された被帯電体との少なくとも一方を停止させ、該帯電部材に一定時間直流電圧を重畳した交流電圧を印加して該被帯電体を帯電させ、該帯電部材又は該被帯電体に生じる放電痕により帯電工程の良否を評価する帯電工程評価方法。   At least one of the charging member and the member to be charged that is arranged in a non-contact manner with the charging member is stopped, and the charging member is charged by applying an AC voltage in which a DC voltage is superimposed on the charging member for a certain period of time. And a charging process evaluation method for evaluating the quality of the charging process based on discharge traces generated on the charging member or the object to be charged. 請求項1の帯電工程評価方法において、
上記帯電部材又は上記被帯電体に生じる放電痕の幅情報により、上記帯電工程の良否を評価することを特徴とする帯電工程評価方法。
In the charging process evaluation method according to claim 1,
A charging process evaluation method, wherein the quality of the charging process is evaluated based on width information of discharge marks generated on the charging member or the body to be charged.
請求項1の帯電工程評価方法において、
上記帯電部材又は上記被帯電体に生じる放電痕の深さ情報により、上記帯電工程の良否を評価することを特徴とする帯電工程評価方法。
In the charging process evaluation method according to claim 1,
A charging process evaluation method, wherein the quality of the charging process is evaluated based on depth information of discharge marks generated on the charging member or the member to be charged.
請求項3の帯電工程評価方法において、
上記帯電部材又は上記被帯電体に生じる放電痕の深さ情報により、該帯電部材又は該被帯電体の寿命を推定することを特徴とする帯電工程評価方法。
In the charging process evaluation method according to claim 3,
A charging process evaluation method characterized in that the life of the charging member or the member to be charged is estimated based on depth information of a discharge mark generated on the charging member or the member to be charged.
請求項1,2、3又は4の帯電工程評価方法において、
上記被帯電体は画像形成に用いる感光体であり、上記帯電部材は感光体に電気的に非接触に配置され、直流電圧を重畳した交流電圧を印加して感光体を帯電させる帯電ローラであることを特徴とする帯電工程評価方法。
In the charging process evaluation method according to claim 1, 2, 3, or 4,
The member to be charged is a photosensitive member used for image formation, and the charging member is a charging roller that is arranged in an electrically non-contact manner with the photosensitive member and applies an alternating voltage superimposed with a direct current voltage to charge the photosensitive member. The charging process evaluation method characterized by the above-mentioned.
JP2005216761A 2005-07-27 2005-07-27 Life estimation method Expired - Fee Related JP4801946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005216761A JP4801946B2 (en) 2005-07-27 2005-07-27 Life estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005216761A JP4801946B2 (en) 2005-07-27 2005-07-27 Life estimation method

Publications (2)

Publication Number Publication Date
JP2007033848A true JP2007033848A (en) 2007-02-08
JP4801946B2 JP4801946B2 (en) 2011-10-26

Family

ID=37793192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005216761A Expired - Fee Related JP4801946B2 (en) 2005-07-27 2005-07-27 Life estimation method

Country Status (1)

Country Link
JP (1) JP4801946B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7991327B2 (en) * 2006-07-18 2011-08-02 Ricoh Company, Limited Image forming apparatus and process cartridge

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003021949A (en) * 2001-07-09 2003-01-24 Ricoh Co Ltd Image forming apparatus
JP2004341044A (en) * 2003-05-13 2004-12-02 Canon Inc Image forming apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003021949A (en) * 2001-07-09 2003-01-24 Ricoh Co Ltd Image forming apparatus
JP2004341044A (en) * 2003-05-13 2004-12-02 Canon Inc Image forming apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7991327B2 (en) * 2006-07-18 2011-08-02 Ricoh Company, Limited Image forming apparatus and process cartridge

Also Published As

Publication number Publication date
JP4801946B2 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
US9665032B2 (en) Image forming apparatus with exposure controlled in dependence on cumulative operating time and humidity
US8335444B2 (en) Image forming apparatus
US10394155B2 (en) Image forming apparatus
JP5253487B2 (en) Image forming apparatus
JP5754961B2 (en) Image forming apparatus
JP2019003058A (en) Image forming apparatus and cartridge
US9298120B2 (en) Image forming apparatus
US9389534B2 (en) Image forming apparatus
JP2004334063A (en) Image forming apparatus
JP4801946B2 (en) Life estimation method
JP2018004917A (en) Image forming apparatus
US9547251B2 (en) Image forming apparatus having controllable potential difference
JP2017032777A (en) Image forming apparatus
JP2016145915A (en) Image forming apparatus
JP2016145916A (en) Image forming apparatus
JP2011102837A (en) Image forming apparatus and image forming method
US20170322503A1 (en) Image forming apparatus
US20170322502A1 (en) Image forming apparatus
JP2008015255A (en) Charging member, process cartridge and image forming apparatus
JP2008191620A (en) Process cartridge and image forming apparatus
JP2016145914A (en) Image forming apparatus
JP2005003728A (en) Image forming apparatus
JP2008122782A (en) Image forming apparatus
JP2016133781A (en) Image forming apparatus
JP2014174414A (en) Image forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110729

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110808

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees