JP2007033329A - Electromagnetic ultrasonic inspection method and electromagnetic ultrasonic transducer used therefor - Google Patents

Electromagnetic ultrasonic inspection method and electromagnetic ultrasonic transducer used therefor Download PDF

Info

Publication number
JP2007033329A
JP2007033329A JP2005219206A JP2005219206A JP2007033329A JP 2007033329 A JP2007033329 A JP 2007033329A JP 2005219206 A JP2005219206 A JP 2005219206A JP 2005219206 A JP2005219206 A JP 2005219206A JP 2007033329 A JP2007033329 A JP 2007033329A
Authority
JP
Japan
Prior art keywords
electromagnetic ultrasonic
magnet unit
permanent magnet
tube
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005219206A
Other languages
Japanese (ja)
Other versions
JP4718267B2 (en
Inventor
Masahiko Hirao
雅彦 平尾
Hirotsugu Ogi
博次 荻
Tsutomu Kikuchi
務 菊池
Kiyokazu Fujimaki
清和 藤巻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Japan Industrial Testing Corp
Original Assignee
Idemitsu Kosan Co Ltd
Japan Industrial Testing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd, Japan Industrial Testing Corp filed Critical Idemitsu Kosan Co Ltd
Priority to JP2005219206A priority Critical patent/JP4718267B2/en
Publication of JP2007033329A publication Critical patent/JP2007033329A/en
Application granted granted Critical
Publication of JP4718267B2 publication Critical patent/JP4718267B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electromagnetic ultrasonic inspection method which can precisely inspect a corrosion of the inner surface of a heat-transfer finned pipe, carry out an inspection for a short time, eliminate the need for a coupling medium such as water or the like and carry out a preparation without requiring a long time nor a large cost. <P>SOLUTION: A pipe body 11 of the embedded heat-transfer finned pipe 2 is vibrated and resonated by generating an axisymmetric SH wave 3 from an EMAT 1 by utilizing an electromagnetic force, while moving the EMAT 1 axially in the embedded heat-transfer finned pipe 2 of an air-cooled type heat exchanger, and then a resonance frequency is detected by the EMAT 1. In the case the detected frequency differs from the resonance frequency representing a state that the wall thickness of the pipe body 11 is normal, such a judgement is made that a corrosion section occurs in the inner surface of the pipe body 11. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、空冷式熱交換器の埋込式フィン付伝熱管内部の腐食を検査するための電磁超音波探傷法およびそれに用いる電磁超音波トランスジューサに関するものである。   The present invention relates to an electromagnetic ultrasonic flaw detection method for inspecting corrosion inside an embedded finned heat transfer tube of an air-cooled heat exchanger and an electromagnetic ultrasonic transducer used therefor.

空冷式熱交換器のフィン付伝熱管内面が腐食し、この腐食が進行すると、管内を通る流体が管外に漏れ出す等の恐れがあるため、フィン付伝熱管内面の腐食検査が行われている。   The inner surface of the finned heat transfer tube of the air-cooled heat exchanger is corroded, and if this corrosion progresses, the fluid passing through the tube may leak out of the tube. Yes.

従来から行われているフィン付伝熱管内面の腐食検査の手法としては、プローブ内のコイルから発生させた交流磁束を利用して探傷を行う渦流探傷法(例えば、特許文献1参照)や振動子を振動させて発生させた超音波を利用して探傷を行う超音波探傷法(例えば、特許文献2参照)があげられる。
特開2002−296241号公報 特開2001−50936号公報
Conventional methods for inspecting the inner surface of a finned heat transfer tube include the eddy current flaw detection method (for example, see Patent Document 1) or a vibrator that performs flaw detection using an alternating magnetic flux generated from a coil in a probe. There is an ultrasonic flaw detection method (for example, see Patent Document 2) in which flaw detection is performed using ultrasonic waves generated by oscillating the sound.
JP 2002-296241 A JP 2001-50936 A

しかしながら、渦流探傷法では、管がフィン付であると、このフィンが障害となり、管内面の腐食を高い精度で検査することができないため、フィン付伝熱管内面の腐食検査には渦流探傷法を適用することができなかった。一方、超音波探傷法では、1本の伝熱管の検査に時間がかかるために検査スピードが遅く、短い時間内に全数検査ができない。しかも、検査を行うには伝熱管内を水で満たさなければならないため、脱水等の後処理が必要になるうえ、伝熱管内を通る流体の種類によっては水が使えない場合もある。しかも、検査精度を高くするためには伝熱管内面のスケールを除去する必要があり、この除去作業等の前処理にも時間とコストがかかる。   However, in the eddy current flaw detection method, if the pipe is equipped with fins, this fin becomes a hindrance, and corrosion of the inner surface of the pipe cannot be inspected with high accuracy. Could not be applied. On the other hand, in the ultrasonic flaw detection method, since it takes time to inspect one heat transfer tube, the inspection speed is slow, and 100% inspection cannot be performed within a short time. Moreover, since the inside of the heat transfer tube must be filled with water to perform the inspection, post-treatment such as dehydration is required, and water may not be used depending on the type of fluid passing through the heat transfer tube. Moreover, in order to increase the inspection accuracy, it is necessary to remove the scale on the inner surface of the heat transfer tube, and preprocessing such as this removal work also takes time and cost.

本発明は、このような事情に鑑みなされたもので、埋込式フィン付伝熱管内面の腐食を高い精度で検査することができ、しかも、検査に時間がかからず、水等の接触媒質を必要とせず、前処理に時間とコストがかからない電磁超音波探傷法およびそれに用いる電磁超音波トランスジューサの提供をその目的とする。   The present invention has been made in view of such circumstances, and can inspect corrosion of the inner surface of the heat transfer tube with embedded fins with high accuracy, and does not take much time for the inspection, and is a contact medium such as water. It is an object of the present invention to provide an electromagnetic ultrasonic flaw detection method that does not require time and cost for pretreatment and an electromagnetic ultrasonic transducer used therefor.

上記の目的を達成するために、本発明は、空冷式熱交換器の埋込式フィン付伝熱管内部を軸方向に沿って電磁超音波トランスジューサを移動させながら、この電磁超音波トランスジューサから電磁気力を利用して軸対称SH波を発生させ埋込式フィン付伝熱管の管本体を振動させて共鳴を起こさせ、この共鳴周波数を電磁超音波トランジューサで検出し、この検出結果が、上記管本体の肉厚が正常である場合の共鳴周波数と異なる場合に、上記管本体の内面に腐食部が発生していると判断するようにした電磁超音波探傷法を第1の要旨とし、円筒形状もしくは円柱形状に形成された永久磁石ユニットと、この永久磁石ユニットの外周部に巻回される送信用コイルおよび受信用コイルからなり、上記永久磁石ユニットが、その径方向の大径側に一方の極を有するとともにその径方向の小径側に他方の極を有する複数の永久磁石を、上記永久磁石ユニットの周方向で交互に極性が逆転するように並べたものからなり、上記永久磁石ユニットの両端面に、互いに交差する複数条のスリットが切欠き形成されている電磁超音波トランジューサを第2の要旨とする。   In order to achieve the above object, the present invention provides an electromagnetic force generated from an electromagnetic ultrasonic transducer while moving the electromagnetic ultrasonic transducer along the axial direction in an embedded finned heat transfer tube of an air-cooled heat exchanger. An axisymmetric SH wave is generated by using this to vibrate the tube body of the embedded finned heat transfer tube to cause resonance, and this resonance frequency is detected by an electromagnetic ultrasonic transducer. An electromagnetic ultrasonic flaw detection method that determines that a corroded portion has occurred on the inner surface of the tube main body when the main body thickness is different from the resonance frequency when the wall thickness is normal is a cylindrical shape. Alternatively, it is composed of a permanent magnet unit formed in a cylindrical shape and a transmission coil and a reception coil wound around the outer periphery of the permanent magnet unit, and the permanent magnet unit is arranged on the large-diameter side in the radial direction. A permanent magnet unit comprising a plurality of permanent magnets having one pole and the other pole on the smaller diameter side thereof arranged so that the polarities are alternately reversed in the circumferential direction of the permanent magnet unit. A second gist is an electromagnetic ultrasonic transducer in which a plurality of slits intersecting each other are cut out at both end faces of each other.

すなわち、本発明者らは、空冷式熱交換器のフィン付伝熱管内面の腐食を高い精度で検査することができる探傷法について鋭意研究をした結果、フィン付伝熱管が埋込式フィン付伝熱管である場合に、電磁超音波トランスジューサ(以下、「EMAT」という)を用い、このEMATを埋込式フィン付伝熱管内部にその軸方向に沿って移動させながら、上記EMATから電磁気力を利用して軸対称SH波を発生させ埋込式フィン付伝熱管の管本体を振動させて共鳴を起こさせ、この共鳴周波数を上記EMATで検出することにより、上記共鳴周波数を高い精度で検出できることを突き止め、上記検出された共鳴周波数と、上記管本体の肉厚が正常である場合の共鳴周波数とを比較し、上記検出された共鳴周波数が正常である場合の共鳴周波数と異なる場合に、上記管本体の内面に腐食部が発生していると判断することにすれば、伝熱管内面の腐食を高い精度で検査することができることを見出し、本発明に到達した。しかも、上記EMATを用いると、従来の超音波探傷法より短時間で探傷を行うことができ、コストの削減と工程内での全数検査が可能となる。しかも、上記EMATは、水等の接触媒質を必要としないため、管本体内の後処理(脱水等)が不要であるうえ、伝熱管内を通る流体がどのような種類であっても、探傷を行うことができる。さらに、上記EMATは、非接触探傷であるため、管本体の内面にスケール等が付着した状態でも腐食検査が可能であり、前処理時間を短縮し、前処理コストを削減することができる。なお、本発明において、フィン付伝熱管を埋込式フィン付伝熱管に限定しているのは、フィン付伝熱管の管本体の外周部(その全体もしくはその一部)に、フィンと一体成形された外層を有するタイプのフィン付伝熱管(例えば、L字型巻き付け式フィン付伝熱管)では、上記外層の影響により、上記外層が形成された上記管本体の部分で、上記共鳴周波数が発生しないためである。   That is, the present inventors have conducted extensive research on a flaw detection method capable of inspecting corrosion of the finned heat transfer tube inner surface of the air-cooled heat exchanger with high accuracy. In the case of a heat pipe, an electromagnetic ultrasonic transducer (hereinafter referred to as “EMAT”) is used, and electromagnetic force is utilized from the EMAT while moving the EMAT along the axial direction inside the heat transfer pipe with embedded fins. The resonance frequency can be detected with high accuracy by generating an axially symmetric SH wave, causing the tube main body of the embedded finned heat transfer tube to vibrate and causing resonance, and detecting the resonance frequency with the EMAT. Determine the resonance frequency when the detected resonance frequency is compared with the resonance frequency when the thickness of the tube body is normal, and the resonance frequency when the detected resonance frequency is normal If different, if it be determined that the corroded portions on the inner surface of the pipe main body has occurred, it found that it is possible to check the corrosion of the heat transfer tube surface with high precision, thereby achieving the present invention. In addition, when the EMAT is used, flaw detection can be performed in a shorter time than the conventional ultrasonic flaw detection method, and the cost can be reduced and 100% inspection can be performed in the process. In addition, since the EMAT does not require a contact medium such as water, no post-treatment (dehydration, etc.) in the tube body is required, and no matter what kind of fluid passes through the heat transfer tube, flaw detection is possible. It can be performed. Furthermore, since the EMAT is non-contact flaw detection, corrosion inspection is possible even when a scale or the like is attached to the inner surface of the tube main body, so that the pretreatment time can be shortened and the pretreatment cost can be reduced. In the present invention, the finned heat transfer tube is limited to the embedded finned heat transfer tube, and is integrally formed with the fin on the outer peripheral portion (the whole or a part thereof) of the tube body of the finned heat transfer tube. In a finned heat transfer tube having a formed outer layer (for example, an L-shaped wrapping finned heat transfer tube), the resonance frequency is generated in the portion of the tube body where the outer layer is formed due to the influence of the outer layer. It is because it does not.

一方、本発明のEMATは、円筒形状もしくは円柱形状に形成された永久磁石ユニットと、この永久磁石ユニットの外周部に巻回される送信用コイルおよび受信用コイルからなり、上記永久磁石ユニットが、その径方向の大径側に一方の極を有するとともにその径方向の小径側に他方の極を有する複数の永久磁石を、上記永久磁石ユニットの周方向で交互に極性が逆転するように並べたものからなっている。したがって、上記送信用コイルに高周波電流を流すと、埋込式フィン付伝熱管の管本体に軸対称SH波を発生させて上記管本体を振動させるとともに、この管本体内で共鳴を起こさせ、この共鳴周波数を上記EMATの受信用コイルで検出することができ、本発明の電磁超音波探傷法のEMATとして用いることができる。しかも、上記永久磁石ユニットの両端面(軸方向の両端面)に、互いに交差する複数条のスリットが切欠き形成されているため、上記スリットによりS/N比(信号対雑音比)が向上し、ノイズが減少する。この場合に、上記永久磁石ユニットの外周面の両端部(軸方向の両端部)に、その周方向に延びる円環状のスリットを形成すると、S/N比が一層向上するため、より好ましい。なお、上記スリットは、凹溝形状(平底形状)が好ましく、上記両端面に形成する場合にも、これに加えて上記外周面の両端部に形成する場合にも、各方向に1本もしくは2本以上あればよい。なお、本発明において、「互いに交差する」とは、互いに傾斜した状態で交差していてもよいし、互いに直交していてもよいが、互いに直交している場合のほうが、S/N比は向上する。   On the other hand, the EMAT of the present invention comprises a permanent magnet unit formed in a cylindrical shape or a columnar shape, and a transmission coil and a reception coil wound around the outer periphery of the permanent magnet unit. A plurality of permanent magnets having one pole on the large diameter side in the radial direction and the other pole on the small diameter side in the radial direction are arranged so that the polarities are alternately reversed in the circumferential direction of the permanent magnet unit. It consists of things. Therefore, when a high-frequency current is passed through the transmission coil, an axially symmetric SH wave is generated in the tube body of the embedded finned heat transfer tube to vibrate the tube body, and resonance is caused in the tube body. This resonance frequency can be detected by the EMAT receiving coil, and can be used as the EMAT of the electromagnetic ultrasonic flaw detection method of the present invention. In addition, since a plurality of slits intersecting each other are formed in both end faces (both end faces in the axial direction) of the permanent magnet unit, the S / N ratio (signal to noise ratio) is improved by the slits. , Noise is reduced. In this case, it is more preferable to form annular slits extending in the circumferential direction at both ends (both ends in the axial direction) of the outer peripheral surface of the permanent magnet unit, since the S / N ratio is further improved. The slits preferably have a concave groove shape (flat bottom shape). When the slits are formed on the both end surfaces, in addition to the slits, one or two slits are formed in each direction. There should be more than books. In the present invention, “crossing each other” means that they may cross each other in an inclined state or may be orthogonal to each other, but the S / N ratio is higher when they are orthogonal to each other. improves.

また、本発明の電磁超音波探傷法において、上記埋込式フィン付伝熱管のチューブ本体が炭素鋼(強磁性体)からなり、フィンがアルミニウム等の非鉄材料からなっていると、一般的に用いられる埋込式フィン付伝熱管に対して本発明の電磁超音波探傷法を行うことができる。   In the electromagnetic ultrasonic flaw detection method of the present invention, when the tube body of the embedded finned heat transfer tube is made of carbon steel (ferromagnetic material) and the fin is made of a non-ferrous material such as aluminum, The electromagnetic ultrasonic flaw detection method of the present invention can be performed on the embedded finned heat transfer tube used.

また、本発明の電磁超音波探傷法において、上記軸対称SH波の共振次数が一次モードであると、最も低次のモードを用いているため、埋込式フィンチューブのチューブ内面の腐食を検査するのに適しており、高い精度で検査することができる。   Also, in the electromagnetic ultrasonic flaw detection method of the present invention, when the resonance order of the axisymmetric SH wave is the primary mode, the lowest mode is used, so the inner surface of the embedded fin tube is inspected for corrosion. It can be inspected with high accuracy.

また、本発明の電磁超音波探傷法において、上記EMATが、円筒形状もしくは円柱形状に形成された永久磁石ユニットと、この永久磁石ユニットの外周部に巻回される送信用コイルおよび受信用コイルからなり、上記永久磁石ユニットが、その径方向の大径側に一方の極を有するとともにその径方向の小径側に他方の極を有する複数の永久磁石を、上記永久磁石ユニットの周方向で交互に極性が逆転するように並べたものからなると、上記したように、本発明の電磁超音波探傷法のEMATとして用い、埋込式フィン付伝熱管内面の腐食を高い精度で検査することができる。   In the electromagnetic ultrasonic flaw detection method of the present invention, the EMAT includes a permanent magnet unit formed in a cylindrical shape or a columnar shape, and a transmission coil and a reception coil wound around the outer peripheral portion of the permanent magnet unit. The permanent magnet unit has a plurality of permanent magnets having one pole on the large diameter side in the radial direction and the other pole on the small diameter side in the radial direction, alternately in the circumferential direction of the permanent magnet unit. If the electrodes are arranged so that the polarities are reversed, as described above, they can be used as EMAT in the electromagnetic ultrasonic flaw detection method of the present invention, and the corrosion of the inner surface of the embedded finned heat transfer tube can be inspected with high accuracy.

つぎに、本発明の実施の形態を図面にもとづいて詳しく説明する。   Next, embodiments of the present invention will be described in detail with reference to the drawings.

図1は本発明の電磁超音波探傷法の一実施の形態に用いる電磁超音波探傷装置を示している。図において、1は略円筒形状のEMATであり、埋込式フィン付伝熱管(埋込式フィンチューブ)2の内部に挿入され、その軸方向に沿って移動しながら、上記EMAT1から電磁気力により発生させた軸対称SH波3(管表面を周方向に伝播)を利用し、埋込式フィン付伝熱管2の内面の探傷を行うようにしている。5は増幅器,バースト波発振器,A/D変換器等を備えた検出装置で、6は入力信号を解析するためのコンピュータで、7は上記EMAT1を埋込式フィン付伝熱管2内に挿入してその軸方向に移動させるためのパルスモーター型の送り出し装置で、8は出力装置である。   FIG. 1 shows an electromagnetic ultrasonic flaw detector used in an embodiment of the electromagnetic ultrasonic flaw detection method of the present invention. In the figure, reference numeral 1 denotes a substantially cylindrical EMAT, which is inserted into an embedded finned heat transfer tube (embedded fin tube) 2 and moves along the axial direction of the EMAT 1 by the electromagnetic force. Using the generated axisymmetric SH wave 3 (propagating along the pipe surface in the circumferential direction), the inner surface of the embedded finned heat transfer tube 2 is flaw-detected. Reference numeral 5 denotes a detection device including an amplifier, a burst wave oscillator, an A / D converter, and the like. Reference numeral 6 denotes a computer for analyzing an input signal. Reference numeral 7 denotes the EMAT 1 inserted into the embedded finned heat transfer tube 2. A pulse motor type delivery device for moving in the axial direction 8 is an output device.

上記埋込式フィン付伝熱管2は、空冷式熱交換器に用いられるものであり、円筒形状に形成された炭素鋼製の管本体11と、この管本体11の外周部にらせん状に突設されるアルミニウム等の非鉄金属製の伝熱用フィン12(この伝熱用フィン12の内側端部は、上記管本体11の外周面に形成されたらせん状の溝11aに埋め込まれている)とで構成されている(図2参照)。   The embedded finned heat transfer tube 2 is used in an air-cooled heat exchanger. The tube main body 11 is made of carbon steel formed in a cylindrical shape and protrudes in a spiral shape on the outer periphery of the tube main body 11. Heat transfer fins 12 made of non-ferrous metal such as aluminum (the inner end portion of the heat transfer fins 12 is embedded in a spiral groove 11a formed on the outer peripheral surface of the tube body 11) (See FIG. 2).

上記EMAT1は、図3に示すように、略円筒形状に形成された磁石ユニット13と、この磁石ユニット13の円環状凹部13aにその周方向に巻回された一対のスパイラルコイル14(送信用スパイラルコイル14aおよび受信用スパイラルコイル14b)とで構成されている。上記磁石ユニット13は、径方向の大径側に一方の極を有し径方向の小径側に他方の極を有する複数の永久磁石15a,15bを、上記周方向で交互に極性が逆転するように並べた状態でリング状に配設したものであり、このようなリング状交番磁界形成用磁石列からなっている。上記各永久磁石15a,15bはそれぞれ棒状に形成されており、その極性を除いては、形状が全て同一であり、上記磁石ユニット13として組み付けた状態では、この磁石ユニット13を上記周方向に均等に分割する構造となっている。また、隣り合う永久磁石15a,15b同士は、エポキシ樹脂からなる接着剤層15cで接着,固定されており(図4参照。なお、図3では、図示せず)、この接着剤層15cは、永久磁石15a(15b)の磁力線が、これに隣り合う永久磁石15b(15a)に影響を及ぼす(逃げる)のを軽減する作用をもしている。   As shown in FIG. 3, the EMAT 1 includes a magnet unit 13 formed in a substantially cylindrical shape and a pair of spiral coils 14 (transmission spirals) wound around an annular recess 13a of the magnet unit 13 in the circumferential direction. Coil 14a and receiving spiral coil 14b). The magnet unit 13 has a plurality of permanent magnets 15a and 15b having one pole on the large diameter side in the radial direction and the other pole on the small diameter side in the radial direction so that the polarities are alternately reversed in the circumferential direction. Are arranged in a ring shape, and are composed of such a ring-shaped alternating magnetic field forming magnet row. Each of the permanent magnets 15a and 15b is formed in a rod shape, and the shape thereof is the same except for the polarity. When the magnet unit 13 is assembled, the magnet unit 13 is evenly arranged in the circumferential direction. The structure is divided into two. Adjacent permanent magnets 15a and 15b are bonded and fixed with an adhesive layer 15c made of an epoxy resin (see FIG. 4; not shown in FIG. 3). The magnetic field lines of the permanent magnet 15a (15b) also act to reduce the influence (escape) on the permanent magnet 15b (15a) adjacent thereto.

上記磁石ユニット13を、さらに詳しく説明すると、S極を上記径方向大径側に有する永久磁石15aと、N極を上記径方向大径側に有する永久磁石15bとを交互に上記周方向に並べて隣り合う永久磁石15a,15b同士を接着剤層15cで接着,固定してなるリング状交番磁界形成用磁石列からなり、上記周方向で極性が交互に逆転する交番磁界を形成している(図3参照)。また、上記磁石列の中央外周部(すなわち、磁石ユニット3の中央外周部)には、図5に示すように、上記周方向に沿って円環状凹部13aが円環状に形成されている。すなわち、上記各永久磁石15a,15bには、その中央外周部に、これを横切るようにして凹部16が形成されており、上記磁石ユニット13として組み付けた状態では、上記各凹部16により上記円環状凹部13aが構成されている。この円環状凹部13aは、上記管本体11の内部にEMAT1を挿入したときに、(上記円環状凹部13aに巻回,収容される)後述する両スパイラルコイル14(図7参照)が上記管本体11の内面に擦れて損傷等するのを防ぐためのものであり、その深さは上記両スパイラルコイル14の素線の直径に合わせて設定され、幅は上記両スパイラルコイル14の巻き幅に合わせて設定されている。   The magnet unit 13 will be described in more detail. Permanent magnets 15a having S poles on the radially large diameter side and permanent magnets 15b having N poles on the radially large diameter side are alternately arranged in the circumferential direction. It consists of a ring-shaped alternating magnetic field forming magnet array formed by adhering and fixing adjacent permanent magnets 15a and 15b with an adhesive layer 15c, and forms an alternating magnetic field whose polarity is alternately reversed in the circumferential direction (FIG. 3). Further, as shown in FIG. 5, an annular recess 13 a is formed in an annular shape along the circumferential direction in the central outer peripheral portion of the magnet row (that is, the central outer peripheral portion of the magnet unit 3). In other words, each of the permanent magnets 15a and 15b has a recess 16 formed at the center outer peripheral portion so as to cross the permanent magnet 15a and 15b. A recess 13a is formed. When the EMAT 1 is inserted into the inside of the tube body 11, the annular recess 13a is configured so that both spiral coils 14 (see FIG. 7) described later (see FIG. 7) are wound and accommodated in the annular recess 13a. 11 to prevent the inner surface of the coil 11 from rubbing and being damaged. The depth is set according to the diameter of the strands of the spiral coils 14 and the width is matched to the winding width of the spiral coils 14. Is set.

また、上記磁石列の両端面(すなわち、磁石ユニット13の軸方向の両端面)には、図6に示すように、これら各端面を貫通状に横切るようにして複数本(この実施の形態では、5本であるが、1本でも、何本でもよい)の凹溝形状のスリット17aが所定の間隔で(等間隔でも、等間隔でもなくてもよい)平行に切欠き形成されているとともに、これら各スリット17aに直交する複数本(この実施の形態では、5本であるが、1本でも、何本でもよい)の凹溝形状のスリット17bが所定の間隔で(等間隔でも、等間隔でもなくてもよい)平行に切欠き形成されており、これら各スリット17a,17b(図3および図4では、図示せず)により、S/N比(信号対雑音比)が向上してノイズが減少するという効果を奏している。このような各スリット17a,17bの幅は0.2〜0.4mmに、その深さは1.0〜1.5mmに設定されている。   Further, as shown in FIG. 6, a plurality of end faces (that is, both end faces in the axial direction of the magnet unit 13) of the magnet row cross each end face in a penetrating manner (in this embodiment, in this embodiment). The number of the concave grooves 17a, which is five, but may be one or any number, is notched in parallel at a predetermined interval (which may or may not be equal). In addition, a plurality of (in this embodiment, five, but one or any number) concave groove-shaped slits 17b orthogonal to each of the slits 17a may be provided at predetermined intervals (even at regular intervals, etc. The slits 17a and 17b (not shown in FIGS. 3 and 4) improve the S / N ratio (signal-to-noise ratio). This has the effect of reducing noise. The width of each of the slits 17a and 17b is set to 0.2 to 0.4 mm, and the depth is set to 1.0 to 1.5 mm.

上記円環状凹部13aには、上記管本体11の内面に実質的に平行な電磁気力を発生させるための渦電流を埋込式フィン付伝熱管2内に発生させるよう、上記スパイラルコイル14(図3参照)が巻回されている。このスパイラルコイル14は、上記したように、送信用スパイラルコイル14aと受信用スパイラルコイル14bとからなり、これら両コイル14a,14bは上記磁石列の軸方向(すなわち、磁石ユニット13の軸方向)に交互に配設されている(図7参照)。また、上記両コイル14a,14bは、その一端部が、検出装置5(図1参照)内に配設された増幅器に接続し、その他端部がアースに接続している。図5において、18は上記磁石ユニット13の外周部にその軸方向に沿って形成されたコイル配設用スリットであり、上記両スパイラルコイル14の線端(4本)をスムーズに取り出して結線するためのものであり、これら取り出し線が、円環状凹部13aに巻回された両スパイラルコイル14上に被さらないようにしている。   In the annular recess 13a, the spiral coil 14 (see FIG. 5) is generated so that an eddy current for generating an electromagnetic force substantially parallel to the inner surface of the tube body 11 is generated in the embedded finned heat transfer tube 2. 3) is wound. As described above, the spiral coil 14 includes the transmission spiral coil 14a and the reception spiral coil 14b. The coils 14a and 14b are arranged in the axial direction of the magnet row (that is, the axial direction of the magnet unit 13). They are arranged alternately (see FIG. 7). Further, one end of each of the coils 14a and 14b is connected to an amplifier provided in the detection device 5 (see FIG. 1), and the other end is connected to the ground. In FIG. 5, reference numeral 18 denotes a coil placement slit formed in the outer peripheral portion of the magnet unit 13 along the axial direction thereof. The wire ends (four) of both the spiral coils 14 are smoothly taken out and connected. These take-out lines are not covered on the spiral coils 14 wound around the annular recess 13a.

そして、上記スパイラルコイル14に高周波電流を流すと、管本体11の内面に、この内面に沿った所定位置にその周方向に均等に分散された節を有し上記内面に沿って偏波した横波、すなわち、軸対称SH波3が励起される。この軸対称SH波3は、管本体11の内面に沿って形成されており、その形成方向は管本体11の内面の周方向であり、また、その振幅方向は、管本体11の内面に平行でかつ管本体11の軸方向に沿った方向である。この励起された軸対称SH波3は受信用スパイラルコイル14bに電流を励起し、この電流の電圧を検出することにより、その音圧を知ることができる。   When a high-frequency current is passed through the spiral coil 14, a transverse wave polarized along the inner surface having nodes distributed uniformly in the circumferential direction at predetermined positions along the inner surface of the tube body 11. That is, the axially symmetric SH wave 3 is excited. The axially symmetric SH wave 3 is formed along the inner surface of the tube main body 11, the forming direction is the circumferential direction of the inner surface of the tube main body 11, and the amplitude direction is parallel to the inner surface of the tube main body 11. And the direction along the axial direction of the tube body 11. The excited axisymmetric SH wave 3 excites a current in the spiral coil for reception 14b, and the sound pressure can be known by detecting the voltage of this current.

上記コンピュータ6は、上記EMAT1を動作させるための動作信号を、上記検出装置5内に配設されたバースト波発振器に送り、このバースト波発振器で生成されたバースト波を増幅器で増幅したのち送信用スパイラルコイル14aに供給し、埋込式フィン付伝熱管2の管本体11の内面に軸対称SH波3を励起させる。上記バースト波発振器からは、所定の時間間隔で異なる周波数信号が順次発生している。上記励起させた軸対称SH波3は、管本体11の内面に円周方向に伝わり、共鳴を発生させる。周波数によって共鳴を起こした状態の軸対称SH波3は受信用スパイラルコイル14bによって検出され、この検出信号は増幅器,A/D変換器を経てコンピュータ6の信号解析部に送られる。   The computer 6 sends an operation signal for operating the EMAT 1 to a burst wave oscillator disposed in the detection device 5, and amplifies the burst wave generated by the burst wave oscillator with an amplifier. The axially symmetric SH wave 3 is excited on the inner surface of the tube body 11 of the embedded finned heat transfer tube 2 by being supplied to the spiral coil 14a. Different frequency signals are sequentially generated from the burst wave oscillator at predetermined time intervals. The excited axisymmetric SH wave 3 is transmitted to the inner surface of the tube body 11 in the circumferential direction to generate resonance. The axially symmetric SH wave 3 in a state where resonance is caused by the frequency is detected by the receiving spiral coil 14b, and this detection signal is sent to the signal analysis unit of the computer 6 through the amplifier and the A / D converter.

上記信号解析部は、A/D変換器から入力された検出信号の振幅、すなわち軸対称SH波3の音圧レベルを決定し、上記励起・受信・音圧決定操作を経て周波数の関数として得られる音圧分布から音圧が極大となる周波数を共鳴周波数として検出し、検出された共鳴周波数にしたがって腐食減肉の有無もしくは残肉厚みの量を決定する手段を備えている。そして、上記信号解析部には、上記駆動信号の周波数が送られてくるとともに、A/D変換器から受信信号が送られてきており、両者が関係付けられて記録されているとともに、上記記録から音圧が極大となる周波数が共鳴周波数として決定・検出される。   The signal analysis unit determines the amplitude of the detection signal input from the A / D converter, that is, the sound pressure level of the axisymmetric SH wave 3, and obtains it as a function of frequency through the excitation / reception / sound pressure determination operation. A means for detecting a frequency at which the sound pressure is maximized from the obtained sound pressure distribution as a resonance frequency, and determining the presence or absence of corrosion thinning or the amount of remaining thickness according to the detected resonance frequency. The frequency of the drive signal is sent to the signal analysis unit, and the received signal is sent from the A / D converter. Therefore, the frequency at which the sound pressure is maximized is determined and detected as the resonance frequency.

また、上記信号解析部は、上記共鳴周波数と板厚の関係をテーブル化したLUT(ルックアップテーブル)を備えており、さきに決定された共鳴周波数からLUTを参照しながら板厚が決定される。さらに、内面に腐食減肉が発生している管本体11における共鳴周波数は、後述するようにして求められた、正常な管本体11における共鳴周波数とは異なるため、この(正常な管本体11における)共鳴周波数と異なった共鳴周波数が検出された場合には、上記LUTから、腐食が発生していると決定・検出できるように構成されている。   The signal analysis unit includes an LUT (look-up table) in which the relationship between the resonance frequency and the plate thickness is tabulated, and the plate thickness is determined by referring to the LUT from the resonance frequency determined earlier. . Furthermore, since the resonance frequency in the pipe body 11 in which corrosion thinning has occurred on the inner surface is different from the resonance frequency in the normal pipe body 11 obtained as described later, this (in the normal pipe body 11) ) When a resonance frequency different from the resonance frequency is detected, it can be determined and detected from the LUT that corrosion has occurred.

一方、管本体11に、深さの異なる複数の減肉部を人工的に設け、これら各減肉部に対し、上記EMAT1を用いて共鳴周波数を求め、その実験データを多数収集して、減肉部の残肉厚み(もしくは穴の深さ)と共鳴周波数との関係をテーブル化もしくは数式化(この実施の形態では、数式化)しておく。これにより、欠陥サイズ(この実施の形態では、減肉部の残肉厚み)を評価することが可能となる。また、正常な管本体11に対応する共鳴周波数を、上記EMAT1を用いて求め、その実験データをも収集しておく。これらの実験データから、例えば、残肉厚み(もしくは穴の深さ)と共鳴周波数との間には一定の関係があり、残肉厚みが小さいほど(すなわち、減肉部の穴の深さが深いほど)、共鳴周波数が上昇していることが判る。したがって、上記実験データから欠陥サイズを求めることが可能となり、もしくは、共鳴周波数が変化することにより管本体11の内面に何らかの問題があると判断することが可能となる。   On the other hand, the pipe body 11 is artificially provided with a plurality of thinned portions having different depths, the resonance frequency is obtained for each thinned portion using the EMAT1, and a large number of experimental data are collected to reduce the thickness. The relationship between the remaining thickness of the meat part (or the depth of the hole) and the resonance frequency is tabulated or numerically expressed (in this embodiment, numerically expressed). Thereby, it becomes possible to evaluate the defect size (in this embodiment, the remaining thickness of the thinned portion). Further, the resonance frequency corresponding to the normal tube body 11 is obtained by using the EMAT 1 and the experimental data is also collected. From these experimental data, for example, there is a certain relationship between the remaining thickness (or the depth of the hole) and the resonance frequency, and the smaller the remaining thickness (that is, the depth of the hole in the reduced thickness portion). It can be seen that the deeper the resonance frequency is. Therefore, the defect size can be obtained from the experimental data, or it can be determined that there is some problem on the inner surface of the tube main body 11 by changing the resonance frequency.

上記送り出し装置7は、上記コンピュータ6により制御されており、探傷走査の結果腐食が発生していると決定した場合には、上記送り出し装置7の送り出し量を少なくして探傷ピッチを小さくすることにより、精密探傷を行い検査精度を高めることができるようにしている。また、上記EMAT1の検出位置(管本体11の管端からの距離)は、上記送り出し装置7に内蔵された走査距離検出装置(図示せず)からコンピュータ6に自動的に取り込まれ、データ解析に反映されるようにしている。   The delivery device 7 is controlled by the computer 6, and when it is determined that corrosion has occurred as a result of flaw detection scanning, the delivery amount of the delivery device 7 is reduced to reduce the flaw detection pitch. The inspection accuracy can be improved by carrying out precision flaw detection. The EMAT 1 detection position (distance from the tube end of the tube body 11) is automatically taken into the computer 6 from a scanning distance detection device (not shown) built in the delivery device 7 for data analysis. It is reflected.

上記出力装置8は、表示手段(図示せず)を有しており、その表示画面上に、EMAT1の検出位置(mm)を横軸とし、この検出位置における共鳴周波数(MHz)を縦軸としたグラフ(図8参照)が映し出されるようになっており、この表示画面上に映し出された共鳴周波数と振幅(すなわち、共鳴周波数の変動)を見ることで、管本体11の内面に腐食が生じていることを示す共鳴信号およびその位置(管本体11の管端からの距離)が判るようになっている。また、上記グラフの横側に、共鳴周波数と管本体11の肉厚との関係表を映し出すことができる場合には、もしくは上記実験データから、共鳴周波数と管本体11の肉厚との関係表を作成しておく場合には、それを見ることにより、上記共鳴信号から管本体11の腐食部の肉厚(欠陥サイズ)を求めることができるようになる。   The output device 8 has display means (not shown). On the display screen, the detection position (mm) of EMAT1 is set on the horizontal axis, and the resonance frequency (MHz) at the detection position is set on the vertical axis. The graph (see FIG. 8) is displayed, and corrosion is generated on the inner surface of the tube body 11 by observing the resonance frequency and amplitude (that is, fluctuation of the resonance frequency) displayed on the display screen. It is possible to know the resonance signal and the position thereof (distance from the tube end of the tube body 11). In addition, when a relationship table between the resonance frequency and the wall thickness of the tube body 11 can be projected on the horizontal side of the graph, or from the above experimental data, a table of the relationship between the resonance frequency and the wall thickness of the tube body 11. In the case of preparing the above, it becomes possible to obtain the thickness (defect size) of the corroded portion of the tube main body 11 from the resonance signal by looking at it.

上記電磁超音波探傷装置を用い、例えば、つぎのようにして管本体11の内面の腐食を検査することができる。すなわち、まず、送り出し装置7を作動させ、EMAT1を管本体11内に挿入させて管本体11の全長をその軸方向に沿って移動させる。そして、この移動の際に、EMAT1から電磁気力により発生させた軸対称SH波3を利用して管本体11の内面の探傷を行わせ、その探傷データをコンピュータ6に入力させる。また、上記移動時におけるEMAT1の移動距離(管本体11の管端からの距離)を走査距離検出装置で検出させ、この検出データをコンピュータ6に入力させる。そして、これら各データを基にして、上記出力装置8の表示画面に映し出させたグラフから腐食の有無を確認し、そのサイズを知ることができる。また、上記出力装置8で記録紙に探傷データをX−Yチャートとして印刷すれば、管本体11の全長についての探傷記録が作成される。例えば、図8に示すグラフでは、正常である場合には、管本体11の肉厚は3.0mmであるが、上記共鳴信号が発生した位置では、管本体11の肉厚は1.4mmになっていることが判る。   Using the electromagnetic ultrasonic flaw detector, for example, corrosion of the inner surface of the tube body 11 can be inspected as follows. That is, first, the delivery device 7 is operated, the EMAT 1 is inserted into the pipe body 11, and the entire length of the pipe body 11 is moved along the axial direction. During this movement, flaw detection is performed on the inner surface of the tube main body 11 using the axially symmetric SH wave 3 generated by the electromagnetic force from the EMAT 1 and the flaw detection data is input to the computer 6. Further, the moving distance of EMAT 1 (distance from the tube end of the tube main body 11) during the movement is detected by a scanning distance detection device, and this detection data is input to the computer 6. And based on each of these data, the presence or absence of corrosion can be confirmed from the graph projected on the display screen of the output device 8, and its size can be known. Further, if flaw detection data is printed as an XY chart on the recording paper by the output device 8, a flaw detection record for the entire length of the tube main body 11 is created. For example, in the graph shown in FIG. 8, when normal, the thickness of the tube body 11 is 3.0 mm, but at the position where the resonance signal is generated, the thickness of the tube body 11 is 1.4 mm. You can see that

上記のように、この実施の形態では、埋込式フィン付伝熱管2の管本体11の内面腐食を高い精度で検査することができる。しかも、上記EMAT1を用いると、従来の超音波探傷法より短時間で探傷を行うことができ、コストの削減と工程内での全数検査が可能となる。しかも、上記EMAT1は、水等の接触媒質を必要としないため、管本体11内の後処理(脱水等)が不要であるうえ、どのような種類の流体が通る埋込式フィン付伝熱管2であっても、探傷を行うことができる。しかも、上記EMAT1は、非接触探傷であるため、管本体11の内面にスケール等が付着した状態でも腐食検査が可能であり、前処理時間を短縮し、前処理コストを削減することができる。   As described above, in this embodiment, the internal corrosion of the tube main body 11 of the embedded finned heat transfer tube 2 can be inspected with high accuracy. In addition, when the EMAT 1 is used, flaw detection can be performed in a shorter time than the conventional ultrasonic flaw detection method, and the cost can be reduced and 100% inspection can be performed in the process. Moreover, since the EMAT 1 does not require a contact medium such as water, no post-treatment (dehydration or the like) in the tube body 11 is required, and any type of fluid through which the embedded finned heat transfer tube 2 passes. Even so, flaw detection can be performed. Moreover, since the EMAT 1 is a non-contact flaw detection, corrosion inspection is possible even when a scale or the like is attached to the inner surface of the tube main body 11, and the pretreatment time can be shortened and the pretreatment cost can be reduced.

上記実施の形態において、多数のデータを収集する場合には、例えば、図9に示すように、管本体11(テストピース)の内面に、深さの異なる複数の減肉部25〜29を人工的に設け、これら各減肉部25〜29に対し、上記EMAT1を用いて共鳴周波数f1〜f5(MHz)を測定することが行われる。上記各減肉部25〜29の腐食量,残厚(残肉厚み)を、表1に示す数値に設定した場合に、図10に示すような測定結果を得た。これらのデータから腐食量もしくは残厚と共鳴周波数との間に一定の関係があり、残厚が小さいほど(すなわち、腐食量が大きくて減肉部の穴の深さが深いほど)、共鳴周波数が上昇していることが判る。したがって、上記各データから欠陥サイズを求めることが可能となり、もしくは、共鳴周波数が変化することにより管本体11の内面に何らかの問題があると判断することが可能となる。例えば、図9において、黒丸30で示す個所に腐食部が発生した場合に、この腐食部での測定共鳴周波数がfxであると判れば、残厚が判り(この例では、残厚が2.4mmで、腐食量が0.6mmであることが判り)、また、その位置も判る。   In the above embodiment, when collecting a large amount of data, for example, as shown in FIG. 9, a plurality of thinned portions 25 to 29 having different depths are artificially formed on the inner surface of the tube main body 11 (test piece). The resonance frequencies f1 to f5 (MHz) are measured using the EMAT1 for each of the thinned portions 25 to 29. When the corrosion amount and the remaining thickness (remaining thickness) of each of the thinned portions 25 to 29 were set to the numerical values shown in Table 1, measurement results as shown in FIG. 10 were obtained. From these data, there is a certain relationship between the amount of corrosion or the remaining thickness and the resonance frequency, and the smaller the remaining thickness (that is, the larger the amount of corrosion and the deeper the depth of the hole in the thinned portion), the higher the resonance frequency. Can be seen to rise. Therefore, the defect size can be obtained from each of the above data, or it can be determined that there is some problem on the inner surface of the tube main body 11 by changing the resonance frequency. For example, in FIG. 9, when a corroded portion is generated at a location indicated by a black circle 30, if the measured resonance frequency at this corroded portion is determined to be fx, the remaining thickness can be determined (in this example, the remaining thickness is 2. 4 mm, the amount of corrosion is 0.6 mm), and the position is also known.

Figure 2007033329
Figure 2007033329

図11は上記EMAT1の変形例を示している。この例では、上記永久磁石ユニット13の軸方向の両端面にスリット17a,17b(図6参照)が切欠き形成されているだけでなく、上記永久磁石ユニット13の軸方向の両端部外周面にもそれぞれ、その周方向に延びる複数本(この実施の形態では、2本であるが、1本でも、何本でもよい)の円環状の凹溝形状のスリット21が切欠き形成されている。それ以外の部分は上記実施の形態に用いたEMAT1と同様であり、同様の部分には同じ符号を付している。この例のEMAT1を用いた場合にも、上記実施の形態と同様の作用,効果を奏する。しかも、上記永久磁石ユニット13の軸方向の両端部外周面にも複数本の円環状のスリット21が切欠き形成されているため、さらにS/N比が向上してノイズが減少する。   FIG. 11 shows a modification of the EMAT1. In this example, not only slits 17 a and 17 b (see FIG. 6) are formed on both end surfaces of the permanent magnet unit 13 in the axial direction, but also on the outer peripheral surfaces of both ends of the permanent magnet unit 13 in the axial direction. Also, a plurality of annular concave grooves 21 (in this embodiment, two, but one or any number) extending in the circumferential direction may be formed by notching. The other parts are the same as EMAT1 used in the above embodiment, and the same reference numerals are given to the same parts. Even when the EMAT 1 of this example is used, the same operations and effects as the above-described embodiment are obtained. In addition, since a plurality of annular slits 21 are formed in the outer peripheral surfaces of both end portions of the permanent magnet unit 13 in the axial direction, the S / N ratio is further improved and noise is reduced.

[実施例1,2および比較例1]
内面に腐食部を有する埋込式フィン付伝熱管2およびL字型巻き付け式フィン付伝熱管(図示せず)を準備した。また、上記実施の形態に示すEMAT1、および磁石列の軸方向の両端面にスリット17a,17bを形成していないこと以外は上記EMAT1と同様構造のもの(EMAT1′)を準備した。そして、埋込式フィン付伝熱管2の腐食部およびその近辺の共鳴周波数をEMAT1を用いて測定し(実施例1)、埋込式フィン付伝熱管2の腐食部およびその近辺の共鳴周波数をEMAT1′を用いて測定し(実施例2)、L字型巻き付け式フィン付伝熱管の腐食部およびその近辺の共鳴周波数をEMAT1′を用いて測定した(比較例1)。その測定結果を図12(実施例1),図13(実施例2)および図14(比較例1)に示す。これらの測定結果により、比較例1では、上記腐食部が発生している場所で共鳴周波数を測定することができないうえノイズが多く、実施例2では、共鳴周波数を測定することができたもののノイズが多く、実施例1では、共鳴周波数を測定することができ、かつノイズが非常に少ないことが判る。
[Examples 1 and 2 and Comparative Example 1]
An embedded finned heat transfer tube 2 having a corroded portion on the inner surface and an L-shaped wound finned heat transfer tube (not shown) were prepared. Further, an EMAT 1 having the same structure as the EMAT 1 (EMAT 1 ′) except that the slits 17a and 17b are not formed on both end faces in the axial direction of the magnet array and the magnet array shown in the above embodiment was prepared. Then, the corrosion frequency of the embedded finned heat transfer tube 2 and the resonance frequency in the vicinity thereof are measured using EMAT 1 (Example 1), and the corrosion frequency of the embedded finned heat transfer tube 2 and the resonance frequency in the vicinity thereof are measured. Measurement was performed using EMAT 1 '(Example 2), and the resonance frequency of the corroded portion of the L-shaped wound-type finned heat transfer tube and the vicinity thereof was measured using EMAT 1' (Comparative Example 1). The measurement results are shown in FIG. 12 (Example 1), FIG. 13 (Example 2) and FIG. 14 (Comparative Example 1). According to these measurement results, in Comparative Example 1, the resonance frequency could not be measured in the place where the corrosion portion was generated, and there was a lot of noise. In Example 2, although the resonance frequency could be measured, the noise In Example 1, it can be seen that the resonance frequency can be measured and the noise is very small.

なお、上記実施の形態では、上記EMAT1は略円筒形状に形成されているが、これに限定するものではなく、円柱形状に形成されていてもよい。また、上記実施の形態では、上記埋込式フィン付伝熱管2は、炭素鋼製の管本体11とアルミニウム等の非鉄金属製の伝熱用フィン12とで構成されているが、各種の埋込式フィン付伝熱管2を用いることができる。また、上記実施の形態では、上記埋込式フィン付伝熱管2は、ストレート管であるが、U字状等の各種形状に折り曲げ形成されたものでもよい。   In the above-described embodiment, the EMAT 1 is formed in a substantially cylindrical shape, but is not limited to this, and may be formed in a columnar shape. In the above embodiment, the embedded finned heat transfer tube 2 is composed of a carbon steel tube body 11 and a heat transfer fin 12 made of non-ferrous metal such as aluminum. A built-in finned heat transfer tube 2 can be used. Moreover, in the said embodiment, although the said embedded finned heat exchanger tube 2 is a straight tube, it may be bent and formed in various shapes, such as U shape.

また、上記実施の形態では、上記磁石ユニット13は12分割されている(12個の永久磁石15a,15bで構成されている)が、これに限定するものではなく、複数個に分割されていればよく、埋込式フィン付伝熱管2の内面腐食を検査するのには、10個,12個もしくは14個に分割されているのが適している。ただし、16個以上に分割されていると、埋込式フィン付伝熱管2の内面腐食を検査するのには、適していない。また、この内面腐食検査で使用される共振次数(一次〜N次モード)は一次モードが最適であるが、三次モードまでであれば、好適に用いられる。   Moreover, in the said embodiment, although the said magnet unit 13 is divided into 12 (it is comprised by 12 permanent magnets 15a and 15b), it is not limited to this, It may be divided into plurality. What is necessary is just to divide | segment into 10, 12, or 14 in order to test | inspect the internal corrosion of the heat sink tube 2 with an embedded fin. However, if it is divided into 16 or more, it is not suitable for inspecting the internal corrosion of the embedded finned heat transfer tube 2. Further, the resonance order (primary to N-order mode) used in this inner surface corrosion inspection is optimal in the primary mode, but is preferably used as long as it is up to the tertiary mode.

本発明の電磁超音波探傷法の一実施の形態に用いる電磁超音波探傷装置を示す説明図である。It is explanatory drawing which shows the electromagnetic ultrasonic testing apparatus used for one Embodiment of the electromagnetic ultrasonic testing method of this invention. 埋込式フィン付伝熱管の構造説明図である。It is structure explanatory drawing of an embedded finned heat exchanger tube. EMATを示す斜視図である。It is a perspective view which shows EMAT. 上記EMATの説明図である。It is explanatory drawing of said EMAT. 磁石ユニットの側面図である。It is a side view of a magnet unit. 上記磁石ユニットの端面図である。It is an end view of the magnet unit. スパイラルコイルの説明図である。It is explanatory drawing of a spiral coil. 表示画面に映し出されるグラフの説明図である。It is explanatory drawing of the graph projected on a display screen. テストピースの説明図である。It is explanatory drawing of a test piece. 表示画面に映し出されるグラフの説明図である。It is explanatory drawing of the graph projected on a display screen. 上記EMATの変形例を示す側面図である。It is a side view which shows the modification of the said EMAT. 測定結果を示す図である。It is a figure which shows a measurement result. 測定結果を示す図である。It is a figure which shows a measurement result. 測定結果を示す図である。It is a figure which shows a measurement result.

符号の説明Explanation of symbols

1 EMAT
2 埋込式フィン付伝熱管
3 軸対称SH波
11 管本体
1 EMAT
2 Heat transfer tube with embedded fin 3 Axisymmetric SH wave 11 Tube body

Claims (5)

空冷式熱交換器の埋込式フィン付伝熱管内部を軸方向に沿って電磁超音波トランスジューサを移動させながら、この電磁超音波トランスジューサから電磁気力を利用して軸対称SH波を発生させ埋込式フィン付伝熱管の管本体を振動させて共鳴を起こさせ、この共鳴周波数を電磁超音波トランジューサで検出し、この検出結果が、上記管本体の肉厚が正常である場合の共鳴周波数と異なる場合に、上記管本体の内面に腐食部が発生していると判断するようにしたことを特徴とする電磁超音波探傷方法。   While moving the electromagnetic ultrasonic transducer along the axial direction inside the heat transfer tube with embedded fins in the air-cooled heat exchanger, the electromagnetic ultrasonic wave is generated from this electromagnetic ultrasonic transducer using electromagnetic force and embedded. The tube body of the finned heat transfer tube is vibrated to cause resonance, and this resonance frequency is detected by an electromagnetic ultrasonic transducer.The detection result is the resonance frequency when the wall thickness of the tube body is normal. An electromagnetic ultrasonic flaw detection method characterized in that it is determined that a corroded portion is generated on the inner surface of the tube main body when different. 上記埋込式フィン付伝熱管の管本体が炭素鋼からなり、フィンがアルミニウム等の非鉄材料からなっている請求項1記載の電磁超音波探傷方法。   The electromagnetic ultrasonic flaw detection method according to claim 1, wherein the tube body of the embedded finned heat transfer tube is made of carbon steel, and the fin is made of a non-ferrous material such as aluminum. 上記軸対称SH波の共振次数が一次モードである請求項1または2記載の電磁超音波探傷方法。   The electromagnetic ultrasonic flaw detection method according to claim 1 or 2, wherein the resonance order of the axisymmetric SH wave is a primary mode. 上記電磁超音波トランスジューサが、円筒形状もしくは円柱形状に形成された永久磁石ユニットと、この永久磁石ユニットの外周部に巻回される送信用コイルおよび受信用コイルからなり、上記永久磁石ユニットが、その径方向の大径側に一方の極を有するとともにその径方向の小径側に他方の極を有する複数の永久磁石を、上記永久磁石ユニットの周方向で交互に極性が逆転するように並べたものからなる請求項1〜3のいずれか一項に記載の電磁超音波探傷方法。   The electromagnetic ultrasonic transducer includes a permanent magnet unit formed in a cylindrical shape or a columnar shape, and a transmission coil and a reception coil wound around an outer peripheral portion of the permanent magnet unit. A plurality of permanent magnets having one pole on the large diameter side in the radial direction and the other pole on the small diameter side in the radial direction are arranged so that the polarities are alternately reversed in the circumferential direction of the permanent magnet unit. The electromagnetic ultrasonic flaw detection method according to any one of claims 1 to 3. 円筒形状もしくは円柱形状に形成された永久磁石ユニットと、この永久磁石ユニットの外周部に巻回される送信用コイルおよび受信用コイルからなり、上記永久磁石ユニットが、その径方向の大径側に一方の極を有するとともにその径方向の小径側に他方の極を有する複数の永久磁石を、上記永久磁石ユニットの周方向で交互に極性が逆転するように並べたものからなり、上記永久磁石ユニットの両端面に、互いに交差する複数条のスリットが切欠き形成されていることを特徴とする電磁超音波トランジューサ。
A permanent magnet unit formed in a cylindrical shape or a columnar shape, and a transmission coil and a reception coil wound around the outer periphery of the permanent magnet unit. The permanent magnet unit is arranged on the large-diameter side in the radial direction. A permanent magnet unit comprising a plurality of permanent magnets having one pole and the other pole on the smaller diameter side thereof arranged in such a manner that the polarities are alternately reversed in the circumferential direction of the permanent magnet unit. The electromagnetic ultrasonic transducer is characterized in that a plurality of slits intersecting each other are formed in the both end surfaces of the cutout.
JP2005219206A 2005-07-28 2005-07-28 Electromagnetic ultrasonic inspection Active JP4718267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005219206A JP4718267B2 (en) 2005-07-28 2005-07-28 Electromagnetic ultrasonic inspection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005219206A JP4718267B2 (en) 2005-07-28 2005-07-28 Electromagnetic ultrasonic inspection

Publications (2)

Publication Number Publication Date
JP2007033329A true JP2007033329A (en) 2007-02-08
JP4718267B2 JP4718267B2 (en) 2011-07-06

Family

ID=37792769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005219206A Active JP4718267B2 (en) 2005-07-28 2005-07-28 Electromagnetic ultrasonic inspection

Country Status (1)

Country Link
JP (1) JP4718267B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019216301A1 (en) * 2019-10-23 2021-04-29 Carl Zeiss Smt Gmbh Assembly in an optical system, in particular a microlithographic projection exposure system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11133003A (en) * 1997-10-28 1999-05-21 Osaka Gas Co Ltd Ppm electromagnetic ultrasonic transducer and device and method for detecting flaw using ppm electromagnetic ultrasonic transducer
JP2000295804A (en) * 1999-04-02 2000-10-20 Shin Etsu Chem Co Ltd Rare earth sintered magnet and permanent magnet type synchronous motor
JP2001050936A (en) * 1999-08-11 2001-02-23 Hitachi Eng Co Ltd Ultrasonic probe for detecting flaw in heat transfer pipe and ultrasonic flaw-detecting device
JP2001305110A (en) * 2000-04-26 2001-10-31 Babcock Hitachi Kk Inspection system and method for pipe

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11133003A (en) * 1997-10-28 1999-05-21 Osaka Gas Co Ltd Ppm electromagnetic ultrasonic transducer and device and method for detecting flaw using ppm electromagnetic ultrasonic transducer
JP2000295804A (en) * 1999-04-02 2000-10-20 Shin Etsu Chem Co Ltd Rare earth sintered magnet and permanent magnet type synchronous motor
JP2001050936A (en) * 1999-08-11 2001-02-23 Hitachi Eng Co Ltd Ultrasonic probe for detecting flaw in heat transfer pipe and ultrasonic flaw-detecting device
JP2001305110A (en) * 2000-04-26 2001-10-31 Babcock Hitachi Kk Inspection system and method for pipe

Also Published As

Publication number Publication date
JP4718267B2 (en) 2011-07-06

Similar Documents

Publication Publication Date Title
US7886604B2 (en) Electromagnetic ultrasonic flaw detection method and electromagnetic ultrasonic transducer to be used therefor
JP4392129B2 (en) Method and apparatus for long range inspection of plate-type ferromagnetic structures
CN108562642B (en) Electromagnetic transduction device of longitudinal mode ultrasonic guided wave, pipeline detection system and method
CN101261246A (en) Pipeline crack far-field vortex checking method
RU2413214C2 (en) Apparatus for nondestructive inspection of ferromagnetic structural elements
CN104090034B (en) A kind of electromagnetic acoustic Lamb wave transducer for guided wave tomography
KR100573736B1 (en) Transducer for Generating and Sensing Torsional Waves, and Apparatus and Method for Structural Diagnosis Using It
US6561035B2 (en) Electromagnetic acoustic transducer with recessed coils
CN101799454A (en) Electromagnetic ultrasonic flaw detecting method for eliminating electromagnetic ultrasonic Lamb wave multi-mode influence
KR20050102516A (en) Magnetostrictive transducer for generating and sensing elastic ultrasonic waves, and apparatus for structural diagnosis using it
US20110036172A1 (en) Non-contact type transducer for rod member having multi-loop coil
CN115389621A (en) Non-contact electromagnetic acoustic type torsional mode guided wave transduction system in pipe and test method
CN202101974U (en) Electromagnetic-acoustic transducer (EMAT) for detection of condenser stainless steel bellows
US7782048B2 (en) Eddy current testing method, eddy current testing differential coil and eddy current testing probe for internal finned pipe or tube
CN107817292B (en) The whole directive property Corkscrews Lamb wave energy converter of double array adjustables of guided wave tomography
Liu et al. Development of a wholly flexible surface wave electromagnetic acoustic transducer for pipe inspection
CN107991393A (en) A kind of double frequency electromagnetic acoustic detecting system
JP4718267B2 (en) Electromagnetic ultrasonic inspection
JPH11133003A (en) Ppm electromagnetic ultrasonic transducer and device and method for detecting flaw using ppm electromagnetic ultrasonic transducer
JPH0587780A (en) Method and apparatus for nondestructive inspection of metal pipe
US20220221429A1 (en) Apparatus and method for pipeline inspection using emat generated shear waves
RU87532U1 (en) IN-TUBE ELECTROMAGNETIC-ACOUSTIC SCANNER
RU2350943C1 (en) Magnet system of electromagnet-acoustic transducer
CN110806446A (en) Oblique incidence SV wave double-point focusing transducer based on aluminum plate defect detection
JPH1078412A (en) Method and device for detecting flaw on surface

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110322

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110331

R150 Certificate of patent or registration of utility model

Ref document number: 4718267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250