JP2007033103A - Photoelectric sensor - Google Patents

Photoelectric sensor Download PDF

Info

Publication number
JP2007033103A
JP2007033103A JP2005213770A JP2005213770A JP2007033103A JP 2007033103 A JP2007033103 A JP 2007033103A JP 2005213770 A JP2005213770 A JP 2005213770A JP 2005213770 A JP2005213770 A JP 2005213770A JP 2007033103 A JP2007033103 A JP 2007033103A
Authority
JP
Japan
Prior art keywords
light
light receiving
photoelectric sensor
projecting
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005213770A
Other languages
Japanese (ja)
Inventor
Toshinori Nakano
利徳 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keyence Corp
Original Assignee
Keyence Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keyence Corp filed Critical Keyence Corp
Priority to JP2005213770A priority Critical patent/JP2007033103A/en
Publication of JP2007033103A publication Critical patent/JP2007033103A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photoelectric sensor capable of precisely detecting the glossiness of a target without using a beam splitter. <P>SOLUTION: The photoelectric sensor is equipped with one floodlight projecting region 11 for irradiating the target with light and three light detecting regions 14 for detecting the reflected light from the target. Three light detecting regions 14 are arranged on one straight line at an almost equal interval so as to be adjacent to the floodlight projecting region 11 so that the arranging direction of the central light detecting region 14 and the floodlight projecting region 11 crosses the arranging direction of three light detecting regions 14 at an almost right angle. The floodlight projecting region 11 and the central light detecting region 14 transmit only P polarized light and both left and right light detecting regions 14 transmit only S polarized light. The quantity of the diffused reflected light among light detection quantities is removed by subtracting the light detecting quantities in two left and right light detecting regions 14 from the light detecting quantity in the central light detecting region 14 to detect the quantity of regular reflected light and the glossiness of the target can be detected on the basis of the quantity of regular reflected light. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、光電センサに係り、更に詳しくは、対象物の光沢度を検出するための光電センサの改良に関する。   The present invention relates to a photoelectric sensor, and more particularly to an improvement of a photoelectric sensor for detecting the glossiness of an object.

工場における生産ライン等に適用され、照射した光の反射光を受光することにより、その受光量に基づいて対象物の光沢度を検出する光電センサが知られている(例えば、特許文献1)。この種の光電センサでは、例えば、発光素子からの光が偏光フィルタを通過することにより、所定の偏光面を有する光(例えば、S偏光)が照射光として照射され、対象物からの反射光は、ビームスプリッタにより分光され、分光された光(例えば、P偏光及びS偏光)がそれぞれ受光素子で受光される。   A photoelectric sensor that is applied to a production line in a factory and detects the glossiness of an object based on the amount of received light by receiving reflected light of the irradiated light is known (for example, Patent Document 1). In this type of photoelectric sensor, for example, when light from a light emitting element passes through a polarizing filter, light having a predetermined polarization plane (for example, S-polarized light) is irradiated as irradiation light, and reflected light from an object is The light (for example, P-polarized light and S-polarized light) dispersed by the beam splitter is received by the light receiving element.

光電センサからの照射光が対象物で反射する際には、対象物に対する入射角と等しい反射角で反射する正反射光と、入射角とは異なる任意の反射角で拡散するように反射する拡散反射光とが生じる。照射光としてS偏光を照射した場合には、照射光と同じ偏光面を有するS偏光からなる正反射光と、P偏光及びS偏光の双方が含まれる拡散反射光とが生じる。照射光から生じる正反射光と拡散反射光との割合は、対象物の光沢度によって異なり、光沢度が高いほど正反射光の割合が高くなり、光沢度が低いほど正反射光の割合が低くなる。したがって、ビームスプリッタで分光されて受光素子で受光されたP偏光及びS偏光の各光量の差に基づいて、対象物の光沢度を検出することができる。   When the irradiation light from the photoelectric sensor is reflected by the object, regular reflection light that is reflected at a reflection angle equal to the incident angle with respect to the object and diffusion that is reflected so as to be diffused at an arbitrary reflection angle different from the incident angle Reflected light is generated. When S-polarized light is irradiated as irradiation light, specular reflection light composed of S-polarization having the same polarization plane as the irradiation light and diffuse reflection light including both P-polarization and S-polarization are generated. The ratio of specular reflection light and diffuse reflection light generated from the irradiation light depends on the glossiness of the object. The higher the glossiness, the higher the proportion of specular reflection light, and the lower the glossiness, the lower the proportion of specular reflection light. Become. Therefore, the glossiness of the object can be detected based on the difference between the light amounts of the P-polarized light and the S-polarized light that are separated by the beam splitter and received by the light receiving element.

すなわち、上記の例では、受光素子で受光されるS偏光は、正反射光及び拡散反射光からなるのに対して、受光素子で受光されるP偏光は、拡散反射光のみからなる。拡散反射光は、照射光が対象物で反射する際に偏光面がランダムに変化して発生するため、拡散反射光におけるP偏光及びS偏光の割合はほぼ同じである。したがって、受光したS偏光の光量からP偏光の光量を差し引くことにより、正反射光の光量を検出することができ、その検出した正反射光の光量に基づいて、対象物の光沢度を検出することができる。
特許第3264143号公報
That is, in the above example, the S-polarized light received by the light receiving element is composed of regular reflection light and diffuse reflection light, whereas the P-polarized light received by the light receiving element is composed only of diffuse reflection light. Since the diffusely reflected light is generated by changing the polarization plane at random when the irradiated light is reflected by the object, the ratio of the P-polarized light and the S-polarized light in the diffusely reflected light is substantially the same. Therefore, the amount of specularly reflected light can be detected by subtracting the amount of P-polarized light from the amount of received S-polarized light, and the glossiness of the object is detected based on the detected amount of specularly reflected light. be able to.
Japanese Patent No. 3264143

しかしながら、ビームスプリッタを用いて反射光を分光するような構成の場合、センサ本体内にビームスプリッタを配置するためのスペースを設けなければならないため、センサ本体の小型化が困難であるという問題があった。   However, in the configuration in which the reflected light is dispersed using the beam splitter, there is a problem that it is difficult to reduce the size of the sensor body because a space for arranging the beam splitter must be provided in the sensor body. It was.

また、対象物における照射光の反射面が、照射光にほぼ直交する面に対して傾斜している場合には、ビームスプリッタに入射する対象物からの反射光の入射角がずれることにより、入射した反射光に対するビームスプリッタの分光特性が変化する場合がある。この場合、ビームスプリッタに入射する光を良好に分光することができず、ビームスプリッタを通過すべき光(例えば、P偏光)とは異なる偏光面を有する光がビームスプリッタを通過したり、ビームスプリッタで反射すべき光(例えば、S偏光)とは異なる偏光面を有する光がビームスプリッタで反射したりして、対象物の光沢度を良好に検出することができない場合がある。そのため、従来は、所定の偏光面を有する光のみを受光素子に入射させるために、ビームスプリッタに加えてさらに、ビームスプリッタを通過した光及びビームスプリッタで反射した光をそれぞれ通過させるための偏光フィルタを設けなければならず、これもセンサ本体の大型化の一要因となっていた。   In addition, when the reflection surface of the irradiated light on the object is inclined with respect to the surface substantially orthogonal to the irradiated light, the incident angle of the reflected light from the object incident on the beam splitter is shifted, and the incident light The spectral characteristics of the beam splitter with respect to the reflected light may change. In this case, the light incident on the beam splitter cannot be dispersed well, and light having a polarization plane different from the light that should pass through the beam splitter (for example, P-polarized light) passes through the beam splitter or the beam splitter. The light having a polarization plane different from the light to be reflected (for example, S-polarized light) may be reflected by the beam splitter, and the glossiness of the object may not be detected well. Therefore, conventionally, in order to allow only light having a predetermined polarization plane to enter the light receiving element, in addition to the beam splitter, a polarizing filter for passing light that has passed through the beam splitter and light reflected by the beam splitter, respectively. This was also a factor in increasing the size of the sensor body.

本発明は、上記の事情に鑑みてなされたものであり、ビームスプリッタを用いずに精度よく対象物の光沢度を検出できる光電センサを提供することを目的とする。また、本発明は、対象物の光沢度を検出するための光電センサをより小型化することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a photoelectric sensor that can accurately detect the glossiness of an object without using a beam splitter. Another object of the present invention is to further reduce the size of a photoelectric sensor for detecting the glossiness of an object.

本発明による光電センサは、対象物の光沢度を検出するための光電センサにおいて、対象物に対して光を照射する1つの投光部と、上記投光部に隣接してほぼ等間隔で一直線上に配置され、それぞれ対象物からの反射光を受光する3つの受光部とを備え、上記3つの受光部のうちの中央の受光部と上記投光部とが並ぶ方向と、上記3つの受光部が並ぶ方向とがほぼ直交しており、上記投光部及び上記中央の受光部は、所定の第1偏光面を有する光を通過させる第1フィルタを備え、上記中央の受光部以外の受光部は、上記第1偏光面とは異なる第2偏光面を有する光を通過させる第2フィルタを備えて構成される。   The photoelectric sensor according to the present invention is a photoelectric sensor for detecting the glossiness of an object. The photoelectric sensor irradiates the object with light, and is directly adjacent to the light projecting part at substantially equal intervals. Three light-receiving portions that are arranged on a line and receive reflected light from the object, respectively, and the direction in which the central light-receiving portion and the light-projecting portion among the three light-receiving portions are arranged, and the three light-receiving portions. The light projecting unit and the central light receiving unit include a first filter that allows light having a predetermined first polarization plane to pass through, and receive light other than the central light receiving unit. The unit includes a second filter that allows light having a second polarization plane different from the first polarization plane to pass therethrough.

このような構成によれば、投光部から光を照射し、その照射光の対象物における反射光を3つの受光部で受光することができる。中央の受光部は、投光部と同じ第1偏光面を有する光のみを通過させる第1フィルタを備えているので、対象物における正反射光と、第1偏光面を有する拡散反射光とが、中央の受光部で受光される。一方、それ以外の2つの受光部は、投光部とは異なる第2偏光面を有する光のみを通過させる第2フィルタを備えているので、第2偏光面を有する拡散反射光のみが、これら2つの受光部で受光される。   According to such a structure, light can be irradiated from a light projection part, and the reflected light in the target object of the irradiation light can be received by three light-receiving parts. Since the central light receiving unit includes a first filter that allows only light having the same first polarization plane as the light projecting unit to pass therethrough, specular reflection light on the object and diffuse reflection light having the first polarization plane are generated. The light is received by the central light receiving unit. On the other hand, since the other two light receiving parts are provided with a second filter that allows only light having a second polarization plane different from that of the light projecting part to pass therethrough, only diffuse reflection light having the second polarization plane can be used. Light is received by the two light receiving units.

拡散反射光は、照射光が対象物で反射する際に偏光面がランダムに変化して発生するため、第1偏光面を有する拡散反射光と第2偏光面を有する拡散反射光との割合はほぼ同じである。したがって、中央の受光部で受光される拡散反射光の光量と、他の2つの受光部で受光される拡散反射光の光量の和とを一致させるための係数を予め設定しておけば、その係数に基づいてゲイン調整を行った後、中央の受光部における受光量から他の2つの受光部における受光量を差し引くことにより、受光量のうちの拡散反射光の光量を除去して、正反射光の光量を検出することができる。したがって、その検出した正反射光の光量に基づいて対象物の光沢度を検出すれば、ビームスプリッタを用いずに対象物の光沢度を検出でき、光電センサをより小型化できる。   Since the diffuse reflection light is generated by randomly changing the polarization plane when the irradiation light is reflected by the object, the ratio of the diffuse reflection light having the first polarization plane and the diffuse reflection light having the second polarization plane is It is almost the same. Therefore, if a coefficient for matching the amount of diffuse reflected light received by the central light receiving unit with the sum of the amount of diffuse reflected light received by the other two light receiving units is set in advance, After performing gain adjustment based on the coefficient, the amount of diffusely reflected light in the received light amount is removed by subtracting the received light amount in the other two light receiving units from the received light amount in the central light receiving unit, and regular reflection The amount of light can be detected. Therefore, if the glossiness of the object is detected based on the detected amount of specularly reflected light, the glossiness of the object can be detected without using a beam splitter, and the photoelectric sensor can be further miniaturized.

また、中央の受光部と投光部とが並ぶ方向と、3つの受光部が並ぶ方向とがほぼ直交しているので、センサ本体と対象物との距離が変化した場合でも、各受光部における受光量の比はほとんど変化しない。すなわち、投光部から対象物に所定の入射角で入射し、対象物において所定の反射角で反射した光がセンサ本体に到達する位置は、センサ本体と対象物との距離の変化に応じて、投光部と受光部とが並ぶ方向に沿ってずれることとなるが、中央の受光部と投光部とが並ぶ方向と、3つの受光部が並ぶ方向とがほぼ直交していれば、センサ本体と対象物との距離が変化した場合でも、各受光部における受光量がほぼ同じ割合で変化するので、各受光部における受光量の比はほとんど変化しない。したがって、センサ本体と対象物との距離が変化した場合でも、予め設定されている同じ係数に基づいてゲイン調整を行うことにより、精度よく対象物の光沢度を検出できる。   In addition, since the direction in which the center light receiving unit and the light projecting unit are arranged is substantially orthogonal to the direction in which the three light receiving units are arranged, even if the distance between the sensor main body and the object changes, The ratio of the amount of received light hardly changes. That is, the position where the light incident on the target object from the light projecting unit at a predetermined incident angle and reflected at the target object at the predetermined reflection angle reaches the sensor main body according to the change in the distance between the sensor main body and the target object. The light projecting unit and the light receiving unit will be displaced along the direction in which the light receiving unit and the light projecting unit are arranged in a direction that is substantially orthogonal to the direction in which the three light receiving units are arranged. Even when the distance between the sensor body and the object changes, the amount of light received at each light receiving portion changes at substantially the same rate, so the ratio of the amount of light received at each light receiving portion hardly changes. Therefore, even when the distance between the sensor main body and the object changes, the glossiness of the object can be accurately detected by performing gain adjustment based on the same preset coefficient.

さらに、第2偏光面を有する光が、中央の受光部に対して左右対称に配置された2つの受光部で受光されるような構成により、対象物における反射面の角度が変化した場合でも、これら2つの受光部における受光量の和が変化しにくい。すなわち、対象物における反射面の角度が変化すると、上記2つの受光部のうち一方の受光部と対象物との距離は近くなり受光量が増加するが、他方の受光部と対象物との距離がその分遠くなって受光量が減少するので、2つの受光部における受光量の和は変化しにくい。したがって、対象物における反射面の角度が変化した場合でも、予め設定されている同じ係数に基づいてゲイン調整を行うことにより、精度よく対象物の光沢度を検出できる。   Furthermore, even when the angle of the reflection surface of the object changes due to the configuration in which the light having the second polarization plane is received by the two light receiving units disposed symmetrically with respect to the central light receiving unit, The sum of the amounts of light received by these two light receiving portions hardly changes. That is, when the angle of the reflection surface of the object changes, the distance between one of the two light receiving parts and the object becomes closer and the amount of received light increases, but the distance between the other light receiving part and the object increases. However, since the amount of light received decreases and the amount of received light decreases, the sum of the amounts of light received by the two light receiving portions hardly changes. Therefore, even when the angle of the reflecting surface of the object changes, the glossiness of the object can be detected with high accuracy by performing gain adjustment based on the same preset coefficient.

本発明による光電センサは、上記投光部からの照射光及び対象物からの反射光が通過する投受光面を備え、上記投受光面には、上記投光部からの照射光が通過する投光領域と、対象物から上記3つの受光部に向かう反射光がそれぞれ通過する3つの受光領域とが形成され、上記第1フィルタは、上記投光領域及び上記中央の受光部に対応する受光領域に配置されており、上記第2フィルタは、上記中央の受光部以外の受光部に対応する受光領域に配置されている。   The photoelectric sensor according to the present invention includes a light projecting / receiving surface through which the irradiation light from the light projecting unit and the reflected light from the object pass, and the light projecting / receiving surface through which the irradiation light from the light projecting unit passes. A light region and three light receiving regions through which reflected light from the object toward the three light receiving units respectively pass are formed, and the first filter is a light receiving region corresponding to the light projecting region and the central light receiving unit. The second filter is disposed in a light receiving region corresponding to a light receiving unit other than the central light receiving unit.

このような構成によれば、投光部から投光領域を介して光を照射し、その照射光の対象物における反射光を3つの受光領域を介して受光することができる。この場合、投光領域と中央の受光領域を1つのフィルタ(第1フィルタ)で構成すれば、構造を簡略化し、製造コストを低減させることができる。   According to such a configuration, it is possible to irradiate light from the light projecting unit through the light projecting region, and to receive the reflected light of the irradiated light on the object through the three light receiving regions. In this case, if the light projecting area and the central light receiving area are configured by one filter (first filter), the structure can be simplified and the manufacturing cost can be reduced.

本発明による光電センサは、対象物から上記3つの受光部に向かう反射光の少なくとも一部をそれぞれ通過させる3つの受光スリットを備えて構成される。このような構成によれば、各受光部における受光量を必要十分な一定量以下に制限することができる。   The photoelectric sensor according to the present invention includes three light receiving slits that allow at least a part of reflected light from the object to the three light receiving units to pass therethrough. According to such a configuration, the amount of light received by each light receiving unit can be limited to a necessary and sufficient fixed amount or less.

本発明による光電センサにおいて、上記3つの受光スリットは、それぞれ長尺形状に形成され、各受光スリットの長手方向が、対応する受光部と上記投光部とが並ぶ方向にそれぞれ沿うように配置されている。   In the photoelectric sensor according to the present invention, each of the three light receiving slits is formed in an elongated shape, and the longitudinal direction of each light receiving slit is arranged along the direction in which the corresponding light receiving unit and the light projecting unit are aligned. ing.

このような構成によれば、センサ本体と対象物との距離が変化した場合でも、対象物において所定の反射角で反射した光が各受光部に到達する位置が、センサ本体と対象物との距離の変化に応じて、各受光スリットの長手方向に沿ってずれるだけで、センサ本体と対象物との距離の変化に伴う各受光スリットを通過する光量のばらつきを防止できる。したがって、センサ本体と対象物との距離が変化した場合でも、より精度よく対象物の光沢度を検出できる。   According to such a configuration, even when the distance between the sensor main body and the target object changes, the position where the light reflected at the predetermined reflection angle at the target object reaches each light receiving unit is between the sensor main body and the target object. By merely shifting along the longitudinal direction of each light receiving slit according to the change in distance, it is possible to prevent variations in the amount of light passing through each light receiving slit due to the change in the distance between the sensor body and the object. Therefore, even when the distance between the sensor body and the object changes, the glossiness of the object can be detected with higher accuracy.

本発明による光電センサにおいて、上記3つの受光部は、対象物との距離が所定範囲内にあるときにのみ対象物からの反射光を受光可能であり、上記3つの受光スリットの短手方向の長さは、上記所定範囲内で対象物が最も近接した状態における対象物からの反射光の径よりも短く形成されている。   In the photoelectric sensor according to the present invention, the three light receiving portions can receive the reflected light from the object only when the distance from the object is within a predetermined range, and the three light receiving slits are arranged in the short direction. The length is formed to be shorter than the diameter of the reflected light from the object in the state where the object is closest within the predetermined range.

このような構成によれば、センサ本体と対象物との距離が近く、対象物からの反射光の径が大きい場合に、その反射光の一部のみが受光スリットを通過するので、各受光部における受光量を必要十分な一定量以下に制限することができる。   According to such a configuration, when the distance between the sensor main body and the object is close and the diameter of the reflected light from the object is large, only a part of the reflected light passes through the light receiving slit. The amount of received light in can be limited to a necessary and sufficient fixed amount or less.

本発明による光電センサは、スライド可能に配置され、照射光の少なくとも一部を通過させる投光スリットが形成されたスリット板と、上記スリット板をスライド操作することにより、上記投光スリットを通過する照射光の光量を調整するための操作部とを備えて構成される。   The photoelectric sensor according to the present invention is slidably arranged, and passes through the light projection slit by sliding the slit plate and a slit plate formed with a light projection slit that allows at least part of the irradiation light to pass therethrough. And an operation unit for adjusting the amount of irradiation light.

このような構成によれば、スリット板をスライド操作して、対象物の大きさに応じて投光スリットを通過する照射光の光量を調整することにより、対象物における照射光の照射領域を変化させることができる。したがって、対象物の大きさに応じた照射光で、より精度よく光沢度を検出することができる。   According to such a configuration, the irradiation area of the irradiation light on the object is changed by sliding the slit plate and adjusting the amount of irradiation light passing through the light projection slit according to the size of the object. Can be made. Therefore, the glossiness can be detected with higher accuracy by the irradiation light according to the size of the object.

本発明による光電センサは、上記投光部に光を供給する光ファイバを備え、上記受光部は、対象物からの反射光の受光量に応じた電気信号を出力する光電変換素子を備えて構成される。   A photoelectric sensor according to the present invention includes an optical fiber that supplies light to the light projecting unit, and the light receiving unit includes a photoelectric conversion element that outputs an electrical signal corresponding to the amount of light received from an object. Is done.

このような構成によれば、投光部から照射する光は、センサ本体の外部から光ファイバにより投光部に供給し、受光部で受光する光は、電気信号に変換して出力することができる。外乱の影響を受けにくい光ファイバを介して投光部に光を供給すれば、より均一な照射光を得ることができるので、精度よく光沢度を検出することができる。一方、受光部で受光した光を光ファイバにより外部に出力するような構成とし、投光及び受光のいずれの経路にも光ファイバを採用すると、光ファイバにより搬送される光の減衰が大きくなるので、受光部で受光する光を電気信号に変換して出力するような構成とすることにより、光の減衰による検出精度の低下を防止できる。   According to such a configuration, the light emitted from the light projecting unit can be supplied from the outside of the sensor body to the light projecting unit via the optical fiber, and the light received by the light receiving unit can be converted into an electrical signal and output. it can. If light is supplied to the light projecting unit through an optical fiber that is not easily affected by disturbance, more uniform irradiation light can be obtained, and thus the glossiness can be detected with high accuracy. On the other hand, if the light received by the light receiving unit is output to the outside through an optical fiber, and the optical fiber is used for both the light projecting and light receiving paths, the attenuation of the light carried by the optical fiber increases. By adopting a configuration in which the light received by the light receiving unit is converted into an electric signal and output, it is possible to prevent a decrease in detection accuracy due to light attenuation.

本発明による光電センサの取付機構は、光電センサを支持する支持部材と、支持部材に連結され、光電センサを所定位置に取り付けるための取付部材とを備え、上記取付部材は、上記支持部材に対して所定角度範囲内(例えば、90°)で回動可能に連結されるとともに、上記支持部材を上記所定角度範囲内における任意の角度で保持することができる。   A mounting mechanism for a photoelectric sensor according to the present invention includes a support member that supports the photoelectric sensor, and a mounting member that is connected to the support member and mounts the photoelectric sensor at a predetermined position, and the mounting member is attached to the support member. Thus, the support member can be pivotably connected within a predetermined angle range (for example, 90 °), and the support member can be held at an arbitrary angle within the predetermined angle range.

また、本発明による光電センサの取付機構は、光ファイバにより光を搬送する光電センサに適用され、上記光電センサにおける上記光ファイバが取り付けられる面に対向して上記取付機構が配置され、上記支持部材及び上記取付部材の少なくとも一方には、上記光ファイバを通すための孔又は窪みが形成されている。   In addition, the photoelectric sensor mounting mechanism according to the present invention is applied to a photoelectric sensor that transports light through an optical fiber, the mounting mechanism is disposed facing a surface of the photoelectric sensor to which the optical fiber is mounted, and the support member. At least one of the attachment members is formed with a hole or a recess for allowing the optical fiber to pass therethrough.

本発明によれば、中央の受光部における受光量から他の2つの受光部における受光量を差し引くことにより、正反射光の光量を検出することができるので、その検出した正反射光の光量に基づいて対象物の光沢度を検出すれば、ビームスプリッタを用いずに対象物の光沢度を検出でき、光電センサをより小型化できる。また、中央の受光部と投光部とが並ぶ方向と、3つの受光部が並ぶ方向とがほぼ直交しているので、センサ本体と対象物との距離が変化した場合でも、各受光部における受光量の比はほとんど変化せず、精度よく対象物の光沢度を検出できる。さらに、第2偏光面を有する光が、中央の受光部に対して左右対称に配置された2つの受光部で受光されるような構成により、対象物における反射面の角度が変化した場合でも、これら2つの受光部における受光量の和が変化しにくく、精度よく対象物の光沢度を検出できる。   According to the present invention, the amount of specular reflected light can be detected by subtracting the amount of received light at the other two light receiving units from the amount of received light at the central light receiving unit. If the glossiness of the object is detected based on this, the glossiness of the object can be detected without using a beam splitter, and the photoelectric sensor can be further downsized. In addition, since the direction in which the center light receiving unit and the light projecting unit are arranged is substantially orthogonal to the direction in which the three light receiving units are arranged, even if the distance between the sensor main body and the object changes, The ratio of the amount of received light hardly changes, and the glossiness of the object can be detected with high accuracy. Furthermore, even when the angle of the reflection surface of the object changes due to the configuration in which the light having the second polarization plane is received by the two light receiving units disposed symmetrically with respect to the central light receiving unit, The sum of the amounts of light received by these two light receiving portions hardly changes, and the glossiness of the object can be detected with high accuracy.

本発明によれば、3つの受光部における受光量を受光スリットにより必要十分な一定量以下に制限することができる。各受光スリットの長手方向が、対応する受光部と投光部とが並ぶ方向にそれぞれ沿うように配置すれば、センサ本体と対象物との距離の変化に伴う各受光スリットを通過する光量のばらつきを防止できるので、より精度よく対象物の光沢度を検出できる。   According to the present invention, the amount of light received by the three light receiving portions can be limited to a necessary and sufficient fixed amount or less by the light receiving slit. If the longitudinal direction of each light receiving slit is arranged along the direction in which the corresponding light receiving part and light projecting part are aligned, the variation in the amount of light passing through each light receiving slit due to the change in the distance between the sensor body and the object Therefore, the glossiness of the object can be detected with higher accuracy.

本発明によれば、スリット板をスライド操作して、対象物の大きさに応じて投光スリットを通過する照射光の光量を調整することにより、対象物における照射光の照射領域を変化させることができるので、対象物の大きさに応じた照射光で、より精度よく光沢度を検出することができる。   According to the present invention, the irradiation area of the irradiation light on the object is changed by sliding the slit plate and adjusting the amount of irradiation light passing through the light projection slit according to the size of the object. Therefore, the glossiness can be detected with higher accuracy with the irradiation light according to the size of the object.

本発明によれば、外乱の影響を受けにくい光ファイバを介して投光部に光を供給することにより、より均一な照射光を得ることができるので、より精度よく光沢度を検出することができるとともに、受光部で受光する光を電気信号に変換して出力することにより、光の減衰による検出精度の低下を防止できる。   According to the present invention, more uniform irradiation light can be obtained by supplying light to the light projecting unit via an optical fiber that is not easily affected by disturbances, so that the glossiness can be detected more accurately. In addition, by converting the light received by the light receiving unit into an electrical signal and outputting it, it is possible to prevent a decrease in detection accuracy due to light attenuation.

図1は、本発明の実施の形態による光電センサ1の一構成例を示す概念図である。図1に示すように、この光電センサ1は、対象物4に対して光を照射するとともに、対象物4からの反射光を受光するセンサ本体2と、センサ本体2に接続されたコントローラ3とを備えている。この光電センサ1は、工場の生産ライン等に適用され、生産ライン上を搬送される物品(対象物4)に対して光を照射することにより、その反射光の受光量に基づいて対象物4の光沢度を検出することができる。これにより、例えば、光沢度の高いフィルム状の保護シートが物品に被せられているか否かの判別などを行うことができる。   FIG. 1 is a conceptual diagram showing a configuration example of a photoelectric sensor 1 according to an embodiment of the present invention. As shown in FIG. 1, the photoelectric sensor 1 irradiates light on the object 4 and receives a reflected light from the object 4, and a controller 3 connected to the sensor body 2. It has. This photoelectric sensor 1 is applied to a production line of a factory, etc., and irradiates light on an article (object 4) conveyed on the production line, so that the object 4 is based on the amount of received reflected light. Can be detected. Thereby, for example, it is possible to determine whether or not the article is covered with a film-like protective sheet having high glossiness.

センサ本体2は、対象物4に向けて光を照射するための1つ投光部5と、対象物4からの反射光を受光するための3つの受光部6とを備えている。センサ本体2には、投光部5からの照射光及び対象物4からの反射光が通過する投受光面7が形成されている。投光部5には、コントローラ3から光ファイバ8を介して光が供給されており、光ファイバ8からの光が、投光スリット9及び投光レンズ10を介して、投受光面7に形成された投光領域11を通って対象物4に投光される。投光領域11は、所定の偏光面を有する光のみを通過させる第1フィルタ12により構成されており、この例では、いわゆるP偏光のみが投光領域11を通過して対象物4に投光されるようになっている。   The sensor body 2 includes one light projecting unit 5 for irradiating light toward the object 4 and three light receiving units 6 for receiving reflected light from the object 4. The sensor body 2 is formed with a light projecting / receiving surface 7 through which irradiation light from the light projecting unit 5 and reflected light from the object 4 pass. Light is supplied to the light projecting unit 5 from the controller 3 through the optical fiber 8, and the light from the optical fiber 8 is formed on the light projecting / receiving surface 7 through the light projecting slit 9 and the light projecting lens 10. The target 4 is projected through the projected region 11. The light projecting area 11 includes a first filter 12 that allows only light having a predetermined polarization plane to pass. In this example, only so-called P-polarized light passes through the light projecting area 11 and is projected onto the object 4. It has come to be.

センサ本体2からの照射光が対象物4の反射面4Aで反射する際には、反射面4Aに対する入射角と等しい反射角で反射する正反射光と、入射角とは異なる任意の反射角で拡散するように反射する拡散反射光とが生じる。正反射光は、照射光と同じ偏光面を有するP偏光のみからなる。一方、拡散反射光は、照射光が対象物4で反射する際に偏光面がランダムに変化して発生するため、P偏光のみならず、P偏光に対して偏光面が90°傾斜したS偏光がほぼ同じ割合で含まれる。照射光から生じる正反射光と拡散反射光との割合は、対象物4の光沢度によって異なり、光沢度が高いほど正反射光の割合が高くなり、光沢度が低いほど正反射光の割合が低くなる。   When the irradiation light from the sensor body 2 is reflected by the reflection surface 4A of the object 4, the regular reflection light reflected at a reflection angle equal to the incident angle with respect to the reflection surface 4A and an arbitrary reflection angle different from the incident angle. Diffuse reflected light is reflected so as to diffuse. The regular reflection light consists only of P-polarized light having the same polarization plane as the irradiation light. On the other hand, the diffusely reflected light is generated by randomly changing the polarization plane when the irradiated light is reflected by the object 4, so that not only the P-polarized light but also the S-polarized light whose polarization plane is inclined by 90 ° with respect to the P-polarized light. Are included at approximately the same rate. The ratio between the specular reflection light and the diffuse reflection light generated from the irradiation light depends on the glossiness of the object 4. The higher the glossiness, the higher the ratio of the specular reflection light, and the lower the glossiness, the higher the ratio of the specular reflection light. Lower.

各受光部6には、例えばフォトダイオードにより構成される受光素子(光電変換素子)13が備えられている。投受光面7には、3つの受光素子13にそれぞれ対向する受光領域14が形成されており、対象物4からの反射光がこれらの受光領域14に入射する。3つの受光領域14のうちの1つは、照射光と同じ偏光面を有するP偏光のみを通過させる第1フィルタ12により構成されており、他の2つの受光領域14は、照射光とは異なる偏光面を有する光(例えば、S偏光)のみを通過させる第2フィルタ15により構成されている。   Each light receiving unit 6 is provided with a light receiving element (photoelectric conversion element) 13 constituted by, for example, a photodiode. On the light projecting / receiving surface 7, light receiving areas 14 respectively facing the three light receiving elements 13 are formed, and reflected light from the object 4 enters these light receiving areas 14. One of the three light receiving regions 14 is configured by the first filter 12 that passes only P-polarized light having the same polarization plane as the irradiation light, and the other two light receiving regions 14 are different from the irradiation light. The second filter 15 transmits only light having a polarization plane (for example, S-polarized light).

第1フィルタ12により構成される受光領域14から入射したP偏光は、受光レンズ16及び受光スリット17を介して、P偏光受光回路18に接続された受光素子13により受光される。第2フィルタ15により構成される受光領域14から入射したS偏光は、受光レンズ16及び受光スリット17を介して、S偏光受光回路19に接続された受光素子13により受光される。P偏光受光回路18及び2つのS偏光受光回路19は、共通の回路基板20の実装面に形成されており、この回路基板20に3つの受光素子13が実装されている。   The P-polarized light incident from the light receiving region 14 constituted by the first filter 12 is received by the light receiving element 13 connected to the P polarized light receiving circuit 18 through the light receiving lens 16 and the light receiving slit 17. S-polarized light incident from the light receiving region 14 constituted by the second filter 15 is received by the light receiving element 13 connected to the S polarized light receiving circuit 19 through the light receiving lens 16 and the light receiving slit 17. The P-polarized light receiving circuit 18 and the two S-polarized light receiving circuits 19 are formed on the mounting surface of the common circuit board 20, and the three light receiving elements 13 are mounted on the circuit board 20.

コントローラ3は、CPUを含む制御部21と、この制御部21に対して電気的に接続された発光回路22と、発光回路22に実装された発光素子23とを備えている。発光素子23は、例えば発光ダイオード(LED)により構成されており、発光素子23から照射された光が光ファイバ8を介してセンサ本体2の投光部5に供給されるようになっている。制御部21は、電気配線24を介してP偏光受光回路18及び2つのS偏光受光回路19に電気的に接続されている。制御部21は、発光回路22に供給する電圧を制御することにより、発光素子23から照射する光量を制御することができるとともに、各受光素子13における受光量に応じてP偏光受光回路18及びS偏光受光回路19から出力される電気信号に基づいて所定の演算を行うことにより、対象物4の光沢度を検出することができる。   The controller 3 includes a control unit 21 including a CPU, a light emitting circuit 22 electrically connected to the control unit 21, and a light emitting element 23 mounted on the light emitting circuit 22. The light emitting element 23 is configured by, for example, a light emitting diode (LED), and light emitted from the light emitting element 23 is supplied to the light projecting unit 5 of the sensor main body 2 through the optical fiber 8. The control unit 21 is electrically connected to the P-polarized light receiving circuit 18 and the two S-polarized light receiving circuits 19 via the electric wiring 24. The control unit 21 can control the amount of light emitted from the light emitting element 23 by controlling the voltage supplied to the light emitting circuit 22, and the P-polarized light receiving circuit 18 and S according to the amount of light received by each light receiving element 13. The glossiness of the object 4 can be detected by performing a predetermined calculation based on the electrical signal output from the polarized light receiving circuit 19.

図2は、図1のセンサ本体2の斜視図である。また、図3は、図2のセンサ本体2の縦断面図である。以下では、便宜上、図3における右側を前方、左側を後方、上側を上方、下側を下方として説明することとする。   FIG. 2 is a perspective view of the sensor body 2 of FIG. FIG. 3 is a longitudinal sectional view of the sensor main body 2 of FIG. In the following, for convenience, the right side in FIG. 3 will be described as the front, the left side as the rear, the upper side as the upper side, and the lower side as the lower side.

センサ本体2は、略中空直方体形状に形成された樹脂製のケーシング30により外形が区画されており、このケーシング30内に上述の投光部5及び受光部6を収容している。ケーシング30の後面の上端部及び下端部には、それぞれ左右方向にケーシング30を貫通する貫通孔31が形成されており、これらの貫通孔31にボルトなどの固定具を通して、後述する取付機構70にケーシング30を固定し、その取付機構70を所定の取付位置に取り付けることにより、センサ本体2を所望の位置に設置することができる。   The sensor body 2 has an outer shape defined by a resin casing 30 formed in a substantially hollow rectangular parallelepiped shape. The light projecting unit 5 and the light receiving unit 6 are accommodated in the casing 30. Through holes 31 penetrating the casing 30 in the left-right direction are formed in the upper and lower ends of the rear surface of the casing 30, and a fixing tool such as a bolt is passed through these through holes 31 to an attachment mechanism 70 described later. The sensor body 2 can be installed at a desired position by fixing the casing 30 and attaching the attachment mechanism 70 to a predetermined attachment position.

光ファイバ8の先端部は、前方に向かうにつれて下方に傾斜するようにケーシング30内に一直線上に固定されている。投光部5は、ケーシング30内の上部に配置され、光ファイバ8の先端部が延びる方向に沿って、前方に向かって斜め下方に光を照射する。一方、受光部6は、ケーシング30内の下部に配置され、後方に向かって斜め下方に入射する光を受光する。すなわち、投光部5から照射される光の光軸L1と、受光部6で受光される光の光軸L2とは交差している。ケーシング30の前面には略矩形の開口32が形成されており、この開口32にガラス又はプラスチックからなる透明板33が嵌め込まれている。投光部5からの照射光は、透明板33の上部を通って前方に向かい、対象物4から後方に向かう反射光が、透明板33の下部を通ってケーシング30内に入射する。   The tip of the optical fiber 8 is fixed in a straight line in the casing 30 so as to incline downward as it goes forward. The light projecting unit 5 is disposed in the upper portion of the casing 30 and irradiates light obliquely downward toward the front along the direction in which the tip of the optical fiber 8 extends. On the other hand, the light receiving unit 6 is disposed at a lower portion in the casing 30 and receives light incident obliquely downward toward the rear. That is, the optical axis L1 of the light emitted from the light projecting unit 5 and the optical axis L2 of the light received by the light receiving unit 6 intersect each other. A substantially rectangular opening 32 is formed in the front surface of the casing 30, and a transparent plate 33 made of glass or plastic is fitted into the opening 32. Irradiation light from the light projecting unit 5 travels forward through the upper part of the transparent plate 33, and reflected light traveling rearward from the object 4 enters the casing 30 through the lower part of the transparent plate 33.

投光レンズ10、受光レンズ16、受光素子13及び回路基板20は、保持部材34により一体的に保持されている。図4は、図3の保持部材34の斜視図である。図3及び図4に示すように、投光レンズ10は、略矩形の板状部10Aと、板状部10Aの後面から後方に向かって凸湾曲するように形成された入射面10Bと、板状部10Aの前面から前方に向かって入射面10Bよりも小さい曲率で凸湾曲するように形成された出射面10Cとが一体的に形成されることにより構成されている。投光レンズ10は、入射面10Bの頂点と出射面10Cの頂点とを結ぶ直線が、光ファイバ8からの光の光軸L1に沿うように配置される。   The light projecting lens 10, the light receiving lens 16, the light receiving element 13, and the circuit board 20 are integrally held by a holding member 34. FIG. 4 is a perspective view of the holding member 34 of FIG. As shown in FIGS. 3 and 4, the light projecting lens 10 includes a substantially rectangular plate-shaped portion 10 </ b> A, an incident surface 10 </ b> B formed so as to be convexly curved backward from the rear surface of the plate-shaped portion 10 </ b> A, It is configured by integrally forming an exit surface 10C formed so as to be convexly curved with a smaller curvature than the entrance surface 10B from the front surface of the shaped portion 10A toward the front. The light projecting lens 10 is arranged such that a straight line connecting the apex of the incident surface 10B and the apex of the output surface 10C is along the optical axis L1 of the light from the optical fiber 8.

保持部材34は、正面視略矩形の樹脂材料の上面に、下方に向かって窪んだ略矩形の凹部35が形成されることにより、正面視略U字状とされている(図4参照)。すなわち、保持部材34は、左右方向に延びる下保持部36と、下保持部36の左右両端部からそれぞれ上方に延びる側板部37とが一体的に形成されることにより構成されている。両側板部37の互いに対向する面には、それぞれ一直線状に延び、上下方向に対して上端部が下端部よりも前方に位置するように傾斜した収容溝38が形成されている。投光レンズ10は、その板状部10Aの左右両側縁部が収容溝38内に収容されるように上方から圧入されることにより、板状部10Aの下端縁が下保持部36の上面に当接した状態で凹部35内に配置される。   The holding member 34 is formed in a substantially U-shape when viewed from the front by forming a substantially rectangular recess 35 that is recessed downward on the upper surface of the substantially rectangular resin material when viewed from the front (see FIG. 4). That is, the holding member 34 is configured by integrally forming a lower holding portion 36 extending in the left-right direction and side plate portions 37 extending upward from both left and right end portions of the lower holding portion 36. The opposing surfaces of the side plate portions 37 are each formed with a receiving groove 38 that extends in a straight line and is inclined so that the upper end portion is positioned forward of the lower end portion with respect to the vertical direction. The light projecting lens 10 is press-fitted from above so that the left and right side edges of the plate-like portion 10A are housed in the housing groove 38, so that the lower edge of the plate-like portion 10A is placed on the upper surface of the lower holding portion 36. It arrange | positions in the recessed part 35 in the state contact | abutted.

投光レンズ10の後方には、投光スリット9が形成されたスリット板40が光軸L1にほぼ直交するように配置されている(図3参照)。投光スリット9は、スリット板40における光軸L1が通る位置に略円形の貫通孔が形成されることにより構成されている。光ファイバ8から照射される光の少なくとも一部は、投光スリット9を通って投光レンズ10の入射面10Bに入射し、投光レンズ10の出射面10Cから平行光となって投光される。スリット板40は、ケーシング30に対して左右方向にスライド可能に取り付けられている。スリット板40の上端部は、ケーシング30の上面に形成された開口41を通って外方に張り出しており、その張り出した部分がスリット板40を左右方向にスライド操作するための操作部42を構成している。   A slit plate 40 in which a light projection slit 9 is formed is disposed behind the light projection lens 10 so as to be substantially orthogonal to the optical axis L1 (see FIG. 3). The light projecting slit 9 is configured by forming a substantially circular through hole at a position where the optical axis L1 passes through the slit plate 40. At least a part of the light emitted from the optical fiber 8 enters the incident surface 10B of the projection lens 10 through the projection slit 9, and is projected as parallel light from the exit surface 10C of the projection lens 10. The The slit plate 40 is attached to the casing 30 so as to be slidable in the left-right direction. The upper end portion of the slit plate 40 projects outward through an opening 41 formed on the upper surface of the casing 30, and the projecting portion constitutes an operation unit 42 for sliding the slit plate 40 in the left-right direction. is doing.

保持部材34の下保持部36の前面には、後方に向かって窪んだ正面視略矩形の凹部43が左右方向に並べて3つ形成されており、それぞれの内部空間に受光レンズ16が収容されている。3つの凹部43は、左右方向にほぼ等間隔で一直線上に配置されている。一方、保持部材34の下保持部36の後面には、前方に向かって窪んだ背面視略矩形の凹部44が左右方向に並べて3つ形成されている。これらの凹部44は、受光レンズ16が収容された各凹部43の後方に区画壁45を隔てて対向しており、それぞれの内部空間に受光素子13が収容されている。   On the front surface of the lower holding portion 36 of the holding member 34, three concave portions 43 having a substantially rectangular shape in front view that are recessed rearward are formed side by side in the left-right direction, and the light receiving lens 16 is accommodated in each internal space. Yes. The three recesses 43 are arranged on a straight line at substantially equal intervals in the left-right direction. On the other hand, on the rear surface of the lower holding portion 36 of the holding member 34, three concave portions 44 having a substantially rectangular shape in rear view that are recessed forward are arranged in the left-right direction. These recesses 44 are opposed to the rear of each recess 43 in which the light receiving lens 16 is accommodated with a partition wall 45 therebetween, and the light receiving element 13 is accommodated in each internal space.

各受光レンズ16は、前面が平坦な入射面16Bを構成する略矩形の板状部16Aと、板状部16Aの後面から後方に向かって凸湾曲するように形成された出射面16Cとが一体的に形成されることにより構成されている。各受光レンズ16は、保持部材34の凹部43に前方から圧入されることにより、板状部16Aの周縁が凹部43の内面に当接した状態で収容される。各受光レンズ16は、入射面16Bが対象物4からの反射光の光軸L2に直交し、出射面16Cの頂点が光軸L2を通るように配置される。ケーシング30内に入射した対象物4からの反射光は、受光レンズ16を通過することにより集光され、その少なくとも一部が区画壁45に形成された受光スリット17を通って受光素子13により受光される。   Each light receiving lens 16 is integrally formed with a substantially rectangular plate-like portion 16A constituting an incident surface 16B having a flat front surface and an exit surface 16C formed so as to be convexly curved rearward from the rear surface of the plate-like portion 16A. It is comprised by forming. Each light receiving lens 16 is housed in a state where the peripheral edge of the plate-like portion 16 </ b> A is in contact with the inner surface of the concave portion 43 by being press-fitted into the concave portion 43 of the holding member 34. Each light receiving lens 16 is arranged such that the incident surface 16B is orthogonal to the optical axis L2 of the reflected light from the object 4, and the vertex of the output surface 16C passes through the optical axis L2. Reflected light from the object 4 that has entered the casing 30 is collected by passing through the light receiving lens 16, and at least part of the light is received by the light receiving element 13 through the light receiving slit 17 formed in the partition wall 45. Is done.

図5は、図1のセンサ本体2の正面図である。透明板33の後面には、2つの第1フィルタ12を一体的に構成する1枚の第1偏光フィルム51と、2つの第2フィルタ15をそれぞれ構成する2枚の第2偏光フィルム52とが貼り付けられ、各偏光フィルム51,52の前面全体で投受光面7を構成している。第1偏光フィルム51の前面における投光レンズ10に対向する領域は投光領域11を構成し、中央の受光レンズ16に対向する領域は中央の受光領域14を構成している。各第2偏光フィルム52の前面は、左右両側の受光レンズ16にそれぞれ対向する受光領域14を構成している。投光領域11と中央の受光領域14を1枚の偏光フィルム51で構成することにより、構造を簡略化し、製造コストを低減させることができる。   FIG. 5 is a front view of the sensor body 2 of FIG. On the rear surface of the transparent plate 33, there are one first polarizing film 51 that integrally constitutes the two first filters 12, and two second polarizing films 52 that respectively constitute the two second filters 15. The light projecting / receiving surface 7 is composed of the entire front surface of each of the polarizing films 51 and 52. A region facing the light projecting lens 10 on the front surface of the first polarizing film 51 constitutes a light projecting region 11, and a region facing the central light receiving lens 16 constitutes a central light receiving region 14. The front surface of each second polarizing film 52 constitutes a light receiving region 14 that faces the light receiving lenses 16 on both the left and right sides. By constructing the light projecting region 11 and the central light receiving region 14 with a single polarizing film 51, the structure can be simplified and the manufacturing cost can be reduced.

各偏光フィルム51,52は、所定の偏光面を有する光のみを通過させることができる1枚の略矩形のフィルム部材から作成される。すなわち、このフィルム部材を、投光領域11及び中央の受光領域14を一体的に構成する略T字状の部分(第1偏光フィルム51)と、左右の受光領域14をそれぞれ構成する2つの略矩形の部分(第2偏光フィルム52)とに切り分け、第1偏光フィルム51をP偏光の偏光面に合わせるとともに、第2偏光フィルム52を第1偏光フィルム51に対して90°回転させた状態でそれぞれ透明板33の後面に貼り付ける。これにより、第1偏光フィルム51にP偏光のみを通過させ、第2偏光フィルム52にS偏光のみを通過させる構成とすることができる。   Each of the polarizing films 51 and 52 is made of one substantially rectangular film member that can pass only light having a predetermined polarization plane. That is, the film member is composed of a substantially T-shaped portion (first polarizing film 51) that integrally configures the light projecting region 11 and the central light receiving region 14, and the two approximately constituting the left and right light receiving regions 14. In a state where the first polarizing film 51 is aligned with the polarization plane of the P-polarized light and the second polarizing film 52 is rotated by 90 ° with respect to the first polarizing film 51. Each is pasted on the rear surface of the transparent plate 33. Thereby, only the P polarized light can be passed through the first polarizing film 51 and only the S polarized light can be passed through the second polarizing film 52.

3つの受光領域14は、投光領域11の下方に隣接してほぼ等間隔で一直線上に配置されている。より具体的には、中央の受光領域14と投光領域11とが並ぶ方向、すなわち投光領域11から照射される光の光軸L1と、中央の受光領域14で受光される光の光軸L2とを結ぶ方向(上下方向)と、3つの受光領域14が並ぶ方向、すなわち3つの受光領域14でそれぞれ受光される光の光軸L2を結ぶ方向(左右方向)とが、ほぼ直交している。   The three light receiving areas 14 are arranged on a straight line at almost equal intervals adjacent to the lower side of the light projecting area 11. More specifically, the direction in which the central light receiving region 14 and the light projecting region 11 are arranged, that is, the optical axis L1 of the light emitted from the light projecting region 11 and the optical axis of the light received by the central light receiving region 14. The direction connecting L2 (up and down direction) and the direction in which the three light receiving regions 14 are arranged, that is, the direction connecting the optical axes L2 of the light received by the three light receiving regions 14 (right and left directions) are almost orthogonal to each other. Yes.

本実施の形態では、センサ本体2に形成された投受光面7の投光領域11を介して光を照射し、その照射光の対象物4における反射光を3つの受光領域14からセンサ本体2に入射させることができる。中央の受光領域14は、投光領域11と同じ偏光面を有するP偏光のみを通過させるので、対象物4における正反射光と、P偏光からなる拡散反射光とが、中央の受光領域14からセンサ本体2に入射する。一方、それ以外の左右2つの受光領域14は、投光領域11とは異なる偏光面を有するS偏光のみを通過させるので、S偏光からなる拡散反射光のみが、これら2つの受光領域14からセンサ本体2に入射する。   In the present embodiment, light is irradiated through the light projecting area 11 of the light projecting / receiving surface 7 formed on the sensor main body 2, and the reflected light of the irradiated light on the object 4 is transmitted from the three light receiving areas 14 to the sensor main body 2. Can be made incident. Since the central light receiving region 14 passes only P-polarized light having the same polarization plane as that of the light projecting region 11, specularly reflected light from the object 4 and diffusely reflected light composed of P-polarized light are transmitted from the central light receiving region 14. The light enters the sensor body 2. On the other hand, the other two left and right light receiving regions 14 pass only S-polarized light having a polarization plane different from that of the light projecting region 11, so that only diffusely reflected light composed of S-polarized light is detected from these two light receiving regions 14. Incident on the main body 2.

上述通り、拡散反射光は、照射光が対象物4で反射する際に偏光面がランダムに変化して発生するため、P偏光からなる拡散反射光とS偏光からなる拡散反射光との割合はほぼ同じである。したがって、中央の受光領域14を通過する拡散反射光の光量と、他の2つの受光領域14を通過する拡散反射光の光量の和とを一致させるための係数を予め設定して、コントローラ3のメモリ(図示せず)に記憶しておけば、制御部21は、その係数に基づいてゲイン調整を行った後、中央の受光領域14における受光量から他の2つの受光領域14における受光量を差し引くことにより、受光量のうちの拡散反射光の光量を除去して、正反射光の光量を検出することができる。したがって、その検出した正反射光の光量に基づいて対象物4の光沢度を検出すれば、ビームスプリッタを用いずに対象物4の光沢度を検出でき、光電センサ1をより小型化できる。   As described above, the diffusely reflected light is generated by randomly changing the polarization plane when the irradiated light is reflected by the object 4, so the ratio of the diffusely reflected light composed of P-polarized light and the diffusely reflected light composed of S-polarized light is It is almost the same. Therefore, a coefficient for matching the light amount of the diffuse reflected light passing through the central light receiving region 14 with the sum of the light amounts of the diffuse reflected light passing through the other two light receiving regions 14 is set in advance. If stored in a memory (not shown), the control unit 21 adjusts the gain based on the coefficient, and then calculates the received light amount in the other two light receiving regions 14 from the received light amount in the central light receiving region 14. By subtracting, the amount of diffusely reflected light in the amount of received light can be removed, and the amount of specularly reflected light can be detected. Therefore, if the glossiness of the object 4 is detected based on the detected amount of specularly reflected light, the glossiness of the object 4 can be detected without using a beam splitter, and the photoelectric sensor 1 can be further downsized.

また、中央の受光領域14と投光領域11とが並ぶ方向と、3つの受光領域14が並ぶ方向とがほぼ直交しているので、センサ本体2と対象物4との距離が変化した場合でも、各受光領域14における受光量の比はほとんど変化しない。図6は、センサ本体2と対象物4との距離に応じた光路の変化の一例を示す概略図である。図6に示すように、投光領域11から対象物4の反射面4Aに所定の入射角θ1で入射し、反射面4Aにおいて所定の反射角θ2で反射した光がセンサ本体2の投受光面7に到達する位置は、センサ本体2と対象物4との距離の変化に応じて、投光領域11と受光領域14とが並ぶ方向(上下方向)に沿ってずれる。   Further, since the direction in which the central light receiving region 14 and the light projecting region 11 are arranged and the direction in which the three light receiving regions 14 are arranged are substantially orthogonal, even when the distance between the sensor body 2 and the object 4 changes. The ratio of the amount of light received in each light receiving region 14 hardly changes. FIG. 6 is a schematic diagram illustrating an example of a change in the optical path according to the distance between the sensor body 2 and the object 4. As shown in FIG. 6, the light incident on the reflecting surface 4 </ b> A of the object 4 from the light projecting region 11 at a predetermined incident angle θ <b> 1 and reflected by the reflecting surface 4 </ b> A at the predetermined reflecting angle θ <b> 2 The position reaching 7 is shifted along the direction (vertical direction) in which the light projecting region 11 and the light receiving region 14 are arranged in accordance with the change in the distance between the sensor body 2 and the object 4.

すなわち、図6に実線で示すように、センサ本体2と対象物4との距離が近い場合には、対象物4からの反射光が投受光面7における上側に到達するのに対して、図6に破線で示すように、センサ本体2と対象物4との距離が遠い場合には、対象物4からの反射光が投受光面7における下側に到達する。中央の受光領域14と投光領域11とが並ぶ方向と、3つの受光領域14が並ぶ方向とがほぼ直交していれば、センサ本体2と対象物4との距離が変化した場合でも、各受光領域14における受光量がほぼ同じ割合で変化するので、各受光領域14における受光量の比はほとんど変化しない。したがって、センサ本体2と対象物4との距離が変化した場合でも、予め設定されている同じ係数に基づいてゲイン調整を行うことにより、精度よく対象物の光沢度を検出できる。   That is, as shown by the solid line in FIG. 6, when the distance between the sensor body 2 and the object 4 is short, the reflected light from the object 4 reaches the upper side of the light projecting / receiving surface 7, whereas FIG. As indicated by a broken line in FIG. 6, when the distance between the sensor body 2 and the object 4 is long, the reflected light from the object 4 reaches the lower side of the light projecting / receiving surface 7. If the direction in which the center light receiving region 14 and the light projecting region 11 are arranged and the direction in which the three light receiving regions 14 are arranged are almost orthogonal, even if the distance between the sensor body 2 and the object 4 changes, Since the amount of light received in the light receiving region 14 changes at substantially the same rate, the ratio of the amount of light received in each light receiving region 14 hardly changes. Therefore, even when the distance between the sensor main body 2 and the object 4 changes, the glossiness of the object can be accurately detected by performing gain adjustment based on the same preset coefficient.

図7は、図4の保持部材34の正面図である。図7では、投光レンズ10、受光レンズ16、受光素子13及び回路基板20を省略して示している。各受光スリット17は、区画壁45に対して略長方形状に形成されている。中央の受光スリット17は、その長手方向が上下方向に延びるように配置されている。これに対して、左右両側の受光スリット17は、上下方向に対して上端部が下端部よりも内側に位置するように傾斜した状態で配置されている。   FIG. 7 is a front view of the holding member 34 of FIG. In FIG. 7, the light projecting lens 10, the light receiving lens 16, the light receiving element 13, and the circuit board 20 are omitted. Each light receiving slit 17 is formed in a substantially rectangular shape with respect to the partition wall 45. The central light receiving slit 17 is arranged such that its longitudinal direction extends in the vertical direction. On the other hand, the left and right light receiving slits 17 are arranged in an inclined state so that the upper end portion is positioned inside the lower end portion with respect to the vertical direction.

より具体的には、各受光スリット17は、その長手方向が、対応する受光領域14と投光領域11とが並ぶ方向、すなわち対応する受光領域14で受光される光の光軸L2と、投光領域11から照射される光の光軸L1とを結ぶ方向に沿うように配置されている。図7では、左右両側の受光領域14で受光される光の光軸L2が対応する受光スリット17内に位置していないが、これは、投光領域11及び左右両側の受光領域14の各位置が左右方向にずれていることに基づいて、それらの受光領域14に対して左右方向に傾斜して光が入射するためであり、図7には表れていないが、各受光領域14に入射する光の光軸L2に沿って見たときには、各光軸L2が対応する受光スリット17を通っている。   More specifically, the longitudinal direction of each light receiving slit 17 is the direction in which the corresponding light receiving region 14 and the light projecting region 11 are arranged, that is, the optical axis L2 of the light received by the corresponding light receiving region 14, and the light projecting region. It arrange | positions so that the direction which connects the optical axis L1 of the light irradiated from the optical area | region 11 may be followed. In FIG. 7, the optical axis L2 of the light received by the light receiving areas 14 on both the left and right sides is not located in the corresponding light receiving slits 17, but this corresponds to the positions of the light projecting area 11 and the light receiving areas 14 on both the left and right sides. This is because light is incident on the light receiving regions 14 while being inclined in the left and right directions based on the fact that they are displaced in the left and right directions. Although not shown in FIG. When viewed along the optical axis L2 of light, each optical axis L2 passes through the corresponding light receiving slit 17.

図8は、センサ本体2と対象物4との距離に応じた受光スリット17を通過する光量の変化の一例を示す概略図であって、(a)は、センサ本体2と対象物4との距離が比較的遠い場合、(b)は、(a)よりもセンサ本体2と対象物4との距離が近い場合、(c)は、(b)よりもさらにセンサ本体2と対象物4との距離が近い場合を示している。センサ本体2と対象物4との距離が比較的遠い場合には、図8(a)に示すように、対象物4からの反射光は照射面積が小さく、反射光の全てが受光スリット17を通過する。   FIG. 8 is a schematic diagram illustrating an example of a change in the amount of light passing through the light receiving slit 17 according to the distance between the sensor body 2 and the target object 4, and (a) illustrates the relationship between the sensor body 2 and the target object 4. When the distance is relatively long, (b) indicates that the distance between the sensor body 2 and the object 4 is shorter than (a), and (c) indicates that the sensor body 2 and the object 4 are further The case where the distance of is near is shown. When the distance between the sensor body 2 and the object 4 is relatively long, as shown in FIG. 8A, the reflected light from the object 4 has a small irradiation area, and all of the reflected light passes through the light receiving slit 17. pass.

図8(a)の場合よりもセンサ本体2と対象物4との距離が近くなると、図8(b)に示すように、対象物4からの反射光は、受光スリット17の長手方向に沿って下方に遷移し、その照射面積が広がる。このとき、反射光は、受光スリット17の長手方向に広がる比率よりも短手方向に広がる比率の方が大きく、受光スリット17の短手方向に沿った両端部の光が受光スリット17の通過を遮られる。   When the distance between the sensor main body 2 and the object 4 is shorter than in the case of FIG. 8A, the reflected light from the object 4 is along the longitudinal direction of the light receiving slit 17 as shown in FIG. 8B. Transitions downward and the irradiation area increases. At this time, the ratio that the reflected light spreads in the short direction is larger than the ratio that spreads in the longitudinal direction of the light receiving slit 17, and the light at both ends along the short direction of the light receiving slit 17 passes through the light receiving slit 17. Blocked.

図8(b)の場合よりもさらにセンサ本体2と対象物4との距離が近くなると、図8(c)に示すように、対象物4からの反射光は、受光スリット17の長手方向に沿ってさらに下方に遷移するとともに、その照射面積がさらに広がり、受光スリット17の短手方向に沿った両端部及び長手方向に沿った下端部の光が受光スリット17の通過を遮られる。このように、各受光領域14に対応付けて受光スリット17を設けることにより、センサ本体2と対象物4との距離が近く、対象物4からの反射光の径が大きい場合に、その反射光の一部のみが受光スリット17を通過するので、各受光部6における受光量を必要十分な一定量以下に制限することができる。   When the distance between the sensor body 2 and the object 4 is further reduced than in the case of FIG. 8B, the reflected light from the object 4 is transmitted in the longitudinal direction of the light receiving slit 17 as shown in FIG. Further, the irradiation area further increases, and light at both ends along the short side of the light receiving slit 17 and light at the lower end along the longitudinal direction are blocked from passing through the light receiving slit 17. In this way, by providing the light receiving slits 17 in association with the respective light receiving regions 14, when the distance between the sensor body 2 and the object 4 is short and the diameter of the reflected light from the object 4 is large, the reflected light Since only a part of the light passes through the light receiving slit 17, the amount of light received by each light receiving unit 6 can be limited to a necessary and sufficient fixed amount or less.

本実施の形態では、図7に示すように、各受光スリット17の長手方向が、対応する受光領域14と投光領域11とが並ぶ方向にそれぞれ沿うように配置されているので、センサ本体2と対象物4との距離の変化に伴う各受光スリット17を通過する光量の変化は、いずれも図8に示すような態様となる。したがって、センサ本体2と対象物4との距離が変化した場合でも、対象物4において所定の反射角で反射した光が各受光領域14に到達する位置が、センサ本体2と対象物4との距離の変化に応じて、各受光スリット17の長手方向に沿ってずれるだけで、センサ本体2と対象物4との距離の変化に伴う各受光スリット17を通過する光量のばらつきを防止できる。したがって、センサ本体2と対象物4との距離が変化した場合でも、より精度よく対象物4の光沢度を検出できる。   In the present embodiment, as shown in FIG. 7, since the longitudinal direction of each light receiving slit 17 is arranged along the direction in which the corresponding light receiving region 14 and the light projecting region 11 are arranged, the sensor body 2 The change in the amount of light passing through each light receiving slit 17 in accordance with the change in the distance between the object 4 and the object 4 is as shown in FIG. Therefore, even when the distance between the sensor body 2 and the object 4 changes, the position at which the light reflected by the object 4 at a predetermined reflection angle reaches each light receiving region 14 is between the sensor body 2 and the object 4. By merely shifting along the longitudinal direction of each light receiving slit 17 according to the change in distance, it is possible to prevent variation in the amount of light passing through each light receiving slit 17 due to the change in the distance between the sensor body 2 and the object 4. Therefore, even when the distance between the sensor body 2 and the object 4 changes, the glossiness of the object 4 can be detected with higher accuracy.

また、対象物4からの反射光に含まれるS偏光が、中央の受光領域14に対して左右対称に配置された2つの受光領域14を通過するので、対象物4における反射面4Aの角度が変化した場合でも、これら2つの受光領域14における受光量の和が変化しにくい。すなわち、対象物4における反射面4Aの角度が変化すると、上記2つの受光領域14のうち一方の受光領域14と対象物4との距離は近くなり、例えば図8(c)に示すように受光量が増加するが、他方の受光領域14と対象物4との距離がその分遠くなって、例えば図8(a)に示すように受光量が減少するので、2つの受光領域14における受光量の和は変化しにくい。したがって、対象物4における反射面4Aの角度が変化した場合でも、予め設定されている同じ係数に基づいてゲイン調整を行うことにより、精度よく対象物の光沢度を検出できる。   In addition, since the S-polarized light included in the reflected light from the object 4 passes through the two light receiving regions 14 arranged symmetrically with respect to the central light receiving region 14, the angle of the reflecting surface 4A of the object 4 is Even if it changes, the sum of the received light amounts in these two light receiving regions 14 is unlikely to change. That is, when the angle of the reflecting surface 4A in the object 4 changes, the distance between one of the two light receiving areas 14 and the object 4 becomes shorter, and for example, as shown in FIG. The amount of light increases, but the distance between the other light receiving region 14 and the object 4 increases accordingly, and the amount of received light decreases, for example, as shown in FIG. The sum of is difficult to change. Therefore, even when the angle of the reflecting surface 4A in the object 4 changes, the glossiness of the object can be detected with high accuracy by performing gain adjustment based on the same preset coefficient.

図9は、図3のスリット板40の取付態様を示す斜視図である。光ファイバ8の先端部には、この先端部をケーシング30内の所定位置に位置決めするための位置決め部材60が取り付けられている。スリット板40は、この位置決め部材60に対して左右方向にスライド可能に取り付けられている。   FIG. 9 is a perspective view showing an attachment mode of the slit plate 40 of FIG. A positioning member 60 for positioning the distal end portion at a predetermined position in the casing 30 is attached to the distal end portion of the optical fiber 8. The slit plate 40 is attached to the positioning member 60 so as to be slidable in the left-right direction.

光ファイバ8の先端部は、位置決め部材60の後面に取り付けられている。位置決め部材60の前面には、後方に向かって窪んだ凹部61が形成されており、この凹部61の底面に対して前方に所定間隔を隔てて、左右方向に延びるガイド部材62が配置されている。ガイド部材62の左右両端部は、位置決め部材60の前面に結合されている。   The tip of the optical fiber 8 is attached to the rear surface of the positioning member 60. A recess 61 that is recessed rearward is formed on the front surface of the positioning member 60, and a guide member 62 that extends in the left-right direction is disposed at a predetermined interval forward from the bottom surface of the recess 61. . Both left and right ends of the guide member 62 are coupled to the front surface of the positioning member 60.

スリット板40は、位置決め部材60の前面に沿って配置された本体部63と、本体部63の上端部に結合された断面略コ字状の係合部64と、係合部64の上端部と操作部42とを連結する連結部65とが一体的に形成されることにより構成されている。投光スリット9は、本体部63を前後方向に貫通するように形成されている。係合部64は、位置決め部材60の凹部61とガイド部材62との間の空間に配置され、ガイド部材62に対して左右方向にスライド可能に係合している。   The slit plate 40 includes a main body portion 63 disposed along the front surface of the positioning member 60, an engagement portion 64 having a substantially U-shaped cross section coupled to the upper end portion of the main body portion 63, and an upper end portion of the engagement portion 64. And a connecting portion 65 that connects the operating portion 42 and the operating portion 42 are integrally formed. The light projection slit 9 is formed so as to penetrate the main body 63 in the front-rear direction. The engaging portion 64 is disposed in a space between the concave portion 61 of the positioning member 60 and the guide member 62 and engages with the guide member 62 so as to be slidable in the left-right direction.

操作部42は、左右方向に延びる平面視略長方形状の本体部66と、本体部66の左右方向中央部に前後方向に延びるように突出形成された突部67とが一体的に形成されることにより構成されている。スリット板40の連結部65は、操作部42の本体部66の左右方向中央部に連結されている。したがって、上方から操作部42に指を当てて左右方向に操作すれば、スリット板40を左右方向にスライドさせることができる。操作部42の突部67は、操作部42を左右方向に操作する際の滑り止めとして機能する。   The operation portion 42 is integrally formed with a main body portion 66 having a substantially rectangular shape in plan view extending in the left-right direction and a protrusion 67 formed so as to extend in the front-rear direction at the center portion in the left-right direction of the main body portion 66. It is constituted by. The connecting portion 65 of the slit plate 40 is connected to the central portion in the left-right direction of the main body portion 66 of the operation portion 42. Therefore, the slit plate 40 can be slid in the left-right direction by operating the left-right direction by placing a finger on the operation unit 42 from above. The protrusion 67 of the operation unit 42 functions as a slip stopper when operating the operation unit 42 in the left-right direction.

位置決め部材60には、光ファイバ8からの光を通すための貫通孔(図示せず)が、位置決め部材60を前後方向に貫通するように形成されており、この貫通孔の前方に、スリット板40の本体部63に形成された投光スリット9が対向している。スリット板40を左右方向にスライド操作すると、上記貫通孔と投光スリット9とが前後方向に重なり合う面積が変化し、これにより、投光スリット9を通過する照射光の光量が変化する。このような構成によれば、スリット板40をスライド操作して、対象物4の大きさに応じて投光スリット9を通過する照射光の光量を調整することにより、対象物4における照射光の照射領域を変化させることができる。したがって、対象物4の大きさに応じた照射光で、より精度よく光沢度を検出することができる。   A through hole (not shown) for passing light from the optical fiber 8 is formed in the positioning member 60 so as to penetrate the positioning member 60 in the front-rear direction, and a slit plate is disposed in front of the through hole. The light projection slits 9 formed in the 40 main body parts 63 are opposed to each other. When the slit plate 40 is slid in the left-right direction, the area in which the through hole and the light projecting slit 9 overlap in the front-rear direction is changed, thereby changing the amount of irradiation light passing through the light projecting slit 9. According to such a configuration, the slit plate 40 is slid to adjust the amount of irradiation light that passes through the light projection slit 9 according to the size of the object 4, so that the irradiation light of the object 4 can be adjusted. The irradiation area can be changed. Therefore, the glossiness can be detected with higher accuracy by the irradiation light corresponding to the size of the object 4.

また、本実施の形態では、投光部5から照射する光は、センサ本体2の外部から光ファイバ8により投光部5に供給し、受光部6で受光する光は、受光素子13で電気信号に変換して出力することができる。LEDなどと比べて外乱の影響を受けにくい光ファイバ8を介して投光部5に光を供給すれば、より均一な照射光を得ることができるので、精度よく光沢度を検出することができる。一方、受光部6で受光した光を光ファイバにより外部に出力するような構成とし、投光及び受光のいずれの経路にも光ファイバを採用すると、光ファイバにより搬送される光の減衰が大きくなるので、本実施の形態のように受光部6で受光する光を電気信号に変換して出力するような構成とすることにより、光の減衰による検出精度の低下を防止できる。   In the present embodiment, the light emitted from the light projecting unit 5 is supplied from the outside of the sensor body 2 to the light projecting unit 5 through the optical fiber 8, and the light received by the light receiving unit 6 is electrically received by the light receiving element 13. It can be converted into a signal and output. If light is supplied to the light projecting unit 5 through the optical fiber 8 which is less susceptible to disturbance compared to an LED or the like, more uniform irradiation light can be obtained, so that the glossiness can be detected with high accuracy. . On the other hand, if the light received by the light receiving unit 6 is configured to be output to the outside through an optical fiber, and the optical fiber is used for both the light projecting and light receiving paths, the attenuation of the light carried by the optical fiber increases. Therefore, the configuration in which the light received by the light receiving unit 6 is converted into an electrical signal and output as in the present embodiment can prevent a decrease in detection accuracy due to light attenuation.

図10は、センサ本体2の取付機構70の一構成例を示す分解斜視図である。図11は、図10の取付機構70がセンサ本体2に取り付けられた状態を示す背面図である。この取付機構70は、センサ本体2を支持する支持部材71と、支持部材71に連結され、センサ本体2を所定位置に取り付けるための取付部材72とを備えている。   FIG. 10 is an exploded perspective view showing one configuration example of the attachment mechanism 70 of the sensor body 2. FIG. 11 is a rear view showing a state in which the attachment mechanism 70 of FIG. 10 is attached to the sensor main body 2. The attachment mechanism 70 includes a support member 71 that supports the sensor body 2 and an attachment member 72 that is connected to the support member 71 and attaches the sensor body 2 to a predetermined position.

支持部材71は、1枚の金属板により屈曲形成され、センサ本体2の背面に対向する主板部73と、主板部73の左右方向の一端縁における上端部及び下端部からそれぞれ前方に向かって延び、支持部材71をセンサ本体2に固定するための2つの固定板部74とを備えている。各固定板部74には、前後方向に沿って延びる長孔75が形成されており、これらの長孔75を介してセンサ本体2の貫通孔31(図2参照)に左右方向一端面側からボルトなどの固定具76を通し、センサ本体2の左右方向他端面側に配置された連結板77と連結することにより、センサ本体2を支持部材71に固定することができる。   The support member 71 is bent by a single metal plate and extends forward from the main plate portion 73 facing the back surface of the sensor main body 2 and the upper end portion and the lower end portion at one end edge in the left-right direction of the main plate portion 73. , And two fixing plate portions 74 for fixing the support member 71 to the sensor main body 2. Each fixed plate portion 74 is formed with a long hole 75 extending in the front-rear direction, and the through-hole 31 (see FIG. 2) of the sensor main body 2 is connected to the through-hole 31 (see FIG. 2) of the sensor body 2 from the left and right end surfaces. The sensor main body 2 can be fixed to the support member 71 by passing through a fixture 76 such as a bolt and connecting to a connecting plate 77 disposed on the other end surface side of the sensor main body 2 in the left-right direction.

取付部材72は、1枚の金属板により屈曲形成され、支持部材71の主板部73に当接する主板部78と、主板部78の下端縁から後方に向かって延び、取付部材72を所定位置に取り付けるための取付板部79とを備えている。取付板部79には、左右方向に延びる長孔80と、前後方向に延びる長孔81とが形成されており、これらの長孔80,81にそれぞれ固定具(図示せず)を通して固定することにより、前後左右に位置調整を行いつつセンサ本体2を固定することができる。   The mounting member 72 is bent by a single metal plate, extends to the rear from the main plate portion 78 that contacts the main plate portion 73 of the support member 71, and the lower end edge of the main plate portion 78, and moves the mounting member 72 to a predetermined position. And a mounting plate portion 79 for mounting. A long hole 80 extending in the left-right direction and a long hole 81 extending in the front-rear direction are formed in the mounting plate portion 79, and each of the long holes 80, 81 is fixed through a fixture (not shown). Thus, the sensor body 2 can be fixed while adjusting the position in the front-rear and left-right directions.

取付部材72の主板部78には、センサ本体2の背面の中心位置に対向する位置に挿通孔82が形成されており、この挿通孔82にボルトなどの軸部材83が通され、支持部材71の主板部73に形成されたねじ孔84に固定されることにより、取付部材72と支持部材71とが連結される。このとき、軸部材83は、取付部材72が支持部材71に対して軸部材83を中心に回動でき、かつ、任意の角度で保持することができる程度の締付力でねじ孔84に固定される。   An insertion hole 82 is formed in the main plate portion 78 of the mounting member 72 at a position facing the center position of the back surface of the sensor body 2, and a shaft member 83 such as a bolt is passed through the insertion hole 82, and the support member 71. The attachment member 72 and the support member 71 are connected by being fixed to the screw hole 84 formed in the main plate portion 73. At this time, the shaft member 83 is fixed to the screw hole 84 with such a tightening force that the mounting member 72 can rotate around the shaft member 83 with respect to the support member 71 and can be held at an arbitrary angle. Is done.

取付部材72の主板部78には、挿通孔82を中心として周方向に約90°の角度範囲で円弧状のガイド孔85が形成されている。このガイド孔85にボルトなどのガイド部材86が通され、支持部材71の主板部73に形成されたねじ孔87に固定されることにより、ガイド部材86がガイド孔85に沿ってスライド可能になる。これにより、取付部材72及び支持部材71は、軸部材83を中心に、ガイド部材86がガイド孔85の一端に当接した状態と、ガイド孔85の他端に当接した状態との間で、互いに回動可能に連結される。   An arcuate guide hole 85 is formed in the main plate portion 78 of the mounting member 72 in an angular range of about 90 ° in the circumferential direction around the insertion hole 82. A guide member 86 such as a bolt is passed through the guide hole 85 and is fixed to a screw hole 87 formed in the main plate portion 73 of the support member 71, so that the guide member 86 can slide along the guide hole 85. . Thereby, the attachment member 72 and the support member 71 are between the state in which the guide member 86 is in contact with one end of the guide hole 85 and the state in which the other end of the guide hole 85 is in contact with the shaft member 83 as the center. Are connected to each other so as to be rotatable.

図12は、取付部材72に対して支持部材71を回動させる際の態様を示す背面図であり、(a)は、ガイド部材86がガイド孔85の一端(下端)に当接した状態、(b)は、ガイド部材86がガイド孔85の他端(上端)に当接した状態を示している。   FIG. 12 is a rear view showing an aspect when the support member 71 is rotated with respect to the mounting member 72, and (a) is a state in which the guide member 86 is in contact with one end (lower end) of the guide hole 85, (B) shows a state in which the guide member 86 is in contact with the other end (upper end) of the guide hole 85.

図11に示すように、ガイド部材86がガイド孔85の中央部にある状態から、センサ本体2を図中の反時計回りに回転させると、ガイド部材86がガイド孔85に沿って下方にスライドし、約45°回転したときにガイド部材86がガイド孔85の下端に当接する(図12(a)参照)。一方、図11に示す状態から、センサ本体2を図中の時計回りに回転させると、ガイド部材86がガイド孔85に沿って上方にスライドし、約45°回転したときにガイド部材86がガイド孔85の上端に当接する(図12(b)参照)。したがって、センサ本体2は、取付機構70により約90°の角度範囲内で回転可能に取り付けられることとなる。   As shown in FIG. 11, when the sensor body 2 is rotated counterclockwise in the drawing from the state where the guide member 86 is in the center of the guide hole 85, the guide member 86 slides downward along the guide hole 85. Then, the guide member 86 comes into contact with the lower end of the guide hole 85 when rotated by about 45 ° (see FIG. 12A). On the other hand, when the sensor body 2 is rotated clockwise in the drawing from the state shown in FIG. 11, the guide member 86 slides upward along the guide hole 85 and the guide member 86 is guided by about 45 °. It contacts the upper end of the hole 85 (see FIG. 12B). Therefore, the sensor main body 2 is attached by the attachment mechanism 70 so as to be rotatable within an angle range of about 90 °.

この光電センサ1により光沢度を検出することができる物品に被せられる保護シートは、通常、いわゆる延伸フィルムであって、フィルム成形時の延伸方向に応じて光の屈折率が部分的に異なるといった特性を有している。このような屈折率の特性は、保護シートをその面内で回転させると、ほぼ90°毎にピークが表れる。   The protective sheet placed on the article whose gloss level can be detected by the photoelectric sensor 1 is usually a so-called stretched film, and has a characteristic that the refractive index of light partially varies depending on the stretching direction at the time of film formation. have. Such a refractive index characteristic has a peak every 90 ° when the protective sheet is rotated in its plane.

本実施の形態では、センサ本体2を取付機構70により所定の取付位置に取り付けた状態で、取付部材72に対して支持部材71を回動させることにより、センサ本体2を約90°の角度範囲内における任意の角度で保持することができる。したがって、延伸フィルムの延伸方向に応じた屈折率の特性に合わせてセンサ本体2の角度を調整することにより、センサ本体2の投光領域11から照射した光の正反射光が中央の受光領域14に入射するように微調整することができる。特に、延伸フィルムの延伸方向に応じた特性のピークが表れる約90°の角度範囲内でセンサ本体2が回動可能なので、対象物の特性に適応させて良好に光沢度を検出することができる。   In the present embodiment, by rotating the support member 71 with respect to the mounting member 72 in a state where the sensor main body 2 is mounted at a predetermined mounting position by the mounting mechanism 70, the sensor body 2 is rotated at an angle range of about 90 °. Can be held at any angle within. Therefore, by adjusting the angle of the sensor body 2 in accordance with the refractive index characteristic according to the stretch direction of the stretched film, the regular reflection light of the light emitted from the light projecting area 11 of the sensor body 2 is received at the center light receiving area 14. Can be finely adjusted to be incident on the light. In particular, since the sensor body 2 can be rotated within an angle range of about 90 ° where a peak of characteristics corresponding to the stretch direction of the stretched film appears, it is possible to detect glossiness satisfactorily according to the characteristics of the object. .

図10〜図12では図示していないが、センサ本体2の背面には光ファイバ8(図3参照)が取り付けられているため、本実施の形態のようにセンサ本体2の背面に対向して取付機構70を配置するような構成では、光ファイバ8の引き回しを工夫する必要がある。すなわち、光ファイバ8が取付機構70に接触して湾曲又は屈曲すると、光ファイバ8により搬送される光が減衰するため、光ファイバ8が取付機構70に接触して湾曲したり屈曲したりするのを防止できるような構成が好ましい。   Although not shown in FIGS. 10-12, since the optical fiber 8 (refer FIG. 3) is attached to the back surface of the sensor main body 2, it opposes the back surface of the sensor main body 2 like this Embodiment. In the configuration in which the attachment mechanism 70 is arranged, it is necessary to devise the routing of the optical fiber 8. That is, when the optical fiber 8 comes into contact with the attachment mechanism 70 and is bent or bent, the light transported by the optical fiber 8 is attenuated, so that the optical fiber 8 comes into contact with the attachment mechanism 70 and is bent or bent. A configuration that can prevent this is preferable.

そこで、本実施の形態において、支持部材71の主板部73には、センサ本体2の背面における光ファイバ8の取付位置に対向する位置に窪み88が形成されるとともに、取付部材72の主板部78には、支持部材71が軸部材83を中心に約90°の角度範囲内で回動する際に支持部材71の窪み88が対向する範囲全体にわたって窪み89が形成されている。これにより、図11に示すようにガイド部材86がガイド孔85の中央部にある状態だけでなく、図12(a)に示すようにガイド部材86がガイド孔85の下端に当接している状態、及び、図12(b)に示すようにガイド部材86がガイド孔85の上端に当接している状態のいずれにおいても、支持部材71の窪み88と取付部材72の窪み89とが対向し、光ファイバ8を湾曲又は屈曲させることなくこれらの窪み88,89内に通すことができる。   Therefore, in the present embodiment, the main plate portion 73 of the support member 71 is formed with a recess 88 at a position facing the mounting position of the optical fiber 8 on the back surface of the sensor body 2, and the main plate portion 78 of the mounting member 72. In this case, a recess 89 is formed over the entire range where the recess 88 of the support member 71 faces when the support member 71 rotates within an angle range of about 90 ° about the shaft member 83. Accordingly, the guide member 86 is not only in the center portion of the guide hole 85 as shown in FIG. 11 but also in the state where the guide member 86 is in contact with the lower end of the guide hole 85 as shown in FIG. And in any state where the guide member 86 is in contact with the upper end of the guide hole 85 as shown in FIG. 12B, the recess 88 of the support member 71 and the recess 89 of the mounting member 72 are opposed to each other. The optical fiber 8 can be passed through these recesses 88 and 89 without being bent or bent.

ただし、本実施の形態では、支持部材71と取付部材72とが互いに約90°の角度範囲内で回動可能な構成について説明したが、回動可能な角度範囲は、約90°に限らず、例えば約180°であってもよい。また、この取付機構70は、本実施の形態のような構成を有する光電センサ1に限らず、他の種類の光電センサ、例えばビームスプリッタを用いて対象物からの反射光を分光するような構成を有する光電センサにも適用可能である。   However, in the present embodiment, the configuration in which the support member 71 and the mounting member 72 can rotate within an angle range of about 90 ° has been described, but the angle range in which the support member 71 and the attachment member 72 can rotate is not limited to about 90 °. For example, it may be about 180 °. Further, the mounting mechanism 70 is not limited to the photoelectric sensor 1 having the configuration as in the present embodiment, but is configured to separate the reflected light from the object using another type of photoelectric sensor, for example, a beam splitter. It is applicable also to the photoelectric sensor which has this.

また、本実施の形態では、投光部5からP偏光を照射するような構成について説明したが、このような構成に限らず、例えばS偏光を照射するような構成であってもよい。この場合、3つの受光領域14のうち中央の受光領域14がS偏光を通過させ、左右両側の受光領域14がP偏光を通過させるような構成であってもよい。   In the present embodiment, the configuration in which the P-polarized light is emitted from the light projecting unit 5 has been described. However, the configuration is not limited to this configuration, and for example, a configuration in which the S-polarized light is irradiated may be used. In this case, a configuration in which the central light receiving region 14 of the three light receiving regions 14 transmits S-polarized light and the left and right light receiving regions 14 transmit P-polarized light may be employed.

また、投光領域11及び受光領域14は、同一の投受光面7に形成されるような構成に限らず、対象物との距離が同一又は互いに異なる投光面及び受光面にそれぞれ形成されるような構成であってもよい。   In addition, the light projecting area 11 and the light receiving area 14 are not limited to the configuration formed on the same light projecting / receiving surface 7, but are formed on the light projecting surface and the light receiving surface having the same or different distance from the object. Such a configuration may be adopted.

本発明は、以上の実施の形態の内容に限定されるものではなく、請求項記載の範囲内において種々の変更が可能である。   The present invention is not limited to the contents of the above-described embodiment, and various modifications can be made within the scope of the claims.

本発明の実施の形態による光電センサの一構成例を示す概念図である。It is a conceptual diagram which shows the example of 1 structure of the photoelectric sensor by embodiment of this invention. 図1のセンサ本体の斜視図である。It is a perspective view of the sensor main body of FIG. 図2のセンサ本体の縦断面図である。It is a longitudinal cross-sectional view of the sensor main body of FIG. 図3の保持部材の斜視図である。It is a perspective view of the holding member of FIG. 図1のセンサ本体の正面図である。It is a front view of the sensor main body of FIG. センサ本体と対象物との距離に応じた光路の変化の一例を示す概略図である。It is the schematic which shows an example of the change of the optical path according to the distance of a sensor main body and a target object. 図4の保持部材の正面図である。It is a front view of the holding member of FIG. センサ本体と対象物との距離に応じた受光スリットを通過する光量の変化の一例を示す概略図であって、(a)は、センサ本体と対象物との距離が比較的遠い場合、(b)は、(a)よりもセンサ本体と対象物との距離が近い場合、(c)は、(b)よりもさらにセンサ本体と対象物との距離が近い場合を示している。It is the schematic which shows an example of the change of the light quantity which passes a light-receiving slit according to the distance of a sensor main body and a target object, Comprising: (a) is a case where the distance between a sensor main body and a target object is comparatively far (b ) Shows the case where the distance between the sensor body and the object is shorter than that in (a), and (c) shows the case where the distance between the sensor body and the object is further closer than in (b). 図3のスリット板の取付態様を示す斜視図である。It is a perspective view which shows the attachment aspect of the slit board of FIG. センサ本体の取付機構の一構成例を示す分解斜視図である。It is a disassembled perspective view which shows one structural example of the attachment mechanism of a sensor main body. 図10の取付機構がセンサ本体に取り付けられた状態を示す背面図である。It is a rear view which shows the state in which the attachment mechanism of FIG. 10 was attached to the sensor main body. 取付部材に対して支持部材を回動させる際の態様を示す背面図であり、(a)は、ガイド部材がガイド孔の一端(下端)に当接した状態、(b)は、ガイド部材がガイド孔の他端(上端)に当接した状態を示している。It is a rear view which shows the aspect at the time of rotating a supporting member with respect to an attachment member, (a) is the state which the guide member contact | abutted to the end (lower end) of a guide hole, (b) is a guide member The state which contact | abutted at the other end (upper end) of the guide hole is shown.

符号の説明Explanation of symbols

1 光電センサ
2 センサ本体
3 コントローラ
4 対象物
5 投光部
6 受光部
7 投受光面
8 光ファイバ
9 投光スリット
11 投光領域
12 第1フィルタ
13 受光素子
14 受光領域
15 第2フィルタ
17 受光スリット
40 スリット板
42 操作部
51 第1偏光フィルム
52 第2偏光フィルム
70 取付機構
71 支持部材
72 取付部材
DESCRIPTION OF SYMBOLS 1 Photoelectric sensor 2 Sensor main body 3 Controller 4 Object 5 Light projection part 6 Light reception part 7 Light projection / reception surface 8 Optical fiber 9 Light projection slit 11 Light projection area | region 12 1st filter 13 Light reception element 14 Light reception area 15 2nd filter 17 Light reception slit 40 Slit Plate 42 Operation Unit 51 First Polarizing Film 52 Second Polarizing Film 70 Mounting Mechanism 71 Support Member 72 Mounting Member

Claims (7)

対象物の光沢度を検出するための光電センサにおいて、
対象物に対して光を照射する1つの投光部と、
上記投光部に隣接してほぼ等間隔で一直線上に配置され、それぞれ対象物からの反射光を受光する3つの受光部とを備え、
上記3つの受光部のうちの中央の受光部と上記投光部とが並ぶ方向と、上記3つの受光部が並ぶ方向とがほぼ直交しており、
上記投光部及び上記中央の受光部は、所定の第1偏光面を有する光を通過させる第1フィルタを備え、
上記中央の受光部以外の受光部は、上記第1偏光面とは異なる第2偏光面を有する光を通過させる第2フィルタを備えたことを特徴とする光電センサ。
In a photoelectric sensor for detecting the glossiness of an object,
One light projecting unit for irradiating the object with light;
Three light receiving parts that are arranged on a straight line at substantially equal intervals adjacent to the light projecting part and receive reflected light from the object, respectively.
The direction in which the center light receiving part and the light projecting part of the three light receiving parts are arranged is substantially perpendicular to the direction in which the three light receiving parts are arranged,
The light projecting unit and the central light receiving unit include a first filter that transmits light having a predetermined first polarization plane,
The photoelectric sensor, wherein a light receiving unit other than the central light receiving unit includes a second filter that transmits light having a second polarization plane different from the first polarization plane.
上記投光部からの照射光及び対象物からの反射光が通過する投受光面を備え、
上記投受光面には、上記投光部からの照射光が通過する投光領域と、対象物から上記3つの受光部に向かう反射光がそれぞれ通過する3つの受光領域とが形成され、
上記第1フィルタは、上記投光領域及び上記中央の受光部に対応する受光領域に配置されており、
上記第2フィルタは、上記中央の受光部以外の受光部に対応する受光領域に配置されていることを特徴とする請求項1に記載の光電センサ。
Comprising a light projecting / receiving surface through which the irradiation light from the light projecting unit and the reflected light from the object pass,
On the light projecting / receiving surface, there are formed a light projecting region through which irradiation light from the light projecting unit passes and three light receiving regions through which reflected light directed from the object toward the three light receiving units respectively pass.
The first filter is disposed in a light receiving region corresponding to the light projecting region and the central light receiving unit,
The photoelectric sensor according to claim 1, wherein the second filter is arranged in a light receiving region corresponding to a light receiving unit other than the central light receiving unit.
対象物から上記3つの受光部に向かう反射光の少なくとも一部をそれぞれ通過させる3つの受光スリットを備えたことを特徴とする請求項1又は2に記載の光電センサ。   3. The photoelectric sensor according to claim 1, further comprising: three light receiving slits that allow at least a part of reflected light from the object to travel toward the three light receiving units. 上記3つの受光スリットは、それぞれ長尺形状に形成され、各受光スリットの長手方向が、対応する受光部と上記投光部とが並ぶ方向にそれぞれ沿うように配置されていることを特徴とする請求項3に記載の光電センサ。   Each of the three light receiving slits is formed in an elongated shape, and the longitudinal direction of each light receiving slit is arranged so as to be along the direction in which the corresponding light receiving unit and the light projecting unit are aligned. The photoelectric sensor according to claim 3. 上記3つの受光部は、対象物との距離が所定範囲内にあるときにのみ対象物からの反射光を受光可能であり、
上記3つの受光スリットの短手方向の長さは、上記所定範囲内で対象物が最も近接した状態における対象物からの反射光の径よりも短く形成されていることを特徴とする請求項4に記載の光電センサ。
The three light receiving parts can receive reflected light from the object only when the distance from the object is within a predetermined range,
5. The length of the three light receiving slits in the short direction is shorter than the diameter of the reflected light from the object in the state where the object is closest to within the predetermined range. The photoelectric sensor described in 1.
スライド可能に配置され、照射光の少なくとも一部を通過させる投光スリットが形成されたスリット板と、
上記スリット板をスライド操作することにより、上記投光スリットを通過する照射光の光量を調整するための操作部とを備えたことを特徴とする請求項1から5のいずれかに記載の光電センサ。
A slit plate that is slidably arranged and formed with a light projection slit that allows at least part of the irradiation light to pass through;
6. The photoelectric sensor according to claim 1, further comprising an operation unit configured to adjust a light amount of the irradiation light passing through the light projection slit by sliding the slit plate. .
上記投光部に光を供給する光ファイバを備え、
上記受光部は、対象物からの反射光の受光量に応じた電気信号を出力する光電変換素子を備えたことを特徴とする請求項1から6のいずれかに記載の光電センサ。
An optical fiber for supplying light to the light projecting unit;
The photoelectric sensor according to claim 1, wherein the light receiving unit includes a photoelectric conversion element that outputs an electrical signal corresponding to a received light amount of reflected light from an object.
JP2005213770A 2005-07-25 2005-07-25 Photoelectric sensor Pending JP2007033103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005213770A JP2007033103A (en) 2005-07-25 2005-07-25 Photoelectric sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005213770A JP2007033103A (en) 2005-07-25 2005-07-25 Photoelectric sensor

Publications (1)

Publication Number Publication Date
JP2007033103A true JP2007033103A (en) 2007-02-08

Family

ID=37792565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005213770A Pending JP2007033103A (en) 2005-07-25 2005-07-25 Photoelectric sensor

Country Status (1)

Country Link
JP (1) JP2007033103A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06282791A (en) * 1993-03-26 1994-10-07 Hamamatsu Photonics Kk Road surface state observation/display system
JPH09222361A (en) * 1995-12-12 1997-08-26 Omron Corp Detection device for color, etc., of material and inspection device using it
JP2000131243A (en) * 1998-10-21 2000-05-12 Omron Corp Reflection type sensor
JP2001311689A (en) * 2000-04-28 2001-11-09 Nichicon Corp Method for judging degree of glossiness on surface of object
JP2002168781A (en) * 2000-12-04 2002-06-14 Nichicon Corp Gloss sensor
JP2002310901A (en) * 2001-04-17 2002-10-23 Nichicon Corp Deposit measuring instrument for toner
JP2003057168A (en) * 2001-08-20 2003-02-26 Omron Corp Road-surface judging apparatus and method of installing and adjusting the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06282791A (en) * 1993-03-26 1994-10-07 Hamamatsu Photonics Kk Road surface state observation/display system
JPH09222361A (en) * 1995-12-12 1997-08-26 Omron Corp Detection device for color, etc., of material and inspection device using it
JP2000131243A (en) * 1998-10-21 2000-05-12 Omron Corp Reflection type sensor
JP2001311689A (en) * 2000-04-28 2001-11-09 Nichicon Corp Method for judging degree of glossiness on surface of object
JP2002168781A (en) * 2000-12-04 2002-06-14 Nichicon Corp Gloss sensor
JP2002310901A (en) * 2001-04-17 2002-10-23 Nichicon Corp Deposit measuring instrument for toner
JP2003057168A (en) * 2001-08-20 2003-02-26 Omron Corp Road-surface judging apparatus and method of installing and adjusting the same

Similar Documents

Publication Publication Date Title
JP6685296B2 (en) Device for emitting and detecting polarized light
KR20070076431A (en) A reflection type optics sensor and a surface coarseness detection method of the measurement side
JP5336029B2 (en) Retroreflective photoelectric switch
JP4238290B2 (en) Sensor
JP2007333567A (en) Multi-reflection type cell and infrared ray gas detector
WO2012124208A1 (en) Light-emitting device, information acquisition device, and object detection device mounted therewith
JP2007033103A (en) Photoelectric sensor
US7078721B2 (en) Object detection apparatus for a vehicle
US20100053637A1 (en) Location detection apparatus
JP4186185B2 (en) Object detection method
JPH10281991A (en) Gloss sensor
JP2008053160A (en) Photoelectric sensor, sheet-like member detector and reflecting member for photoelectric sensor
JP2003332614A (en) Optical coupling device and information apparatus using the same
JP4277458B2 (en) Wafer detection sensor
JP4835701B2 (en) Wafer detection sensor
JP2010032242A (en) Substrate detecting apparatus
JP2012074412A (en) Reflection type photoelectric sensor
JP4232648B2 (en) Reflected light measuring device
JP2008164440A (en) Liquid level detector
JP2005251682A (en) Method for arranging reflection type photoelectric switch
JP5309575B2 (en) Approach detection device and camera
KR20220129302A (en) Image capturing device
JP6482226B2 (en) Illumination unit, image reading apparatus, and image reading method
JP2010109061A (en) Optical sensor device
JP2002131447A (en) Photoelectric sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110308