JP2007032878A - Glow plug and its manufacturing method - Google Patents

Glow plug and its manufacturing method Download PDF

Info

Publication number
JP2007032878A
JP2007032878A JP2005213511A JP2005213511A JP2007032878A JP 2007032878 A JP2007032878 A JP 2007032878A JP 2005213511 A JP2005213511 A JP 2005213511A JP 2005213511 A JP2005213511 A JP 2005213511A JP 2007032878 A JP2007032878 A JP 2007032878A
Authority
JP
Japan
Prior art keywords
shaft
tube
shaft hole
flexible member
glow plug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005213511A
Other languages
Japanese (ja)
Other versions
JP4478626B2 (en
Inventor
Shinsuke Ito
伸介 伊藤
Takaya Yoshikawa
孝哉 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2005213511A priority Critical patent/JP4478626B2/en
Publication of JP2007032878A publication Critical patent/JP2007032878A/en
Application granted granted Critical
Publication of JP4478626B2 publication Critical patent/JP4478626B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a glow plug and its manufacturing method that can prevent the damage of a flexible member assembled in manufacturing, and reduce manufacturing time and labor. <P>SOLUTION: A tube 200 interposed between an axial hole 43 of a main fitting 40 and a center shaft 30 is compressed within a clearance because a rear end 202 is pressed by an O-ring 70 in a state of a tip part 201 abutting on the rear end face of a cylindrical part 80 in assembling. At this time, since the radial swell and contraction of the tube 200 following deformation is regulated by the clearance, the tube 200 is put in a state of abutting on the inner peripheral surface of the axial hole 43 and the outer peripheral surface of the center shaft 30 over many parts in a direction of an axis O to cause bellows-like deformation. Since the center shaft 30 is put in the form of being supported by the tube 200 in the axial hole 43 of the main fitting 40, even if resonance occurs, its amplitude is effectively limited. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、ディーゼルエンジンの始動を補助するためのグロープラグおよびその製造方法に関するものである。   The present invention relates to a glow plug for assisting starting of a diesel engine and a method for manufacturing the same.

従来、ディーゼルエンジンの始動の補助をするために使用されるグロープラグは、金属製で筒状の主体金具を有し、その軸孔内先端側にて保持する棒状のヒータの先端部を突出させている。また、主体金具の後端側から金属製で棒状の中軸が突出されており、主体金具とは絶縁された状態で、その軸孔内に保持されている。そして、ヒータに通電するための両電極が、主体金具と中軸とのそれぞれに電気的に接続されている。   Conventionally, glow plugs used to assist in starting diesel engines have a metallic metallic shell made of metal, and project the tip of a rod-shaped heater held at the tip end in the shaft hole. ing. Further, a metal rod-shaped central shaft protrudes from the rear end side of the metal shell, and is held in the shaft hole while being insulated from the metal shell. Both electrodes for energizing the heater are electrically connected to the metal shell and the central shaft, respectively.

こうした構造を有するグロープラグが用いられるディーゼルエンジンは、近年、小型化、高燃費化、高出力化などへの要望から、従来の副室式ディーゼルエンジンに代わり直噴式ディーゼルエンジンへと移行しつつある。また、これに伴ってエンジンへの取り付け構造が変更される場合もあり、グロープラグには、小径化や長尺化が求められている。さらに、グロープラグには、耐腐食性の高いセラミックヒータが使用される場合も多い。   In recent years, diesel engines using glow plugs with such a structure are shifting to direct-injection diesel engines instead of conventional sub-chamber type diesel engines due to demands for smaller size, higher fuel consumption, higher output, etc. . Along with this, the mounting structure to the engine may be changed, and the glow plug is required to have a smaller diameter or a longer length. Further, ceramic heaters with high corrosion resistance are often used for glow plugs.

ところで、グロープラグの全長が長くなったことから中軸の固有振動数が低下するので、ディーゼルエンジンの稼働に伴い発生する振動負荷の振動数が中軸の固有振動数に一致する機会が増え、共振してしまうことが頻発する虞が生じた。そして共振が発生すれば、中軸の振動の腹に相当する部位が主体金具の内周面に接触して絶縁性が保てなくなる虞がある。また、その振幅が大きくなれば中軸の撓りも大きくなり、破断する虞がある。さらに、中軸から伝達される内部応力によりセラミックヒータが破損したりする虞があった。   By the way, since the natural frequency of the middle shaft decreases because the overall length of the glow plug becomes longer, the frequency of the vibration load generated by the operation of the diesel engine increases the chance of matching the natural frequency of the middle shaft, and resonance occurs. There was a risk that it would occur frequently. If resonance occurs, a portion corresponding to the antinode of the vibration of the central shaft may come into contact with the inner peripheral surface of the metal shell and insulation may not be maintained. Moreover, if the amplitude becomes large, the bending of the central shaft also becomes large, and there is a possibility of breaking. Furthermore, the ceramic heater may be damaged by internal stress transmitted from the center shaft.

そこで中軸(リード部材)に絶縁被覆を被覆して共振による中軸と主体金具との短絡を防止し、さらに、絶縁被覆の外径を主体金具の内径に近づけることで、共振による中軸の振動の腹の振幅を制限し、発生する応力を低減して中軸の破断を防止したグロープラグが提案されている(例えば特許文献1参照)。このように中軸の共振により発生する応力を低減すれば、セラミックヒータの破損も防止することが可能となる。
特開平11−176563号公報
Therefore, the intermediate shaft (lead member) is covered with an insulating coating to prevent short circuit between the central shaft and the metallic shell due to resonance, and the outer diameter of the insulating coating is brought close to the inner diameter of the metallic shell, thereby preventing the vibration of the central shaft due to resonance. A glow plug has been proposed in which the amplitude of the above is limited and the generated stress is reduced to prevent breakage of the central shaft (see, for example, Patent Document 1). Thus, if the stress generated by the resonance of the central axis is reduced, the ceramic heater can be prevented from being damaged.
Japanese Patent Laid-Open No. 11-176563

しかしながら、特許文献1では絶縁被覆と中軸とが密着されるため、グロープラグの製造過程において中軸に絶縁被覆を装着させにくく、絶縁被覆を破損したりする虞があり、これを防止するためには、あらかじめ中軸にグリス等の潤滑剤を塗布する必要があり、手間がかかるという問題があった。   However, in Patent Document 1, since the insulating coating and the central shaft are in close contact with each other, it is difficult to attach the insulating coating to the central shaft in the manufacturing process of the glow plug, and the insulating coating may be damaged. To prevent this, There is a problem that it is necessary to apply a lubricant such as grease to the central shaft in advance, which is troublesome.

本発明は上記問題点を解決するためになされたものであり、製造の際に組み付けられる可撓性部材の破損の防止や、その製造の手間を低減することができるグロープラグおよびその製造方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and provides a glow plug and a method for manufacturing the same that can prevent damage to a flexible member that is assembled during manufacturing and can reduce the manufacturing effort. The purpose is to provide.

上記目的を達成するために、請求項1に係る発明のグロープラグは、軸線方向に沿って延びる中軸と、通電によって発熱する発熱体を有するヒータ部材と、軸孔を有し、その軸孔内に前記中軸が挿通されるとともに、前記ヒータ部材の径方向を保持する主体金具と、前記中軸と前記軸孔との間隙に介在され、可撓性を有するチューブ状の可撓性部材とを備え、前記可撓性部材は前記間隙の大きさよりも厚みが小さく、前記軸線方向と平行な方向に圧縮された形態を有し、その圧縮に伴う変形によって前記中軸と前記軸孔とのそれぞれに接触した状態で、前記間隙に介在されていることを特徴とする。   In order to achieve the above object, a glow plug according to a first aspect of the present invention includes a central shaft extending along the axial direction, a heater member having a heating element that generates heat when energized, and a shaft hole. A metal shell that holds the radial direction of the heater member, and a tube-like flexible member that is interposed in a gap between the middle shaft and the shaft hole and has flexibility. The flexible member has a thickness smaller than the size of the gap and is compressed in a direction parallel to the axial direction, and comes into contact with each of the middle shaft and the shaft hole by deformation accompanying the compression. In this state, it is interposed in the gap.

また、請求項2に係る発明のグロープラグは、請求項1に記載の発明の構成に加え、前記軸孔の後端部にて前記中軸と前記軸孔との間隙に嵌着される絶縁部材であり、該絶縁部材の先端部が直接または他部材を介して前記可撓性部材を前記軸線方向と平行な方向に押圧し、当該可撓性部材の圧縮された状態を維持する絶縁部材を備えている。   According to a second aspect of the present invention, there is provided a glow plug according to the first aspect of the present invention. And an insulating member that maintains the compressed state of the flexible member by pressing the flexible member in a direction parallel to the axial direction directly or through another member. I have.

また、請求項3に係る発明のグロープラグは、請求項2に記載の発明の構成に加え、前記絶縁部材のうち前記可撓性部材を押圧する部位の外径は、当該可撓性部材のうち前記絶縁部材に当接した部位の外径よりも大きいことを特徴とする。   According to a third aspect of the present invention, in addition to the configuration of the second aspect of the invention, the glow plug of the invention is configured such that the outer diameter of the portion of the insulating member that presses the flexible member is that of the flexible member. Of these, the outer diameter of the portion in contact with the insulating member is larger.

また、請求項4に係る発明のグロープラグの製造方法は、請求項2または3に記載のグロープラグを製造する方法であって、前記ヒータ部材が固定された前記中軸を前記主体金具の前記軸孔内に挿通するとともに、前記軸孔の先端側で前記ヒータ部材の径方向を保持するヒータ保持工程と、前記軸孔の後端側から、その軸孔内に、前記可撓性部材を挿入するとともに、前記可撓性部材の内周に前記中軸を挿通させる挿入工程と、前記軸孔の後端側に前記絶縁部材を配設するとともに、その絶縁部材で、前記軸線方向と平行な方向に前記可撓性部材を圧縮する圧縮工程とを備えている。   According to a fourth aspect of the present invention, there is provided a method for manufacturing a glow plug according to the second or third aspect, wherein the middle shaft to which the heater member is fixed is used as the shaft of the metal shell. A heater holding step of inserting the hole into the hole and holding the radial direction of the heater member at the tip end side of the shaft hole, and inserting the flexible member into the shaft hole from the rear end side of the shaft hole And an insertion step of inserting the middle shaft into the inner periphery of the flexible member, and the insulating member is disposed on the rear end side of the shaft hole, and the insulating member has a direction parallel to the axial direction. A compression step of compressing the flexible member.

請求項1に係る発明のグロープラグでは、主体金具の軸孔と中軸との間隙に介在させる可撓性部材は、軸線方向と平行な方向に圧縮された形態で、その圧縮に伴う変形によって中軸と軸孔とのそれぞれに接触した状態であるため、軸孔内で、中軸が可撓性部材に支持される形態となる。グロープラグが取り付けられたエンジンの振動などに伴い中軸が共振を生じた場合、その共振によって振動の腹となる中軸の一部分が大きく揺動する虞があるが、上記のように可撓性部材によって中軸が支持される形態となるため、共振の振幅を制限することができる。これにより、共振発生時の中軸の撓りが抑えられるので、破断を防止することができる。また、主体金具と中軸とをそれぞれ発熱体への通電のための電極とするグロープラグの構成において、中軸の撓りが抑えられれば軸孔と中軸とが接触することはなく、短絡を防止することができる。   In the glow plug of the invention according to claim 1, the flexible member interposed in the gap between the shaft hole of the metal shell and the center shaft is compressed in a direction parallel to the axial direction, and the center shaft is deformed by the compression. In this state, the middle shaft is supported by the flexible member in the shaft hole. If the center shaft resonates with the vibration of the engine to which the glow plug is attached, there is a risk that a part of the center shaft that becomes the antinode of vibration will swing greatly due to the resonance. Since the middle shaft is supported, the resonance amplitude can be limited. Thereby, since the bending of the central shaft at the time of the occurrence of resonance is suppressed, it is possible to prevent breakage. In addition, in the structure of the glow plug in which the metal shell and the central shaft are used as electrodes for energizing the heating elements, the shaft hole and the central shaft do not come into contact if the deflection of the central shaft is suppressed, thereby preventing a short circuit. be able to.

ところで、グロープラグの製造過程において、軸孔内に中軸が挿通された状態で可撓性部材を上記間隙に配置させるとき、軸孔の内周面や中軸の外周面に可撓性部材が密着した状態でその間隙に配置させようとすると、密着した面同士の摩擦によってスムーズに配置させることができず、可撓性部材を破損する虞がある。しかし、本発明では可撓性部材の厚みが軸孔と中軸との間隙の大きさよりも小さいので、可撓性部材は容易に変形することができ、軸孔の内周面や中軸の外周面に可撓性部材が全周に亘って密着することなく容易に配置させることができる。このため、製造過程における手間を軽減するとともに、可撓性部材の破損を減らし、歩留まりを高くすることができる。   By the way, when the flexible member is disposed in the gap with the central shaft inserted through the shaft hole in the glow plug manufacturing process, the flexible member is in close contact with the inner peripheral surface of the shaft hole or the outer peripheral surface of the central shaft. If an attempt is made to place the gap in the gap in such a state, it cannot be placed smoothly due to friction between the closely contacting surfaces, and the flexible member may be damaged. However, in the present invention, since the thickness of the flexible member is smaller than the size of the gap between the shaft hole and the middle shaft, the flexible member can be easily deformed, and the inner circumferential surface of the shaft hole or the outer circumferential surface of the middle shaft. The flexible member can be easily disposed without being in close contact with the entire circumference. For this reason, the labor in the manufacturing process can be reduced, the breakage of the flexible member can be reduced, and the yield can be increased.

また、請求項2に係る発明のように、中軸と軸孔とが接触しないように軸孔の後端側に絶縁部材を配設することは、グロープラグ完成後の可撓性部材の変形を防止する上で有効である。さらに絶縁部材によって軸線方向と平行な方向に可撓性部材を圧縮することができるので、グロープラグの製造過程において可撓性部材を予め圧縮した上でその後端側に絶縁部材を配置するという2段階の工程を用いる必要がなく、手間を軽減することができる。また、グロープラグの完成後も絶縁部材により可撓性部材の圧縮状態を維持できるため、可撓性部材がその性質として弾性を有していてもよく、可撓性部材として選択可能な材料を増やすことができ、生産コストを低減することができる。   Further, as in the invention according to claim 2, disposing the insulating member on the rear end side of the shaft hole so that the middle shaft and the shaft hole do not contact each other causes deformation of the flexible member after completion of the glow plug. It is effective in preventing. Further, since the flexible member can be compressed in the direction parallel to the axial direction by the insulating member, the insulating member is disposed on the rear end side after the flexible member is pre-compressed in the glow plug manufacturing process. It is not necessary to use a step process, and labor can be reduced. In addition, since the compressed state of the flexible member can be maintained by the insulating member even after the glow plug is completed, the flexible member may have elasticity as a property, and a material that can be selected as the flexible member is used. The production cost can be reduced.

また、グロープラグの製造過程において可撓性部材を圧縮する際に、その可撓性部材の押圧されるべき位置が変形に伴なってずれたとしても、請求項3に係る発明のように、可撓性部材の外径よりも絶縁部材の外径が大きければ、絶縁部材による押圧可能な範囲内で可撓性部材の押圧されるべき位置がずれるため、位置合わせをする手間を軽減することができる。   Further, when the flexible member is compressed in the process of manufacturing the glow plug, even if the position to be pressed of the flexible member is displaced due to deformation, as in the invention according to claim 3, If the outer diameter of the insulating member is larger than the outer diameter of the flexible member, the position where the flexible member should be pressed is shifted within a range that can be pressed by the insulating member. Can do.

また、請求項4に係る発明のグロープラグの製造方法では、ヒータ保持工程にて、ヒータ部材が固定された中軸を主体金具の軸孔内に挿通しつつ軸孔の先端側でヒータ部材を保持し、挿入工程にて、軸孔と中軸との間隙に可撓性部材を配置させ、圧縮工程にて、軸孔の後端側に軸孔と中軸とが接触しないように絶縁部材を配設するとともに、その絶縁部材で可撓性部材を軸線方向と平行な方向に圧縮することができる。こうした製造工程を経て製造されるグロープラグでは、可撓性部材が圧縮によって軸孔と中軸との間隙において変形し、軸孔内で中軸を支持する形態となるため、グロープラグが取り付けられたエンジンの振動などに伴い中軸が共振を生じた場合でも、可撓性部材によって共振の振幅を制限することができる。また、上記間隙への可撓性部材の配置を可撓性部材の圧縮前に行うため、その配置の際に、可撓性部材が軸孔の内周面や中軸の外周面に密着することなく容易に配置させることができる。そして、絶縁部材を配設する際に可撓性部材を圧縮するため、予め可撓性部材を圧縮する工程を省くことができ、手間を軽減することができる。   In the glow plug manufacturing method according to the fourth aspect of the present invention, in the heater holding step, the heater member is held at the tip end side of the shaft hole while the center shaft to which the heater member is fixed is inserted into the shaft hole of the metal shell. In the insertion process, a flexible member is arranged in the gap between the shaft hole and the middle shaft, and in the compression process, an insulating member is arranged on the rear end side of the shaft hole so that the shaft hole and the middle shaft do not contact each other. In addition, the insulating member can compress the flexible member in a direction parallel to the axial direction. In a glow plug manufactured through such a manufacturing process, the flexible member is deformed in the gap between the shaft hole and the center shaft by compression, and the center shaft is supported in the shaft hole. Therefore, the engine to which the glow plug is attached Even when the central axis resonates due to vibration of the vibration, the resonance amplitude can be limited by the flexible member. In addition, since the flexible member is disposed in the gap before the flexible member is compressed, the flexible member is in close contact with the inner peripheral surface of the shaft hole or the outer peripheral surface of the middle shaft. And can be easily arranged. And since a flexible member is compressed when arrange | positioning an insulating member, the process of compressing a flexible member previously can be skipped, and a labor can be reduced.

以下、本発明を具体化したグロープラグの一実施の形態について、図面を参照して説明する。まず、図1を参照して、本実施の形態のグロープラグ100の全体の構造について説明する。図1は、グロープラグ100の縦断面図である。なお、軸線O方向において、セラミックヒータ20の配置された側(図1における下側)をグロープラグ100の先端側として説明する。   Hereinafter, an embodiment of a glow plug embodying the present invention will be described with reference to the drawings. First, the entire structure of the glow plug 100 of the present embodiment will be described with reference to FIG. FIG. 1 is a longitudinal sectional view of the glow plug 100. Note that the side where the ceramic heater 20 is disposed (the lower side in FIG. 1) in the direction of the axis O will be described as the tip side of the glow plug 100.

図1に示すグロープラグ100は、例えば直噴式ディーゼルエンジンの燃焼室(図示外)に取り付けられ、エンジン始動時の点火を補助する熱源として利用される。   A glow plug 100 shown in FIG. 1 is attached to a combustion chamber (not shown) of a direct injection diesel engine, for example, and is used as a heat source for assisting ignition at the time of engine start.

セラミックヒータ20は丸棒状をなし、先端部22が曲面状に加工された絶縁性セラミックからなる基体21の内部に、導電性セラミックからなる断面略U字状の発熱素子24が埋設された構造を有する。発熱素子24は、セラミックヒータ20の先端部22に配置され、その曲面にあわせて両端が略U字状に折り返された発熱体27と、その発熱体27の両端にそれぞれ接続され、セラミックヒータ20の後端部23に向けて軸線Oに沿って略平行に延設されたリード部28,29とから構成される。発熱体27は、その断面積がリード部28,29の断面積よりも小さくなるように成形されており、通電時、主に発熱体27において発熱が行われる。また、セラミックヒータ20の後端部23の外周面には、リード部28,29のそれぞれから突出された電極取出部25,26が、互いに軸線O方向にずれた位置に露出されている。なお、セラミックヒータ20が、本発明における「ヒータ部材」に相当する。   The ceramic heater 20 has a round bar shape, and a heating element 24 having a substantially U-shaped cross section made of a conductive ceramic is embedded in a base 21 made of an insulating ceramic whose tip 22 is processed into a curved surface. Have. The heating element 24 is disposed at the tip 22 of the ceramic heater 20 and is connected to the heating element 27 whose both ends are folded back in a substantially U shape in accordance with the curved surface thereof, and to both ends of the heating element 27, respectively. And lead portions 28 and 29 extending substantially in parallel along the axis O toward the rear end portion 23. The heating element 27 is shaped so that its cross-sectional area is smaller than the cross-sectional area of the lead portions 28 and 29, and heat is generated mainly in the heating element 27 during energization. Further, on the outer peripheral surface of the rear end portion 23 of the ceramic heater 20, electrode extraction portions 25 and 26 protruding from the lead portions 28 and 29 are exposed at positions shifted from each other in the axis O direction. The ceramic heater 20 corresponds to the “heater member” in the present invention.

このセラミックヒータ20は、その胴部分の外周を取り巻くように、円筒状の筒状体80に保持されている。電極取出部25,26のうち先端側に形成された電極取出部25は、筒状体80の筒孔内で筒状体80に接触し、電気的に接続されている。筒状体80は金属製の部材からなり、胴部81の後端側には肉厚の鍔部82が形成されている。その鍔部82の後端には段状の係合部83が形成され、円筒状をなす主体金具40の先端部41の内周が、この係合部83に係合される。その係合の際には、セラミックヒータ20の軸と、主体金具40の軸とが軸線Oに一致する。この状態で、セラミックヒータ20のうち筒状体80よりも後端側の部分は主体金具40の内部に収容され、主体金具40が筒状体80の係合部83によって位置決めされるため、セラミックヒータ20の後端部分に設けられた電極取出部26が金属製の主体金具40には接触しない構造となっている。なお、この電極取出部26は中軸30に電気的に接続されている(後述)。   The ceramic heater 20 is held by a cylindrical tubular body 80 so as to surround the outer periphery of the body portion. The electrode extraction portion 25 formed on the distal end side of the electrode extraction portions 25 and 26 is in contact with and electrically connected to the cylindrical body 80 in the cylindrical hole of the cylindrical body 80. The cylindrical body 80 is made of a metal member, and a thick collar portion 82 is formed on the rear end side of the trunk portion 81. A stepped engagement portion 83 is formed at the rear end of the collar portion 82, and the inner periphery of the distal end portion 41 of the cylindrical metal shell 40 is engaged with the engagement portion 83. At the time of the engagement, the axis of the ceramic heater 20 and the axis of the metal shell 40 coincide with the axis O. In this state, the portion of the ceramic heater 20 on the rear end side of the cylindrical body 80 is accommodated in the metal shell 40, and the metal shell 40 is positioned by the engaging portion 83 of the cylindrical body 80. The electrode extraction portion 26 provided at the rear end portion of the heater 20 has a structure that does not contact the metal metal shell 40. The electrode extraction portion 26 is electrically connected to the middle shaft 30 (described later).

次に、主体金具40は、軸線O方向に貫通する軸孔43を有する長細い筒状の金属部材であり、胴部44の後端側に、グロープラグ100を内燃機関のエンジンヘッド(図示外)に取り付けるための雄ねじ部42が形成されている。また、胴部44の後端には、エンジンヘッドへの取り付けの際に使用される工具が係合する、軸線断面六角形状の工具係合部46が形成されている。その工具係合部46内で、軸孔43は拡径された拡径部45を有し、径の異なる部位間を接続する段部47が形成されている。   Next, the metal shell 40 is a long and thin cylindrical metal member having a shaft hole 43 penetrating in the direction of the axis O, and a glow plug 100 is attached to an engine head (not shown) on the rear end side of the body portion 44. ) Is formed. Further, a tool engaging portion 46 having a hexagonal cross section in the axial line is formed at the rear end of the body portion 44 and engages with a tool used for attachment to the engine head. Within the tool engagement portion 46, the shaft hole 43 has an enlarged diameter portion 45, and a step portion 47 is formed to connect portions having different diameters.

中軸30は、軸線O方向に延びる金属棒であり、主体金具40の軸孔43内に挿通される。中軸30の先端部31はセラミックヒータ20の後端部23に嵌合された接続リング35に嵌合され、中軸30とセラミックヒータ20とが一体に連結されている。そしてセラミックヒータ20の電極取出部26は接続リング35の筒孔内壁に接触しており、接続リング35を介して中軸30と電気的に接続されている。主体金具40と中軸30とは空隙をもって電気的に絶縁されており、後述するが、両者の間隙にチューブ200が介在されている。そして、主体金具40と中軸30とのそれぞれが、セラミックヒータ20の発熱体27に電圧を印加するための電極として機能する。   The middle shaft 30 is a metal rod extending in the direction of the axis O, and is inserted into the shaft hole 43 of the metal shell 40. The front end portion 31 of the middle shaft 30 is fitted to a connection ring 35 fitted to the rear end portion 23 of the ceramic heater 20 so that the middle shaft 30 and the ceramic heater 20 are integrally connected. The electrode extraction portion 26 of the ceramic heater 20 is in contact with the cylindrical hole inner wall of the connection ring 35, and is electrically connected to the central shaft 30 via the connection ring 35. The metal shell 40 and the middle shaft 30 are electrically insulated with a gap. As will be described later, a tube 200 is interposed in the gap between the two. Each of the metal shell 40 and the central shaft 30 functions as an electrode for applying a voltage to the heating element 27 of the ceramic heater 20.

中軸30の後端部32には絶縁性のOリング70が係合され、主体金具40の軸孔43の段部47に配置されている。さらに後端部32には絶縁性の支持リング60が係合され、拡径部45に嵌合されるとともに、その先端面62で軸線O方向先端側に向けてOリング70を押圧している。これにより、中軸30の外周面と、軸孔43の段部47における内周面と、支持リング60の先端面62とのそれぞれにOリング70が接触され、軸孔43内外の気密性が保たれている。また、支持リング60の後端側に形成された鍔部61が、工具係合部46の後端に当接されており、ピン端子50と主体金具40との間に介在することで両者を絶縁している。なお、支持リング60が、本発明における「絶縁部材」に相当する。   An insulating O-ring 70 is engaged with the rear end portion 32 of the middle shaft 30 and is disposed in the stepped portion 47 of the shaft hole 43 of the metal shell 40. Further, an insulating support ring 60 is engaged with the rear end portion 32 and is fitted to the enlarged diameter portion 45, and the front end surface 62 presses the O-ring 70 toward the front end side in the axis O direction. . As a result, the O-ring 70 is brought into contact with the outer peripheral surface of the intermediate shaft 30, the inner peripheral surface of the stepped portion 47 of the shaft hole 43, and the front end surface 62 of the support ring 60, and airtightness inside and outside the shaft hole 43 is maintained. I'm leaning. Further, a flange 61 formed on the rear end side of the support ring 60 is in contact with the rear end of the tool engaging portion 46 and is interposed between the pin terminal 50 and the metal shell 40 so that both of them are interposed. Insulated. The support ring 60 corresponds to the “insulating member” in the present invention.

次に、中軸30の後端部32で支持リング60の鍔部61から後端側に突出された部分には、ピン端子50が嵌合されている。ピン端子50は、中軸30の後端部32に被さって覆うキャップ状の胴部52と、胴部52から後端側に突設されたピン状の突起部53と、胴部52の先端側にて径方向に突設された鍔部51とから構成される。胴部52の外周が加締められることによって中軸30の後端部32にピン端子50が固定されており、ピン端子50と中軸30とが電気的に接続されている。グロープラグ100がエンジンヘッド(図示外)に取り付けられる際には、突起部53には図示外のプラグキャップが嵌められ、外部回路から電力が供給される。   Next, the pin terminal 50 is fitted into a portion of the rear end portion 32 of the middle shaft 30 that protrudes from the flange portion 61 of the support ring 60 toward the rear end side. The pin terminal 50 includes a cap-shaped body portion 52 that covers and covers the rear end portion 32 of the intermediate shaft 30, a pin-shaped protrusion portion 53 that protrudes from the body portion 52 toward the rear end side, and a front end side of the body portion 52. It is comprised from the collar part 51 protrudingly provided by radial direction. The pin terminal 50 is fixed to the rear end portion 32 of the middle shaft 30 by crimping the outer periphery of the body portion 52, and the pin terminal 50 and the middle shaft 30 are electrically connected. When the glow plug 100 is attached to the engine head (not shown), a plug cap (not shown) is fitted to the protrusion 53, and power is supplied from an external circuit.

ところで、上記した構造を有する本実施の形態のグロープラグ100の中軸30は、その先端部31が、主体金具40に接合される筒状体80に圧入嵌合されたセラミックヒータ20に接続リング35によって固定されている。一方、後端部32は、支持リング60およびOリング70によって主体金具40の後端の軸孔43内(拡径部45内)にて支持される形態ではあるものの、固定されてはいない。このため、グロープラグ100がエンジンヘッド(図示外)に取り付けられた際に、中軸30の後端部32に固定されたピン端子50に嵌められるプラグキャップや、プラグキャップに接続されたコードの重量を中軸30で支えた場合、エンジンの振動等、外部からの振動による衝撃が中軸30にかかることによって、中軸30が破断する虞がある。そこで本実施の形態では、中軸30の外径が、主体金具40の軸孔43の内径に対し70%以上の大きさとなるように構成している。一例として、本実施の形態のグロープラグ100では、主体金具40の軸孔43の内径をΦ5.4、中軸30の外径をΦ4.0として構成している。   By the way, the center shaft 30 of the glow plug 100 of the present embodiment having the above-described structure is connected to the ceramic heater 20 whose tip 31 is press-fitted into the cylindrical body 80 joined to the metal shell 40. It is fixed by. On the other hand, the rear end portion 32 is supported by the support ring 60 and the O-ring 70 in the shaft hole 43 (in the enlarged diameter portion 45) at the rear end of the metal shell 40, but is not fixed. Therefore, when the glow plug 100 is attached to the engine head (not shown), the weight of the plug cap fitted to the pin terminal 50 fixed to the rear end portion 32 of the middle shaft 30 and the cord connected to the plug cap Is supported by the middle shaft 30, there is a possibility that the middle shaft 30 may be broken by an impact caused by external vibration such as engine vibration on the middle shaft 30. Therefore, in the present embodiment, the outer diameter of the middle shaft 30 is configured to be 70% or more of the inner diameter of the shaft hole 43 of the metal shell 40. As an example, in the glow plug 100 of the present embodiment, the inner diameter of the shaft hole 43 of the metal shell 40 is configured as Φ5.4, and the outer diameter of the middle shaft 30 is configured as Φ4.0.

また、上記のようにピン端子50が加締められることによって、支持リング60は軸線O方向先端側に向けて押圧された状態で位置決めされ、さらにOリング70が支持リング60に押圧された状態で位置決めされる。そしてチューブ200は、先端部201が筒状体80の後端面に当接した状態で後端部202をOリング70によって押圧されており、軸線O方向に圧縮された状態となって軸孔43内に配置されている。なお、チューブ200が、本発明における「可撓性部材」に相当する。   Further, by crimping the pin terminal 50 as described above, the support ring 60 is positioned while being pressed toward the front end side in the direction of the axis O, and the O-ring 70 is further pressed against the support ring 60. Positioned. The tube 200 has the rear end portion 202 pressed by the O-ring 70 in a state where the front end portion 201 is in contact with the rear end surface of the cylindrical body 80, and is compressed in the direction of the axis O. Is placed inside. The tube 200 corresponds to the “flexible member” in the present invention.

以下、チューブ200の詳細な構成について、図2,図3を参照して説明する。図2は、チューブ200の斜視図である。図3は、図2の一点鎖線P−Pにおいて矢視方向から見たチューブ200の断面図である。なお、図3においては、チューブ200の大きさの関係を示すため、中軸30および主体金具40の軸線を等しくして描いている。   Hereinafter, the detailed configuration of the tube 200 will be described with reference to FIGS. FIG. 2 is a perspective view of the tube 200. FIG. 3 is a cross-sectional view of the tube 200 as viewed from the direction of the arrows along the one-dot chain line PP in FIG. In FIG. 3, in order to show the relationship of the size of the tube 200, the axes of the middle shaft 30 and the metal shell 40 are drawn to be equal.

図2に示す、チューブ200は、絶縁性のシリコンからなる筒状で可撓性を有する部材である。このような構成のチューブ200は、押し出し成形によって連続したチューブ状に形成され、一定の寸法に切断されることによって作製される。その作製の際に、チューブ200の各部の寸法は以下のように規定される。チューブ200の軸線O方向における長さBは、グロープラグ100の組み立て後に、軸線O方向において筒状体80の後端面の配置される位置と、Oリング70の配置される位置との間の長さA(図1参照)よりもやや長くなるように、押し出し成形されたチューブ200が切断される。また、成形されるチューブ200の外径Cが、図3に示すように、主体金具40の軸孔43の内径Eよりも小さくなるように、かつ、チューブ200の内径Dが、中軸30の外径Fよりも大きくなるように、押し出し成形機の口金(図示外)が選択される。すなわち、成形されたチューブ200の厚みH(外径Cと内径Dとの半径差)は、主体金具40と中軸30との間隙の大きさG(主体金具40の内径Eと中軸30の外径Fとの半径差)よりも小さくなるように構成される。   A tube 200 shown in FIG. 2 is a cylindrical and flexible member made of insulating silicon. The tube 200 having such a configuration is formed by extrusion and is formed into a continuous tube shape, and is cut to a certain size. At the time of production, the dimensions of each part of the tube 200 are defined as follows. The length B in the axis O direction of the tube 200 is the length between the position where the rear end surface of the cylindrical body 80 is arranged and the position where the O-ring 70 is arranged in the axis O direction after the assembly of the glow plug 100. The extruded tube 200 is cut so as to be slightly longer than the length A (see FIG. 1). Further, as shown in FIG. 3, the outer diameter C of the tube 200 to be molded is smaller than the inner diameter E of the shaft hole 43 of the metal shell 40, and the inner diameter D of the tube 200 is outside the middle shaft 30. The die (not shown) of the extrusion molding machine is selected so as to be larger than the diameter F. That is, the thickness H of the molded tube 200 (radius difference between the outer diameter C and the inner diameter D) is the size G of the gap between the metal shell 40 and the middle shaft 30 (the inner diameter E of the metal shell 40 and the outer diameter of the middle shaft 30). (Radius difference with F).

また、Oリング70は、軸孔43の段部47に配置されるが、その内径Jは、中軸30の外径Fと略同一に構成され、外径Kは、軸孔43の内径Eよりも大きく構成されており、径方向の厚みI(外径Kと内径Jとの半径差)がチューブ200の厚みHや、軸孔43の間隙の大きさGよりも大きく構成されている。つまり、Oリング70は、内径Jがチューブ200の内径Dよりも小さく、外径Kがチューブ200の外径Cよりも大きく、軸孔43内でチューブ200を圧縮するとともに、チューブ200をその軸孔43内に収容した状態で維持する蓋材として機能する。すなわち、チューブ200は、Oリング70を介して間接的に、支持リング60によって押圧される形態となっている。   The O-ring 70 is disposed in the stepped portion 47 of the shaft hole 43, and the inner diameter J thereof is substantially the same as the outer diameter F of the middle shaft 30, and the outer diameter K is greater than the inner diameter E of the shaft hole 43. The radial thickness I (radial difference between the outer diameter K and the inner diameter J) is larger than the thickness H of the tube 200 and the gap G of the shaft hole 43. In other words, the O-ring 70 has an inner diameter J smaller than the inner diameter D of the tube 200 and an outer diameter K larger than the outer diameter C of the tube 200. The O-ring 70 compresses the tube 200 within the shaft hole 43 and It functions as a lid material that is maintained in a state of being accommodated in the hole 43. That is, the tube 200 is pressed by the support ring 60 indirectly through the O-ring 70.

このような構造のグロープラグ100では、その製造過程において、チューブ200を主体金具40の軸孔43と、その軸孔43内を挿通されている中軸30との間隙に挿入する工程が行われるが、上記のように軸孔43の内周面や中軸の外周面とチューブ200とが密着しないようにチューブ200の各部の寸法が規定されているため、その挿入が容易である。以下、図4,図5を参照して、グロープラグ100の製造過程について説明する。図4は、グロープラグ100の製造過程の概略的な流れを示す図である。図5は、図4のチューブ圧縮工程をより詳細に示すグロープラグ100の部分断面図である。   In the glow plug 100 having such a structure, a process of inserting the tube 200 into a gap between the shaft hole 43 of the metal shell 40 and the middle shaft 30 inserted through the shaft hole 43 is performed in the manufacturing process. Since the dimensions of each part of the tube 200 are defined so that the inner peripheral surface of the shaft hole 43 and the outer peripheral surface of the central shaft and the tube 200 do not adhere to each other as described above, the insertion is easy. Hereinafter, the manufacturing process of the glow plug 100 will be described with reference to FIGS. FIG. 4 is a diagram showing a schematic flow of the manufacturing process of the glow plug 100. FIG. 5 is a partial cross-sectional view of the glow plug 100 showing the tube compression process of FIG. 4 in more detail.

[ヒータ形成工程]
図4に示すように、まず、導電性のセラミック粉末やバインダ等を原料として射出成形し、セラミックヒータ20の発熱素子24の原形となる素子成形体251を形成する。一方、基体21の原形となる基体成形体252は、絶縁性セラミック粉末を原料に金型プレス成形を行い、素子成形体251が収容される凹部を自身の合わせ面に備えた2分割の成形体として形成する。そして基体成形体252の凹部に素子成形体251を挟んで収容し、プレス圧縮を行った後、脱バインダ処理、ホットプレス等の焼成工程を経て、その外周面を、先端が半球状の棒状に研磨して整形することで、セラミックヒータ20を形成する。
[Heater formation process]
As shown in FIG. 4, first, an element molded body 251 that is an original shape of the heating element 24 of the ceramic heater 20 is formed by injection molding using a conductive ceramic powder, a binder, or the like as a raw material. On the other hand, the base body molded body 252 which is the original form of the base body 21 is molded into two parts by performing die press molding using an insulating ceramic powder as a raw material and having a concave portion in which the element molded body 251 is accommodated on its mating surface. Form as. Then, the element molded body 251 is sandwiched and accommodated in the recess of the base molded body 252 and subjected to press compression, and then subjected to a baking process such as binder removal processing and hot pressing, and the outer peripheral surface thereof is formed into a hemispherical rod shape. The ceramic heater 20 is formed by polishing and shaping.

[ヒータ圧入工程]
次に、接続リング35は、ステンレス等の鋼材をパイプ状に成形し、セラミックヒータ20に圧入嵌合させて電極取出部26の導通を図る。同様に、筒状体80も所定の形状に成形し、セラミックヒータ20に圧入嵌合させて電極取出部25の導通を図る。電気的な導通を安定化させるためにAuやCu等のめっきを施すとよい。
[Heater press-fitting process]
Next, the connection ring 35 is formed of a steel material such as stainless steel into a pipe shape and press-fitted into the ceramic heater 20 so as to conduct the electrode extraction portion 26. Similarly, the cylindrical body 80 is also formed into a predetermined shape and press-fitted into the ceramic heater 20 to make the electrode extraction portion 25 conductive. In order to stabilize electrical continuity, plating such as Au or Cu may be performed.

[中軸接合工程]
中軸30は、一定の寸法に切断された鉄系材料(例えば、Fe−Cr−Mo鋼)の棒状部材から塑性加工や切削等により形成する。そして、中軸30の先端部31をヒータ一体部材250の接続リング35内に係合させた状態で外周をレーザ溶接し、中軸30とヒータ一体部材250とを一体に接合する。
[Center shaft joining process]
The middle shaft 30 is formed from a rod-shaped member of an iron-based material (for example, Fe—Cr—Mo steel) cut to a certain size by plastic working or cutting. Then, the outer periphery is laser welded with the tip 31 of the middle shaft 30 engaged in the connection ring 35 of the heater integrated member 250, and the middle shaft 30 and the heater integrated member 250 are joined together.

[ヒータ保持工程]
次に、主体金具40は、S45C等の鉄系素材を工具係合部46等が形成された筒状に成形し、雄ねじ部42にねじ山を転造する。この主体金具40の軸孔43内に中軸30を挿通させる。そして主体金具40の先端部41の内周を筒状体80の係合部83に係合させ、主体金具40と筒状体80をとレーザ溶接により接合する。なお、鉄系素材である主体金具40が錆びてしまうことを回避するために筒状体80と接合した後にめっきや塗装等の防錆処理を行ってもよい。
[Heater holding process]
Next, the metal shell 40 is formed by forming an iron-based material such as S45C into a cylindrical shape in which the tool engaging portion 46 and the like are formed, and rolling the thread on the male screw portion 42. The middle shaft 30 is inserted into the shaft hole 43 of the metal shell 40. And the inner periphery of the front-end | tip part 41 of the metal shell 40 is engaged with the engaging part 83 of the cylindrical body 80, and the metal shell 40 and the cylindrical body 80 are joined by laser welding. In addition, in order to avoid that the metal shell 40, which is an iron-based material, is rusted, a rust prevention treatment such as plating or painting may be performed after joining the cylindrical body 80.

[チューブ挿入工程]
次に、絶縁性のシリコンを押し出し成形により円筒状に成形し、予め定められた寸法に切断することでチューブ200(図2参照)を得る。このチューブ200を、内周側に中軸30が挿通されるようにして主体金具40の軸孔43内に挿入し、主体金具40と中軸30との間隙に配置させる。図3にて前述したように、チューブ200の外径Cは主体金具40の軸孔43の内径Eより小さく、チューブ200の内径Dは中軸30の外径Fより大きいため、チューブ200が主体金具40や中軸30と密着することがなく、両者の間隙へ容易に挿入することができる。このとき、チューブ200の先端部201が筒状体80の後端面に当接すると、それより先端側には移動しないため、主体金具40と中軸30および接続リング35との間隙内にて、軸線O方向においてチューブ200が位置決めされる。なお、チューブ挿入工程が、本発明における「挿入工程」に相当する。
[Tube insertion process]
Next, insulating silicon is formed into a cylindrical shape by extrusion molding and cut into a predetermined dimension to obtain a tube 200 (see FIG. 2). The tube 200 is inserted into the shaft hole 43 of the metallic shell 40 so that the central shaft 30 is inserted into the inner peripheral side, and is disposed in the gap between the metallic shell 40 and the central shaft 30. As described above with reference to FIG. 3, the outer diameter C of the tube 200 is smaller than the inner diameter E of the shaft hole 43 of the metal shell 40, and the inner diameter D of the tube 200 is larger than the outer diameter F of the middle shaft 30. 40 and the middle shaft 30 are not in close contact with each other and can be easily inserted into the gap between them. At this time, when the distal end portion 201 of the tube 200 abuts against the rear end surface of the cylindrical body 80, the tube 200 does not move further toward the distal end side, so that the axis line is within the gap between the metal shell 40, the middle shaft 30, and the connection ring 35. The tube 200 is positioned in the O direction. The tube insertion step corresponds to the “insertion step” in the present invention.

[チューブ圧縮工程]
その後、図4に示すように、中軸30の後端部32にOリング70,支持リング60およびピン端子50を係合する。図5に示すように、まず、Oリング70を中軸30の後端部32に係合し、軸線O方向後端側よりチューブ200の後端部202に当接させる。さらに中軸30の後端部32に支持リング60を係合し、その先端面62で軸線O方向先端側に向けてOリング70を押圧しつつ、軸孔43の拡径部45に嵌合させる(圧縮工程)。
[Tube compression process]
Thereafter, as shown in FIG. 4, the O-ring 70, the support ring 60 and the pin terminal 50 are engaged with the rear end portion 32 of the middle shaft 30. As shown in FIG. 5, first, the O-ring 70 is engaged with the rear end portion 32 of the middle shaft 30 and is brought into contact with the rear end portion 202 of the tube 200 from the rear end side in the axis O direction. Further, the support ring 60 is engaged with the rear end portion 32 of the middle shaft 30, and the O-ring 70 is pressed toward the front end side in the axis O direction by the front end surface 62, and fitted into the enlarged diameter portion 45 of the shaft hole 43. (Compression process).

このとき、チューブ200は、Oリング70を介し支持リング60の嵌合に伴う軸線O方向先端側への押圧力を受ける。一方、チューブ200の先端部201は筒状体80の後端面(図1参照)に当接されており、筒状体80の後端面とOリング70とによって挟まれたチューブ200は、軸線O方向に圧縮されて変形を生ずる。このチューブ200の変形は主体金具40と中軸30との間隙内で行われるため、変形に伴うチューブ200の径の膨れや縮みが規制される。このためチューブ200は、軸線O方向の何ヶ所にもわたって、主体金具40の軸孔43の内周面や中軸30の外周面に当接し、蛇腹状の変形を生ずることとなる。中軸30は主体金具40の軸孔43内でチューブ200により支持される形態となるため、中軸30が共振した際の振幅を効果的に制限することができる。   At this time, the tube 200 receives a pressing force toward the distal end side in the axis O direction accompanying the fitting of the support ring 60 through the O-ring 70. On the other hand, the distal end portion 201 of the tube 200 is in contact with the rear end surface (see FIG. 1) of the cylindrical body 80, and the tube 200 sandwiched between the rear end surface of the cylindrical body 80 and the O-ring 70 has an axis O. Compressed in the direction to cause deformation. Since the deformation of the tube 200 is performed in the gap between the metal shell 40 and the central shaft 30, the expansion and contraction of the diameter of the tube 200 accompanying the deformation is restricted. For this reason, the tube 200 abuts against the inner peripheral surface of the shaft hole 43 of the metal shell 40 and the outer peripheral surface of the middle shaft 30 at several locations in the direction of the axis O, resulting in bellows-like deformation. Since the middle shaft 30 is supported by the tube 200 in the shaft hole 43 of the metal shell 40, the amplitude when the middle shaft 30 resonates can be effectively limited.

そして、中軸30の後端部32にピン端子50を嵌め(端子配置工程)、鍔部51で支持リング60を先端側に向けて押圧した状態で、胴部52の外周を加締める(加締め工程)。これにより、支持リング60およびOリング70を位置決めした状態でピン端子50が中軸30に固定され、グロープラグ100が完成する。   Then, the pin terminal 50 is fitted into the rear end portion 32 of the middle shaft 30 (terminal arrangement step), and the outer periphery of the trunk portion 52 is crimped in a state where the support ring 60 is pressed toward the distal end side by the flange portion 51 (caulking). Process). As a result, the pin terminal 50 is fixed to the middle shaft 30 with the support ring 60 and the O-ring 70 positioned, and the glow plug 100 is completed.

なお、本発明は各種の変形が可能である。例えば、Oリング70は軸孔43の段部47の位置に配置されたが、必ずしも軸孔43内に配置される必要はない。例えば円環状の板状に形成し、工具係合部46の後端面と中軸30の外周面とに当接しつつ軸孔43を閉蓋する形態とし、その際に、チューブ200の後端部202を軸線O方向に押圧する構成としてもよい。   The present invention can be variously modified. For example, although the O-ring 70 is disposed at the position of the step portion 47 of the shaft hole 43, it is not always necessary to be disposed within the shaft hole 43. For example, it is formed in an annular plate shape, and the shaft hole 43 is closed while being in contact with the rear end surface of the tool engaging portion 46 and the outer peripheral surface of the middle shaft 30, and at that time, the rear end portion 202 of the tube 200 is closed. It is good also as a structure which presses in an axis line O direction.

また、チューブ200に折り目や溝などを形成し、チューブ200の圧縮に伴う変形が軸線O方向において均一に行われるようにしてもよい。同様に、チューブ200の成形時に、その形状が予め蛇腹状となるように形成してもよい。また、チューブ200を予め圧縮して塑性変形させた状態で、主体金具40と中軸30との間隙に配置させてもよい。このような構成の場合、チューブ200自身の変形によって、主体金具40や中軸30に対するチューブ200の接触面積が小さくなるため、挿入は容易である。   Moreover, a crease | fold, a groove | channel, etc. may be formed in the tube 200, and the deformation | transformation accompanying compression of the tube 200 may be performed uniformly in the axis line O direction. Similarly, when the tube 200 is formed, the tube 200 may be formed in a bellows shape in advance. Alternatively, the tube 200 may be disposed in the gap between the metal shell 40 and the middle shaft 30 in a state in which the tube 200 is compressed and plastically deformed in advance. In the case of such a configuration, the deformation of the tube 200 itself reduces the contact area of the tube 200 with respect to the metal shell 40 and the middle shaft 30, so that the insertion is easy.

また、本実施の形態では、可撓性部材として絶縁性を有するシリコンからなるチューブ200を例に説明したが、共振した際の中軸の振幅を制限できればよいため、例えば絶縁性のゴムや軟質プラスチック等であってもグロープラグを使用する上で求められる耐熱性を有していればチューブを作製してもよい。本実施の形態ではOリング70を介し支持リング60によってチューブ200が圧縮された状態で維持されるので、弾性部材からチューブを形成してもチューブの変形は保たれ、同様の効果が得られる。また、中軸30が絶縁性の被覆等により被覆された状態であれば、導電性のチューブを用いてもよい。   Further, in this embodiment, the tube 200 made of insulating silicon is described as an example of the flexible member. However, since it is only necessary to limit the amplitude of the central axis when resonating, for example, insulating rubber or soft plastic is used. However, a tube may be manufactured as long as it has heat resistance required for using a glow plug. In the present embodiment, since the tube 200 is maintained in a compressed state by the support ring 60 via the O-ring 70, even if the tube is formed from the elastic member, the deformation of the tube is maintained, and the same effect can be obtained. Further, a conductive tube may be used as long as the middle shaft 30 is covered with an insulating coating or the like.

なお、チューブ200の厚みや接続リング35の厚み、主体金具40と中軸30との間隙の大きさなどの設計寸法によっては、チューブ挿入工程において、チューブ200の先端部201の端面が接続リング35の後端側の端面に当接し、接続リング35の外周面と主体金具40の軸孔43の内周面との間隙にチューブ200を挿入できないことがある。あるいは、チューブ200の厚みにより、その先端部201が、主体金具40の軸孔43の内周面と、中軸30の外周面や接続リング35の外周面との間隙を通過中に引っかかってしまい、先端部201がその位置で停止してしまうことがある。しかし、チューブ圧縮工程において、その接続リング35の後端側の端面と、Oリング70との間で圧縮されて変形を生じたチューブ200が、本実施の形態と同様に、中軸30の外周面と主体金具40の軸孔43の内周面との双方に当接する形態となり、かつ、変形したチューブ200の後端部202の端面の位置が、Oリング70よりも軸線O方向先端側に位置すれば十分であり、チューブ200の先端部201と後端部202との双方共に押圧された状態で維持されなくともよい。   Depending on the design dimensions such as the thickness of the tube 200, the thickness of the connection ring 35, and the size of the gap between the metal shell 40 and the central shaft 30, the end surface of the distal end portion 201 of the tube 200 is connected to the connection ring 35 in the tube insertion process. The tube 200 may not be inserted into the gap between the outer peripheral surface of the connection ring 35 and the inner peripheral surface of the shaft hole 43 of the metal shell 40 due to contact with the end surface on the rear end side. Alternatively, due to the thickness of the tube 200, the tip 201 is caught while passing through the gap between the inner peripheral surface of the shaft hole 43 of the metal shell 40 and the outer peripheral surface of the middle shaft 30 and the outer peripheral surface of the connection ring 35, The tip 201 may stop at that position. However, in the tube compression step, the tube 200 that is compressed and deformed between the end surface on the rear end side of the connection ring 35 and the O-ring 70 is the outer peripheral surface of the middle shaft 30 as in the present embodiment. And the position of the end surface of the rear end portion 202 of the deformed tube 200 is located closer to the front end side in the axis O direction than the O-ring 70. This is sufficient, and both the front end 201 and the rear end 202 of the tube 200 may not be maintained in a pressed state.

もっとも、チューブ200の先端部201の端面が接続リング35の後端側の端面と当接しないように設計することも可能であり、例えば図6に示すグロープラグ300のように、中軸330の先端部331に鍔部338を設け、チューブ400の挿入時に、その先端部401の端面が確実に鍔部338に当接し、チューブ400の挿入深さが制限されるようにしてもよい。   However, it is also possible to design the tube 200 so that the end surface of the distal end portion 201 does not come into contact with the end surface on the rear end side of the connection ring 35. For example, as in the glow plug 300 shown in FIG. A flange 338 may be provided in the portion 331 so that when the tube 400 is inserted, the end surface of the distal end portion 401 abuts against the flange 338 so that the insertion depth of the tube 400 is limited.

または、接続リング35の後端側の端面に面取り加工を施して、チューブ200の挿入時に、その先端部201が、主体金具40の軸孔43の内周面と、接続リング35の外周面との間に案内されるようにしてもよい。あるいは、中軸30の外径を接続リング35の外径と略同一に設計し、接続リング35に嵌入される部位の外径を接続リング35の内径に合わせて小径化することで、仮に、軸線O方向後端側から軸孔43を覗いたときに、接続リング35の後端側の端面が見えない構成とし、チューブ200の先端部201の端面と、接続リング35の後端側の端面との接触を防止してもよい。   Alternatively, the end surface on the rear end side of the connection ring 35 is chamfered, and when the tube 200 is inserted, the distal end portion 201 is connected to the inner peripheral surface of the shaft hole 43 of the metal shell 40 and the outer peripheral surface of the connection ring 35. You may make it guide during. Alternatively, the outer diameter of the intermediate shaft 30 is designed to be substantially the same as the outer diameter of the connection ring 35, and the outer diameter of the portion fitted into the connection ring 35 is reduced to match the inner diameter of the connection ring 35. When looking into the shaft hole 43 from the rear end side in the O direction, the end face on the rear end side of the connection ring 35 is not visible, and the end face of the tip portion 201 of the tube 200, the end face on the rear end side of the connection ring 35, May be prevented.

また、グロープラグ100が備えるヒータ部材として本実施の形態ではセラミックヒータ20を備え、その製法を交えて説明したが、この製法に限定されることはなく、公知のいかなる製法により作製してもよい。さらに、ヒータ部材はセラミックヒータ20に限られず、先端部が半球状に閉塞した金属製のシースチューブ内にコイル状の発熱抵抗体や制御抵抗体を配したシーズヒータであってもよい。すなわち、本発明はヒータ部材の形状にとらわれるものではなく、ヒータの発熱の仕様も適宜設定すればよい。   Further, in the present embodiment, the ceramic heater 20 is provided as a heater member provided in the glow plug 100, and the manufacturing method thereof is described. However, the manufacturing method is not limited to this, and any known manufacturing method may be used. . Furthermore, the heater member is not limited to the ceramic heater 20, and may be a sheathed heater in which a coil-shaped heating resistor or control resistor is arranged in a metal sheath tube whose tip is closed in a hemispherical shape. That is, the present invention is not limited to the shape of the heater member, and the heat generation specifications of the heater may be set as appropriate.

本発明は、発熱機能のみを有するグロープラグだけでなく、温度センサや圧力センサ等を組み込んだグロープラグに対しても利用することができる。   The present invention can be used not only for a glow plug having only a heat generation function but also for a glow plug incorporating a temperature sensor, a pressure sensor, or the like.

グロープラグ100の縦断面図である。1 is a longitudinal sectional view of a glow plug 100. FIG. チューブ200の斜視図である。2 is a perspective view of a tube 200. FIG. 図2の一点鎖線P−Pにおいて矢視方向から見たチューブ200の断面図である。It is sectional drawing of the tube 200 seen from the arrow direction in the dashed-dotted line PP of FIG. グロープラグ100の製造過程の概略的な流れを示す図である。3 is a diagram showing a schematic flow of a manufacturing process of the glow plug 100. FIG. 図4のチューブ圧縮工程をより詳細に示すグロープラグ100の部分断面図である。It is a fragmentary sectional view of the glow plug 100 which shows the tube compression process of FIG. 4 in detail. 変形例としてのグロープラグ300の縦断面図である。It is a longitudinal cross-sectional view of the glow plug 300 as a modification.

符号の説明Explanation of symbols

20 セラミックヒータ
27 発熱体
30 中軸
40 主体金具
43 軸孔
60 支持リング
100 グロープラグ
200 チューブ
20 Ceramic heater 27 Heating element 30 Middle shaft 40 Metal shell 43 Shaft hole 60 Support ring 100 Glow plug 200 Tube

Claims (4)

軸線方向に沿って延びる中軸と、
通電によって発熱する発熱体を有するヒータ部材と、
軸孔を有し、その軸孔内に前記中軸が挿通されるとともに、前記ヒータ部材の径方向を保持する主体金具と、
前記中軸と前記軸孔との間隙に介在され、可撓性を有するチューブ状の可撓性部材と
を備え、
前記可撓性部材は前記間隙の大きさよりも厚みが小さく、前記軸線方向と平行な方向に圧縮された形態を有し、その圧縮に伴う変形によって前記中軸と前記軸孔とのそれぞれに接触した状態で、前記間隙に介在されていることを特徴とするグロープラグ。
A central axis extending along the axial direction;
A heater member having a heating element that generates heat when energized;
A metal shell that has a shaft hole, the central shaft is inserted into the shaft hole, and holds the radial direction of the heater member;
A tube-like flexible member that is interposed in a gap between the middle shaft and the shaft hole and has flexibility,
The flexible member has a thickness smaller than the size of the gap and is compressed in a direction parallel to the axial direction, and comes into contact with each of the middle shaft and the shaft hole by deformation accompanying the compression. A glow plug characterized by being interposed in the gap in a state.
前記軸孔の後端部にて前記中軸と前記軸孔との間隙に嵌着される絶縁部材であり、
該絶縁部材の先端部が直接または他部材を介して前記可撓性部材を前記軸線方向と平行な方向に押圧し、当該可撓性部材の圧縮された状態を維持する絶縁部材を備えたことを特徴とする請求項1に記載のグロープラグ。
An insulating member fitted into a gap between the middle shaft and the shaft hole at a rear end portion of the shaft hole;
An insulating member is provided in which the distal end portion of the insulating member presses the flexible member in a direction parallel to the axial direction directly or through another member, and maintains the compressed state of the flexible member. The glow plug according to claim 1.
前記絶縁部材のうち前記可撓性部材を押圧する部位の外径は、当該可撓性部材のうち前記絶縁部材に当接した部位の外径よりも大きいことを特徴とする請求項2に記載のグロープラグ。   The outer diameter of a portion of the insulating member that presses the flexible member is larger than an outer diameter of a portion of the flexible member that is in contact with the insulating member. Glow plug. 請求項2または3に記載のグロープラグを製造する方法であって、
前記ヒータ部材が固定された前記中軸を前記主体金具の前記軸孔内に挿通するとともに、前記軸孔の先端側で前記ヒータ部材の径方向を保持するヒータ保持工程と、
前記軸孔の後端側から、その軸孔内に、前記可撓性部材を挿入するとともに、前記可撓性部材の内周に前記中軸を挿通させる挿入工程と、
前記軸孔の後端側に前記絶縁部材を配設するとともに、その絶縁部材で、前記軸線方向と平行な方向に前記可撓性部材を圧縮する圧縮工程と
を備えたことを特徴とするグロープラグの製造方法。
A method for producing a glow plug according to claim 2 or 3,
A heater holding step of inserting the middle shaft to which the heater member is fixed into the shaft hole of the metal shell, and holding a radial direction of the heater member at a tip side of the shaft hole;
An insertion step of inserting the flexible member into the axial hole from the rear end side of the axial hole and inserting the intermediate shaft into the inner periphery of the flexible member;
And a compression step of compressing the flexible member in a direction parallel to the axial direction with the insulating member disposed on the rear end side of the shaft hole. Plug manufacturing method.
JP2005213511A 2005-07-22 2005-07-22 Glow plug and manufacturing method thereof Active JP4478626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005213511A JP4478626B2 (en) 2005-07-22 2005-07-22 Glow plug and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005213511A JP4478626B2 (en) 2005-07-22 2005-07-22 Glow plug and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2007032878A true JP2007032878A (en) 2007-02-08
JP4478626B2 JP4478626B2 (en) 2010-06-09

Family

ID=37792356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005213511A Active JP4478626B2 (en) 2005-07-22 2005-07-22 Glow plug and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4478626B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115106723A (en) * 2021-12-20 2022-09-27 上海欧展电器有限公司 Preparation process of auxiliary heating element for PECVD (plasma enhanced chemical vapor deposition) tube furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115106723A (en) * 2021-12-20 2022-09-27 上海欧展电器有限公司 Preparation process of auxiliary heating element for PECVD (plasma enhanced chemical vapor deposition) tube furnace

Also Published As

Publication number Publication date
JP4478626B2 (en) 2010-06-09

Similar Documents

Publication Publication Date Title
JP4897467B2 (en) Glow plug and manufacturing method thereof
JP4960118B2 (en) Glow plug
US7329836B2 (en) Glow plug with O-ring seal
JP4865375B2 (en) Glow plug
KR101558651B1 (en) Glow plug and manufacturing method therefor
JP2007032877A (en) Glow plug and its manufacturing method
JP5964547B2 (en) Glow plug and manufacturing method thereof
JP4890901B2 (en) Glow plug and manufacturing method thereof
US9385496B2 (en) Glow plug terminal and glow plug
JP4478626B2 (en) Glow plug and manufacturing method thereof
JP5806211B2 (en) Glow plug
JP2004132688A (en) Glow plug
JP5351236B2 (en) Glow plug
JP4295164B2 (en) Glow plug
WO2013146949A1 (en) Glow plug
JP5639227B2 (en) Glow plug
JP4960183B2 (en) Glow plug manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071022

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100315

R150 Certificate of patent or registration of utility model

Ref document number: 4478626

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250