JP2007031448A - Bacterial endotoxin adsorbent and method for screening the same - Google Patents

Bacterial endotoxin adsorbent and method for screening the same Download PDF

Info

Publication number
JP2007031448A
JP2007031448A JP2006281025A JP2006281025A JP2007031448A JP 2007031448 A JP2007031448 A JP 2007031448A JP 2006281025 A JP2006281025 A JP 2006281025A JP 2006281025 A JP2006281025 A JP 2006281025A JP 2007031448 A JP2007031448 A JP 2007031448A
Authority
JP
Japan
Prior art keywords
peptide library
binding
functional group
compound
mmol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006281025A
Other languages
Japanese (ja)
Inventor
Koichi Fukase
浩一 深瀬
Peter Nessler Hans
ペーター ネスラー ハンス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2006281025A priority Critical patent/JP2007031448A/en
Publication of JP2007031448A publication Critical patent/JP2007031448A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an easily synthesizable new lipopolysaccharide adsorbent (bacterial endotoxin adsorbent), enabling easy adjustment of various relating structures, and usable for the adsorption of various lipopolysaccharides and provide a screening method for the adsorbent. <P>SOLUTION: The method for the screening of a bacterial endotoxin adsorbent comprises the binding assay (binding experiment) of a peptide library and a radioactive labeled lipid A produced by introducing a radioactive element to a phosphonoxyethyl derivative of a biosynthesis precursor-type lipid A or an E.coli-type lipid A. The invention further relates to a bacterial endotoxin adsorbent composed of a specific peptide library found by the screening method. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、エンドドキシン(細菌内毒素)吸着剤のスクリーニング・作製方法及びその方法により見出された特定構造の吸着剤に関する。   The present invention relates to a screening / preparation method of endotoxin (bacterial endotoxin) adsorbent and an adsorbent having a specific structure found by the method.

高等動物はバクテリアが体内に侵入すると自らの免疫系を活性化するシステムを有しており、このシステムは自然免疫(innate immunity)として注目を集めている。リポ多糖(Lipopolysaccharide:LPS、内毒素、エンドトキシン)は大腸菌やサルモネラ菌などのグラム陰性菌の細胞表層の主成分であり、バクテリア侵入のシグナルとして働いてサイトカイン、プロスタグランジンやPAFなどの脂質、NOなど様々なメディエーターを生産させることで免疫系を活性化する。適量のリポ多糖が作用した場合は有益な免疫応答が起こるが、感染症などによりリポ多糖が過剰に作用すると免疫系が暴走し、高熱や全身的な血液凝固などが起こり致死的なショックが引き起こされる。一方で人工透析液中のリポ多糖の混入も透析中に体内にリポ多糖が入ることにより、サイトカインを誘導して種々の合併症を引き起こす可能性がある。また生物学的製剤へのリポ多糖の混入も大きな問題である。そこでリポ多糖を除去するためのリポ多糖吸着剤の開発が望まれてきた。しかしながら、現在までのところ、リポ多糖の吸着剤として開発され実用化されているのは、エンドトキシン吸着療法に用いられている、抗生物質ポリミキシンBをファイバーに固定したトレミキシン(東レ(株)商品名)ぐらいしかない。   Higher animals have a system that activates their own immune system when bacteria enter the body, and this system is attracting attention as innate immunity. Lipopolysaccharide (LPS, endotoxin, endotoxin) is the main component of the cell surface layer of gram-negative bacteria such as Escherichia coli and Salmonella, and acts as a signal for bacterial invasion, lipids such as cytokines, prostaglandins and PAF, NO, etc. The immune system is activated by producing various mediators. When an appropriate amount of lipopolysaccharide acts, a beneficial immune response occurs, but when the lipopolysaccharide acts excessively due to infection, the immune system runs away, causing high fever and systemic blood clotting, causing fatal shock It is. On the other hand, mixing of lipopolysaccharide in the artificial dialysate may induce cytokines and cause various complications when lipopolysaccharide enters the body during dialysis. Another major problem is the incorporation of lipopolysaccharide into biological products. Therefore, development of a lipopolysaccharide adsorbent for removing lipopolysaccharide has been desired. However, up to now, what has been developed and put into practical use as an adsorbent for lipopolysaccharide is tremyxin (trade name of Toray Industries, Inc.) used for endotoxin adsorption therapy, in which the antibiotic polymyxin B is immobilized on a fiber. There is only about.

本発明は上記した如き現状に鑑みなされたもので、合成が容易で、様々な類縁構造も容易に調整でき、種々のリポ多糖の吸着に使用し得る、新しいリポ多糖吸着剤(細菌内毒素吸着剤)とそのスクリーニング方法を提供することを目的とする。   The present invention has been made in view of the present situation as described above, and is a novel lipopolysaccharide adsorbent (bacterial endotoxin adsorption) that is easy to synthesize, can be easily adjusted to various similar structures, and can be used for adsorption of various lipopolysaccharides. Agent) and a screening method thereof.

本発明は、生合成前駆体型リピドA又は大腸菌型リピドAのホスホノオキシエチル誘導体に放射性元素を導入したリピドA放射性標識体を用いて、ペプチドライブラリーとのバインディングアッセイ(結合実験)を行うことを特徴とする細菌内毒素吸着剤のスクリーニング方法、及び該スクリーニング方法により見出された細菌内毒素吸着剤に関する。   The present invention performs a binding assay (binding experiment) with a peptide library using a lipid A radiolabeled product in which a radioactive element is introduced into a phosphonooxyethyl derivative of biosynthetic precursor type lipid A or E. coli type lipid A. And a bacterial endotoxin adsorbent found by the screening method.

また、本発明は、官能基を有する固相担体に、該官能基と結合し得る官能基を有し、且つ他の官能基を2以上有する化合物を結合させ、更にこれにオリゴペプチドを結合させてなるペプチドライブラリーに関する。   In the present invention, a solid phase carrier having a functional group is bound to a compound having a functional group capable of binding to the functional group and having two or more other functional groups, and further, an oligopeptide is bound thereto. It is related with the peptide library.

更に、本発明は、官能基を有する固相担体に、該官能基と結合し得る官能基を有し、且つ他の官能基を2以上有する化合物を結合させ、更にこれに、該他の官能基と結合し得る官能基を有し、且つこれ以外の官能基を2以上有する化合物を結合させ、然る後、更にこれにオリゴペプチドを結合させてなるペプチドライブラリーに関する。   Furthermore, the present invention allows a compound having a functional group capable of binding to the functional group and having two or more other functional groups to be bound to a solid phase carrier having a functional group, and further to the other functional group. The present invention relates to a peptide library in which a compound having a functional group capable of binding to a group and having two or more other functional groups is bound, and then an oligopeptide is further bound thereto.

更にまた、本発明は、合成前駆体型リピドA又は大腸菌型リピドAのホスホノオキシエチル誘導体に放射性元素を導入したリピドA放射性標識体に関する。   Furthermore, the present invention relates to a lipid A radiolabeled product obtained by introducing a radioactive element into a phosphonooxyethyl derivative of synthetic precursor type lipid A or E. coli type lipid A.

即ち、天然型リピドAの1位グリコシルリン酸基は化学的に不安定であるが、これをホスホノオキシエチル(PE)基に置き換えたPE類縁体は化学的に安定であり、天然型のものと同等の活性を示すことが明らかにされている。本発明者らは、先にPE類縁体の効率的な合成法を開発し報告している(Bull.Chem.Soc.Jpn.,72,1377(1999))が、今回、更にPE類縁体合成においてアルデヒド中間体の還元にNaBを用いることによって、大腸菌リピドAトリチウム標識PE類縁体の合成に成功し、これらの放射性標識体を用いて特定のペプチドライブラリーとのバインディングアッセイ(結合実験)を行うことにより効果的な細菌内毒素吸着剤のスクリーニングが実施できることを見出し本発明を完成するに到った。 That is, the 1-position glycosyl phosphate group of natural lipid A is chemically unstable, but the PE analog in which this is replaced with a phosphonooxyethyl (PE) group is chemically stable, It has been clarified that the activity is equivalent to that of the above. The present inventors have previously developed and reported an efficient method for synthesizing PE analogues (Bull. Chem. Soc. Jpn., 72 , 1377 (1999)). Was successfully synthesized using E. coli lipid A tritium-labeled PE analogues by using NaB 3 H 4 for reduction of aldehyde intermediates, and these radiolabels were used to bind to specific peptide libraries (binding experiments). ), It was found that effective bacterial endotoxin adsorbent screening can be performed, and the present invention has been completed.

本発明は、エンドドキシン(細菌内毒素)吸着剤のスクリーニング・作製方法及びその方法により見出された特定構造の吸着剤に関するものであり、合成が容易で、様々な類縁構造も容易に調整でき、種々の細菌内毒素の吸着に使用し得る、新しい細菌内毒素吸着剤(エンドドキシン吸着剤)を提供するものである点に効果を有する。また、本発明の吸着剤は、既存の吸着剤と比べて、天然物(天然アミノ酸)を使用している点に大きな利点を有する。   The present invention relates to a screening / preparation method for endotoxin (bacterial endotoxin) adsorbent and an adsorbent having a specific structure found by the method, which is easy to synthesize and can easily adjust various similar structures, It has an effect in that it provides a new bacterial endotoxin adsorbent (endodoxin adsorbent) that can be used for adsorption of various bacterial endotoxins. In addition, the adsorbent of the present invention has a great advantage in using natural products (natural amino acids) as compared with existing adsorbents.

本発明で用いられる、生合成前駆体型リピドA又は大腸菌型リピドAのホスホノオキシエチル誘導体に放射性元素を導入した放射線標識リピドA類縁体における放射性元素としては、例えば、トリチウム(H)が挙げられる。
本発明で用いられる、大腸菌型リピドAのホスホノオキシエチル誘導体に放射性元素を導入した放射線標識リピドA類縁体としては、例えば、下記構造式[4]で示されるものが挙げられる。

Figure 2007031448
Examples of the radioactive element in the radiolabeled lipid A analog obtained by introducing a radioactive element into the phosphonooxyethyl derivative of biosynthetic precursor type lipid A or Escherichia coli type lipid A used in the present invention include tritium ( 3 H). It is done.
Examples of the radiolabeled lipid A analog obtained by introducing a radioactive element into the phosphonooxyethyl derivative of E. coli lipid A used in the present invention include those represented by the following structural formula [4].
Figure 2007031448

また、本発明で用いられる、生合成前駆体型リピドAのホスホノオキシエチル誘導体に放射性元素を導入した放射線標識リピドA類縁体としては、例えば、下記構造式[5]で示されるものが挙げられる。

Figure 2007031448
Moreover, as a radiolabeled lipid A analog used by this invention which introduce | transduced the radioactive element into the phosphonooxyethyl derivative of biosynthetic precursor type lipid A, what is shown by following Structural formula [5] is mentioned, for example. .
Figure 2007031448

上記放射線標識リピドA類縁体の製造方法は、後記実施例の項で詳細に述べるとおりである。   The method for producing the radiolabeled lipid A analog is as described in detail in Examples below.

本発明で用いられるペプチドライブラリーとしては、例えば、官能基を有する固相担体に、該官能基と結合し得る官能基を有し、且つ他の官能基を2以上有する化合物を結合させ、更にこれにオリゴペプチドを結合させて作製したペプチドライブラリーが挙げられる。
また、官能基を有する固相担体に、該官能基と結合し得る官能基を有し、且つ他の官能基を2以上有する化合物を結合させ、更にこれに、該他の官能基と結合し得る官能基を有し、且つこれ以外の官能基を2以上有する化合物を結合させ、然る後、更にこれにオリゴペプチドを結合させて作製したペプチドライブラリーも好ましいものとして挙げられる。
As the peptide library used in the present invention, for example, a solid phase carrier having a functional group is bound to a compound having a functional group capable of binding to the functional group and having two or more other functional groups, A peptide library prepared by binding an oligopeptide to this can be mentioned.
Further, a compound having a functional group capable of binding to the functional group and having two or more other functional groups is bound to a solid phase carrier having a functional group, and further bonded to the other functional group. Peptide libraries prepared by binding a compound having a functional group to be obtained and having two or more functional groups other than this, and then further binding an oligopeptide thereto are also preferred.

官能基を有する固相担体としては、例えば、アミノ基を有する固相担体が挙げられる。
官能基を有する固相担体がアミノ基を有する固相担体である場合、該アミノ基と結合し得る官能基を有し、且つ他の官能基を2以上有する化合物としては、例えば、式:HOOC(NH)CH(CHNH(式中、nは1〜4の整数を表す。)で示される塩基性アミノ酸や、デオキシコール酸、ケノデオキシコール酸等の水酸基を2以上有するカルボン酸等が挙げられる。
上記アミノ酸の具体例としては、例えば、リジン、オルニチン等が好ましいものとして挙げられる。
Examples of the solid phase carrier having a functional group include a solid phase carrier having an amino group.
When the solid phase carrier having a functional group is a solid phase carrier having an amino group, examples of the compound having a functional group capable of binding to the amino group and having two or more other functional groups include the formula: HOOC (NH 2 ) CH (CH 2 ) n NH 2 (wherein n represents an integer of 1 to 4), carboxylic acids having two or more hydroxyl groups such as deoxycholic acid and chenodeoxycholic acid Etc.
Specific examples of the amino acid include lysine, ornithine and the like.

官能基を有する固相担体がアミノ基を有する固相担体であり、該アミノ基と結合し得る官能基を有し、且つ他の官能基を2以上有する化合物が、式:HOOC(NH)CH(CHNH(式中、nは1〜4の整数を表す。)で示されるアミノ酸である場合、該他の官能基と結合し得る官能基を有し、且つこれ以外の官能基を2以上有する化合物としては、例えば、式:HOOC(NH)CH(CHNH(式中、nは1〜4の整数を表す。)で示される塩基性アミノ酸が挙げられる。
上記アミノ酸の具体例としては、例えば、リジン、オルニチン等が好ましいものとして挙げられる。
Solid phase carriers having a functional group is a solid phase carrier having an amino group, a functional group capable of binding the amino group, and a compound having two or more other functional groups has the formula: HOOC (NH 2) In the case of an amino acid represented by CH (CH 2 ) n NH 2 (wherein n represents an integer of 1 to 4), the amino acid has a functional group capable of binding to the other functional group, and other than this Examples of the compound having two or more functional groups include basic amino acids represented by the formula: HOOC (NH 2 ) CH (CH 2 ) n NH 2 (wherein n represents an integer of 1 to 4). It is done.
Specific examples of the amino acid include lysine, ornithine and the like.

本発明で用いられるペプチドライブラリーにおいて、官能基を有する固相担体に、該官能基と結合し得る官能基を有し、且つ他の官能基を2以上有する化合物を介して、或いは、官能基を有する固相担体に、該官能基と結合し得る官能基を有し、且つ他の官能基を2以上有する化合物を結合させ、更にこれに、該他の官能基と結合し得る官能基を有し、且つこれ以外の官能基を2以上有する化合物を結合させたもの介して、結合させるオリゴペプチドとしては、例えば、アミノ酸残基が2から20、好ましくは3から10、より好ましくは4から8のオリゴペプチドが挙げられる。
アミノ酸残基の種類に特に制約はないが、例えば、Gly、D,L−Val、D,L−Phe、D,L−Pro、D,L−Ser、D,L−Gln、D,L−Glu、D,L−Lys等が好ましいものとして挙げられる。
In the peptide library used in the present invention, the solid phase carrier having a functional group has a functional group capable of binding to the functional group, and a compound having two or more other functional groups, or the functional group A compound having a functional group capable of binding to the functional group and having two or more other functional groups is bound to a solid phase carrier having a functional group capable of binding to the other functional group. As an oligopeptide to be bonded via a compound having a compound having two or more functional groups other than this, for example, the amino acid residue is 2 to 20, preferably 3 to 10, more preferably 4 to 8 oligopeptides.
The type of amino acid residue is not particularly limited. For example, Gly, D, L-Val, D, L-Phe, D, L-Pro, D, L-Ser, D, L-Gln, D, L- Glu, D, L-Lys and the like are preferable.

本発明に係るペプチドライブラリーの具体例としては、例えば、下記一般式[1]、[2]又は[3]で示される化合物が挙げられる。

Figure 2007031448
(式中、球状の部分は固相担体を表し、AA、AA、AA及びAAはそれぞれ独立してアミノ酸残基を表す。)
Figure 2007031448
(式中、球状の部分は固相担体を表し、AA、AA、AA及びAAはそれぞれ独立してアミノ酸残基を表す。)
Figure 2007031448
(式中、球状の部分は固相担体を表し、AA、AA、AA及びAAはそれぞれ独立してアミノ酸残基を表す。) Specific examples of the peptide library according to the present invention include compounds represented by the following general formula [1], [2] or [3].
Figure 2007031448
(In the formula, the spherical portion represents a solid phase carrier, and AA 1 , AA 2 , AA 3 and AA 4 each independently represents an amino acid residue.)
Figure 2007031448
(In the formula, the spherical portion represents a solid phase carrier, and AA 1 , AA 2 , AA 3 and AA 4 each independently represents an amino acid residue.)
Figure 2007031448
(In the formula, the spherical portion represents a solid phase carrier, and AA 1 , AA 2 , AA 3 and AA 4 each independently represents an amino acid residue.)

上記一般式[1]、[2]又は[3]で示されるペプチドライブラリーにおいて、AA、AA、AA及びAAで表されるアミノ酸残基の種類に特に制約はなく、何れのアミノ酸残基でも良いが、好ましいものとしては、例えば、Gly、D,L−Val、D,L−Phe、D,L−Pro、D,L−Ser、D,L−Gln、D,L−Glu、D,L−Lys等が挙げられる。 The general formula [1], in peptide libraries in [2] or [3], AA 1, AA 2, AA 3 and in particular restrictions on the type of amino acid residue represented by AA 4 is not, either An amino acid residue may be used, but preferred examples include Gly, D, L-Val, D, L-Phe, D, L-Pro, D, L-Ser, D, L-Gln, D, L- Glu, D, L-Lys etc. are mentioned.

本発明の細菌内毒素吸着剤は、前記リピドA放射性標識体を用いて、上記ペプチドライブラリーとのバインディングアッセイを行うことにより検索、抽出されるが、そのようにして得られた本発明の細菌内毒素吸着剤の具体例としては、例えば、上記一般式[1]において、AA、AA、AA及びAAが下記表1に記載の何れかの組み合わせからなるもの、 The bacterial endotoxin adsorbent of the present invention is searched and extracted by performing a binding assay with the above peptide library using the lipid A radioactive label, and the bacterium of the present invention thus obtained is extracted. As specific examples of the endotoxin adsorbent, for example, in the above general formula [1], AA 1 , AA 2 , AA 3 and AA 4 are composed of any combination described in Table 1 below,

Figure 2007031448
Figure 2007031448

上記一般式[2]において、AA、AA、AA及びAAが下記表2に記載の何れかの組み合わせからなるもの、 In the above general formula [2], AA 1 , AA 2 , AA 3 and AA 4 are composed of any combination described in Table 2 below,

Figure 2007031448
Figure 2007031448

及び、上記一般式[3]において、AA、AA、AA及びAAが下記表3に記載の何れかの組み合わせからなるもの、 And in the above general formula [3], AA 1 , AA 2 , AA 3 and AA 4 are composed of any combination described in Table 3 below,

Figure 2007031448
Figure 2007031448

等が挙げられる。
オリゴペプチド構造と細菌内毒素吸着剤としての有効性との相関関係は、未だ十分には解明されていないが、AAにリジンがあるのがより有効のようである。
Etc.
Correlation between the effectiveness of the oligopeptide structure with bacterial endotoxin adsorbent is not fully elucidated yet, it is more effective manner that has lysine AA 4.

本発明で用いられる官能基を有する固相担体としては、例えば、アミノ基、カルボキシル基、水酸基等の官能基を有する樹脂、好ましくはビーズ状樹脂が挙げられる。そのような樹脂の具体例としては、例えば、上記した如き官能基を有するポリエチレングリコール−ポリスチレン樹脂[具体的な商品名としては、例えば、TentaGel S−NH(Rapp Polymere社)、Aminomethyl NovaGel HL(Novabiochem社)等が挙げられる。]や、親水性ビニルポリマー[具体的な商品名としては、例えば、TSKgel AF−AminoTOYOPEARL 650S(東ソー(株))等が挙げられる。]等が挙げられる。 Examples of the solid phase carrier having a functional group used in the present invention include a resin having a functional group such as an amino group, a carboxyl group, and a hydroxyl group, preferably a bead-like resin. Specific examples of such a resin include, for example, a polyethylene glycol-polystyrene resin having a functional group as described above [specific names include, for example, TentaGel S-NH 2 (Rapp Polymere), Aminomethyl NovaGel HL ( Novabiochem). ] Or a hydrophilic vinyl polymer [as a specific trade name, for example, TSKgel AF-AminoTOYOPARRL 650S (Tosoh Corporation), etc.). ] Etc. are mentioned.

以下に、放射線標識リピドA類縁体と分子ピンセットライブラリー(ペプチドライブラリー)との結合実験の概略について述べる。
分子ピンセットライブラリーの調製
先ず、スプリット合成によってエンコード分子ピンセットライブラリー(ペプチドライブラリー)を調製した。
即ち、ケノデオキシコール酸をテンプレートとし、その2つの水酸基にGly残基を介してテトラペプチドライブラリーを結合したもの(diarm L1)、L−Lysの2つのアミノ基にそれぞれテトラペプチドライブラリーを結合したもの(diarm L2)、及びL−Lysのそれぞれのアミノ基にL−Lysを結合させ、計4つのアミノ基にテトラペプチドライブラリーを結合したもの(tetraarm L3)である。固相担体としては水中でアッセイを行うことを考慮して、水に膨潤性のポリエチレングリコール-ポリスチレン樹脂であるTentaGelを用いた。 L1をコア構造として用いる場合はまずデオキシコール酸を固相担体に導入した後、2つの水酸基に対してFmoc−Glyを結合させた。リジン(L2)とトリリジン(L3)コアは通常のペプチド固相合成法により調製した。ライブラリー調製には15種類(GlyとD及びL−Val,Phe,Ser,Gln,Glu,Lys及びPro)のアミノ酸を用いた。4段階のスプリットカップリングサイクルを行って、3×15=151,875種類のペプチドを含むライブラリーを構築した。
The outline of the binding experiment between the radiolabeled lipid A analog and the molecular tweezer library (peptide library) is described below.
Preparation of molecular tweezers library First, an encoded molecular tweezers library (peptide library) was prepared by split synthesis.
That is, using chenodeoxycholic acid as a template, a tetrapeptide library bound to its two hydroxyl groups via a Gly residue (diarm L1), and a tetrapeptide library bound to two amino groups of L-Lys. (Diarm L2) and L-Lys are linked to L-Lys, and a tetrapeptide library is bound to a total of four amino groups (tetraarm L3). In consideration of performing the assay in water, TentaGel, which is a swellable polyethylene glycol-polystyrene resin, was used as the solid phase carrier. When L1 was used as the core structure, deoxycholic acid was first introduced into the solid support, and then Fmoc-Gly was bound to the two hydroxyl groups. Lysine (L2) and trilysine (L3) cores were prepared by conventional peptide solid phase synthesis. 15 types of amino acids (Gly and D and L-Val, Phe, Ser, Gln, Glu, Lys and Pro) were used for library preparation. 4 by performing the steps of splitting coupling cycle was constructed libraries containing 3 × 15 4 = 151,875 different peptides.

放射線標識リピドA類縁体と分子ピンセットライブラリーの結合実験
上記構造式[4]で示される放射線標識リピドA類縁体(以下、[H]PE506と略記する。)、又は上記構造式[5]で示される放射線標識リピドA類縁体(以下、[H]PE406と略記する。)を用いて、分子ピンセットライブラリーとの結合実験(バインディングアッセイ)を行った。 なお放射線化合物を用いた分子ピンセットライブラリーとの結合実験についてはNestlerがすでに確立しており、その手法に従った(Nestler H.P.;Wennemers H.;Sherlock R.;Dong D.L.-Y.Bioorg.Med.Chem Lett.,6,1327(1996).)。
H]PE506を用いた結合実験についてはライブラリー(15.7mg,約19000個のビーズ状樹脂を含む。)を[H]PE506の存在下で4℃で41時間振盪した。この操作により[H]PE506を認識する分子ピンセットが結合した樹脂は[H]PE506を吸着するので放射能を帯びる。これにKodak autoradiographic emulsionを作用させると、放射能を帯びた樹脂の回りが感光される。定着した後、余分なエマルジョンを除去すると放射能を帯びた樹脂は黒く染まる。これを取り出し、後に述べるエンコード法で樹脂上のペプチド配列を決定した。その結果、[H]PE506と結合する19種類の分子ピンセットが見出された(表4)。
Binding experiment of radiolabeled lipid A analog and molecular tweezers library Radiolabeled lipid A analog represented by the above structural formula [4] (hereinafter abbreviated as [ 3 H] PE506), or the above structural formula [5] Using a radiolabeled lipid A analog (hereinafter abbreviated as [ 3 H] PE406), a binding experiment (binding assay) with a molecular tweezer library was performed. Nestler has already established a binding experiment with a molecular tweezer library using a radioactive compound, and the method was followed (Nestler HP; Wennemers H .; Sherlock R .; Dong DL-Y. Bioorg. Med. Chem Lett., 6 , 1327 (1996).).
For binding experiments with [ 3 H] PE506, the library (15.7 mg, containing about 19000 beaded resins) was shaken at 4 ° C. for 41 hours in the presence of [ 3 H] PE506. Resin recognizing molecules tweezers are bound to [3 H] PE506 This operation takes on radioactivity because adsorbs [3 H] PE506. When Kodak autoradiographic emulsion is applied to this, the area around the radioactive resin is exposed. After fixing, if the excess emulsion is removed, the radioactive resin will turn black. This was taken out and the peptide sequence on the resin was determined by the encoding method described later. As a result, 19 types of molecular tweezers that bind to [ 3 H] PE506 were found (Table 4).

Figure 2007031448
Figure 2007031448

表4から明らかなように、19種類の分子ピンセットのうち17種類までもがL3の構造を有していた。また各armのC−未端にL−リジン(K)残基を有するもの(K−L3構造)が9種類、D−リジン(k)を有するもの(k−L3構造)が3種類見出された。ライブラリー全体には151,875個の分子ピンセットが含まれているのに、実際のアッセイに用いたビーズ状樹脂の数は約19,000個であり、アッセイで調べた分子ピンセットの数は20%に満たない。従って今回見つかったペプチド配列以外にも[H]PE506と結合するものは数多く存在するものと予測される。 As is clear from Table 4, up to 17 out of 19 molecular tweezers had the L3 structure. In addition, 9 types of L-lysine (K) residues (K-L3 structure) and 3 types of D-lysine (k) (k-L3 structure) were found at the C-end of each arm. It was done. Although the whole library contains 151,875 molecular tweezers, the number of bead-shaped resins used in the actual assay is about 19,000, and the number of molecular tweezers examined in the assay is 20 Less than%. Therefore, in addition to the peptide sequences found this time, it is predicted that there are many that bind to [ 3 H] PE506.

H]PE406を用いた結合実験についてはライブラリー(24.2mg,約29000個のビーズ状樹脂を含む。)を用いて同様の結合実験を行った。その結果32種類の分子ピンセットが見出された(表5)。 For binding experiments using [ 3 H] PE406, a similar binding experiment was performed using a library (24.2 mg, containing about 29000 beads of resin). As a result, 32 types of molecular tweezers were found (Table 5).

Figure 2007031448
Figure 2007031448

表5から明らかなように、32種類中20種類がL3構造を有しており、そのうち5種類のみにテトラペプチドのC未端にL−リジン残基が存在していた。この部分がコンセンサス配列であることに変わりないが、[H]PE406では配座の運動性が増加したため、様々な分子ピンセットが結合できるものと考えられる。 As is clear from Table 5, 20 out of 32 types had L3 structures, and only 5 of them had an L-lysine residue at the C-terminal end of the tetrapeptide. Although this portion is still a consensus sequence, [ 3 H] PE406 is thought to be able to bind various molecular tweezers because of increased conformational mobility.

リピドA類縁体認識分子ピンセットの再合成
上記のようにして見出された分子ピンセットが天然型リピドAやリポ多糖に結合するかどうかを確かめるために、上記の分子ピンセットから適当に選んで分子ピンセットの結合した樹脂6〜17を調製した。
H]PE506との結合実験で見出された分子ピンセット
(k-s-k-S)L3-TentaGel(6-TentaGel),(s-S-K-k)L3-TentaGel (7-TentaGel),(K-K-k-k)L3-TentaGel(8-TentaGel),(Q-E-K-k)L3-Tenta-gel(9-TentaGel),(K-S-K-E)L3-TentaGel(10-TentaGel),(E-q-f-K)L3-TentaGel(11-TentaGel)
H]PE406との結合実験で見出された分子ピンセット
(S-s-F-v)L3-TentaGel(12-TentaGel),(F-V-E-s)L3-TentaGel(13-TentaGel),(k-K-e-E)L3-TentaGel(14-TentaGel),(K-v-E-e)L3-TentaGel(15-TentaGel),(P-E-S-K)L3-TentaGel(16-TentaGel),(P-P-S-k)L3-TentaGel(17-TentaGel)
Resynthesis of lipid A analog-recognizing molecular tweezers In order to confirm whether the molecular tweezers found as described above bind to natural lipid A or lipopolysaccharide, molecular tweezers are appropriately selected from the above molecular tweezers. Resins 6-17 were prepared.
[3 H] molecular tweezers found in binding experiments with PE506 (k-skS) 4 L3 -TentaGel (6-TentaGel), (sSKk) 4 L3-TentaGel (7-TentaGel), (KKkk) 4 L3- TentaGel (8-TentaGel), (QEKk) 4 L3-Tenta-gel (9-TentaGel), (KSKE) 4 L3-TentaGel (10-TentaGel), (EqfK) 4 L3-TentaGel (11-TentaGel)
Molecular tweezers found in binding experiments with [ 3 H] PE406 (S-sFv) 4 L3-TentaGel (12-TentaGel), (FVEs) 4 L3-TentaGel (13-TentaGel), (kKeE) 4 L3- TentaGel (14-TentaGel), (KvEe) 4 L3-TentaGel (15-TentaGel), (PESK) 4 L3-TentaGel (16-TentaGel), (PPSk) 4 L3-TentaGel (17-TentaGel)

再合成した分子ピンセットを用いた結合実験
次に再合成した分子ピンセットを用いて、大腸菌型リピドAのホスホノオキシエチル誘導体(以下、PE506と略記する。)、大腸菌型リピドA(以下、506と略記する。)、生合成前駆体型リピドAのホスホノオキシエチル誘導体(以下、PE406と略記する。)、生合成前駆体型リピドA(以下、406と略記する。)、大腸菌Re変異株のリポ多糖(ReLPS)、及び大腸菌リポ多糖(E.coli O111:B4 LPS(Sigma社))との結合実験を行った。ReLPSはリピドA部にKdoと呼ばれる糖が2残基結合した構造を有しており、コア多糖部の殆どの部分とO−特異多糖部を欠いている。
参考までにReLPSの構造式を以下に示す。

Figure 2007031448
まず分子ピンセット樹脂6〜17-TentaGelのトリフルオロ酢酸塩を用いてPE506及び506との結合実験を行った。樹脂への結合はアッセイ後の溶液TLC分析を行って確認した。結果を表6に示す。 Binding experiment using re-synthesized molecular tweezers Next , using re-synthesized molecular tweezers, phosphonooxyethyl derivative of E. coli lipid A (hereinafter abbreviated as PE506), E. coli lipid A (hereinafter referred to as 506) Abbreviated)), phosphonooxyethyl derivative of biosynthetic precursor type lipid A (hereinafter abbreviated as PE406), biosynthetic precursor type lipid A (hereinafter abbreviated as 406), lipopolysaccharide of Escherichia coli Re mutant Binding experiments with (ReLPS) and E. coli lipopolysaccharide (E. coli O111: B4 LPS (Sigma)) were performed. ReLPS has a structure in which a sugar called Kdo is bonded to the lipid A part, and lacks most of the core polysaccharide part and the O-specific polysaccharide part.
For reference, the structural formula of ReLPS is shown below.
Figure 2007031448
First, binding experiments with PE506 and 506 were performed using molecular tweezer resins 6 to 17-TentaGel trifluoroacetate. Binding to the resin was confirmed by solution TLC analysis after the assay. The results are shown in Table 6.

Figure 2007031448
Figure 2007031448

次に樹脂6-TentaGel、11-TentaGel、12-TentaGel、16-TentaGel、17-TentaGelの吸着能をアッセイ後の溶液のリムルス活性を測定することによって確認した。リムルス活性試験とは、リポ多糖がカブトガニ(Limulus polyphemusなど)の血球抽出成分LAL(Limulus Amebocyte Lysate)凝固酵素を活性化する反応を利用し、内毒素活性を比色定量する方法である。
PE506、506、PE406、406、ReLPS、及び大腸菌リポ多糖(E.coli O111:B4 LPS(Sigma社))を用いて、それぞれ上記と同様に6-TentaGel、11-TentaGel、12-TentaGel、16-TentaGel、17-TentaGelとの結合実験を行い、上清についてリムルス活性を測定した。これらの内毒素が樹脂に吸着されると観測される吸光度は低下する。なお、ここではアッセイを行う前に各々の樹脂を水で洗浄したため、樹脂上の大部分のアミノ基は遊離となっているものと考えられる。そのため酸性複合糖質であるリポ多糖やリピドAに対する樹脂の吸着能は水で洗浄する前よりも向上している。実際、上記のトリフルオロ酢酸塩を用いた場合は12-TentaGelはPE506、506を吸着しないが、水で洗浄後の12-TentaGelはどちらもよく吸着している。樹脂11-TentaGelは406に対して吸着力が弱い。全ての樹脂が天然のReLPSに対しても強い吸着能を示したが、大腸菌リポ多糖(E.coli O111:B4 LPS(Sigma社))に対しては殆ど吸着能を示さなかった(図1参照)。
Next, the adsorption ability of the resins 6-TentaGel, 11-TentaGel, 12-TentaGel, 16-TentaGel, 17-TentaGel was confirmed by measuring the Limulus activity of the solution after the assay. The Limulus activity test is a method for colorimetric determination of endotoxin activity using a reaction in which lipopolysaccharide activates a blood cell extract component LAL (Limulus Amebocyte Lysate) coagulase of horseshoe crab (such as Limulus polyphemus).
Using PE506, 506, PE406, 406, ReLPS, and E. coli lipopolysaccharide (E. coli O111: B4 LPS (Sigma)), 6-TentaGel, 11-TentaGel, 12-TentaGel, 16- Binding experiments with TentaGel and 17-TentaGel were performed, and the Limulus activity was measured for the supernatant. The absorbance observed when these endotoxins are adsorbed to the resin decreases. Here, since each resin was washed with water before the assay, most amino groups on the resin are considered to be free. Therefore, the adsorption capacity of the resin for lipopolysaccharide and lipid A, which are acidic complex carbohydrates, is improved as compared with that before washing with water. In fact, when the above trifluoroacetate is used, 12-TentaGel does not adsorb PE 506 and 506, but both 12-TentaGel after washing with water adsorbs well. Resin 11-TentaGel has a weak adsorption force to 406. All the resins showed strong adsorption ability to natural ReLPS, but hardly showed adsorption ability to E. coli lipopolysaccharide (E. coli O111: B4 LPS (Sigma)) (see FIG. 1). ).

TentaGelはポリエチレングリコール−ポリスチレングラフトポリマーであり、水には膨潤するものの疎水性の高い樹脂である。大腸菌リポ多糖(LPS)は長い糖鎖を有しており、親水性の糖鎖部が樹脂への浸透を妨害しているものと考えられた。そこでより親水性の高い、TSKgel AF−AminoTOYOPEARL 650S(東ソー(株))を担体として用いて、分子ピンセット6,11,12,16及び17を結合させた6-Toyopearl,11-Toyopearl,12-Toyopearl,16-Toyopearl,及び17-Toyopearlを合成し、506、ReLPS、及び大腸菌リポ多糖(E.coli O111:B4 LPS(Sigma社))との結合実験を行い、結合能をリムルス活性により評価した。その結果、期待したとおり、Toyopearlをベースにした樹脂はわずかな例外を除いてこれら全てを効率的に吸着した(図2参照)。   TentaGel is a polyethylene glycol-polystyrene graft polymer, which is a highly hydrophobic resin that swells in water. E. coli lipopolysaccharide (LPS) has a long sugar chain, and it was thought that the hydrophilic sugar chain part hinders penetration into the resin. Therefore, 6-Toyopearl, 11-Toyopearl, 12-Toyopearl to which molecular tweezers 6, 11, 12, 16 and 17 are bonded using TSKgel AF-AminoTOYOPEARL 650S (Tosoh Corp.) as a carrier. , 16-Toyopearl, and 17-Toyopearl were synthesized, and binding experiments with 506, ReLPS, and E. coli lipopolysaccharide (E. coli O111: B4 LPS (Sigma)) were performed, and the binding ability was evaluated by Limulus activity. As a result, as expected, the resin based on Toyopearl adsorbed all of these efficiently with few exceptions (see FIG. 2).

以上のことから、表4に記載の19種類の分子ピンセット(ペプチドライブラリー)及び表5に記載の32種類の分子ピンセット(ペプチドライブラリー)は、何れも細菌内毒素吸着剤としてより効果的に使用し得るものと大いに期待される。
本発明の吸着剤は、既存の吸着剤と比べて、天然物(天然アミノ酸)を使用している点が大きな利点である。
なお、本発明の特定の吸着体を得る為に、上記の如く、15のアミノ酸から選んで15×3=151875ケとし、更に、実際には、19000と29000からなるライブラリーを得て、これから有効な吸着体51ケを得た。
このとき、15のアミノ酸の選択、151875からの19000と29000への絞り込みは、疎水性、親水性、酸・塩基性などの点を考慮して行った。
From the above, 19 types of molecular tweezers (peptide library) described in Table 4 and 32 types of molecular tweezers (peptide library) described in Table 5 are both more effective as bacterial endotoxin adsorbents. Highly expected to be usable.
The adsorbent of the present invention has a great advantage in that natural products (natural amino acids) are used as compared with existing adsorbents.
In addition, in order to obtain the specific adsorbent of the present invention, as described above, 15 4 × 3 = 1151875 were selected from 15 amino acids, and actually, a library consisting of 19000 and 29000 was obtained, From this, 51 effective adsorbents were obtained.
At this time, selection of 15 amino acids and narrowing down to 19000 and 29000 from 151875 were carried out in consideration of such points as hydrophobicity, hydrophilicity, and acid / basicity.

以下、実施例により本発明をより詳細に説明するが、本発明はこれら実施例により何ら限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited at all by these Examples.

実施例1 放射性標識リピドA類縁体の合成
下記の合成スキームに従って、2種類の放射性標識リピドA類縁体を合成した。

Figure 2007031448
なお、シリカゲルカラムクロマトグラフィーにはKieselgel 60(E.Merck社 0.040−0.063mm)を用いた。また、Sephadex LH−20はPharmacia Biotech,Swedenから購入した。無水CHClとCHClは水素化カルシウムを脱水剤に用いて蒸留して調製した。無水テトラヒドロフラン(THF)と無水ベンゼンは関東化学(株)より購入した。NaB(specific activity 222 GBq mmol−1)はアマシャムライフサイエンスより購入した。オートラジオグラフィーにはイメージングプレートBAS−TR2040S(富士フィルム(株))を用い、検出にはバイオ・イメージングアナライザーBAS−1500 MAC(富士フィルム(株))を用いた。 Example 1 Synthesis of Radiolabeled Lipid A Analogues Two types of radiolabeled lipid A analogs were synthesized according to the following synthesis scheme.
Figure 2007031448
In addition, Kieselgel 60 (E. Merck 0.040-0.063 mm) was used for silica gel column chromatography. Sephadex LH-20 was purchased from Pharmacia Biotech, Sweden. Anhydrous CH 2 Cl 2 and CHCl 3 were prepared by distillation using calcium hydride as a dehydrating agent. Anhydrous tetrahydrofuran (THF) and anhydrous benzene were purchased from Kanto Chemical Co., Inc. NaB 3 H 4 (specific activity 222 GBq mmol −1 ) was purchased from Amersham Life Sciences. An imaging plate BAS-TR2040S (Fuji Film Co., Ltd.) was used for autoradiography, and a bio-imaging analyzer BAS-1500 MAC (Fuji Film Co., Ltd.) was used for detection.

(1) 2-(ホスホノオキシ)[2-]エチル 2-デオキシ-6-O-[2-デオキシ-2-[(R)-3-(ドデカノイルオキシ)テトラデカノイルアミノ]-4-O-ホスホノ-3-O-[(R)-3-(テトラデカノイルオキシ)テトラデカノイル]-β-D-グルコピラノシル]-3-O-[(R)-3-ヒドロキシテトラデカノイル]-2-[(R)-3-ヒドロキシテトラデカノイルアミノ]-α-D-グルコピラノシド([H]PE506:4*)の合成
(1−1) ホルミルメチル4-O-ベンジル-6-O-[6-O-ベンジル-2-デオキシ-4-O-(1,5-ジヒドロ-3-オキソ-3λ-3H-2,4,3-ベンゾジオキサホスフェピン-3-イル)-2-[(R)-3-(ドデカノイルオキシ)テトラデカノイルアミノ]-3-O-[(R)-3-(テトラデカノイルオキシ)テトラデカノイル]-β-D-グルコピラノシル]-3-O-[(R)-3-(ベンジルオキシ) テトラデカノイル]-2-[(R)-3-(ベンジルオキシ)テトラデカノイルアミノ]-2-デオキシ-α-D-グルコピラノシド(化合物20)の合成
化合物19(450mg,202mmol)のTHF/t−ブタノール/水 (10:10:1,12mL)溶液に激しく撹拌下、4−メチルモルフォリンN−オキシド(NMO)(94mg,0.80mmol)と四酸化オスミウム(OsO)の水溶液(2.5%,400mL,40mmol)を加えた。6時間後飽和Na水溶液(50mL)を加え、酢酸エチル(50mL)で抽出した。有機層をNa水溶液(50mL×2)と飽和食塩水(20mL)で洗浄した後、NaSOで乾燥し、減圧濃縮して粗生成物のジオールを得た(458mg)。ジオールを無水ベンゼン(10mL)に溶かし、四酢酸鉛(Pb(OAc))(純度90%,119mg,242mmol)を加え、30分間撹拌した。反応混合物をシリカゲルカラム(3g)にチャージし、酢酸エチルで溶出した。減圧濃縮後、残渣を中圧シリカゲルクロマトグラフィー(20g,トルエン/酢酸エチル=5:1)で精製し化合物20を無色シラップとして得た(377mg,収率:84%)。
FAB-MS (positive) m/z 2244 [(M+Na)]; H NMR (500MHz,CDCl) δ=9.37(s,1H,CHO)。
なお、化合物19の合成は、文献[Liu W-C, Oikawa M, Fukase K, Suda Y, Kusumoto S. Bull Chem Soc Jpn 1999; 72:1377-1385.; Fukase K, Oikawa M, Suda Y, Liu W-C, Fukase Y, Shintaku T, Sekljic H, Yoshizaki H, Kusumoto S. J Endotoxin Res 1999; 5: 46-51.]に記載の方法に準じて行った。
(1) 2- (phosphonooxy) [2- 3 H 1 ] ethyl 2-deoxy-6-O- [2-deoxy-2-[(R) -3- (dodecanoyloxy) tetradecanoylamino] -4 -O-phosphono-3-O-[(R) -3- (tetradecanoyloxy) tetradecanoyl] -β-D-glucopyranosyl] -3-O-[(R) -3-hydroxytetradecanoyl] Synthesis of 2-[(R) -3-hydroxytetradecanoylamino] -α-D-glucopyranoside ([ 3 H] PE506: 4 *) (1-1) Formylmethyl 4-O-benzyl-6-O -[6-O-benzyl-2-deoxy-4-O- (1,5-dihydro-3-oxo-3λ 5 -3H-2,4,3-benzodioxaphosphin-3-yl)- 2-[(R) -3- (dodecanoyloxy) tetradecanoylamino] -3-O-[(R) -3- (tetradecanoyloxy) tetradecanoyl] -β-D-glucopyranosyl] -3 -O-[(R) -3- (Benzyloxy) tetradecanoyl] -2-[(R) -3- (benzyloxy) tetradecanoylamino] -2-deoxy of α-D-glucopyranoside (Compound 20) 4-Methylmorpholine N-oxide under vigorous stirring in a solution of Compound 19 (450 mg, 202 mmol) in THF / t-butanol / water (10: 10: 1, 12 mL) (NMO) (94 mg, 0.80 mmol) and an aqueous solution of osmium tetroxide (OsO 4 ) (2.5%, 400 mL, 40 mmol) were added. After 6 hours, saturated aqueous Na 2 S 2 O 3 (50 mL) was added, and the mixture was extracted with ethyl acetate (50 mL). The organic layer was washed with an aqueous Na 2 S 2 O 3 solution (50 mL × 2) and saturated brine (20 mL), dried over Na 2 SO 4 and concentrated under reduced pressure to obtain a crude product diol (458 mg). . The diol was dissolved in anhydrous benzene (10 mL), lead tetraacetate (Pb (OAc) 4 ) (purity 90%, 119 mg, 242 mmol) was added, and the mixture was stirred for 30 minutes. The reaction mixture was charged onto a silica gel column (3 g) and eluted with ethyl acetate. After concentration under reduced pressure, the residue was purified by medium pressure silica gel chromatography (20 g, toluene / ethyl acetate = 5: 1) to obtain Compound 20 as a colorless syrup (377 mg, yield: 84%).
FAB-MS (positive) m / z 2244 [(M + Na) + ]; 1 H NMR (500 MHz, CDCl 3 ) δ = 9.37 (s, 1H, CHO).
Compound 19 was synthesized according to the literature [Liu WC, Oikawa M, Fukase K, Suda Y, Kusumoto S. Bull Chem Soc Jpn 1999; 72: 1377-1385. Fukase K, Oikawa M, Suda Y, Liu WC, Fukase Y, Shintaku T, Sekljic H, Yoshizaki H, Kusumoto S. J Endotoxin Res 1999; 5: 46-51.]

(1−2) 2-ヒドロキシ-[2-H]エチル4-O-ベンジル-6-O-[6-O-ベンジル-2-デオキシ-4-O-(1,5-ジヒドロ-3-オキソ-3λ-3H-2,4,3-ベンゾジオキサホスフェピン-3-イル)-2-[(R)-3-(ドデカノイルオキシ)テトラデカノイルアミノ]-3-O-[(R)-3-(テトラデカノイルオキシ)テトラデカノイル]-β-D-グルコピラノシル]-3-O-[(R)-3-(ベンジルオキシ) テトラデカノイル]-2-[(R)-3-(ベンジルオキシ) テトラデカノイルアミノ]-2-デオキシ-α-D-グルコピラノシド (化合物21*)の合成
化合物20(150mg,62.4mmol)の2−プロパノール/メタノール/CHCl(5:1:1,3.5mL)溶液に0℃でNaB(590mL,26.4mmol/mL,240GBq mmol−1)を加え、30分間撹拌した。飽和塩化アンモニウム水溶液を加えて反応を止めた後、酢酸エチルで抽出した。抽出液をNaSOで乾燥した後、減圧濃縮し、化合物21*の無色シラップを得た(144mg,定量的)。生成物は精製することなく次の反応に用いた。
(1-2) 2-hydroxy- [2- 3 H 1 ] ethyl 4-O-benzyl-6-O- [6-O-benzyl-2-deoxy-4-O- (1,5-dihydro-3) -Oxo-3λ 5 -3H-2,4,3-benzodioxaphosphepin-3-yl) -2-[(R) -3- (dodecanoyloxy) tetradecanoylamino] -3-O- [(R) -3- (tetradecanoyloxy) tetradecanoyl] -β-D-glucopyranosyl] -3-O-[(R) -3- (benzyloxy) tetradecanoyl] -2-[(R ) -3- (Benzyloxy) tetradecanoylamino] -2-deoxy-α-D-glucopyranoside (Compound 21 *) Compound 20 (150 mg, 62.4 mmol) in 2-propanol / methanol / CH 2 Cl 2 NaB 3 H 4 (590 mL, 26.4 mmol / mL, 240 GBq mmol −1 ) was added to the (5: 1: 1, 3.5 mL) solution at 0 ° C. and stirred for 30 minutes. Saturated aqueous ammonium chloride solution was added to stop the reaction, and the mixture was extracted with ethyl acetate. The extract was dried over Na 2 SO 4 and concentrated under reduced pressure to give colorless syrup of compound 21 * (144 mg, quantitative). The product was used in the next reaction without purification.

(1−3) 2-(1,5-ジヒドロ-3-オキソ-3λ-3H-2,4,3-ベンゾジオキサホスフェピン-3-イルオキシ)-[2-H] エチル4-O-ベンジル-6-O-[6-O-ベンジル-2-デオキシ-4-O-(1,5-ジヒドロ-3-オキソ-3λ-3H-2,4,3-ベンゾジオキサホスフェピン-3-イル)-2-[(R)-3-(ドデカノイルオキシ)テトラデカノイルアミノ]-3-O-[(R)-3-(テトラデカノイルオキシ)テトラデカノイル]-β-D-グルコピラノシル]-3-O-[(R)-3-(ベンジルオキシ) テトラデカノイル]-2-[(R)-3-(ベンジルオキシ)テトラデカノイルアミノ]-2-デオキシ-α-D-グルコピラノシド(化合物22*)の合成
化合物21*(144mg,59.9mmol)のCHCl(14mL)溶液に0℃でN,N−ジエチル−1,5−ジヒドロ−3H−2,4,3−ベンゾジオキサフォスフェピン−3−アミン(89mg,0.37mmol)とテトラゾール (25mg,0.32mmol)を加えた。反応混合物を室温で30分間撹拌した後、−78℃に冷却した。mCPBA(70%,81mg,0.37mmol)を加えた後、45分間撹拌した。飽和Naを加えて反応を終了させた後、CHClで抽出した。有機層を飽和NaHCO水溶液と飽和食塩水で洗浄し、NaSOで乾燥させた。減圧濃縮後、残渣をシリカゲルカラムクロマトグラフィー[3.0g,トルエン/酢酸エチル/ヘキサフルオロ−2−プロパノール(HFIP)=100:50:1]で精製し化合物22*の無色シラップを得た(134mg,収率:87%)。得られた化合物はTLC上で標品の非標識体22と一致した。
[α] 25 = +17.8 (c 1.00, CHCl); FAB-MS (positive) m/z 2428 [(M+Na)]。 Found: C, 69.96; H, 9.21; N, 1.14%. Calcd for C140H218NO26P: C, 69.85; H, 9.13; N, 1.16%。
(1-3) 2- (1,5-dihydro-3-oxo-3λ 5 -3H-2,4,3-benzodioxaphosphin-3-yloxy)-[2- 3 H 1 ] ethyl 4 -O-benzyl-6-O- [6-O-benzyl-2-deoxy-4-O- (1,5-dihydro-3-oxo-3λ 5 -3H-2,4,3-benzodioxaphos Fepin-3-yl) -2-[(R) -3- (dodecanoyloxy) tetradecanoylamino] -3-O-[(R) -3- (tetradecanoyloxy) tetradecanoyl]- β-D-glucopyranosyl] -3-O-[(R) -3- (benzyloxy) tetradecanoyl] -2-[(R) -3- (benzyloxy) tetradecanoylamino] -2-deoxy- Synthesis of α-D-glucopyranoside (compound 22 *) N, N-diethyl-1,5-dihydro-3H-2 in a solution of compound 21 * (144 mg, 59.9 mmol) in CH 2 Cl 2 (14 mL) at 0 ° C. , 4,3-Benzodioxaphosphepin-3-amine (89 mg, 0.37 mmol) Tetrazole (25 mg, 0.32 mmol) was added. The reaction mixture was stirred at room temperature for 30 minutes and then cooled to -78 ° C. mCPBA (70%, 81 mg, 0.37 mmol) was added and stirred for 45 minutes. Saturated Na 2 S 2 O 3 was added to terminate the reaction, followed by extraction with CHCl 3 . The organic layer was washed with saturated aqueous NaHCO 3 solution and saturated brine, and dried over Na 2 SO 4 . After concentration under reduced pressure, the residue was purified by silica gel column chromatography [3.0 g, toluene / ethyl acetate / hexafluoro-2-propanol (HFIP) = 100: 50: 1] to obtain colorless syrup of compound 22 * (134 mg) Yield: 87%). The obtained compound coincided with the standard unlabeled product 22 on TLC.
[α] D 25 = +17.8 (c 1.00, CHCl 3 ); FAB-MS (positive) m / z 2428 [(M + Na) + ]. Found: C, 69.96; H, 9.21; N, 1.14%. Calcd for C 140 H 218 N 2 O 26 P 2 : C, 69.85; H, 9.13; N, 1.16%.

(1−4) 2-(ホスホノキシ)[2-H]エチル 2-デオキシ-6-O-[2-デオキシ-2-[(R)-3-(ドデカノイルオキシ)テトラデカノイルアミノ]-4-O-ホスホノ-3-O-[(R)-3-(テトラデカノイルオキシ)テトラデカノイル]-β-D-グルコピラノシル]-3-O-[(R)-3-ヒドロキシテトラデカノイル]-2-[(R)-3-ヒドロキシテトラデカノイルアミノ]-α-D-グルコピラノシド([H]PE506:4*)の合成
化合物22*(57mg,22mmol)のTHF(8mL)溶液にPd−black(130mg)を加え、加圧下(7kgcm−2)室温で2時間接触還元を行った。トリエチルアミンを加えて中和した後、Pd−blackを濾過で除いた。減圧濃縮して得た残渣を液液分配クロマトグラフィー(Sephadex LH−20:20g,CHCl/メタノール/水/2−プロパノール=9:9:9:1)(有機層を固定相として水層を移動相として使用)で精製し、[H]PE506(4*)を白色粉末として得た(25mg,841MBq,62GBq mmol−1,収率:63%)。得られた化合物はクロマトグラフィー上で標品の非標識体4と一致した。
FAB-MS (negative) m/z 1840 [(M-H)]; H NMR (600MHz,CDOD/CDCl=1:1)δ=5.23 (m,1H), 5.19 (t,J =8.2 Hz,1H), 5.17 (m,1H), 5.14 (t,J =8.2 Hz,1H), 4.82 (d,J =3.0 Hz,1H), 4.56 (d,J =7.4 Hz,1H), 4.23 (q,J =8.0Hz,1H), 4.18 (dd,J =8.9, 3.0Hz,1H), 4.08-3.93 (m,5H), 3.92-3.82 (m,4H), 3.80 (dd,J =10.3, 4.5Hz,1H), 3.74 (d,J =10.6Hz,1H), 3.63 (m,1H), 3.56 (t,J =8.1Hz,1H),3.37 (m,1H), 2.72 (dd,J =14.0, 6.6Hz,1H), 2.64 (dd,J =14.0, 4.5Hz,1H), 2.52-2.46 (m,2H), 2.44-2.36 (m,2H), 2.36-2.27 (m,6H), 1.66-1.39 (m,12H),1.38-1.20 (m,108H), 0.89 (t,J =5.6Hz,18H)。
(1-4) 2- (phosphonoxy) [2- 3 H 1 ] ethyl 2-deoxy-6-O- [2-deoxy-2-[(R) -3- (dodecanoyloxy) tetradecanoylamino] -4-O-phosphono-3-O-[(R) -3- (tetradecanoyloxy) tetradecanoyl] -β-D-glucopyranosyl] -3-O-[(R) -3-hydroxytetradeca Synthesis of Noyl] -2-[(R) -3-hydroxytetradecanoylamino] -α-D-glucopyranoside ([ 3 H] PE506: 4 *) Compound 22 * (57 mg, 22 mmol) in THF (8 mL) Pd-black (130 mg) was added to the mixture, and catalytic reduction was performed at room temperature under pressure (7 kgcm −2 ) for 2 hours. After neutralizing by adding triethylamine, Pd-black was removed by filtration. The residue obtained by concentration under reduced pressure was subjected to liquid-liquid partition chromatography (Sephadex LH-20: 20 g, CHCl 3 / methanol / water / 2-propanol = 9: 9: 9: 1) (the organic layer was used as the stationary phase and the aqueous layer was separated). Used as mobile phase) to give [ 3 H] PE506 (4 *) as a white powder (25 mg, 841 MBq, 62 GBq mmol −1 , yield: 63%). The obtained compound coincided with the standard unlabeled product 4 on chromatography.
FAB-MS (negative) m / z 1840 [(MH) ]; 1 H NMR (600 MHz, CD 3 OD / CDCl 3 = 1: 1) δ = 5.23 (m, 1H), 5.19 (t, J = 8.2 Hz, 1H), 5.17 (m, 1H), 5.14 (t, J = 8.2 Hz, 1H), 4.82 (d, J = 3.0 Hz, 1H), 4.56 (d, J = 7.4 Hz, 1H), 4.23 ( q, J = 8.0Hz, 1H), 4.18 (dd, J = 8.9, 3.0Hz, 1H), 4.08-3.93 (m, 5H), 3.92-3.82 (m, 4H), 3.80 (dd, J = 10.3, 4.5Hz, 1H), 3.74 (d, J = 10.6Hz, 1H), 3.63 (m, 1H), 3.56 (t, J = 8.1Hz, 1H), 3.37 (m, 1H), 2.72 (dd, J = 14.0, 6.6Hz, 1H), 2.64 (dd, J = 14.0, 4.5Hz, 1H), 2.52-2.46 (m, 2H), 2.44-2.36 (m, 2H), 2.36-2.27 (m, 6H), 1.66-1.39 (m, 12H), 1.38-1.20 (m, 108H), 0.89 (t, J = 5.6Hz, 18H).

(2) 2-(ホスホノキシ)[2-H]エチル 2-デオキシ-6-O-[2-デオキシ-2-[(R)-3-ヒドロキシテトラデカノイルアミノ]-4-O-ホスホノ-3-O-[(R)-3-ヒドロキシテトラデカノイル]-β-D-グルコピラノシル]-3-O-[(R)-3-ヒドロキシテトラデカノイル]-2-[(R)-3-ヒドロキシテトラデカノイルアミノ]-α-D-グルコピラノシド([H]PE406:5*)の合成
(2−1) ホルミルメチル4-O-ベンジル-6-O-[6-O-ベンジル-2-デオキシ-4-O-(1,5-ジヒドロ-3-オキソ-3λ-3H-2,4,3-ベンゾジオキサホスフェピン-3-イル)-2-[(R)-3-(ベンジルオキシ)テトラデカノイルアミノ]-3-O-[(R)-3-(ベンジルオキシ)テトラデカノイル]-β-D-グルコピラノシル]-3-O-[(R)-3-(ベンジルオキシ) テトラデカノイル]-2-[(R)-3-(ベンジルオキシ)テトラデカノイルアミノ]-2-デオキシ-α-D-グルコピラノシド(化合物24)の合成
化合物23(230mg,0.15mmol)のTHF/t−ブタノール/水 (10:10:1,9mL)溶液に激しく撹拌下、4−メチルモルフォリンN−オキシド(NMO)(40mg,0.45mmol)と四酸化オスミウム(OsO)の水溶液(2.5%,230mL,20mmol)を加えた。6時間後飽和Na水溶液(50mL)を加え、酢酸エチル(50mL)で抽出した。有機層をNa水溶液(50mL×2)と飽和食塩水(20mL)で洗浄した後、NaSOで乾燥し、減圧濃縮して粗生成物のジオールを得た(458mg)。ジオールを無水ベンゼン(10mL)に溶かし、四酢酸鉛(Pb(OAc)) (純度90%,68mg,140mmol)を加え、30分間撹拌した。反応混合物をシリカゲルカラム(3g)にチャージし、酢酸エチルで溶出した。減圧濃縮後、残渣を中圧シリカゲルクロマトグラフィー(6g,トルエン/酢酸エチル=4:1)で精製し化合物24を無色シラップとして得た(190mg,収率:83%)。
FAB-MS (positive) m/z 2032 [(M+Na)];H NMR (500MHz,CDCl)δ=9.30 (s, 1H, CHO)。
(2) 2- (phosphonoxy) [2- 3 H 1 ] ethyl 2-deoxy-6-O- [2-deoxy-2-[(R) -3-hydroxytetradecanoylamino] -4-O-phosphono -3-O-[(R) -3-hydroxytetradecanoyl] -β-D-glucopyranosyl] -3-O-[(R) -3-hydroxytetradecanoyl] -2-[(R) -3 Of 2-hydroxytetradecanoylamino] -α-D-glucopyranoside ([ 3 H] PE406: 5 *) (2-1) Formylmethyl 4-O-benzyl-6-O- [6-O-benzyl-2 -Deoxy-4-O- (1,5-dihydro-3-oxo-3λ 5 -3H-2,4,3-benzodioxaphosphepin-3-yl) -2-[(R) -3- (Benzyloxy) tetradecanoylamino] -3-O-[(R) -3- (benzyloxy) tetradecanoyl] -β-D-glucopyranosyl] -3-O-[(R) -3- (benzyl Oxy) tetradecanoyl] -2-[(R) -3- (benzyloxy) tetradecanoylamino] -2-deoxy-α-D-glucopyranoside (compound 24) Compound 4-methylmorpholine N-oxide (NMO) (40 mg, 0.45 mmol) was stirred vigorously into a solution of compound 23 (230 mg, 0.15 mmol) in THF / t-butanol / water (10: 10: 1, 9 mL). ) And an aqueous solution of osmium tetroxide (OsO 4 ) (2.5%, 230 mL, 20 mmol). After 6 hours, saturated aqueous Na 2 S 2 O 3 (50 mL) was added, and the mixture was extracted with ethyl acetate (50 mL). The organic layer was washed with an aqueous Na 2 S 2 O 3 solution (50 mL × 2) and saturated brine (20 mL), dried over Na 2 SO 4 and concentrated under reduced pressure to obtain a crude product diol (458 mg). . The diol was dissolved in anhydrous benzene (10 mL), lead tetraacetate (Pb (OAc) 4 ) (purity 90%, 68 mg, 140 mmol) was added, and the mixture was stirred for 30 minutes. The reaction mixture was charged onto a silica gel column (3 g) and eluted with ethyl acetate. After concentration under reduced pressure, the residue was purified by medium pressure silica gel chromatography (6 g, toluene / ethyl acetate = 4: 1) to obtain Compound 24 as colorless syrup (190 mg, yield: 83%).
FAB-MS (positive) m / z 2032 [(M + Na) + ]; 1 H NMR (500 MHz, CDCl 3 ) δ = 9.30 (s, 1H, CHO).

(2−2) 2-ヒドロキシ-[2-H]エチル4-O-ベンジル-6-O-[6-O-ベンジル-2-デオキシ-4-O-(1,5-ジヒドロ-3-オキソ-3λ-3H-2,4,3-ベンゾジオキサホスフェピン-3-イル)-2-[(R)-3-(ベンジルオキシ)テトラデカノイルアミノ]-3-O-[(R)-3-(ベンジルオキシ)テトラデカノイル]-β-D-グルコピラノシル]-3-O-[(R)-3-(ベンジルオキシ) テトラデカノイル]-2-[(R)-3-(ベンジルオキシ) テトラデカノイルアミノ]-2-デオキシ-α-D-グルコピラノシド(化合物25*)の合成
化合物24(100mg,49.8mmol)の2−プロパノール/メタノール(5:1,1.5mL)溶液に0℃でNaB(474mL,26.3mmol/mL,240GBq mmol−1)を加え、30分間撹拌した。2M HCl水溶液と飽和食塩水を加えて反応を止めた後、酢酸エチルで抽出した。抽出液をNaSOで乾燥した後、減圧濃縮し、化合物25*の無色シラップを得た(100mg,定量的)。生成物は精製することなく次の反応に用いた。
(2-2) 2-hydroxy- [2- 3 H 1 ] ethyl 4-O-benzyl-6-O- [6-O-benzyl-2-deoxy-4-O- (1,5-dihydro-3) -Oxo-3λ 5 -3H-2,4,3-benzodioxaphosphepin-3-yl) -2-[(R) -3- (benzyloxy) tetradecanoylamino] -3-O- [ (R) -3- (Benzyloxy) tetradecanoyl] -β-D-glucopyranosyl] -3-O-[(R) -3- (benzyloxy) tetradecanoyl] -2-[(R) -3 Synthesis of-(benzyloxy) tetradecanoylamino] -2-deoxy-α-D-glucopyranoside (Compound 25 *) Compound 24 (100 mg, 49.8 mmol) in 2-propanol / methanol (5: 1, 1.5 mL) ) NaB 3 H 4 (474 mL, 26.3 mmol / mL, 240 GBq mmol −1 ) was added to the solution at 0 ° C. and stirred for 30 minutes. The reaction was stopped by adding 2M aqueous HCl and saturated brine, and the mixture was extracted with ethyl acetate. The extract was dried over Na 2 SO 4 and concentrated under reduced pressure to obtain colorless syrup of compound 25 * (100 mg, quantitative). The product was used in the next reaction without purification.

(2−3) 2-(1,5-ジヒドロ-3-オキソ-3λ-3H-2,4,3-ベンゾジオキサホスフェピン-3-イルオキシ)-[2-H] エチル4-O-ベンジル-6-O-[6-O-ベンジル-2-デオキシ-4-O-(1,5-ジヒドロ-3-オキソ-3λ-3H-2,4,3-ベンゾジオキサホスフェピン-3-イル)-2-[(R)-3-(ベンジルオキシ)テトラデカノイルアミノ]-3-O-[(R)-3-(ベンジルオキシ)テトラデカノイル]-β-D-グルコピラノシル]-3-O-[(R)-3-(ベンジルオキシ) テトラデカノイル]-2-[(R)-3-(ベンジルオキシ) テトラデカノイルアミノ]-2-デオキシ-α-D-グルコピラノシド(化合物26*)の合成
化合物25*(100mg,49.8mmol)のCHCl(14mL)溶液に0℃でN,N−ジエチル−1,5−ジヒドロ−3H−2,4,3−ベンゾジオキサフォスフェピン−3−アミン(70mg,0.29mmol)とテトラゾール (20mg,0.25mmol)を加えた。反応混合物を室温で30分間撹拌した後、−20℃に冷却した。mCPBA(70%,65mg,0.29mmol)を加えた後、45分間撹拌した。飽和Naを加えて反応を終了させた後、CHClで抽出した。有機層を飽和NaHCO水溶液と飽和食塩水で洗浄し、NaSOで乾燥させた。減圧濃縮後、残渣をシリカゲルカラムクロマトグラフィー[2.3g,トルエン/酢酸エチル/ヘキサフルオロ−2−プロパノール(HFIP)=100:50:1]で精製し化合物26*の無色シラップを得た(63.9mg,収率:59%)。得られた化合物はクロマトグラフィー上で標品の非標識体26と一致した。
[α] 25 = +16.9 (c 1.00, CHCl); FAB-MS (positive) m/z 2428 [(M+Na)]。
Found: C, 69.98; H, 8.40; N, 1.33%. Calcd for C128H182NO24P: C, 70.05; H, 8.36; N, 1.28%。
(2-3) 2- (1,5-dihydro-3-oxo-3λ 5 -3H-2,4,3-benzodioxaphosphin-3-yloxy)-[2- 3 H 1 ] ethyl 4 -O-benzyl-6-O- [6-O-benzyl-2-deoxy-4-O- (1,5-dihydro-3-oxo-3λ 5 -3H-2,4,3-benzodioxaphos Fepin-3-yl) -2-[(R) -3- (benzyloxy) tetradecanoylamino] -3-O-[(R) -3- (benzyloxy) tetradecanoyl] -β-D -Glucopyranosyl] -3-O-[(R) -3- (benzyloxy) tetradecanoyl] -2-[(R) -3- (benzyloxy) tetradecanoylamino] -2-deoxy-α-D -Synthesis of glucopyranoside (compound 26 *) N, N-diethyl-1,5-dihydro-3H-2,4 was added to a solution of compound 25 * (100 mg, 49.8 mmol) in CH 2 Cl 2 (14 mL) at 0 ° C. 3-Benzodioxaphosphepin-3-amine (70 mg, 0.29 mmol) and tetrazo (20 mg, 0.25 mmol) was added. The reaction mixture was stirred at room temperature for 30 minutes and then cooled to -20 ° C. mCPBA (70%, 65 mg, 0.29 mmol) was added and stirred for 45 minutes. Saturated Na 2 S 2 O 3 was added to terminate the reaction, followed by extraction with CHCl 3 . The organic layer was washed with saturated aqueous NaHCO 3 solution and saturated brine, and dried over Na 2 SO 4 . After concentration under reduced pressure, the residue was purified by silica gel column chromatography [2.3 g, toluene / ethyl acetate / hexafluoro-2-propanol (HFIP) = 100: 50: 1] to obtain a colorless syrup of compound 26 * (63 .9 mg, yield: 59%). The obtained compound was consistent with the unlabeled product 26 of the standard on chromatography.
[α] D 25 = +16.9 (c 1.00, CHCl 3 ); FAB-MS (positive) m / z 2428 [(M + Na) + ].
Found: C, 69.98; H, 8.40; N, 1.33%. Calcd for C 128 H 182 N 2 O 24 P 2 : C, 70.05; H, 8.36; N, 1.28%.

(2−4) 2-(ホスホノキシ)[2-H]エチル 2-デオキシ-6-O-[2-デオキシ-2[(R)-3-ヒドロキシテトラデカノイルアミノ]-4-O-ホスホノ-3-O-[(R)-3-ヒドロキシテトラデカノイル]-β-D-グルコピラノシル]-3-O-[(R)-3-ヒドロキシテトラデカノイル]-2-[(R)-3-ヒドロキシテトラデカノイルアミノ]-α-D-グルコピラノシド ([H]PE406:5*)の合成
化合物26*(17mg,7.8mmol)のTHF(6mL)溶液にPd−black(120mg)を加え、加圧下(7kgcm−2)室温で2時間接触還元を行った。トリエチルアミンを加えて中和した後、Pd−blackを濾過で除いた。減圧濃縮して得た残渣を液液分配クロマトグラフィー(Sephadex LH−20:20g,CHCl/メタノール/水/2−プロパノール=8:8:9:1)(有機層を固定相として水層を移動相として使用)で精製し、[H]PE406(5*)の白色粉末を得た(7.5mg,331MBq,64GBq mmol−1,収率:66%)。得られた化合物はクロマトグラフィー上で標品の非標識体5 と一致した。
FAB-MS (negative) m/z 1448 [(M-H)]; H NMR (500MHz, SDS-d25-DO) d = 5.18(dd,J =9.4, 7.5Hz,1H), 5.17 (dd,J =9.8, 9.6Hz,1H), 4.87 (d,J = 3.8 Hz,1H), 4.67 (d,J =7.0Hz,1H), 4.12 (dd,J =9.8, 3.8 Hz,1H), 4.11 (dd,J =15.5,1.6Hz,1H), 4.11 (q,J =7.5,1H), 4.02 (dd,J =9.4, 7.0Hz,1H), 3.99 (m,1H), 3.96 (m,1H), 3.91 (m,3H), 3.87 (ddd,J =9.6, 1.6, 2.9Hz,1H), 3.82 (dd,J =9.8, 8.6Hz,1H), 3.82 (dd,J =15.5, 2.9Hz,1H), 3.82 (m,1H), 3.81 (m,3H), 3.71 (m,1H), 3.59 (m,1H), 2.56-2.23 (m,8H), 1.54-1.11 (m,80H), 0.86 (m,12H)。
(2-4) 2- (phosphonoxy) [2- 3 H 1 ] ethyl 2-deoxy-6-O- [2-deoxy-2 [(R) -3-hydroxytetradecanoylamino] -4-O- Phosphono-3-O-[(R) -3-hydroxytetradecanoyl] -β-D-glucopyranosyl] -3-O-[(R) -3-hydroxytetradecanoyl] -2-[(R)- Synthesis of 3-hydroxytetradecanoylamino] -α-D-glucopyranoside ([ 3 H] PE406: 5 *) Pd-black (120 mg) was added to a solution of compound 26 * (17 mg, 7.8 mmol) in THF (6 mL). In addition, catalytic reduction was performed at room temperature for 2 hours under pressure (7 kgcm −2 ). After neutralizing by adding triethylamine, Pd-black was removed by filtration. The residue obtained by concentration under reduced pressure liquid-liquid partition chromatography (Sephadex LH-20: 20g, CHCl 3 / methanol / water / 2-propanol = 8: 8: 9: 1) (the aqueous layer and the organic layer as a stationary phase (Used as mobile phase) to give a white powder of [ 3 H] PE406 (5 *) (7.5 mg, 331 MBq, 64 GBq mmol −1 , yield: 66%). The obtained compound coincided with the unlabeled sample 5 on the chromatography.
FAB-MS (negative) m / z 1448 [(MH) ]; 1 H NMR (500 MHz, SDS-d 25 -D 2 O) d = 5.18 (dd, J = 9.4, 7.5 Hz, 1H), 5.17 ( dd, J = 9.8, 9.6Hz, 1H), 4.87 (d, J = 3.8 Hz, 1H), 4.67 (d, J = 7.0Hz, 1H), 4.12 (dd, J = 9.8, 3.8 Hz, 1H), 4.11 (dd, J = 5.5,1.6Hz, 1H), 4.11 (q, J = 7.5,1H), 4.02 (dd, J = 9.4, 7.0Hz, 1H), 3.99 (m, 1H), 3.96 (m, 1H), 3.91 (m, 3H), 3.87 (ddd, J = 9.6, 1.6, 2.9Hz, 1H), 3.82 (dd, J = 9.8, 8.6Hz, 1H), 3.82 (dd, J = 15.5, 2.9Hz , 1H), 3.82 (m, 1H), 3.81 (m, 3H), 3.71 (m, 1H), 3.59 (m, 1H), 2.56-2.23 (m, 8H), 1.54-1.11 (m, 80H), 0.86 (m, 12H).

実施例2 分子ピンセットライブラリー(ペプチドライブラリー)の調製
エンコード分子ピンセットライブラリーはスプリット(split-mix)合成法で調製した。固相担体としては15gのTentaGel S−NH(Rapp Polymere社,粒径90μm,0.29mmol/g of NH)を用いた。標準的なFmoc/Boc(Fluorenylmethoxycarbonyl/Butyloxycarbonyl)ペプチド固相合成法を用いてペプチド鎖を伸長させた。ペプチド縮合法としてはHOBt/DIC(Hydroxybenzotriazole / Diisopropylcarbodiimide)を用いた。ペプチド縮合反応の終点はブロモフェノールブルーテストで青色の発色がなくなることで確認した。カテコールTagはカルボキシル基を介してHOBt/DIC法でアミノ基の約1%にアミド結合形成反応により導入した。ケノデオキシコール酸(L1)をコア構造として用いる場合はまずデオキシコール酸を固相担体に導入した後、2つの水酸基に対しDMF中で6当量のFmoc−Gly−Fと6当量のトリエチエルアミン、0.06当量のジメチルアミノピリジンを作用させて、Fmoc−Glyを結合させた。リジン(L2)とトリリジン(L3)コアは通常のペプチド固相合成法により調製した。ライブラリー調製には15種類(GlyとD及びL−Val,Phe,Ser,Gln,Glu,Lys及びPro)のアミノ酸を用いた。4段階のスプリットカップリングサイクルを行って、3×15=151,875種類のペプチドを含むライブラリーを構築した。ライブラリー上の保護基は20%ピペリジン/DMFと95%TFA/2.5%水/2.5%チオアニソールを用いて除去した後4℃で保管した。
Example 2 Preparation of Molecular Tweezers Library (Peptide Library) The encoded molecular tweezers library was prepared by a split-mix synthesis method. As a solid support, 15 g of TentaGel S-NH 2 (Rapp Polymer, particle size 90 μm, 0.29 mmol / g of NH 2 ) was used. The peptide chain was elongated using a standard Fmoc / Boc (Fluorenylmethoxycarbonyl / Butyloxycarbonyl) peptide solid phase synthesis method. As a peptide condensation method, HOBt / DIC (Hydroxybenzotriazole / Diisopropylcarbodiimide) was used. The end point of the peptide condensation reaction was confirmed by the absence of blue color development by the bromophenol blue test. Catechol Tag was introduced into about 1% of the amino group by amide bond formation reaction by the HOBt / DIC method via the carboxyl group. When chenodeoxycholic acid (L1) is used as the core structure, deoxycholic acid is first introduced into the solid support, and then 6 equivalents of Fmoc-Gly-F and 6 equivalents of triethylamine in DMF with respect to the two hydroxyl groups. Fmoc-Gly was coupled by acting 0.06 equivalents of dimethylaminopyridine. Lysine (L2) and trilysine (L3) cores were prepared by conventional peptide solid phase synthesis. 15 types of amino acids (Gly and D and L-Val, Phe, Ser, Gln, Glu, Lys and Pro) were used for library preparation. 4 by performing the steps of splitting coupling cycle was constructed libraries containing 3 × 15 4 = 151,875 different peptides. The protecting groups on the library were removed using 20% piperidine / DMF and 95% TFA / 2.5% water / 2.5% thioanisole and stored at 4 ° C.

実施例3 分子ピンセットライブラリー(ペプチドライブラリー)と放射性標識リピドA類縁体との結合実験
(1)[H]PE506との結合実験
H]PE506(62GBq/mmol,1.4mg,47MBq)を水(2ml)に溶かした。分子ピンセットライブラリー(15.7mg,約19000ビーズ)を水(200μl)に懸濁し、[H]PE506溶液(100μl,2.4MBq)を加えた。この[H]PE506(130μM)と樹脂の懸濁液を4℃で41時間ゆっくりと振盪した。遠心して樹脂を沈殿させ、上清を除く操作を3回繰り返した。 ガラスプレートをNaCIO溶液で処理した後、十分に水洗し、0.5ゼラチン溶液に浸してから取り出し、風乾してゼラチンがコートされたガラスプレートを調製した。これに上記の樹脂をのせ、風乾させた。これを温めて溶融させた Kodak autoradiography emulsionで覆い、十分に固まったことを確認後、遮光下−78℃で12日間放置した。ガラスプレートを展開液に10分間つけた後、水で洗浄した。固定液に15分間つけた後に水で洗浄した。放射能を帯びた樹脂の回りはゼラチンに銀が付着して黒くなる。これを指標に放射能を帯びた樹脂を取り出し、樹脂に結合したTagを樹脂から切り離し、電子補足ガスクロマトグラフィー(ECGC)でTagを検出、デコードすることにより19種類の[H]PE506を結合する分子ピンセットを見出した
(2)[H]PE406との結合実験
H]PE406(64GBq/mmol,0.6mg,26MBq)を水(1ml)に溶かした。分子ピンセットライブラリー(24.2mg,約29000ビーズ)を水(200μl)に懸濁し、[H]PE406の溶液(100μl,2.6MBq)を加えた。この[H]PE406(130μM)と樹脂の懸濁液を4℃で48時間ゆっくりと振盪した。遠心して樹脂を沈殿させ、上清を除いた。水1μlを加え振盪し、遠心して樹脂を沈殿させ、上清を除く操作を3回繰り返した。
ゼラチンがコートされたガラスプレートに樹脂をのせ、風乾させた。これを温めて溶融したKodak autoradiography emulsionで覆い十分に固まったことを確認後、遮光下−78℃で7日間放置した。放射線を帯びた樹脂を取り出し、ECGC解析した。32種類の[H]PE406を結合する分子ピンセットを見出した。
EXAMPLE 3 Binding Experiment molecular tweezers library (the peptide library) and radiolabeled lipid A analogs (1) [3 H] binding experiments with PE506 [3 H] PE506 (62GBq / mmol, 1.4mg, 47MBq ) Was dissolved in water (2 ml). The molecular tweezers library (15.7 mg, about 19000 beads) was suspended in water (200 μl), and [ 3 H] PE506 solution (100 μl, 2.4 MBq) was added. A suspension of this [ 3 H] PE506 (130 μM) and resin was gently shaken at 4 ° C. for 41 hours. The operation of centrifuging to precipitate the resin and removing the supernatant was repeated three times. After the glass plate was treated with the NaCIO solution, it was washed thoroughly with water, immersed in a 0.5 gelatin solution, taken out, and air-dried to prepare a glass plate coated with gelatin. The above resin was placed on this and allowed to air dry. This was covered with Kodak autoradiography emulsion which was heated and melted, and after it was confirmed that it had hardened sufficiently, it was allowed to stand at −78 ° C. for 12 days under light shielding. The glass plate was placed in the developing solution for 10 minutes and then washed with water. The fixative was soaked for 15 minutes and then washed with water. Around the radioactive resin, silver adheres to the gelatin and becomes black. Using this as an index, the radioactive resin is taken out, the tag bonded to the resin is separated from the resin, and the tag is detected and decoded by electronic supplementary gas chromatography (ECGC) to bind 19 types of [ 3 H] PE506. It found molecular tweezers to (2) [3 H] binding experiments with PE406 [3 H] PE406 (64GBq / mmol, 0.6mg, 26MBq) was dissolved in water (1 ml). A molecular tweezers library (24.2 mg, about 29000 beads) was suspended in water (200 μl), and a solution of [ 3 H] PE406 (100 μl, 2.6 MBq) was added. The [ 3 H] PE406 (130 μM) and resin suspension was gently shaken at 4 ° C. for 48 hours. The resin was precipitated by centrifugation and the supernatant was removed. The operation of adding 1 μl of water, shaking and centrifuging to precipitate the resin and removing the supernatant was repeated three times.
The resin was placed on a glass plate coated with gelatin and allowed to air dry. This was covered with Kodak autoradiography emulsion that had been heated and melted, and after confirming that it had hardened sufficiently, it was allowed to stand at -78 ° C. for 7 days under light shielding. The resin with radiation was taken out and subjected to ECGC analysis. Molecular tweezers that bind 32 types of [ 3 H] PE406 were found.

実施例4 分子ピンセットの再合成
固相担体としてはTentaGel S−NH(Rapp Polymere社,粒径90μm,0.29mmol/g of NH)又はTSKgel AF−AminoTOYOPEARL 650S(東ソー(株),0.1mmol/ml)を用いた。標準的なFmoc/Boc(Fluorenylmethoxycarbonyl/Butyoxycarbonyl)ペプチド固相合成法を用いてペプチド鎖を伸長させた。ペプチド縮合法としてはHOBt/DIC(Hydroxybenzotriazole / Diisopropylcarbodiimide)を用いた。ペプチド縮合反応の終点はブロモフェノールブルーテストで青色の発色がなくなることで確認した。
代表的な例として分子ピンセット6−Toyopearl[(k-s-k-S)L3−Toyopearl]の合成例を示す。
(1) Nα,Nε−ジ−t−ブトキシカルボニル−L−リジン(Boc-L-Lys(Boc)-OH)の導入
TSKgel AF−AminoTOYOPEARL 650S(0.1mmol/ml)(1ml,0.1mmol)に10%ジイソプロピルエチルアミン(DIEA)/DMF(4.0ml)を加え30秒間振盪した後、濾渦した。DMF(4.0ml)で樹脂を2回洗浄後、Boc-L-Lys(Boc)-OH(104mg,0.300mmol)のDMF溶液(3ml)、ジイソプロピルカルボジイミド(DIC)(47.0μl,0.300mmol)のDMF溶液(1ml)、1−ヒドロキシベンゾトリアゾール(HOBt)(40.5mg,0.300mmol)のDMF溶液(1ml)を加え、室温で2時間振盪した。濾渦後、樹脂をDMF(4.0ml)で4回洗浄した。Boc-L-Lys(Boc)-OHを用いたペプチド縮合反応をもう一度繰り返した。無水酢酸−DMF(1:1)溶液(2ml)とトリエチルアミン−DMF(1:1)溶液(2ml)を加え、室温で15分間振盪し、わずかに残る未反応のアミノ基を完全にブロックした。濾渦後、樹脂をDMF(4ml)で4回洗浄した。
(2) Boc基の除去
25%TFA/DMF(4.0ml)を加え、室温で30分間振盪した。濾渦後 、樹脂をDMF(4.0ml)で4回洗浄した。
(3) Nα−フルオレニルメトキシカルボニル−Nε−t−ブトキシカルボニル−L−リジン(Fmoc-L-Lys(Boc)-OH)の縮合
Fmoc-L-Lys(Boc)-OH(281mg,0.600mmol)のDMF溶液(3ml)、DIC(94.0μl,0.600mmol)のDMF溶液(1ml)、HOBt(81.1mg,0.600mmol)のDMF溶液を加え、室温で2時間振盪した。濾渦後、樹脂をDMF(4.0ml)で4回洗浄した。Fmoc-L-Lys(Boc)-OHを用いたペプチド縮合反応をもう一度繰り返した。未反応のアミノ基は無水酢酸を用いて、同様にブロックした。
(4) Fmoc基の除去
20%ピペリジン/DMF(4ml)を加え室温で30分間振盪してFmoc基を除去した。濾渦後、樹脂をDMF(4.0ml)で3回、メタノール(4.0ml)で2回洗浄した。Fmoc基を除去する操作を2回繰り返した。
(5) Boc基の除去
上記(2)と同様にしてBoc基を除去した。
(6) Nα−フルオレニルメトキシカルボニル−o−t−ブチル−L−セリン(Fmoc-L-Ser(tBu)-OH)の縮合
Fmoc-L-Ser(tBu)-OH(460mg,1.20mmol)のDMF溶液(6ml)、DIC(188μl,1.20mmol)のDMF溶液(2ml)、HOBt(162mg,1.20mmol)のDMF溶液(2ml)を加え、室温で2時間振盪した。濾渦後、樹脂をDMF(4.0ml)で4回洗浄した。
(7) Fmoc基の除去
上記(4)と同様にしてFmoc基を除去した。
(8) Fmoc-D-Lys(Boc)-OHの縮合
Fmoc-D-Lys(Boc)-OH(562mg,1.20mmol)のDMF溶液(6ml)、DIC(188μl,1.20mmol)のDMF溶液(2ml)、HOBt(162mg,1.20mmol)のDMF溶液(2ml)を加え、室温で2時間振盪した。濾渦後、樹脂をDMF(4.0ml)で洗浄した。
(9) Fmoc基の除去
上記(4)と同様にしてFmoc基を除去した。
(10) Fmoc-D-Lys(Boc)-OHの縮合
Fmoc-D-Lys(Boc)-OH(562mg,1.20mmol)のDMF溶液(6ml)、DIC(188μl,1.20mmol)のDMF溶液(2ml)、HOBt(162mg、1.20mmol)のDMF溶液(2ml)を加え、室温で2時間振盪した。濾渦後、樹脂をDMF(4.0ml)で洗浄した。
(11) Fmoc基の除去
上記(4)と同様にしてFmoc基を除去した。
(12) Boc基とtBu基の除去
上記(2)のBoc基の除去操作と同様にして側鎖保護基を除去した。
以上、(1)〜(12)の操作を順次行うことにより、分子ピンセット[(k-s-k-S)L3−Toyopearl]が得られた。
他の分子ピンセット樹脂も上記と同様にして合成した。
Example 4 Resynthesis of molecular tweezers TentaGel S-NH 2 (Rapp Polymere, particle size 90 μm, 0.29 mmol / g of NH 2 ) or TSKgel AF-AminoTOYOPARRL 650S (Tosoh Corp., Japan) 1 mmol / ml) was used. The peptide chain was elongated using a standard Fmoc / Boc (Fluorenylmethoxycarbonyl / Butyoxycarbonyl) peptide solid phase synthesis method. As a peptide condensation method, HOBt / DIC (Hydroxybenzotriazole / Diisopropylcarbodiimide) was used. The end point of the peptide condensation reaction was confirmed by the absence of blue color development by the bromophenol blue test.
As a typical example, a synthesis example of molecular tweezers 6-Toyopearl [(kskS) 4 L3-Toyopearl] is shown.
(1) Introduction of Nα, Nε-di-t-butoxycarbonyl-L-lysine (Boc-L-Lys (Boc) -OH) TSKgel AF-AminoTOYOPEARL 650S (0.1 mmol / ml) (1 ml, 0.1 mmol) 10% diisopropylethylamine (DIEA) / DMF (4.0 ml) was added to the mixture, and the mixture was shaken for 30 seconds and then vortexed. After the resin was washed twice with DMF (4.0 ml), a BMF-L-Lys (Boc) -OH (104 mg, 0.300 mmol) solution in DMF (3 ml), diisopropylcarbodiimide (DIC) (47.0 μl, 0.0 300 mmol) of DMF (1 ml) and 1-hydroxybenzotriazole (HOBt) (40.5 mg, 0.300 mmol) in DMF (1 ml) were added, and the mixture was shaken at room temperature for 2 hours. After the filter vortex, the resin was washed 4 times with DMF (4.0 ml). The peptide condensation reaction with Boc-L-Lys (Boc) -OH was repeated once more. Acetic anhydride-DMF (1: 1) solution (2 ml) and triethylamine-DMF (1: 1) solution (2 ml) were added and shaken at room temperature for 15 minutes to completely block the remaining unreacted amino groups. After the filter vortex, the resin was washed 4 times with DMF (4 ml).
(2) Removal of Boc group 25% TFA / DMF (4.0 ml) was added and shaken at room temperature for 30 minutes. After the filter vortex, the resin was washed 4 times with DMF (4.0 ml).
(3) Condensation of Nα-fluorenylmethoxycarbonyl-Nε-t-butoxycarbonyl-L-lysine (Fmoc-L-Lys (Boc) -OH) Fmoc-L-Lys (Boc) -OH (281 mg, 0. (600 mmol) in DMF (3 ml), DIC (94.0 μl, 0.600 mmol) in DMF (1 ml) and HOBt (81.1 mg, 0.600 mmol) in DMF were added and shaken at room temperature for 2 hours. After the filter vortex, the resin was washed 4 times with DMF (4.0 ml). The peptide condensation reaction with Fmoc-L-Lys (Boc) -OH was repeated once more. Unreacted amino groups were similarly blocked using acetic anhydride.
(4) Removal of Fmoc group 20% piperidine / DMF (4 ml) was added and shaken at room temperature for 30 minutes to remove the Fmoc group. After filtration, the resin was washed 3 times with DMF (4.0 ml) and 2 times with methanol (4.0 ml). The operation of removing the Fmoc group was repeated twice.
(5) Removal of Boc group The Boc group was removed in the same manner as in (2) above.
(6) Condensation of Nα-fluorenylmethoxycarbonyl-ot-butyl-L-serine (Fmoc-L-Ser (tBu) -OH) Fmoc-L-Ser (tBu) -OH (460 mg, 1.20 mmol) ) In DMF (6 ml), DIC (188 μl, 1.20 mmol) in DMF (2 ml) and HOBt (162 mg, 1.20 mmol) in DMF (2 ml) were added, and the mixture was shaken at room temperature for 2 hours. After the filter vortex, the resin was washed 4 times with DMF (4.0 ml).
(7) Removal of Fmoc group The Fmoc group was removed in the same manner as in (4) above.
(8) Condensation of Fmoc-D-Lys (Boc) -OH Fmoc-D-Lys (Boc) -OH (562 mg, 1.20 mmol) in DMF (6 ml), DIC (188 μl, 1.20 mmol) in DMF (2 ml) and a DMF solution (2 ml) of HOBt (162 mg, 1.20 mmol) were added and shaken at room temperature for 2 hours. After filter vortex, the resin was washed with DMF (4.0 ml).
(9) Removal of Fmoc group The Fmoc group was removed in the same manner as in (4) above.
(10) Condensation of Fmoc-D-Lys (Boc) -OH Fmoc-D-Lys (Boc) -OH (562 mg, 1.20 mmol) in DMF (6 ml), DIC (188 μl, 1.20 mmol) in DMF (2 ml) and a DMF solution (2 ml) of HOBt (162 mg, 1.20 mmol) were added and shaken at room temperature for 2 hours. After filter vortex, the resin was washed with DMF (4.0 ml).
(11) Removal of Fmoc group The Fmoc group was removed in the same manner as in (4) above.
(12) Removal of Boc group and tBu group The side chain protecting group was removed in the same manner as in the removal operation of the Boc group in (2) above.
Above, (1) by sequentially performing an operation to (12), the molecular tweezers [(k-s-k- S) 4 L3-Toyopearl] was obtained.
Other molecular tweezer resins were synthesized in the same manner as described above.

実施例5 分子ピンセット6-TentaGel〜17-TentaGelと、PE506,506,PE406,406,ReLPS及び大腸菌リポ多糖(LPS)
との結合実験
PE506(0.06mg)を水(0.80ml)に溶かした。分子ピンセット6〜17TentaGel(約20mg)を水(100μl)に懸濁し、PE506溶液(25μl)を加えた。この懸濁液を室温で終夜ゆっくりと振盪した。遠心して樹脂を沈殿させ上清をTLC分析、リムルス活性測定に用いた。
506(0.56mg)、PE406(0.7mg)、406(0.7mg),ReLPS(0.85mg)、LPS(1mg)を用い同様に結合実験を行い、得られた上清をリムルス活性測定に用いた(506の場合は、TLC分析にも使用した。)。なお、TLC分析の結果は表6に示した通りである。
Example 5 Molecular tweezers 6-TentaGel to 17-TentaGel, PE506, 506, PE406, 406, ReLPS and E. coli lipopolysaccharide (LPS)
Binding experiment with PE506 (0.06 mg) was dissolved in water (0.80 ml). Molecular tweezers 6-17 TentaGel (about 20 mg) was suspended in water (100 μl), and PE506 solution (25 μl) was added. This suspension was gently shaken overnight at room temperature. The resin was precipitated by centrifugation, and the supernatant was used for TLC analysis and measurement of Limulus activity.
506 (0.56 mg), PE406 (0.7 mg), 406 (0.7 mg), ReLPS (0.85 mg), LPS (1 mg) were similarly subjected to a binding experiment, and the resulting supernatant was measured for Limulus activity. (In the case of 506, it was also used for TLC analysis). The results of TLC analysis are as shown in Table 6.

実施例6 分子ピンセット6-Toyopearl,11-Toyopearl,12-Toyopearl,16-Toyopearl,及び17-Toyopearlと、506,ReLPS及び大腸菌リポ多糖(LPS)との結合実験
506(0.56mg)を水(0.80ml)に溶かした溶液をさらに3倍に希釈した。分子ピンセットの各Toyopearl(約20mg)を水(100μl)に懸濁し、506溶液(25μl)を加えた。この懸濁液を室温で終夜ゆっくりと振盪した。遠心して樹脂を沈殿させ上清をリムルス活性測定に用いた。
ReLPS(0.85mg)、大腸菌リポ多糖(LPS)(1mg)も同様に上記溶液を3倍に希釈した後に、同様に結合実験を行い、得られた上清をリムルス活性測定に用いた。
Example 6 Binding Experiment of Molecular Tweezers 6-Toyopearl, 11-Toyopearl, 12-Toyopearl, 16-Toyopearl, and 17-Toyopearl with 506, ReLPS and E. coli Lipopolysaccharide (LPS) 506 (0.56 mg) in water (0.56 mg) The solution dissolved in 0.80 ml) was further diluted 3-fold. Each Toyopearl (about 20 mg) of molecular tweezers was suspended in water (100 μl), and 506 solution (25 μl) was added. This suspension was gently shaken overnight at room temperature. The resin was precipitated by centrifugation, and the supernatant was used for measuring Limulus activity.
Similarly, ReLPS (0.85 mg) and Escherichia coli lipopolysaccharide (LPS) (1 mg) were similarly diluted three-fold before binding experiments were performed, and the resulting supernatant was used for measuring Limulus activity.

実施例7 リムルス活性の測定
エンドスペーシーR(生化学工業(株)製)を用いてリムルス活性の測定を行った。
1.各試料(PE506,506,PE406,406,ReLPS及び大腸菌リポ多糖(LPS))を水に溶かし1mg/mlの溶液を調製した。
2.注射用蒸留水(大塚製薬株式会社製)を用いて96穴のマイクロプレート上で試料を適当な濃度に希釈した。
3.試料溶液20μlずつをマイクロプレートに分注し、氷水浴中で冷却しながらエンドスペーシーR ES−50MセットLAL試薬30μlを加え、37℃で20分間加温した。
4.下記のジアゾ化試薬A,B,Cを順次75mlづつ加えた後、波長540nmの吸光度を測定した。各試料濃度が10−6mg/mlのときの吸光度を標準に用いた。
(ジアゾ化試薬)
A:亜硝酸ナトリウム40mgを濃塩酸4mlと水96mlに溶かした溶液
B:スルファミン酸アンモニウム300mgを水100mlに溶かした溶液
C:N−ナフチルエチレンジアミン二塩酸塩70mgを水100mlに溶かし た溶液
結合実験で得られた各試料についても全く同様にして希釈し、それぞれについてリムルス活性試験を行い、吸光度を測定した。上記の各試料の標準の吸光度と比較して各樹脂の吸着能を見積もった。結果は、図1及び図2に示すとおりである。
Example 7 Measurement of Limulus Activity Limulus activity was measured using Endspace R (manufactured by Seikagaku Corporation).
1. Each sample (PE506, 506, PE406, 406, ReLPS and E. coli lipopolysaccharide (LPS)) was dissolved in water to prepare a 1 mg / ml solution.
2. The sample was diluted to an appropriate concentration on a 96-well microplate using distilled water for injection (manufactured by Otsuka Pharmaceutical Co., Ltd.).
3. 20 μl of the sample solution was dispensed onto a microplate, and 30 μl of Endspacey ES-50M set LAL reagent was added while cooling in an ice-water bath, followed by heating at 37 ° C. for 20 minutes.
4). The following diazotizing reagents A, B, and C were sequentially added in an amount of 75 ml, and the absorbance at a wavelength of 540 nm was measured. Each sample concentration was used and the absorbance at a 10 -6 mg / ml in the standard.
(Diazotization reagent)
A: Solution in which 40 mg of sodium nitrite is dissolved in 4 ml of concentrated hydrochloric acid and 96 ml of water B: Solution in which 300 mg of ammonium sulfamate is dissolved in 100 ml of water C: Solution in which 70 mg of N-naphthylethylenediamine dihydrochloride is dissolved in 100 ml of water Each of the obtained samples was diluted in exactly the same manner, and a Limulus activity test was performed for each sample, and the absorbance was measured. The adsorption capacity of each resin was estimated by comparing with the standard absorbance of each sample. The results are as shown in FIG. 1 and FIG.

図1は、リピドA、リピドA類縁体、リポ多糖に対する本発明のペプチドライブラリー(固相担体としてポリエチレングリコール−ポリスチレン樹脂であるTentaGelを使用したもの)の結合能力を調べた結果を示す。 図1中、(a)は大腸菌型リピドAのホスホノオキシエチル誘導体(PE506)との、(b)は大腸菌型リピドA(506)との、(c)は生合成前駆体型リピドAのホスホノオキシエチル誘導体(PE406)との、(d)は生合成前駆体型リピドA(406)との、(e)は大腸菌Re変異株のリポ多糖(ReLPS)との、(f)は大腸菌リポ多糖( LPS)との結合実験の結果をそれぞれ示す。FIG. 1 shows the results of examining the binding ability of the peptide library of the present invention (using a polyethylene glycol-polystyrene resin TentaGel as a solid phase carrier) to lipid A, lipid A analog, and lipopolysaccharide. In FIG. 1, (a) is a phosphonooxyethyl derivative of E. coli lipid A (PE506), (b) is E. coli lipid A (506), and (c) is a phospho of biosynthetic precursor lipid A. Nooxyethyl derivative (PE406), (d) biosynthesis precursor lipid A (406), (e) E. coli Re mutant lipopolysaccharide (ReLPS), (f) E. coli lipopolysaccharide The results of binding experiments with (LPS) are shown respectively. 図2は、リピドA、リピドA類縁体、リポ多糖に対する本発明のペプチドライブラリー(固相担体として親水性ビニルポリマーのTOYOPEARLを使用したもの)の結合能力を調べた結果を示す。 図2中、(a)は大腸菌型リピドA(506)との、(b)は大腸菌Re変異株のリポ多糖(ReLPS)との、(c)は大腸菌リポ多糖( LPS)との結合実験の結果をそれぞれ示す。FIG. 2 shows the results of examining the binding ability of the peptide library of the present invention (using the hydrophilic vinyl polymer TOYOPEARL as a solid phase carrier) to lipid A, lipid A analog and lipopolysaccharide. In FIG. 2, (a) shows the binding experiment with Escherichia coli lipid A (506), (b) with the lipopolysaccharide (ReLPS) of the Escherichia coli Re mutant, and (c) the binding experiment with Escherichia coli lipopolysaccharide (LPS). Each result is shown.

Claims (12)

官能基を有する固相担体に、該官能基と結合し得る官能基を有し、且つ他の官能基を2以上有する化合物を結合させ、更にこれにオリゴペプチドを結合させてなるペプチドライブラリー。 A peptide library comprising a solid phase carrier having a functional group, a compound having a functional group capable of binding to the functional group, and a compound having two or more other functional groups, and an oligopeptide bonded thereto. 下記一般式[1]
Figure 2007031448
(式中、球状の部分は固相担体を表し、AA、AA、AA及びAAはそれぞれ独立してアミノ酸残基を表す。)で示される請求項1に記載のペプチドライブラリー。
The following general formula [1]
Figure 2007031448
The peptide library according to claim 1, wherein the spherical portion represents a solid phase carrier, and AA 1 , AA 2 , AA 3 and AA 4 each independently represents an amino acid residue.
一般式[1]において、AA、AA、AA及びAAが下記に記載の何れかの組み合わせからなるものである請求項2に記載のペプチドライブラリー。
Figure 2007031448
The peptide library according to claim 2 , wherein in the general formula [1], AA 1 , AA 2 , AA 3 and AA 4 are composed of any combination described below.
Figure 2007031448
下記一般式[2]
Figure 2007031448
(式中、球状の部分は固相担体を表し、AA、AA、AA及びAAはそれぞれ独立してアミノ酸残基を表す。)で示される請求項1に記載のペプチドライブラリー。
The following general formula [2]
Figure 2007031448
The peptide library according to claim 1, wherein the spherical portion represents a solid phase carrier, and AA 1 , AA 2 , AA 3 and AA 4 each independently represents an amino acid residue.
一般式[2]において、AA、AA、AA及びAAが下記に記載の何れかの組み合わせからなるものである請求項4に記載のペプチドライブラリー。
Figure 2007031448
The peptide library according to claim 4, wherein in the general formula [2], AA 1 , AA 2 , AA 3 and AA 4 are composed of any combination described below.
Figure 2007031448
官能基を有する固相担体に、該官能基と結合し得る官能基を有し、且つ他の官能基を2以上有する化合物を結合させ、更にこれに、該他の官能基と結合し得る官能基を有し、且つこれ以外の官能基を2以上有する化合物を結合させ、然る後、更にこれにオリゴペプチドを結合させてなるペプチドライブラリー。 A compound having a functional group capable of binding to the functional group and having two or more other functional groups is bound to a solid phase carrier having a functional group, and further, a function capable of binding to the other functional group. A peptide library obtained by binding a compound having a group and two or more functional groups other than this, and then further binding an oligopeptide thereto. 下記一般式[3]
Figure 2007031448
(式中、球状の部分は固相担体を表し、AA、AA、AA及びAAはそれぞれ独立してアミノ酸残基を表す。)で示される請求項6に記載のペプチドライブラリー。
The following general formula [3]
Figure 2007031448
The peptide library according to claim 6, wherein the spherical portion represents a solid phase carrier, and AA 1 , AA 2 , AA 3 and AA 4 each independently represents an amino acid residue.
一般式[3]において、AA、AA、AA及びAAが下記に記載の何れかの組み合わせからなるものである請求項7に記載のペプチドライブラリー。
Figure 2007031448
The peptide library according to claim 7, wherein in the general formula [3], AA 1 , AA 2 , AA 3 and AA 4 are composed of any combination described below.
Figure 2007031448
AAがリジン残基である請求項2、4又は7の何れかに記載のペプチドライブラリー。 Peptide library according to any one of claims 2, 4 or 7 AA 4 is lysine residues. 請求項3に記載のペプチドライブラリーを含んでなる細菌内毒素吸着剤。 A bacterial endotoxin adsorbent comprising the peptide library according to claim 3. 請求項5に記載のペプチドライブラリーを含んでなる細菌内毒素吸着剤。 A bacterial endotoxin adsorbent comprising the peptide library according to claim 5. 請求項8に記載のペプチドライブラリーを含んでなる細菌内毒素吸着剤。 A bacterial endotoxin adsorbent comprising the peptide library according to claim 8.
JP2006281025A 2006-10-16 2006-10-16 Bacterial endotoxin adsorbent and method for screening the same Pending JP2007031448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006281025A JP2007031448A (en) 2006-10-16 2006-10-16 Bacterial endotoxin adsorbent and method for screening the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006281025A JP2007031448A (en) 2006-10-16 2006-10-16 Bacterial endotoxin adsorbent and method for screening the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001119547A Division JP3893030B2 (en) 2001-04-18 2001-04-18 Bacterial endotoxin adsorbent and screening method thereof

Publications (1)

Publication Number Publication Date
JP2007031448A true JP2007031448A (en) 2007-02-08

Family

ID=37791096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006281025A Pending JP2007031448A (en) 2006-10-16 2006-10-16 Bacterial endotoxin adsorbent and method for screening the same

Country Status (1)

Country Link
JP (1) JP2007031448A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012219025A (en) * 2011-04-05 2012-11-12 Chuo Aerosol Kagaku Kk Hair augmenting agent and aerosol product
JP2020015690A (en) * 2018-07-25 2020-01-30 ニプロ株式会社 Levocetirizine-containing tablets

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012219025A (en) * 2011-04-05 2012-11-12 Chuo Aerosol Kagaku Kk Hair augmenting agent and aerosol product
JP2020015690A (en) * 2018-07-25 2020-01-30 ニプロ株式会社 Levocetirizine-containing tablets

Similar Documents

Publication Publication Date Title
Yang et al. Sugar-assisted ligation in glycoprotein synthesis
JP5301705B2 (en) Sugar chain-capturing substances and uses
Dziadek et al. Biomimetic Synthesis of the Tumor‐Associated (2, 3)‐Sialyl‐T Antigen and Its Incorporation into Glycopeptide Antigens from the Mucins MUC1 and MUC4
JP2008530538A (en) Solid-phase oligosaccharide tagging: manipulation techniques for immobilized carbohydrates
Shirota et al. Phytosphingosines—a facile synthesis and spectroscopic protocol for configurational assignment
Prudden et al. A multifunctional anomeric linker for the chemoenzymatic synthesis of complex oligosaccharides
WO2004005330A1 (en) Process for producing sugar peptide having asparagine sugar chain and the sugar peptide
Renaudet et al. On-bead synthesis and binding assay of chemoselectively template-assembled multivalent neoglycopeptides
JP3893030B2 (en) Bacterial endotoxin adsorbent and screening method thereof
JP2007031448A (en) Bacterial endotoxin adsorbent and method for screening the same
JP5115988B2 (en) Analytical sample preparation method, analytical sample, and sugar chain-capturing substance
WO1991019984A1 (en) Carboxyl-terminal protein sequencing method and apparatus
WO1995018971A1 (en) Methods for the solid phase synthesis of glycoconjugates
JP5813294B2 (en) Glycopeptide derivative and method for producing the same
EP0871650B1 (en) Solid phase organic synthesis
Wehner et al. Glycocluster synthesis by native chemical ligation
Satyanarayana et al. A concise methodology for the stereoselective synthesis of O‐glycosylated amino acid building blocks: complete 1HNMR assignments and their application in solid‐phase glycopeptide synthesis
JP2013231012A (en) Glycopeptide derivative
US7175767B2 (en) Preparation of a metal chelating separation medium
US7384754B2 (en) Enrichment and tagging of glycosylated proteins
Mashayekh The Immunostimulatory Roles of Synthetic Bacterial-Derived Peptidoglycan Fragments from Pathogenic and Commensal Bacteria
JP5958911B2 (en) Glycopeptide array
JP5611105B2 (en) Glycopeptide derivative and method for producing the same
JP2732377B2 (en) D / L-amino acid sequence analysis of peptides and proteins
JP2001505558A (en) Combinatorial synthesis of hydrocarbon libraries

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20061026

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070413

A131 Notification of reasons for refusal

Effective date: 20090908

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20100209

Free format text: JAPANESE INTERMEDIATE CODE: A02