JP2007031290A - Antibacterial agent aqueous solution and its preservation method - Google Patents
Antibacterial agent aqueous solution and its preservation method Download PDFInfo
- Publication number
- JP2007031290A JP2007031290A JP2005212600A JP2005212600A JP2007031290A JP 2007031290 A JP2007031290 A JP 2007031290A JP 2005212600 A JP2005212600 A JP 2005212600A JP 2005212600 A JP2005212600 A JP 2005212600A JP 2007031290 A JP2007031290 A JP 2007031290A
- Authority
- JP
- Japan
- Prior art keywords
- aqueous solution
- antibacterial
- solution
- antibacterial agent
- viscosity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Agricultural Chemicals And Associated Chemicals (AREA)
Abstract
Description
本発明はシラン化合物を含む保存安定性に優れた抗菌剤水溶液に関するものであり、本抗菌剤水溶液はチタン、ステンレス等の各種金属、ガラス、セラミックス、樹脂、繊維などの表面に抗菌性を付与するために適用される。 The present invention relates to an aqueous solution of an antibacterial agent containing a silane compound and excellent in storage stability. The aqueous solution of the antibacterial agent imparts antibacterial properties to the surfaces of various metals such as titanium and stainless steel, glass, ceramics, resins and fibers. Applied for.
アルコキシシラン化合物はシランカップリング剤として良く知られている表面改質剤である。この化合物に抗菌性官能基を結合したシラン化合物を用いてチタン、ガラス、樹脂などの表面に抗菌性を付与する技術が開示されている(特許文献1)。
本発明者らは特許文献1で開示されているシラン化合物として抗菌性に優れるオクタデシルジメチル(3−トリメトキシシリルプロピル)アンモニウムクロライド(以降ODQASと略す)の原液(メタノール溶液)を溶媒で稀釈した抗菌剤溶液を用いて各種材料の表面を抗菌処理する検討を行なって来た。その場合、稀釈する溶媒として有機溶媒よりも環境負荷のない水を用いるのが好ましいと考えて、メタノール原液を水で稀釈して抗菌剤水溶液を調整した。
ところが単に水で稀釈して保存しておくと、その水溶液の粘度が時間と共に増加してくる現象を発見した。粘度の増加はシラン化合物が水溶液中で何らかの化学反応を起こしていることを示唆するものであり、このような変化の起こらない保存安定性に優れた水溶液の調整及びその保存方法を課題として鋭意検討を行なった。
The present inventors have prepared an antibacterial solution obtained by diluting a stock solution (methanol solution) of octadecyldimethyl (3-trimethoxysilylpropyl) ammonium chloride (hereinafter abbreviated as ODQAS) excellent in antibacterial property as a silane compound disclosed in Patent Document 1 with a solvent. We have been studying antibacterial treatment of the surface of various materials using agent solutions. In that case, considering that it is preferable to use water that has less environmental impact than the organic solvent as the solvent to be diluted, the methanol stock solution was diluted with water to prepare an aqueous antimicrobial agent solution.
However, we found a phenomenon that the viscosity of the aqueous solution increased with time if it was simply diluted with water and stored. The increase in viscosity suggests that the silane compound has undergone some chemical reaction in the aqueous solution, and the diligent study has been conducted on the preparation and storage method of the aqueous solution with excellent storage stability that does not cause such changes. Was done.
上記課題は下記化学構造を有するシラン化合物を含む抗菌剤水溶液において、前記水溶液のPHを3.5〜2.0に調整することで解決される。また、PHが3.5〜2.0に調整された、下記化学構造を有するシラン化合物を含む抗菌剤水溶液を10℃以下の温度で保存することで解決される。本発明の抗菌剤水溶液に含まれるシラン化合物としては(化1)において、Rn基がオクタデシル基であり、R基がメチル基であるODQASを用いた場合が抗菌特性に優れていて好ましい。
抗菌特性を有するシラン化合物水溶液のPHを3.5〜2.0の範囲に調整することで、また、この水溶液を10℃以下で保管することにより、水溶液の粘度の経時変化がなくなり保存安定性に優れた抗菌剤水溶液を調整することができる。これにより、有機溶媒などを使用しない環境汚染のない抗菌剤水溶液の使用が可能となり、各種被抗菌材料の表面を処理することにより抗菌特性を付与した衛生的な製品を簡便に製造することが出来る。 By adjusting the pH of the aqueous solution of the silane compound having antibacterial properties to a range of 3.5 to 2.0, and storing this aqueous solution at 10 ° C. or less, there is no change in viscosity of the aqueous solution over time, and storage stability. It is possible to prepare an antibacterial agent aqueous solution excellent in water resistance. This makes it possible to use an aqueous solution of antibacterial agents that does not use organic solvents and is free of environmental pollution, and can easily manufacture hygienic products with antibacterial properties by treating the surface of various antibacterial materials. .
本発明に用いられる抗菌剤は(化1)で示される構造を有するシラン化合物である。この化学構造において、Rn(nは整数)は炭素数4〜22のアルキル基、Rはメチル基またはエチル基である。Rはアルコキシシリル基のアルコール残基で、たとえばメトキシ基の場合シラン化合物は製造過程で使用されるメタノール溶液として得られるのが一般的である。 The antibacterial agent used in the present invention is a silane compound having a structure represented by (Chemical Formula 1). In this chemical structure, Rn (n is an integer) is an alkyl group having 4 to 22 carbon atoms, and R is a methyl group or an ethyl group. R is an alcohol residue of an alkoxysilyl group. For example, in the case of a methoxy group, the silane compound is generally obtained as a methanol solution used in the production process.
この抗菌剤はアルコキシシリル基が被抗菌材料の表面に存在する水酸基などの官能基と反応して材料表面に固定化されたり、あるいはアルコシキシリル基の分子間縮合反応により高分子化して材料表面に付着するものと考えられる。抗菌作用は分子内に存在する第4級アンモニウム塩により発現すると考えられる。これらの抗菌剤の中でRnがオクタデシル基、Rがメチル基の化合物、ODQASが優れた抗菌特性をしめすためこの抗菌剤水溶液についてその保存安定性について検討した。 In this antibacterial agent, the alkoxysilyl group reacts with a functional group such as a hydroxyl group present on the surface of the antibacterial material and is immobilized on the surface of the material, or polymerized by an intermolecular condensation reaction of alkoxysilyl groups. It is thought that it adheres to. It is considered that the antibacterial action is expressed by a quaternary ammonium salt present in the molecule. Among these antibacterial agents, Rn is an octadecyl group, R is a methyl group compound, and ODQAS was examined for its storage stability in order to show excellent antibacterial properties.
本発明で言う抗菌剤水溶液とは上述の通りメタノール溶液などの抗菌剤原液を水で稀釈したもので、メタノール等の原液溶剤を水に若干含むものである。抗菌剤原液は数十%の抗菌剤を含むアルコール溶液で供給されるため、水で稀釈して水溶液にするとアルコールの濃度は数%以下となり大部分が水の溶液となる。稀釈倍率、即ち水溶液に含まれる抗菌剤濃度は被抗菌材料の種類、形態、表面積等によって適宜選択されるが、0.1〜5wt%の範囲で使用するのが好ましい。抗菌処理はこれらの抗菌剤水溶液を被抗菌材料表面と一定時間接触させた後、洗浄して乾燥することで簡便に行なわれる。 The antibacterial aqueous solution referred to in the present invention is a solution obtained by diluting an antibacterial agent stock solution such as a methanol solution with water, as described above, and contains a little stock solution solvent such as methanol in water. Since the stock solution of antibacterial agent is supplied as an alcohol solution containing several tens of percent of the antibacterial agent, when diluted with water to form an aqueous solution, the concentration of alcohol is several percent or less, and most of the solution is a water solution. The dilution factor, that is, the concentration of the antibacterial agent contained in the aqueous solution is appropriately selected depending on the type, form, surface area, and the like of the antibacterial material, but is preferably used in the range of 0.1 to 5 wt%. The antibacterial treatment is simply performed by bringing these aqueous antibacterial agents into contact with the surface of the antibacterial material for a certain period of time and then washing and drying.
ところが水で希釈した水溶液を保存しておくと、数日の内に水溶液の粘度が増大してくることが判明した。一方、メタノールで希釈した溶液は粘度の経時変化は起こらず安定であった。水溶液中での粘度の経時変化はODQAS分子が水溶液中で分子間あるいは分子内で何らかの反応を起こし構造変化を起こしているものと考えられ、このような変化の起こらない安定な水溶液の保存方法を検討した。また、粘度が増大すると抗菌剤水溶液が被抗菌材料の表面に均一に接触するのが困難となるため好ましいことではない。 However, it has been found that when an aqueous solution diluted with water is stored, the viscosity of the aqueous solution increases within a few days. On the other hand, the solution diluted with methanol was stable with no change in viscosity with time. It is considered that the ODQAS molecule has undergone some reaction between molecules or molecules in the aqueous solution, causing structural changes in the viscosity of the aqueous solution over time. investigated. Moreover, since it will become difficult for the antimicrobial agent aqueous solution to contact the surface of an antimicrobial material uniformly when a viscosity increases, it is not preferable.
抗菌剤水溶液中の抗菌剤濃度を変えて水溶液の増粘現象を調べると、水溶液中の抗菌剤の濃度が高い場合に起こりやすいことが判明した。ODQAS水溶液を用いて抗菌剤濃度が3wt%の場合で粘度の経時変化を約1ヶ月間調べると、水溶液の保存温度が低い場合、例えば冷蔵庫温度や冬場の室温で特に大きく増粘する事が解った。ODQAS水溶液のPHは原液の水稀釈倍率によって若干変化するが、ODQAS濃度が0.1〜5wt%の範囲では5〜6.5の値を示す。この水溶液に塩酸等の酸を少量添加してPHを低下させた水溶液を調整した溶液で粘度の経時変化を調べた。 By examining the thickening phenomenon of the aqueous solution by changing the concentration of the antibacterial agent in the aqueous solution of the antibacterial agent, it was found that this phenomenon tends to occur when the concentration of the antibacterial agent in the aqueous solution is high. Examining the change in viscosity over time with an ODQAS aqueous solution at an antibacterial agent concentration of 3 wt%, it can be seen that when the aqueous solution storage temperature is low, for example, refrigerator temperature and winter room temperature increase particularly greatly. It was. The pH of the ODQAS aqueous solution varies slightly depending on the dilution ratio of the stock solution, but shows a value of 5 to 6.5 when the ODQAS concentration is in the range of 0.1 to 5 wt%. Changes in viscosity over time were examined with a solution prepared by adding a small amount of acid such as hydrochloric acid to this aqueous solution to reduce the pH.
その結果、粘度の経時変化は水溶液のPHを調整することによって起こらなくなり、PHを3.5以下、好ましくは3.0以下にすると冷蔵庫温度で少なくとも1ヶ月以上は粘度の変化が起こらないことが分かった。PHをさらに下げて1.0以下にするとODQASの縮重合が進行して白濁の沈殿物が発生する。また、PHが2.0以下の場合、沈殿物は発生しないが、水溶液の酸性度が強くなり被抗菌材料によっては抗菌処理の際に酸で腐食することも考えられので、下限は2.0以上が好ましい。即ち水溶液のPHを3.5以下、好ましくは3.0以下、2.0以上に調整することにより、保存安定性の優れた且つ被抗菌材料に対する腐食性の少ない抗菌剤水溶液が得られることが判明した。 As a result, the change in viscosity over time does not occur by adjusting the pH of the aqueous solution, and if the pH is 3.5 or less, preferably 3.0 or less, the change in viscosity may not occur for at least one month at the refrigerator temperature. I understood. When PH is further lowered to 1.0 or less, condensation polymerization of ODQAS proceeds and a cloudy precipitate is generated. When PH is 2.0 or less, no precipitate is generated, but the acidity of the aqueous solution becomes strong, and depending on the material to be antibacterial, it may be corroded by acid during antibacterial treatment, so the lower limit is 2.0. The above is preferable. That is, by adjusting the pH of the aqueous solution to 3.5 or less, preferably 3.0 or less, 2.0 or more, an antibacterial agent aqueous solution having excellent storage stability and low corrosiveness to the antibacterial material can be obtained. found.
一方、水溶液中のODQAS濃度を0.6wt%と低く調整した抗菌剤水溶液ではPHを低い状態に調整しなくても少なくとも1ヶ月間増粘現象は起こら無かった。しかしながら抗菌剤の濃度が低い水溶液においてもPHが高いと潜在的に水溶液中で反応が進行して増粘を示す可能性があり、1ヶ月を越える長期間の保存を考えると抗菌剤濃度の低い水溶液においてもPHを3.5〜2.0の範囲に調整した溶液にして保存する方が好ましい。 On the other hand, in the antibacterial agent aqueous solution in which the ODQAS concentration in the aqueous solution was adjusted as low as 0.6 wt%, the thickening phenomenon did not occur for at least one month without adjusting the pH to a low state. However, even in an aqueous solution with a low concentration of the antibacterial agent, if the pH is high, the reaction may potentially proceed in the aqueous solution to show thickening, and the antibacterial agent concentration is low considering long-term storage exceeding 1 month. Even in an aqueous solution, it is preferable to store the solution in a pH adjusted to a range of 3.5 to 2.0.
PHを3.5〜2.0の範囲に調整した抗菌剤水溶液は低温で保存する場合は増粘を示さないが、夏場など室温が高い場合では少し増粘してくる事が判明した。保存温度を検討した結果10℃以下であれば高濃度の抗菌剤水溶液においても少なくとも1ヶ月間は増粘を示さないことが解った。従がって抗菌剤水溶液をPH3.5〜2.0の範囲に調整して、10℃以下、好ましくは8℃以下の温度で保存する事により増粘のない、言い換えれば化学反応により変性などしない抗菌剤を水溶液の状態で保存する事ができる。 It was found that the aqueous antibacterial agent solution having a pH adjusted to a range of 3.5 to 2.0 does not show thickening when stored at a low temperature, but slightly thickens at room temperature such as summer. As a result of examining the storage temperature, it was found that if it is 10 ° C. or less, even in a high concentration antibacterial agent aqueous solution, it does not show thickening for at least one month. Accordingly, the antibacterial agent aqueous solution is adjusted to a pH of 3.5 to 2.0 and stored at a temperature of 10 ° C. or less, preferably 8 ° C. or less. Antibacterial agents that do not work can be stored in an aqueous solution.
保存温度が及ぼす抗菌剤水溶液の増粘はPHを調整しない水溶液(PH:5〜6.5)においては保存温度が低い場合の方が高い場合に比べて大きく、上述のPHを3.5〜2の範囲に調整した本発明の抗菌剤水溶液と逆の温度依存性を示した。従がって、それぞれの水溶液において増粘に関係する変性反応が異なるものと考えられる。 The increase in the viscosity of the aqueous antibacterial agent effected by the storage temperature is larger in the aqueous solution (PH: 5 to 6.5) where the pH is not adjusted than in the case where the storage temperature is low, and the above PH is 3.5 to The temperature dependence opposite to that of the antimicrobial agent aqueous solution of the present invention adjusted to the range of 2 was shown. Therefore, it is considered that the denaturation reaction related to thickening is different in each aqueous solution.
次に、本発明の抗菌剤水溶液の調整方法について説明する。ODQASの場合、たとえば60wt%メタノール溶液の状態で供給される。このメタノール溶液を精製水でODQASの濃度が0.1〜5wt%の濃度になるように希釈する。希釈した水溶液のPHはODQASの濃度によって変化するがPHは5〜6.5の範囲にある。この水溶液に酸を添加してPHを3.5以下好ましくは3.0以下、2.0以上にPHを調整する。酸としては塩酸、硫酸、硝酸などの無機酸や蟻酸、酢酸、などの有機酸のいずれでも使用可能であるが、塩酸が好ましい。 Next, the adjustment method of the antimicrobial agent aqueous solution of this invention is demonstrated. In the case of ODQAS, for example, it is supplied in a state of a 60 wt% methanol solution. This methanol solution is diluted with purified water so that the concentration of ODQAS is 0.1 to 5 wt%. The pH of the diluted aqueous solution varies depending on the concentration of ODQAS, but the pH is in the range of 5 to 6.5. An acid is added to this aqueous solution to adjust the pH to 3.5 or less, preferably 3.0 or less, and 2.0 or more. As the acid, any of inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid and organic acids such as formic acid and acetic acid can be used, but hydrochloric acid is preferred.
以下に実施例を援用して本発明をさらに詳しく説明するが、本発明の技術的範囲はこれらの実施例に限定されるものではない。なお、%は特に断りのない限り重量%を示す。 The present invention will be described in more detail with reference to the following examples, but the technical scope of the present invention is not limited to these examples. In addition,% shows weight% unless there is particular notice.
市販のODQAS60%メタノール溶液を精製水でODQAS濃度が3%になるように希釈した。この希釈液のPHは5.35であった(A液とする)。このA液を分割してB液、C液とし、それぞれに1N塩酸を少量添加してPH=4.10(B液)、PH=3.11(C)液とした。A,B,C液をガラス容器に入れて密閉し室温に放置してその粘度の経時変化を測定した。なお、粘度の測定は回転粘時計を使用して20℃で測定した。結果を表1に示した。この結果より、C液はA,B液に比べて1ヶ月後も粘度の経時変化がなく安定であることが分かる。 A commercially available ODQAS 60% methanol solution was diluted with purified water to an ODQAS concentration of 3%. The pH of this diluted solution was 5.35 (referred to as solution A). This A liquid was divided into B liquid and C liquid, and a small amount of 1N hydrochloric acid was added to each to make PH = 4.10 (liquid B) and PH = 3.11 (C) liquid. The A, B, and C liquids were placed in a glass container, sealed, and allowed to stand at room temperature, and the change with time in viscosity was measured. The viscosity was measured at 20 ° C. using a rotary viscometer. The results are shown in Table 1. From this result, it can be seen that the liquid C is stable with no change over time in viscosity even after one month as compared with the liquids A and B.
なお、この実験は2005年1月25日から約1ヶ月広島市内で行なわれたが、この期間の広島市の気温は広島地方気象台のホームページで調べると2月の最高気温、最低気温、平均気温はそれぞれ16.2℃、−4.0℃、4.9℃であった。 This experiment was conducted in Hiroshima City for about a month from January 25, 2005. The temperature of Hiroshima City during this period was the highest, lowest, and average in February as measured on the Hiroshima Regional Meteorological Observatory website. The air temperatures were 16.2 ° C, -4.0 ° C, and 4.9 ° C, respectively.
実施例1と同様にしてA液を調整した。このA液に酢酸を少量添加してPHを2.99に調整した(D液とする)。D液を実施例1と同じ期間室温に放置して粘度の経時変化を調べたが実施例1のC液とほぼ同じ粘度で1ヶ月後もほとんど変化していなかった。 A liquid A was prepared in the same manner as in Example 1. A small amount of acetic acid was added to this liquid A to adjust the pH to 2.99 (referred to as liquid D). The liquid D was allowed to stand at room temperature for the same period as in Example 1, and the change with time in viscosity was examined. The viscosity was almost the same as that of the liquid C in Example 1, and hardly changed even after one month.
実施例1と同様にしてA液を調整した。このA液を分割して1N塩酸を少量添加してE液(PH=2.85)を調整した。A,E液をガラス容器に入れて密閉して室温に放置して粘度の経時変化を約1ヶ月測定した。結果を表2に示した。なお、この実験は2005年6月2日から約1ヶ月広島市内で行なわれたが、この期間の広島市の気温は広島地方気象台のホームページで調べると6月の最高気温、最低気温、平均気温はそれぞれ32.4℃、15.6℃、24.5℃であった。 A liquid A was prepared in the same manner as in Example 1. The solution A was divided and a small amount of 1N hydrochloric acid was added to prepare solution E (PH = 2.85). The A and E liquids were put in a glass container, sealed and allowed to stand at room temperature, and the change with time in viscosity was measured for about 1 month. The results are shown in Table 2. This experiment was conducted in Hiroshima City for about a month from June 2, 2005. The temperature of Hiroshima City during this period is the highest, lowest, and average in June as measured on the Hiroshima Regional Meteorological Observatory website. The temperatures were 32.4 ° C, 15.6 ° C and 24.5 ° C, respectively.
表2の結果からPHを低下させたE液でも保存温度が高い場合は増粘が若干起こる事がわかった。また、A液の増粘の程度は実施例1に比べて低く、PHの高い水溶液は保存温度が高いと逆に増粘しにくいことが解った。 From the results shown in Table 2, it was found that even with the E solution having a lowered PH, thickening slightly occurs when the storage temperature is high. Further, the degree of thickening of the liquid A was lower than that of Example 1, and it was found that an aqueous solution having a high pH was difficult to thicken when the storage temperature was high.
実施例1と同様にしてA液を調整した。このA液を分割して1N塩酸を少量添加してF液(PH=2.85)を調整した。A,F液をガラス容器に入れて密閉して8℃に調温した冷蔵庫に保管して粘度の経時変化を約1ヶ月測定した。結果を図1に示したがA液は実施例1と同様に大きな増粘を示したが、F液の粘度は変化しなかった。 A liquid A was prepared in the same manner as in Example 1. The solution A was divided and a small amount of 1N hydrochloric acid was added to prepare solution F (PH = 2.85). The A and F liquids were put in a glass container, sealed, stored in a refrigerator adjusted to 8 ° C., and the change with time in viscosity was measured for about 1 month. The results are shown in FIG. 1. The liquid A showed a large increase in viscosity as in Example 1, but the viscosity of the liquid F did not change.
市販のODQAS60%メタノール溶液を精製水でODQAS濃度が0.6%になるように希釈しG液(PH=5.67)を調整した。このG液を分割して1N塩酸を少量添加してH液(PH=2.83)を調整した。G液、H液をそれぞれガラス容器に入れて密閉して8℃に調温した冷蔵庫及び45℃の恒温室に保管して粘度の経時変化を約1ヶ月測定した。G、H液ともに8℃、45℃の保存温度で1ヶ月間粘度変化は起こらなかった。 A commercially available ODQAS 60% methanol solution was diluted with purified water so that the ODQAS concentration was 0.6% to prepare solution G (PH = 5.67). This G liquid was divided | segmented and 1N hydrochloric acid was added a little and H liquid (PH = 2.83) was adjusted. G liquid and H liquid were each put in a glass container, sealed, stored in a refrigerator adjusted to 8 ° C. and a constant temperature room at 45 ° C., and the change with time in viscosity was measured for about 1 month. In both G and H liquids, no change in viscosity occurred at storage temperatures of 8 ° C. and 45 ° C. for one month.
実施例1で調整したのと同じ条件で調整直後の抗菌剤水溶液A,Cを用意した。被抗菌材料としてチタン板(直径10mm、内径4.5mmのチタン製ワッシャー)を用いて以下の方法で抗菌処理を行い抗菌性試験を行った。
・抗菌処理:A液、C液のそれぞれにチタン板を室温で30分間浸漬して抗菌処理を行いチタン板を取り出して精製水で表面を洗浄して乾燥した。別に、チタン板を精製水に30分浸漬して同様の処理を行い未処理チタン板とした。
・抗菌試験:Nikawaら(Nikawa H, Nishimura H, Yamamoto T, Hamada T, Samarayanake LP, Microbial Ecol Health and Dis 9 :35-48 1996)の方法で行った。チタン板上に1.0x(10の7乗)cfu/ml に調整したカンジダアルビカンスの菌液50μlを接種し、チタン板に菌を付着させるため37℃で2時間放置した。その後サブロー培地2mlを加えて37℃で48時間培養した。培養後、チタン板表面の余剰な菌を水洗して除去し、チタン板に形成されたバイオフイルムからATP量(アデノシン三リン酸)を抽出して定量した。
・結果:A液、C液で処理したチタン板では未処理板に比べてATP量は有意に減少しており、菌の付着は明らかに少なかった。またA液とC液での差はほとんど見られなかった。
Antibacterial aqueous solutions A and C immediately after adjustment were prepared under the same conditions as those prepared in Example 1. Using a titanium plate (a titanium washer having a diameter of 10 mm and an inner diameter of 4.5 mm) as an antibacterial material, an antibacterial treatment was conducted by the following method.
Antibacterial treatment: Titanium plates were immersed in each of liquid A and liquid C for 30 minutes at room temperature for antibacterial treatment, and the titanium plate was taken out, washed with purified water and dried. Separately, the titanium plate was immersed in purified water for 30 minutes and subjected to the same treatment to obtain an untreated titanium plate.
Antibacterial test: The test was performed by the method of Nikawa et al. (Nikawa H, Nishimura H, Yamamoto T, Hamada T, Samarayanake LP, Microbial Ecol Health and Dis 9: 35-48 1996). 50 μl of Candida albicans bacterial solution adjusted to 1.0 × (10 7) cfu / ml was inoculated on the titanium plate, and left at 37 ° C. for 2 hours to allow the bacteria to adhere to the titanium plate. Thereafter, 2 ml of Sabouraud medium was added and cultured at 37 ° C. for 48 hours. After culturing, excess bacteria on the surface of the titanium plate were removed by washing with water, and the amount of ATP (adenosine triphosphate) was extracted from the biofilm formed on the titanium plate and quantified.
-Results: The titanium plate treated with the A solution and the C solution had a significantly reduced ATP amount compared to the untreated plate, and the bacterial adhesion was clearly less. Moreover, the difference between A liquid and C liquid was hardly seen.
本抗菌剤水溶液は環境汚染のない簡単な処理で金属、ガラス、セラミックス、樹脂、繊維等の各種素材の表面に抗菌性を付与することが出来るため、医療分野、食品分野等の抗菌作用が求められる分野に効果的に用いることが出来る。 This antibacterial aqueous solution is capable of imparting antibacterial properties to the surface of various materials such as metals, glass, ceramics, resins, and fibers with a simple treatment that does not cause environmental pollution. It can be used effectively in certain fields.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005212600A JP4810150B2 (en) | 2005-07-22 | 2005-07-22 | Antibacterial aqueous solution and storage method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005212600A JP4810150B2 (en) | 2005-07-22 | 2005-07-22 | Antibacterial aqueous solution and storage method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007031290A true JP2007031290A (en) | 2007-02-08 |
JP4810150B2 JP4810150B2 (en) | 2011-11-09 |
Family
ID=37790972
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005212600A Expired - Fee Related JP4810150B2 (en) | 2005-07-22 | 2005-07-22 | Antibacterial aqueous solution and storage method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4810150B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007045777A (en) * | 2005-08-11 | 2007-02-22 | Hiroshima Univ | Antibacterial prosthtic member for medical purpose and method for antibacterial treatment of medical prosthtic member |
WO2009013991A1 (en) * | 2007-07-25 | 2009-01-29 | Hiroshima University | Solidified detergent composition and method for producing the same |
JP2009528326A (en) * | 2006-03-02 | 2009-08-06 | ヴィテック スペシャリティ ケミカルズ リミテッド | Water-stabilized antibacterial organosilane product, composition and method of use |
JP4611445B1 (en) * | 2010-01-19 | 2011-01-12 | 株式会社テラモト | Surface multifunctional treatment composition |
WO2011089840A1 (en) | 2010-01-19 | 2011-07-28 | 株式会社テラモト | Multifunctional surface treatment composition |
WO2014065297A1 (en) | 2012-10-22 | 2014-05-01 | ジェクス株式会社 | Silicon-containing compound aqueous solution and antibacterial/antiviral agent including said solution |
WO2015141516A1 (en) * | 2014-03-18 | 2015-09-24 | マナック株式会社 | Organosilane aqueous solution and preservation method thereof |
JP2017214362A (en) * | 2017-05-15 | 2017-12-07 | ジェクス株式会社 | Aqueous solution of silicon-containing compound and antibacterial/antivirus agent containing the aqueous solution |
EP4015586A1 (en) * | 2020-12-18 | 2022-06-22 | Goodrich Corporation | Antimicrobial surface treatment systems and methods for aircraft faucets |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06505036A (en) * | 1991-02-15 | 1994-06-09 | エス.シー.ジョンソン アンド サン,インコーポレーテッド | Production of a stable hydrolyzable organosilane aqueous solution |
JP2000511887A (en) * | 1996-05-07 | 2000-09-12 | エモリー ユニバーシティ | How to use water stabilized organosilane |
JP2004209241A (en) * | 2002-12-16 | 2004-07-29 | Hiroshima Univ | Antibacterial material and method for manufacturing the same |
-
2005
- 2005-07-22 JP JP2005212600A patent/JP4810150B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06505036A (en) * | 1991-02-15 | 1994-06-09 | エス.シー.ジョンソン アンド サン,インコーポレーテッド | Production of a stable hydrolyzable organosilane aqueous solution |
JP2000511887A (en) * | 1996-05-07 | 2000-09-12 | エモリー ユニバーシティ | How to use water stabilized organosilane |
JP2004209241A (en) * | 2002-12-16 | 2004-07-29 | Hiroshima Univ | Antibacterial material and method for manufacturing the same |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007045777A (en) * | 2005-08-11 | 2007-02-22 | Hiroshima Univ | Antibacterial prosthtic member for medical purpose and method for antibacterial treatment of medical prosthtic member |
JP2009528326A (en) * | 2006-03-02 | 2009-08-06 | ヴィテック スペシャリティ ケミカルズ リミテッド | Water-stabilized antibacterial organosilane product, composition and method of use |
WO2009013991A1 (en) * | 2007-07-25 | 2009-01-29 | Hiroshima University | Solidified detergent composition and method for producing the same |
US8304379B2 (en) | 2007-07-25 | 2012-11-06 | Hiroshima University | Silicon compound-containing solidified detergent composition and method for producing the same |
JP5424482B2 (en) * | 2007-07-25 | 2014-02-26 | 国立大学法人広島大学 | Solidified cleaning composition and method for producing the same |
JP4611445B1 (en) * | 2010-01-19 | 2011-01-12 | 株式会社テラモト | Surface multifunctional treatment composition |
WO2011089840A1 (en) | 2010-01-19 | 2011-07-28 | 株式会社テラモト | Multifunctional surface treatment composition |
JP2011148717A (en) * | 2010-01-19 | 2011-08-04 | Teramoto Corp | Multifunctional surface treatment composition |
WO2014065297A1 (en) | 2012-10-22 | 2014-05-01 | ジェクス株式会社 | Silicon-containing compound aqueous solution and antibacterial/antiviral agent including said solution |
JP2014084287A (en) * | 2012-10-22 | 2014-05-12 | Jex Inc | Silicon-containing compound solution, antibacterial and antiviral agent containing the solution |
CN104754944A (en) * | 2012-10-22 | 2015-07-01 | 捷古斯有限公司 | Silicon-containing compound aqueous solution and antibacterial/antiviral agent including said solution |
WO2015141516A1 (en) * | 2014-03-18 | 2015-09-24 | マナック株式会社 | Organosilane aqueous solution and preservation method thereof |
JP5916965B2 (en) * | 2014-03-18 | 2016-05-11 | マナック株式会社 | Organosilane aqueous solution and storage method thereof |
TWI650308B (en) * | 2014-03-18 | 2019-02-11 | 日商瑪耐科股份有限公司 | Aqueous organosilane solution and method for preserving same |
JP2017214362A (en) * | 2017-05-15 | 2017-12-07 | ジェクス株式会社 | Aqueous solution of silicon-containing compound and antibacterial/antivirus agent containing the aqueous solution |
EP4015586A1 (en) * | 2020-12-18 | 2022-06-22 | Goodrich Corporation | Antimicrobial surface treatment systems and methods for aircraft faucets |
Also Published As
Publication number | Publication date |
---|---|
JP4810150B2 (en) | 2011-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4810150B2 (en) | Antibacterial aqueous solution and storage method thereof | |
Abd El-Fattah et al. | Improvement of corrosion resistance, antimicrobial activity, mechanical and chemical properties of epoxy coating by loading chitosan as a natural renewable resource | |
JP6691698B2 (en) | Method for forming a film on a substrate using a film-forming composition containing a tannic acid derivative, and a film containing a tannic acid derivative formed on a substrate | |
CN107115559B (en) | In the method that medical metal surface prepares nanometer silver antimicrobial coating | |
CN106538583B (en) | Long-acting disinfection bactericidal composition, its coating method and the regeneration method for coating | |
Stobie et al. | Dual-action hygienic coatings: benefits of hydrophobicity and silver ion release for protection of environmental and clinical surfaces | |
CN105727773B (en) | A kind of anti-bacterial and anti-fouling dyeing polymer seperation film and preparation method thereof | |
TWI421029B (en) | Stable, low voc, low viscous biocidal formulations and method of making such formulations | |
TWI650308B (en) | Aqueous organosilane solution and method for preserving same | |
Kobisy et al. | Mitigation of eco‐unfriendly and costly microbial induced corrosion using novel synthesized Schiff base cationic surfactants | |
CN110934144A (en) | Disinfectant containing amines and quaternary ammonium salt and preparation method thereof | |
CN115175968B (en) | Antibacterial polymer composition | |
Wang et al. | A durable and self-cleaning hydrogel micro-powder modified coating with improved utilization of Cu2+ for marine antifouling | |
US3699231A (en) | A method for inhibiting the growth of bacteria using a synergistic mixture of sodium dimethyldithiocarbamate and formaldehyde | |
JPH07233016A (en) | Antibacterial and antifungal treating solution | |
Onn et al. | Morphology and characterization study on effective microorganism (EM) water based epoxy coatings | |
CN115104607A (en) | Asymmetric biquaternary ammonium salt bactericide and preparation method thereof | |
KR101565012B1 (en) | Antibacterial composition and surface antibacterial treatment method using the same | |
JPS604107A (en) | Preservation of aqueous solution, emulsion and dispersion | |
RU2535016C2 (en) | Iodophors with wide range of disinfecting action and detergent properties | |
JPH01197411A (en) | Antimicrobial agent | |
CN117776582A (en) | Preservative for polycarboxylic acid water reducer containing organic bromine and preparation method of preservative | |
CN117776580A (en) | Preservative for polycarboxylate superplasticizer containing isothiazolinone composition and preparation method thereof | |
CN111149807A (en) | Bactericide and preparation method thereof | |
WO2018195840A1 (en) | Stable biocidal compositions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080626 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20080626 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20080626 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101126 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110218 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110405 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110512 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
R155 | Notification before disposition of declining of application |
Free format text: JAPANESE INTERMEDIATE CODE: R155 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110822 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140826 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |