JP2007029765A - Method for controlling coating film thickness and its system - Google Patents

Method for controlling coating film thickness and its system Download PDF

Info

Publication number
JP2007029765A
JP2007029765A JP2005211985A JP2005211985A JP2007029765A JP 2007029765 A JP2007029765 A JP 2007029765A JP 2005211985 A JP2005211985 A JP 2005211985A JP 2005211985 A JP2005211985 A JP 2005211985A JP 2007029765 A JP2007029765 A JP 2007029765A
Authority
JP
Japan
Prior art keywords
film thickness
preceding material
value
coated
data input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005211985A
Other languages
Japanese (ja)
Other versions
JP4730009B2 (en
Inventor
Takehide Hirata
丈英 平田
Kazuya Asano
一哉 浅野
Shinichi Suejima
晋一 末嶋
Toru Isokawa
徹 磯川
Hisafumi Tsuchida
尚史 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005211985A priority Critical patent/JP4730009B2/en
Publication of JP2007029765A publication Critical patent/JP2007029765A/en
Application granted granted Critical
Publication of JP4730009B2 publication Critical patent/JP4730009B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Coating Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for controlling coating film thickness enabling simple adjustment of parameters and having a high model predictability, and a system therefor. <P>SOLUTION: Actual values or set values on various operations of a preceding material are inputted in a preceding material data input unit 1, and set values of various operations of the preceding material are inputted in a preceding material data input unit 2; difference between data inputted in the preceding material data input unit 1 and data inputted in the preceding material data input unit 2 is determined with respect to each data item in a deviation data creating unit 3 from the preceding material; the deviation data from the preceding material thus created is inputted to a model predicting unit 4 to calculate a prediction value; and an operation amount for controlling the film thickness is set according to the prediction value in a film thickness controlling operation-amount setting unit 5. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、塗装膜の厚さを制御する塗装膜厚制御方法及びそのシステムに関し、特にロールコータによる鋼板などの塗装に関するものである。   The present invention relates to a coating film thickness control method and system for controlling the thickness of a coating film, and more particularly to coating of a steel sheet or the like by a roll coater.

従来、鋼板では、その耐食性などの性能向上を図るために、例えば亜鉛めっき鋼板上にクロムや樹脂などをコーティングすることが一般的に行われている。上記鋼板に対するコーティングは、一般に、塗料パン内の塗料を引き上げるためのピックアップロールと該ピックアップロールから塗料を受取り、鋼板の表面に該塗料を転写して塗装するためのアプリケータロールにより行われる。   Conventionally, in order to improve performance such as corrosion resistance of a steel sheet, for example, chrome or resin is generally coated on a galvanized steel sheet. The coating on the steel sheet is generally performed by a pick-up roll for pulling up the paint in the paint pan and an applicator roll for receiving the paint from the pick-up roll and transferring the paint onto the surface of the steel sheet.

このような塗装の場合、鋼板の搬送速度に対するアプリケータロールの周速、アプリケータロールとピックアップロールの周速差、鋼板とアプリケータロール間の押付圧、アプリケータロールとピックアップロール間の押付圧、塗料の濃度、粘度など様々な因子により膜厚が変化する。   In the case of such coating, the peripheral speed of the applicator roll with respect to the conveying speed of the steel sheet, the peripheral speed difference between the applicator roll and the pickup roll, the pressing pressure between the steel sheet and the applicator roll, the pressing pressure between the applicator roll and the pickup roll. The film thickness varies depending on various factors such as the concentration and viscosity of the paint.

このような塗装におけるこれまでの膜厚制御方法としては、流体理論に基づいた非線形物理モデルを用いた制御方法などが知られており、例えば、特許文献1および特許文献2に開示された技術がある。
特開平5−169012号公報 特開平5−220441号公報
As a conventional film thickness control method in such coating, a control method using a nonlinear physical model based on a fluid theory is known. For example, the techniques disclosed in Patent Document 1 and Patent Document 2 are disclosed. is there.
Japanese Patent Laid-Open No. 5-169012 Japanese Patent Laid-Open No. 5-220441

しかしながら、前述の特許文献1および特許文献2に開示された技術では、物理モデルが非線形で非常に複雑であるため、パラメータの調整が非常に難しく、その結果、高い予測精度を得にくいという問題があるとともに、また、数ヶ月経つと操業条件が変化し、予測精度がますます劣化するという問題がある。さらに、家電製品、自動車等の広い用途に塗装鋼板が使用されているため、近年は次々に規格が増加する上、高品質が要求される傾向にあり、規格ごとのパラメータ調整に労力がかかるという問題もある。   However, in the techniques disclosed in Patent Document 1 and Patent Document 2 described above, since the physical model is nonlinear and very complicated, it is very difficult to adjust parameters, and as a result, it is difficult to obtain high prediction accuracy. In addition, after a few months, there are problems that the operating conditions change and the prediction accuracy deteriorates more and more. Furthermore, because coated steel sheets are used for a wide range of applications such as home appliances and automobiles, in recent years, standards have been increasing one after another, and high quality tends to be required, and it takes effort to adjust parameters for each standard. There is also a problem.

本発明は、上記事情に鑑みてなされたもので、パラメータの調整が簡単でかつ高いモデル予測精度を有する塗装膜厚制御方法及びそのシステムを提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a coating film thickness control method and a system thereof that can easily adjust parameters and have high model prediction accuracy.

本発明の請求項1に係る発明は、連続的に移動する帯状体にロールコータにより塗料を転写・塗装する操業の際に塗装膜の厚さの制御を行う塗装膜厚制御方法において、これから塗装を行う被塗装材の膜厚に影響を与える操業因子の設定値Csetと、前記被塗装材の1つ前に塗装を実施した先行材の前記操業因子の設定値Cset -1または実績値Cact -1との差である先行材からの変化量△Csetを求め、該先行材からの変化量△Csetに基づいて、前記被塗装材の膜厚の、前記先行材からの変化量予測値△Tpreを求め、該変化量予測値△Tpreに基づいて操作量の設定値を決定することを特徴とする塗装膜厚制御方法である。 The invention according to claim 1 of the present invention is a coating film thickness control method for controlling the thickness of a coating film during an operation of transferring and coating the coating material to a continuously moving belt-like body by a roll coater. The set value C set of the operating factor that affects the film thickness of the material to be coated, and the set value C set -1 or the actual value of the operating factor of the preceding material that has been coated immediately before the coated material A change amount ΔC set from the preceding material, which is a difference from C act −1 , is obtained, and based on the change amount ΔC set from the preceding material, the change in the film thickness of the material to be coated from the preceding material A coating film thickness control method is characterized in that a predicted amount ΔT pre is obtained and a set value of an operation amount is determined based on the predicted amount of change ΔT pre .

また本発明の請求項2に係る発明は、連続的に移動する帯状体にロールコータにより塗料を転写・塗装する操業の際に塗装膜の厚さの制御を行う塗装膜厚制御方法において、膜厚に影響を与える操業因子のなかから、膜厚が所定の目標値となるように直接操作する操業因子を操作量Uとして選択し、それ以外の残りの操業因子を操業因子Fとし、これから塗装を行う被塗装材の膜厚目標値Tsetと、前記被塗装材の1つ前に塗装を実施した先行材の膜厚目標値Tset -1または膜厚実績値Tact -1との差△Tsetを求め、前記操業因子Fの設定値Fsetと、前記先行材における設定値Fset -1または実績値Fact -1との差△Fsetを求め、求めた△Tsetと△Fsetに応じて、前記操作量の設定値Usetを決定することを特徴とする塗装膜厚制御方法である。 According to a second aspect of the present invention, there is provided a coating film thickness control method for controlling the thickness of a coating film during an operation of transferring and coating the coating material to a continuously moving belt-like body by a roll coater. From the operating factors that affect the thickness, the operating factor that is directly operated so that the film thickness becomes a predetermined target value is selected as the operating amount U, and the remaining operating factors are set as the operating factor F. difference between the thickness target value T set of the coated material, wherein the thickness target value T set -1 or thickness actual value T act -1 of the preceding material embodying the painting to the previous object to be coated material to perform ΔT set is obtained, and the difference ΔF set between the set value F set of the operating factor F and the set value F set −1 or the actual value F act −1 of the preceding material is obtained, and the obtained ΔT set and Δ In accordance with F set , the set value U set of the manipulated variable is determined.

さらに本発明の請求項3に係る発明は、これから塗装を行う被塗装材の各種操業設定値を入力する当該材データ入力部と、前記被塗装材の1つ前に塗装を実施した先行材の各種操業実績値または設定値を入力する先行材データ入力部と、該先行材データ入力部で入力されたデータと前記当該材データ入力部で入力されたデータについて、それぞれのデータ項目ごとに先行材からの差分をとる偏差データ作成部と、該偏差データ作成部で作成した偏差データに基づいて、予測値を演算するモデル予測部と、該モデル予測部での予測値に従い、膜厚制御操作量を設定する膜厚制御操作量設定部とを備えることを特徴とする塗装膜厚制御システムである。   Furthermore, the invention according to claim 3 of the present invention is a material data input unit for inputting various operation setting values of a material to be coated from now on, and a preceding material that has been painted before the material to be painted. The preceding material data input unit for inputting various operation performance values or set values, the data input in the preceding material data input unit and the data input in the material data input unit for each data item A deviation data creation unit that takes a difference from the model, a model prediction unit that calculates a prediction value based on the deviation data created by the deviation data creation unit, and a film thickness control operation amount according to the prediction value in the model prediction unit A coating film thickness control system comprising: a film thickness control operation amount setting unit for setting

本発明は、対象とする被塗装材の1つ前に塗装を実施した先行材の操業因子の設定値または実績値との差である先行材からの変化量を求め、この先行材からの変化量に基づいて、前記被塗装材の膜厚の、前記先行材からの変化量予測値を求めるようにしたので、塗料の性状(濃度、粘度など)、鋼板の表面粗さおよび雰囲気温度といった環境変化の影響が小さくなり膜厚予測精度の向上が可能となる。また、求めた膜厚予測値に基づき膜厚制御の操作量の設定値を決定するようにしたので、塗装膜厚を所定の値に制御でき、膜厚の目標値外れによる不良材の減少が可能となる。   This invention calculates | requires the variation | change_quantity from the preceding material which is a difference with the setting value or the actual value of the operation factor of the preceding material which performed the coating material one before the object material, and changes from this preceding material Since the predicted amount of change of the film thickness of the material to be coated from the preceding material is obtained based on the amount, the environment such as the properties of the paint (concentration, viscosity, etc.), the surface roughness of the steel plate and the ambient temperature The influence of the change is reduced, and the film thickness prediction accuracy can be improved. In addition, since the set value of the control amount for film thickness control is determined based on the estimated film thickness value, the coating film thickness can be controlled to a predetermined value, and the reduction of defective materials due to the film thickness being out of the target value. It becomes possible.

図2は、本発明が対象とするロールコータにより鋼板などを塗装する塗装装置の全体構成例を示す図である。図中、11はコータパン、12は塗料、13はピックアップロール、14はトランスファーロール、15はアプリケータロール、および16は鋼板をそれぞれ表す。   FIG. 2 is a diagram showing an example of the overall configuration of a coating apparatus that coats steel sheets and the like with a roll coater targeted by the present invention. In the figure, 11 is a coater pan, 12 is a paint, 13 is a pickup roll, 14 is a transfer roll, 15 is an applicator roll, and 16 is a steel plate.

コータパン11内の塗料12は、ピックアップロール13により引上げられ、トランスファーロール14を経由してアプリケータロール15に転写される。さらに、アプリケータロール15に転写された塗料は鋼板16の表面に転写される。なお、鋼板16に転写された塗料は、付着量計または膜厚計(図示せず)にて付着量または膜厚を計測すると共に、塗布された鋼板はオーブン(図示せず)で乾燥される。   The paint 12 in the coater pan 11 is pulled up by the pickup roll 13 and transferred to the applicator roll 15 via the transfer roll 14. Further, the paint transferred to the applicator roll 15 is transferred to the surface of the steel plate 16. The paint transferred to the steel plate 16 measures the amount of adhesion or film thickness with an adhesion meter or film thickness meter (not shown), and the coated steel plate is dried in an oven (not shown). .

鋼板16に転写された塗料の付着量Mは、例えばピックアップロール13、トランスファーロール14、およびアプリケータロール15のそれぞれの押付圧・周速(NP、NT、NA、VP、VT、VA)、被塗装材である鋼板の搬送速度LSおよび鋼板厚さ・鋼板張力といった操業因子、さらに塗料12の性状(濃度、粘度など)、鋼板の表面粗さおよび雰囲気温度といった環境因子など様々な要因により変化する。ここで、環境因子を計測していない因子として定義して、上記のものをその例として挙げているが、例えば鋼板の表面粗さや雰囲気温度を計測できる又はしているという場合には、積極的に操業因子に入れていくことができる。この逆に、操業因子として計測できる又はしている因子として挙げているものでも、環境因子に入れなければならない場合もある。   The amount M of the paint transferred to the steel plate 16 is determined by, for example, the pressing pressure and peripheral speed (NP, NT, NA, VP, VT, VA) of the pickup roll 13, transfer roll 14, and applicator roll 15, It varies depending on various factors such as operating factors such as the conveying speed LS and thickness and tension of the steel plate, and the paint 12 properties (concentration, viscosity, etc.), environmental factors such as the surface roughness of the steel plate and ambient temperature. . Here, the environmental factors are defined as factors that are not measured, and the above is given as an example. For example, when the surface roughness or atmospheric temperature of a steel plate can be measured or is positive, it is positive. Can be put into operational factors. On the contrary, even if it is listed as a factor that can or can be measured as an operating factor, it may be necessary to put it into an environmental factor.

このような要因の中で、付着量に最も影響する因子の1つとしてピックアップロール押付圧NPがある。図3は、付着量とピックアップロール押付圧の実績値をプロットした図である。塗料の粘度、被塗装材の表面粗さ、雰囲気温度などの環境因子による影響により、図に示すように付着量とピックアップロール押付圧間の相関が見えにくくなっていることが分る。   Among these factors, there is a pick-up roll pressing pressure NP as one of the factors that most affects the adhesion amount. FIG. 3 is a diagram in which the adhesion amount and the actual value of the pickup roll pressing pressure are plotted. It can be seen that the correlation between the adhesion amount and the pick-up roll pressing pressure is difficult to see as shown in the figure due to the influence of environmental factors such as the viscosity of the paint, the surface roughness of the material to be coated, and the ambient temperature.

そこでこのような環境因子の影響を取除くため、本発明では対象材の1つ前に塗装を実施した先行材からの変化量をとることとした。さらに、付着量とピックアップロール押付圧のそれぞれの先行材からの変化量間に、以下の(1)式の関係が成り立つと仮定すると、式中のoffsetがPUR押付圧(すなわち操作量U)以外の操業因子により大きく変動するということを発見した。図4および図5は、offsetと各因子との関係例を示すものであり、それぞれコータ張力およびアプリケータロール押付圧との関係を示している。   Therefore, in order to remove the influence of such environmental factors, in the present invention, the amount of change from the preceding material that has been painted one before the target material is taken. Furthermore, assuming that the relationship of the following equation (1) holds between the amount of change from the preceding material of the adhesion amount and the pick-up roll pressing pressure, the offset in the equation is other than the PUR pressing pressure (that is, the operation amount U) I found that it fluctuates greatly depending on the operating factors. 4 and 5 show examples of the relationship between offset and each factor, and show the relationship between the coater tension and the applicator roll pressing pressure, respectively.

先行材からの付着量変化量=K×先行材からのPUR押付圧変化量+offset ・・・(1)
ここで、Kは定数である。
このことから、従来の複雑な非線形物理モデルを用いなくても、先行材からの変化量をとることにより、例えば簡単な回帰モデルでも付着量予測が可能である。
Amount of change in adhesion from the preceding material = K x PUR pressing pressure change from the preceding material + offset (1)
Here, K is a constant.
Therefore, the amount of adhesion can be predicted even with a simple regression model, for example, by taking the amount of change from the preceding material without using a conventional complicated nonlinear physical model.

図1は、本発明に係るシステムの全体構成例を示す図である。本システムは、先行材データ入力部1、当該材データ入力部2、先行材からの偏差データ作成部3、モデル予測部4、および膜厚制御操作量設定部5から構成される。   FIG. 1 is a diagram showing an example of the overall configuration of a system according to the present invention. This system includes a preceding material data input unit 1, the material data input unit 2, a deviation data creation unit 3 from the preceding material, a model prediction unit 4, and a film thickness control operation amount setting unit 5.

先行材データ入力部1では、先行材の各種操業実績値または設定値が入力される。当該材データ入力部2では、当該材の各種操業設定値が入力される。先行材からの偏差データ作成部3では、先行材データ入力部1で入力されたデータと当該材データ入力部2で入力されたデータについて、データ項目ごとに差分がとられる。こうして作成された先行材からの偏差データは、モデル予測部4に入力され、予測値が演算される。そして、この予測値に従い、膜厚制御操作量設定部5で膜厚制御操作量が設定される。   In the preceding material data input unit 1, various operation performance values or set values of the preceding material are input. In the material data input unit 2, various operation set values of the material are input. In the deviation data creation unit 3 from the preceding material, a difference is taken for each data item between the data input by the preceding material data input unit 1 and the data input by the material data input unit 2. Deviation data from the preceding material created in this way is input to the model prediction unit 4 and a predicted value is calculated. Then, according to the predicted value, the film thickness control operation amount setting unit 5 sets the film thickness control operation amount.

モデル予測部4では、例えば回帰モデルを用いて予測を行う。この場合、予め過去のデータから回帰モデルを作成し用意しておく必要がある。具体的には、各要因を入力変数x1,x2,・・・xj,・・・(j=1〜n、nは入力変数の数)として選択し、以下の(2)式のような回帰式を定義する。   The model prediction unit 4 performs prediction using, for example, a regression model. In this case, it is necessary to prepare and prepare a regression model from past data in advance. Specifically, each factor is selected as input variables x1, x2, ... xj, ... (j = 1 to n, where n is the number of input variables), and regression as shown in the following equation (2) Define an expression.

そして、上記係数a1,a2,・・・,aj,・・・(j=1〜p)を予め過去のデータから回帰により求める。予測対象材に対する予測値は、当該材データ入力部2で入力された予測対象材に対する入力変数q1,q2,q3,・・・,qnを(2)式に代入して求める。 Then, the coefficients a1, a2,..., Aj,... (J = 1 to p) are obtained in advance from past data by regression. The predicted value for the prediction target material is obtained by substituting the input variables q1, q2, q3,..., Qn for the prediction target material input by the material data input unit 2 into the equation (2).

上述のロジックを用いた具体的な塗装膜厚制御方法としては、1)これから塗装を行う被塗装材の膜厚に影響を与える1つ以上の操業因子の設定値Csetと、前記被塗装材の1つ前に塗装を実施した先行材の前記操業因子の設定値Cset -1または実績値Cact -1との差である先行材からの変化量△Csetを求め、該先行材からの変化量△Csetに基づいて、前記被塗装材の膜厚の、前記先行材からの変化量予測値△Tpreを求め、該変化量予測値△Tpreに基づいて操作量の設定値を決定する方法と、2)膜厚に影響を与える1つ以上の操業因子のなかから、膜厚が所定の目標値となるように直接操作する操業因子のうち1つを操作量Uとして選択し、それ以外の残りの操業因子を操業因子Fとし、これから塗装を行う被塗装材の膜厚目標値Tsetと、前記被塗装材の1つ前に塗装を実施した先行材の膜厚目標値Tset -1または膜厚実績値Tact -1との差△Tsetを求め、
前記操業因子Fの設定値Fsetと、前記先行材における設定値Fset -1または実績値Fact -1との差△Fsetを求め、求めた△Tsetと△Fsetに応じて、前記操作量の設定値Usetを決定する方法、の2種類がある。
Specific coating film thickness control methods using the above-described logic include 1) one or more operating factor set values C set that affect the film thickness of the material to be coated, and the material to be coated. A change ΔC set from the preceding material, which is a difference from the set value C set −1 or the actual value C act −1 of the operation factor of the preceding material that has been painted one before, is obtained from the preceding material. A change amount predicted value ΔT pre from the preceding material of the film thickness of the material to be coated is obtained based on the change amount ΔC set of the control object, and an operation amount set value based on the change amount predicted value ΔT pre 2) Select one of the operating factors that directly operate so that the film thickness becomes a predetermined target value as the manipulated variable U from among one or more operating factors that affect the film thickness. and, the remaining operational factors other than it and operating factors F, and the film thickness target value T set of the coated material to perform future paint, Serial obtains a difference △ T The set between the thickness target value T The set -1 or thickness actual value T act -1 of the preceding material embodying the paint before one of the paint material,
A difference ΔF set between the set value F set of the operating factor F and the set value F set −1 or the actual value F act −1 of the preceding material is obtained, and according to the obtained ΔT set and ΔF set , There are two types of methods: determining the set value U set of the manipulated variable.

本発明の実施例として、図2に示した塗装装置への適用例について説明する。図6は、本発明と従来法による予測結果の比較例1を示す図である。入力変数としてピックアップロール押付圧変化量、アプリケータロール押付圧変化量、ピックアップロールとアプリケータロールの周速差の変化量、およびアプリケータロールの周速とライン速度差の変化量を選び、回帰モデルの出力として付着量を直接予測した場合の結果であり、本発明による付着量予測結果(b)と、従来の物理モデルによる付着量予測結果(a)とを比較したものである。   As an embodiment of the present invention, an application example to the coating apparatus shown in FIG. 2 will be described. FIG. 6 is a diagram showing a comparative example 1 of the prediction results by the present invention and the conventional method. Select the amount of change in the pick-up roll pressing pressure, the amount of change in the applicator roll pressing pressure, the amount of change in the peripheral speed difference between the pick-up roll and the applicator roll, and the amount of change in the peripheral speed of the applicator roll and the line speed difference as input variables. This is a result when the adhesion amount is directly predicted as an output of the model, and is a comparison between the adhesion amount prediction result (b) according to the present invention and the adhesion amount prediction result (a) according to the conventional physical model.

膜厚計による実測値と予測値との差であるモデル誤差は、従来法と本発明とで、平均値および標準偏差をそれぞれとって見れば、平均値(−1.35[従来法]、+1.52[本発明]mg/m)および標準偏差(7.10[従来法]、5.94[本発明]mg/m)と、誤差平均の絶対値はほぼ同等であるが、バラツキは本発明による予測値の方が格段に小さくなっており、本発明による予測精度の向上が確認できる。 The model error, which is the difference between the actual value and the predicted value obtained by the film thickness meter, is the average value (−1.35 [conventional method], +1.52 [invention] mg / m 2 ) and standard deviation (7.10 [conventional method], 5.94 [invention] mg / m 2 ), the absolute value of the error mean is almost equivalent, As for the variation, the predicted value according to the present invention is much smaller, and the improvement of the prediction accuracy according to the present invention can be confirmed.

また、図7は、本発明と従来法による予測結果の比較例2を示す図である。入力変数としてピックアップロール押付圧変化量、アプリケータロール押付圧変化量、ピックアップロールとアプリケータロールの周速差の変化量、およびアプリケータロールの周速とライン速度差の変化量を選び、回帰モデルの出力として(1)式におけるoffsetとし、その後、予め求めておいた(1)式におけるKを用いて(1)式により付着量を間接的に予測した場合の結果であり、本発明による付着量予測結果(b)と、従来の物理モデルによる付着量予測結果(a)とを比較したものである。   Moreover, FIG. 7 is a figure which shows the comparative example 2 of the prediction result by this invention and a conventional method. Select the amount of change in the pick-up roll pressing pressure, the amount of change in the applicator roll pressing pressure, the amount of change in the peripheral speed difference between the pick-up roll and the applicator roll, and the amount of change in the peripheral speed of the applicator roll and the line speed difference as input variables. This is the result when the amount of adhesion is estimated indirectly by equation (1) using the offset in equation (1) as the model output and then K in equation (1) obtained in advance. The adhesion amount prediction result (b) is compared with the adhesion amount prediction result (a) based on the conventional physical model.

膜厚計による実測値と予測値との差であるモデル誤差は、従来法と本発明とで、平均値および標準偏差をそれぞれとって見れば、平均値(−1.35[従来法]、+1.50[本発明]mg/m)および標準偏差(7.10[従来法]、6.41[本発明]mg/m)と、この例でも誤差平均の絶対値はほぼ同等であるが、バラツキは本発明による予測値の方が格段に小さくなっており、本発明による予測精度の向上が確認でき、これらを用いた膜厚制御により膜厚の目標値外れによる不良材の減少が可能である。 The model error, which is the difference between the actual value and the predicted value obtained by the film thickness meter, is the average value (−1.35 [conventional method], +1.50 [invention] mg / m 2 ) and standard deviation (7.10 [conventional method], 6.41 [invention] mg / m 2 ), and in this example, the absolute value of the error mean is almost the same. However, the variation is much smaller in the predicted value according to the present invention, and the improvement of the predicted accuracy according to the present invention can be confirmed, and the reduction of defective materials due to the deviation of the target value of the film thickness by controlling the film thickness using these. Is possible.

本発明に係るシステムの全体構成例を示す図である。It is a figure which shows the example of whole structure of the system which concerns on this invention. 塗装装置の全体構成例を示す図である。It is a figure which shows the example of whole structure of a coating device. 付着量とピックアップロール押付圧の実績値をプロットした図である。It is the figure which plotted the actual value of the adhesion amount and the pick-up roll pressing pressure. offsetとコータ張力との関係を示す図である。It is a figure which shows the relationship between offset and coater tension | tensile_strength. offsetとアプリケータロール押付圧との関係を示す図である。It is a figure which shows the relationship between offset and applicator roll pressing pressure. 本発明と従来法による予測結果の比較例1を示す図である。It is a figure which shows the comparative example 1 of the prediction result by this invention and the conventional method. 本発明と従来法による予測結果の比較例2を示す図である。It is a figure which shows the comparative example 2 of the prediction result by this invention and a conventional method.

符号の説明Explanation of symbols

1 先行材データ入力部
2 当該材データ入力部
3 先行材からの偏差データ作成部
4 モデル予測部
5 膜厚制御操作量設定部
11 コータパン
12 塗料
13 ピックアップロール
14 トランスファーロール
15 アプリケータロール
16 鋼板
DESCRIPTION OF SYMBOLS 1 Preceding material data input part 2 The said material data input part 3 Deviation data creation part from a preceding material 4 Model prediction part 5 Film thickness control manipulated variable setting part 11 Coater pan 12 Paint 13 Pickup roll 14 Transfer roll 15 Applicator roll 16 Steel plate

Claims (3)

連続的に移動する帯状体にロールコータにより塗料を転写・塗装する操業の際に塗装膜の厚さの制御を行う塗装膜厚制御方法において、
これから塗装を行う被塗装材の膜厚に影響を与える操業因子の設定値Csetと、前記被塗装材の1つ前に塗装を実施した先行材の前記操業因子の設定値Cset -1または実績値Cact -1との差である先行材からの変化量△Csetを求め、
該先行材からの変化量△Csetに基づいて、前記被塗装材の膜厚の、前記先行材からの変化量予測値△Tpreを求め、
該変化量予測値△Tpreに基づいて操作量の設定値を決定することを特徴とする塗装膜厚制御方法。
In the coating film thickness control method that controls the thickness of the coating film during the operation of transferring and coating the paint to the continuously moving belt with a roll coater,
The set value C set of the operation factor that affects the film thickness of the material to be coated from now on, and the set value C set -1 of the operation factor of the preceding material that has been painted one before the coated material or Obtain the change ΔC set from the preceding material, which is the difference from the actual value C act −1 ,
Based on the change amount ΔC set from the preceding material, a predicted change amount ΔT pre from the preceding material of the film thickness of the material to be coated is obtained,
A coating film thickness control method, wherein a set value of an operation amount is determined based on the change amount prediction value ΔT pre .
連続的に移動する帯状体にロールコータにより塗料を転写・塗装する操業の際に塗装膜の厚さの制御を行う塗装膜厚制御方法において、
膜厚に影響を与える操業因子のなかから、膜厚が所定の目標値となるように直接操作する操業因子を操作量Uとして選択し、それ以外の残りの操業因子を操業因子Fとし、
これから塗装を行う被塗装材の膜厚目標値Tsetと、前記被塗装材の1つ前に塗装を実施した先行材の膜厚目標値Tset -1または膜厚実績値Tact -1との差△Tsetを求め、
前記操業因子Fの設定値Fsetと、前記先行材における設定値Fset -1または実績値Fact -1との差△Fsetを求め、
求めた△Tsetと△Fsetに応じて、前記操作量の設定値Usetを決定することを特徴とする塗装膜厚制御方法。
In the coating film thickness control method that controls the thickness of the coating film during the operation of transferring and coating the paint to the continuously moving belt with a roll coater,
Among the operating factors affecting the film thickness, the operating factor that is directly operated so that the film thickness becomes a predetermined target value is selected as the operation amount U, and the remaining operating factors are set as the operating factor F.
The film thickness target value T set of the material to be coated from now on, and the film thickness target value T set -1 or the film thickness actual value T act -1 of the preceding material that has been coated immediately before the material to be coated Difference △ T set
A difference ΔF set between the set value F set of the operating factor F and the set value F set −1 or the actual value F act −1 of the preceding material is obtained,
A coating film thickness control method characterized by determining the set value U set of the manipulated variable according to the determined ΔT set and ΔF set .
これから塗装を行う被塗装材の各種操業設定値を入力する当該材データ入力部と、
前記被塗装材の1つ前に塗装を実施した先行材の各種操業実績値または設定値を入力する先行材データ入力部と、
該先行材データ入力部で入力されたデータと前記当該材データ入力部で入力されたデータについて、それぞれのデータ項目ごとに先行材からの差分をとる偏差データ作成部と、
該偏差データ作成部で作成した偏差データに基づいて、予測値を演算するモデル予測部と、
該モデル予測部での予測値に従い、膜厚制御操作量を設定する膜厚制御操作量設定部とを備えることを特徴とする塗装膜厚制御システム。
The material data input section for inputting various operation setting values of the material to be coated from now on,
A preceding material data input unit for inputting various operation performance values or set values of the preceding material that has been painted one before the material to be coated;
About the data input in the preceding material data input unit and the data input in the material data input unit, a deviation data creation unit that takes a difference from the preceding material for each data item,
A model prediction unit that calculates a predicted value based on the deviation data created by the deviation data creation unit;
A coating film thickness control system comprising: a film thickness control operation amount setting unit that sets a film thickness control operation amount in accordance with a predicted value in the model prediction unit.
JP2005211985A 2005-06-20 2005-07-22 Coating film thickness control method and system Active JP4730009B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005211985A JP4730009B2 (en) 2005-06-20 2005-07-22 Coating film thickness control method and system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005178896 2005-06-20
JP2005178896 2005-06-20
JP2005211985A JP4730009B2 (en) 2005-06-20 2005-07-22 Coating film thickness control method and system

Publications (2)

Publication Number Publication Date
JP2007029765A true JP2007029765A (en) 2007-02-08
JP4730009B2 JP4730009B2 (en) 2011-07-20

Family

ID=37789667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005211985A Active JP4730009B2 (en) 2005-06-20 2005-07-22 Coating film thickness control method and system

Country Status (1)

Country Link
JP (1) JP4730009B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9477931B2 (en) 2013-05-22 2016-10-25 Samsung Sdi Co., Ltd. System for predicting thickness of battery and method for predicting thickness of battery
WO2022270506A1 (en) * 2021-06-21 2022-12-29 日本ペイントホールディングス株式会社 Prediction method and prediction system for amount of change in coating film properties, prediction method and prediction system for amount of change in coated object production conditions, and production method for coated object

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11314058A (en) * 1998-05-06 1999-11-16 Nitto Denko Corp Control device for coating film thickness
JP2000279862A (en) * 1999-03-26 2000-10-10 Nisshin Steel Co Ltd Method and apparatus for controlling thickness of coating film on strip material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11314058A (en) * 1998-05-06 1999-11-16 Nitto Denko Corp Control device for coating film thickness
JP2000279862A (en) * 1999-03-26 2000-10-10 Nisshin Steel Co Ltd Method and apparatus for controlling thickness of coating film on strip material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9477931B2 (en) 2013-05-22 2016-10-25 Samsung Sdi Co., Ltd. System for predicting thickness of battery and method for predicting thickness of battery
WO2022270506A1 (en) * 2021-06-21 2022-12-29 日本ペイントホールディングス株式会社 Prediction method and prediction system for amount of change in coating film properties, prediction method and prediction system for amount of change in coated object production conditions, and production method for coated object

Also Published As

Publication number Publication date
JP4730009B2 (en) 2011-07-20

Similar Documents

Publication Publication Date Title
Li et al. Spontaneous charging affects the motion of sliding drops
CN102449429B (en) Wet paint coating thickness measurement method and instrument
Shaker et al. A combined criterion of surface free energy and roughness to predict the wettability of non-ideal low-energy surfaces
JP4730009B2 (en) Coating film thickness control method and system
BR0114282A (en) Continually coating process and device of at least one face of a metal strip with a single-layer or multi-layer fluid film made of crosslinkable polymer.
FR2913432B1 (en) METHOD AND INSTALLATION FOR CONTINUOUS DEPOSITION OF A COATING ON A TAPE SUPPORT
US20040101630A1 (en) Method of coating a substrate
KR101688384B1 (en) Control Method of Coating Thickness of molten metal in Continuous Galvanizing Line
JP2017157094A (en) State prediction device for product, state control device for product, state prediction method for product, and program
KR20220025846A (en) Machine learning method, machine learning apparatus, machine learning program, communication method, and film forming apparatus
JP5266610B2 (en) Coating film thickness control method and system
EP1862269A3 (en) Method for the determination of the required lacquer quantity
JP6616413B2 (en) Process optimization for belt casting equipment
Zeng et al. Estimation and coordinated control for distributed parameter processes with a moving radiant actuator
CN101524679A (en) Film coating method
CN117616354A (en) Method for adjusting coating process parameters for producing coated transparent substrates
JPH05220441A (en) Method for controlling thickness of coating film on strip like material by roll coater
RU2271561C2 (en) Method for identifying object adjustment channels with application of testing signals onto predictable working controls
JPH10249262A (en) Method for measuring and controlling thickness of thin coating film, apparatus for measurement and control thereof
AU2014273550B2 (en) Process control method
JP2868987B2 (en) Control method of coating film thickness of band by roll coater
JP2009166100A (en) Catenary control method and method of manufacturing steel strip
JPH0999271A (en) Method for controlling coating film thickness in roll coater
KR20210041258A (en) Apparatus and mothod of predicting steel temperature in producton line of color coated steel, computer readable medium
JP4797334B2 (en) Coating amount control method for coater equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110404

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4730009

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250