JP2007027372A - Semiconductor laser device - Google Patents

Semiconductor laser device Download PDF

Info

Publication number
JP2007027372A
JP2007027372A JP2005206738A JP2005206738A JP2007027372A JP 2007027372 A JP2007027372 A JP 2007027372A JP 2005206738 A JP2005206738 A JP 2005206738A JP 2005206738 A JP2005206738 A JP 2005206738A JP 2007027372 A JP2007027372 A JP 2007027372A
Authority
JP
Japan
Prior art keywords
semiconductor laser
light
monitor
light receiving
laser element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005206738A
Other languages
Japanese (ja)
Inventor
Chiaki Goto
千秋 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fujifilm Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Holdings Corp filed Critical Fujifilm Holdings Corp
Priority to JP2005206738A priority Critical patent/JP2007027372A/en
Publication of JP2007027372A publication Critical patent/JP2007027372A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To emit stable laser beam. <P>SOLUTION: A semiconductor laser device is provided with a photosensitive element 12a for monitoring beam for detecting the monitoring beam M emitted from the rear end surface 11b of the semiconductor laser element 11, and the photosensitive elements 12b and 12c for stray beam for detection the stray beam at a vicinity of the photosensitive element 12a for monitoring beam. A monitor output compensating unit compensates for the detected result of the photosensitive element 12a for monitoring, on the basis of the detected result of the photosensitive elements 12b and 12c for stray beam, and the drive control unit controls drive of the semiconductor laser element 11, on the basis of the detection result of the compensated monitoring beam so that the output of the semiconductor laser element 11 is constant. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体レーザ素子を備えた半導体レーザ装置に関するものである。   The present invention relates to a semiconductor laser device including a semiconductor laser element.

半導体レーザ素子と、半導体レーザ素子のモニタ光を検出する受光素子とを備え、半導体レーザ素子及び受光素子がステム上に配置されてキャップによって封止された半導体レーザ装置がよく知られている。このような半導体レーザ装置は、受光素子の検出結果に基づいて半導体レーザ素子の出力を制御する(APC(Automatic Power Control))ことにより、半導体レーザ素子の出力量を一定に保つことができる。   2. Description of the Related Art A semiconductor laser device that includes a semiconductor laser element and a light receiving element that detects monitor light of the semiconductor laser element, and the semiconductor laser element and the light receiving element are arranged on a stem and sealed with a cap is well known. Such a semiconductor laser device can keep the output amount of the semiconductor laser element constant by controlling the output of the semiconductor laser element based on the detection result of the light receiving element (APC (Automatic Power Control)).

特許文献1には、窓に反射された反射光を受光する受光素子の検出結果に基づいてAPCを行う半導体レーザ装置であって、受光素子を水平より傾斜させて配置することにより、受光素子に照射された反射光の再反射光が窓から射出されることを防ぐ半導体レーザ装置について開示されている。
特開2004−72072号公報
Patent Document 1 discloses a semiconductor laser device that performs APC based on a detection result of a light receiving element that receives reflected light reflected by a window, and the light receiving element is disposed at an inclination from the horizontal. There is disclosed a semiconductor laser device that prevents re-reflected light of reflected light emitted from being emitted from a window.
JP 2004-72072 A

しかしながら、受光素子に半導体レーザ素子から出射されたレーザ光以外の光が照射されると、正確なレーザ光の出力値が得られず、安定で正確なAPCができないという問題があった。更に、窒化物半導体を含む半導体レーザ素子の場合、出力するレーザ光の発振波長や可視光領域において半導体レーザ素子の構成材料が透明であるため、半導体レーザ素子の自然発光光、半導体レーザ素子の出射端面以外の面からこの素子の外側にもれ出た光、窓から透過されずにキャップ内面で反射したレーザ光や、半導体レーザ装置周辺に配置された光学装置からの反射光、室内光等の迷光は半導体レーザ素子に吸収されず、キャップ内で散乱して受光素子に照射される。このように受光素子に迷光が多く照射されると、正確にAPCを動作させることができず、半導体レーザ素子の出力が不安定になる原因となっていた。   However, when the light receiving element is irradiated with light other than the laser light emitted from the semiconductor laser element, there is a problem that an accurate output value of the laser light cannot be obtained, and stable and accurate APC cannot be performed. Furthermore, in the case of a semiconductor laser element including a nitride semiconductor, the constituent material of the semiconductor laser element is transparent in the oscillation wavelength of the laser beam to be output and in the visible light region, so that the spontaneous emission light of the semiconductor laser element and the emission of the semiconductor laser element are emitted. Light that has leaked outside the element from a surface other than the end face, laser light that has not been transmitted through the window and reflected by the inner surface of the cap, reflected light from an optical device disposed around the semiconductor laser device, indoor light, etc. The stray light is not absorbed by the semiconductor laser element, but is scattered within the cap and irradiated to the light receiving element. When a large amount of stray light is applied to the light receiving element in this way, the APC cannot be operated accurately, causing the output of the semiconductor laser element to become unstable.

また、半導体レーザ素子の出射端面に対向した面のHRコートの透過率を上げて、モニタ光の出力を大きくすることにより、受光素子のS/N比を向上させる方法もあるが、出射端面から出力されるレーザ光の出力低下が問題となっていた。   There is also a method for improving the S / N ratio of the light receiving element by increasing the transmittance of the HR coat on the surface facing the emission end face of the semiconductor laser element and increasing the output of the monitor light. There has been a problem that the output power of the laser beam is reduced.

本発明は、上記事情に鑑みてなされたものであり、安定した出力のレーザ光を出射する半導体レーザ装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a semiconductor laser device that emits a laser beam having a stable output.

以上の課題を解決するために、請求項1に記載の半導体レーザ装置は、出射端面からレーザ光を出射する半導体レーザ素子と、該半導体レーザ素子の前記出射端面に対向した端面から出射されるモニタ光を検出するモニタ光検出手段と、該モニタ光検出手段の出力に基づいて前記半導体レーザ素子の出力を一定とするように制御する制御手段とを備える半導体レーザ装置において、前記モニタ光検出手段の近傍において迷光を検出する迷光検出手段と、前記モニタ光検出手段の検出結果を前記迷光検出手段の検出結果により補正する補正手段と、を備えることを特徴とする。   In order to solve the above problems, a semiconductor laser device according to claim 1 includes a semiconductor laser element that emits laser light from an emission end face, and a monitor that is emitted from an end face of the semiconductor laser element that faces the emission end face. In a semiconductor laser device comprising: monitor light detection means for detecting light; and control means for controlling the output of the semiconductor laser element to be constant based on the output of the monitor light detection means. Stray light detection means for detecting stray light in the vicinity, and correction means for correcting the detection result of the monitor light detection means with the detection result of the stray light detection means.

ここで、モニタ光とは半導体レーザ素子の出射端面と対向する面(リアー端面)から出射されたレーザ光を言う。また、半導体レーザ素子は出射端面から出射されたレーザ光を外部に透過する窓を備えたキャップによって封止されており、「迷光」とは、半導体レーザ素子の自然発光光、半導体レーザ素子の出射端面以外の面からこの素子の外側にもれ出た光、出射端面から出射されたレーザ光のうち、窓から透過されずにキャップ内面又は窓に反射して散乱したレーザ光や、半導体レーザ装置周辺に配置された光学装置からの反射光、室内光のうちキャップ内部に照射された光、およびこれらがキャップ内部で散乱された光のことを言う。   Here, the monitor light refers to laser light emitted from a surface (rear end surface) facing the emission end surface of the semiconductor laser element. The semiconductor laser element is sealed with a cap having a window that transmits the laser beam emitted from the emission end face to the outside. “Stray light” means spontaneous emission of the semiconductor laser element, emission of the semiconductor laser element. Of the light that has leaked from the surface other than the end face to the outside of the element and the laser light that has exited from the exit end face, the laser light that has been reflected and scattered by the cap inner surface or window without being transmitted through the window, or a semiconductor laser device The reflected light from the optical device arranged in the periphery, the light irradiated inside the cap among the indoor light, and the light scattered inside the cap.

ここで、窒化物半導体を含む半導体レーザ素子とは、例えば、InXAlYGa1-X-YN(0≦X、0≦Y、X+Y≦1)及びこれにp型またはn型の不純物がドープされた材料等を構成要素として含む窒化物化合物半導体レーザ素子のことを言う。また、半導体レーザ素子は複数の横モードを有するものであることとしてもよい。 Here, the semiconductor laser element comprising a nitride semiconductor, for example, In X Al Y Ga 1- XY N (0 ≦ X, 0 ≦ Y, X + Y ≦ 1) and this p-type or n-type impurity is doped This means a nitride compound semiconductor laser element containing the prepared material as a constituent element. The semiconductor laser element may have a plurality of transverse modes.

半導体レーザ素子のモニタ光を受光するモニタ光検出手段の近傍に迷光検出手段を配置し、この迷光検出手段の検出結果に基づいてモニタ光検出手段の検出結果を補正することにより、モニタ光検出手段の検出結果から迷光成分を差し引くことができ、レーザ光に対応したモニタ光の光量を得ることができる。従って、半導体レーザ素子の出力を安定に保つことができる。   Monitor light detecting means is arranged near the monitor light detecting means for receiving the monitor light of the semiconductor laser element, and the detection result of the monitor light detecting means is corrected based on the detection result of the stray light detecting means. The stray light component can be subtracted from the detection result, and the amount of monitor light corresponding to the laser light can be obtained. Therefore, the output of the semiconductor laser element can be kept stable.

更に、半導体レーザ素子が窒化物半導体を含む場合、レーザ光の発振波長や可視光領域において半導体レーザ素子の構成材料が透明であるため、迷光が半導体レーザ素子によって吸収されず、モニタ光検出手段に照射される迷光成分の割合が大きくなり、モニタ光の光量を正確に検出することが困難であった。また、半導体レーザ素子が複数の横モードを有する場合、レーザ光と迷光の割合が変化しやすい。従って、モニタ光検出手段のみではモニタ光の光量を正確に検出することができず、レーザ光の出力を安定に保つことが困難であった。しかし、迷光検出手段の検出結果を用いてモニタ光検出手段の検出結果を補正することにより、レーザ光に対応したモニタ光の光量を得ることができる。従って、レーザ光の出力を安定に保つことができ、半導体レーザ装置の信頼性を高めることができる。   Further, when the semiconductor laser element includes a nitride semiconductor, since the constituent material of the semiconductor laser element is transparent in the oscillation wavelength of the laser light and in the visible light region, stray light is not absorbed by the semiconductor laser element, and the monitor light detection means The ratio of the stray light component irradiated becomes large, and it has been difficult to accurately detect the amount of monitor light. Further, when the semiconductor laser element has a plurality of transverse modes, the ratio of laser light and stray light is likely to change. Therefore, it is difficult to accurately detect the amount of monitor light with only the monitor light detection means, and it is difficult to keep the output of the laser light stable. However, by correcting the detection result of the monitor light detection means using the detection result of the stray light detection means, the amount of monitor light corresponding to the laser light can be obtained. Therefore, the output of the laser beam can be kept stable, and the reliability of the semiconductor laser device can be improved.

以下、図面を参照して本発明の実施の形態を説明する。図1は半導体レーザ装置100の断面図を示した図である。半導体レーザ装置100は、半導体レーザ部1と、モニタ出力補正部2と、駆動制御部3とを備えて構成される。半導体レーザ部1は、ブロック14上に実装された半導体レーザ素子11及び受光素子12と、ブロック14を固定するステム15と、半導体レーザ素子11から出射されたレーザ光Lを外部に透過する窓13を備えたキャップ19と、半導体レーザ素子11に駆動電流を供給するための端子20と、受光素子12の検出信号を配線18a、18b、18c(以下、包括的に「配線18」と表記する。)を介して出力する端子17a、17b、17cとを備える。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view of the semiconductor laser device 100. The semiconductor laser device 100 includes a semiconductor laser unit 1, a monitor output correction unit 2, and a drive control unit 3. The semiconductor laser unit 1 includes a semiconductor laser element 11 and a light receiving element 12 mounted on a block 14, a stem 15 that fixes the block 14, and a window 13 that transmits laser light L emitted from the semiconductor laser element 11 to the outside. , A terminal 20 for supplying a driving current to the semiconductor laser element 11, and a detection signal of the light receiving element 12 are represented as wirings 18a, 18b, 18c (hereinafter, collectively referred to as “wiring 18”). ) Via the terminals 17a, 17b and 17c.

受光素子12は3つの受光素子(例えば、フォトダイオード等)によって構成されており、3つの受光素子はそれぞれ配線18a、18b、18cに接続されている。そして配線18aは端子17aに、配線18bは端子17bに、配線18cは端子17cにそれぞれ接続されている。モニタ出力補正部2は、端子17から受光素子12の検出信号を入力し、モニタ光Mの光量と迷光の光量とに基づいて、モニタ光Mの光量補正を行う。駆動制御部3は、出力制御部2において光量補正されたモニタ光の光量に基づいて半導体レーザ素子11から出射されるレーザ光Lの出力が一定になるように駆動電流を制御し、半導体レーザ素子11に駆動電流を供給する。   The light receiving element 12 includes three light receiving elements (for example, photodiodes), and the three light receiving elements are connected to wirings 18a, 18b, and 18c, respectively. The wiring 18a is connected to the terminal 17a, the wiring 18b is connected to the terminal 17b, and the wiring 18c is connected to the terminal 17c. The monitor output correction unit 2 inputs the detection signal of the light receiving element 12 from the terminal 17 and corrects the light amount of the monitor light M based on the light amount of the monitor light M and the light amount of stray light. The drive control unit 3 controls the drive current so that the output of the laser light L emitted from the semiconductor laser element 11 is constant based on the light amount of the monitor light whose light amount has been corrected by the output control unit 2, and the semiconductor laser element 11 is supplied with a drive current.

半導体レーザ部1において、半導体レーザ素子11、受光素子12、ブロック14、配線18は、不活性ガス雰囲気中においてキャップ19の縁部とステム15とを抵抗溶接等で接着し、気密封止される。端子16及び17は、ステム15の開口部分を通して外部に引き出される。   In the semiconductor laser unit 1, the semiconductor laser element 11, the light receiving element 12, the block 14, and the wiring 18 are hermetically sealed by bonding the edge of the cap 19 and the stem 15 by resistance welding or the like in an inert gas atmosphere. . The terminals 16 and 17 are drawn out through the opening portion of the stem 15.

半導体レーザ部1について詳しく説明する。図2は半導体レーザ部1の斜視図である。便宜上、キャップ19の図示は省略する。受光素子12は、モニタ光用受光素子12a、迷光用迷光用受光素子12b及び12cによって構成されている。モニタ光用受光素子12a、迷光用受光素子12b及び12cは、半導体レーザ素子11の出射端面11aと対向したリアー端面11b側に配置される。モニタ光用受光素子12aは、受光面が半導体レーザ素子11のリアー端面11bに向くようにして半導体レーザ素子11の発光軸の延長線上に配置され、リアー端面11bから出射されたモニタ光Mの光量を検出する。   The semiconductor laser unit 1 will be described in detail. FIG. 2 is a perspective view of the semiconductor laser unit 1. For convenience, the illustration of the cap 19 is omitted. The light receiving element 12 includes a monitor light receiving element 12a and stray light receiving elements 12b and 12c. The monitor light receiving element 12 a and the stray light receiving elements 12 b and 12 c are arranged on the rear end face 11 b side facing the emission end face 11 a of the semiconductor laser element 11. The monitor light receiving element 12a is disposed on the extended line of the emission axis of the semiconductor laser element 11 so that the light receiving surface faces the rear end face 11b of the semiconductor laser element 11, and the amount of the monitor light M emitted from the rear end face 11b. Is detected.

迷光用受光素子12b及び12cは、リアー端面11bからの発光軸の延長線上以外の位置(モニタ光Mが直接照射されない位置)に配置され、例えばそれぞれの受光面がモニタ光用受光素子12aの受光面に連続して並ぶようにモニタ光用受光素子12aの近傍に配置される。   The stray light receiving elements 12b and 12c are arranged at positions other than on the extension line of the light emitting axis from the rear end face 11b (positions where the monitor light M is not directly irradiated). For example, the respective light receiving surfaces are received by the monitor light receiving element 12a. It is arranged in the vicinity of the monitor light receiving element 12a so as to be continuously arranged on the surface.

迷光用受光素子12b及び12cはキャップ19を散乱する迷光を受光する。更に、モニタ光用受光素子12aもモニタ光Mに加え、迷光を受光する。迷光とは、半導体レーザ素子の自然発光光、半導体レーザ素子の出射端面以外の面からこの素子の外側にもれ出た光、出射端面から出射されたレーザ光Lのうち、窓13から透過されずにキャップ19内面又は窓13に反射してキャップ19内を散乱するレーザ光や、半導体レーザ装置100周辺に配置された光学装置からの反射光、室内光のうちキャップ19内部に混入した光のことを言う。   The stray light receiving elements 12 b and 12 c receive stray light scattered by the cap 19. Further, the monitor light receiving element 12a receives stray light in addition to the monitor light M. The stray light is transmitted from the window 13 among the spontaneous emission light of the semiconductor laser element, the light that is emitted from the surface other than the emission end face of the semiconductor laser element to the outside of the element, and the laser light L emitted from the emission end face. Laser light that is reflected by the inner surface of the cap 19 or the window 13 and scattered inside the cap 19, reflected light from an optical device arranged around the semiconductor laser device 100, or indoor light that is mixed into the cap 19. Say that.

半導体レーザ素子11が、InXAlYGa1-X-YN(0≦X、0≦Y、X+Y≦1)およびこれにp型またはn型の不純物をドープした材料等を構成要素として含む窒化物化合物半導体レーザ素子である場合、半導体レーザ素子11はレーザ光Lの発振波長や可視光領域に対して透明となるため、上記したような迷光は半導体レーザ素子11に吸収されず、キャップ19内に散乱する。すると、モニタ光用受光素子12aが受光する光のうち、迷光成分の割合が大きくなってしまい、モニタ光Mの光量を正確に検出することができない。 Nitride including semiconductor laser element 11 having In X Al Y Ga 1-XY N (0 ≦ X, 0 ≦ Y, X + Y ≦ 1) and a material doped with p-type or n-type impurities as constituent elements In the case of a compound semiconductor laser element, the semiconductor laser element 11 is transparent with respect to the oscillation wavelength of the laser light L and the visible light region, so that the stray light as described above is not absorbed by the semiconductor laser element 11 and is contained in the cap 19. Scattered. As a result, the ratio of the stray light component in the light received by the monitor light receiving element 12a increases, and the amount of the monitor light M cannot be accurately detected.

そこで、モニタ光用受光素子12aの近傍に迷光用受光素子12b及び12cを配置することにより、迷光用受光素子12b及び12cの検出結果よりモニタ光用受光素子12aが受光した迷光の光量を推測することができる。つまり、モニタ光用受光素子12aが検出した光量から迷光用受光素子12b及び12cが検出した光量を差し引くことによって、モニタ光用受光素子12aに照射されたモニタ光Mの光量を得ることができる。   Therefore, by arranging the stray light receiving elements 12b and 12c in the vicinity of the monitor light receiving element 12a, the amount of stray light received by the monitor light receiving element 12a is estimated from the detection results of the stray light receiving elements 12b and 12c. be able to. That is, the light quantity of the monitor light M irradiated to the monitor light receiving element 12a can be obtained by subtracting the light quantity detected by the stray light receiving elements 12b and 12c from the light quantity detected by the monitor light receiving element 12a.

図1に戻る。モニタ光用受光素子12a、12b及び12cの検出信号は端子17a、17b及び17cを介してモニタ出力補正部2に出力される。モニタ出力補正部2は、受光素子12bと12cの検出信号より平均値を算出する。この平均値をモニタ光用受光素子12aが受光した迷光の光量とし、モニタ光用受光素子12aの検出信号から算出した平均値を差し引き、この差し引いた値をモニタ光量とする。そしてモニタ出力補正部2は算出したモニタ光量を駆動制御部3に出力する。駆動制御部3は半導体レーザ素子11から出射されるレーザ光Lの出力が一定になるように、モニタ出力補正部2より入力されたモニタ光量に基づいて半導体レーザ素子11の駆動電流を決定し、該駆動電流を端子20、配線21を介して半導体レーザ素子11に供給する。   Returning to FIG. The detection signals of the monitor light receiving elements 12a, 12b, and 12c are output to the monitor output correcting unit 2 via the terminals 17a, 17b, and 17c. The monitor output correction unit 2 calculates an average value from the detection signals of the light receiving elements 12b and 12c. The average value is used as the amount of stray light received by the monitor light receiving element 12a, the average value calculated from the detection signal of the monitor light receiving element 12a is subtracted, and the subtracted value is used as the monitor light amount. Then, the monitor output correction unit 2 outputs the calculated monitor light amount to the drive control unit 3. The drive control unit 3 determines the drive current of the semiconductor laser element 11 based on the monitor light quantity input from the monitor output correction unit 2 so that the output of the laser light L emitted from the semiconductor laser element 11 becomes constant, The drive current is supplied to the semiconductor laser element 11 via the terminal 20 and the wiring 21.

以上、説明したように、半導体レーザ素子11のモニタ光Mを受光するモニタ光用受光素子12aの近傍に迷光用受光素子12b及び12cを配置し、この迷光用受光素子12b及び12cの検出信号の平均値をモニタ光用受光素子12aが受光した迷光の光量としてモニタ光用受光素子12aの検出信号から差し引くことにより、モニタ光用受光素子12aの検出信号から迷光成分を差し引くことができ、レーザ光Lに対応したモニタ光Mの光量を得ることができる。従って、半導体レーザ素子11の出力を安定に保つことができる。   As described above, the stray light receiving elements 12b and 12c are disposed in the vicinity of the monitor light receiving element 12a that receives the monitor light M of the semiconductor laser element 11, and the detection signals of the stray light receiving elements 12b and 12c are detected. By subtracting the average value from the detection signal of the monitor light receiving element 12a as the amount of stray light received by the monitor light receiving element 12a, the stray light component can be subtracted from the detection signal of the monitor light receiving element 12a. The amount of monitor light M corresponding to L can be obtained. Therefore, the output of the semiconductor laser element 11 can be kept stable.

特に、半導体レーザ素子11が窒化物半導体を含む場合、レーザ光Lの発振波長や可視光領域において半導体レーザ素子の構成材料が透明であるため、迷光がキャップ内19に散乱しやすくモニタ光用受光素子12aに照射される迷光成分の割合が大きくなり、モニタ光Mの光量を正確に検出することが困難であった。また、半導体レーザ素子11が複数の横モードを有する場合、レーザ光Lと迷光の割合が変化しやすい。従って、モニタ光受光素子12aのみではモニタ光Mの光量を正確に検出することができず、レーザ光Lの出力を安定に保つことが困難であった。しかし、迷光用受光素子12b及び12cの検出結果を用いてモニタ光受光素子12aの検出結果を補正することにより、レーザ光Lに対応したモニタ光Mの光量を得ることができる。従って、レーザ光Lの出力を安定に保つことができ、半導体レーザ装置100の信頼性を高めることができる。   In particular, when the semiconductor laser element 11 includes a nitride semiconductor, since the constituent material of the semiconductor laser element is transparent in the oscillation wavelength of the laser light L and in the visible light region, stray light is likely to be scattered in the cap 19 and is received for monitor light. The ratio of the stray light component irradiated to the element 12a is increased, and it is difficult to accurately detect the light amount of the monitor light M. Further, when the semiconductor laser element 11 has a plurality of transverse modes, the ratio of the laser light L and stray light tends to change. Accordingly, the monitor light receiving element 12a alone cannot accurately detect the amount of the monitor light M, and it is difficult to keep the output of the laser light L stable. However, the amount of the monitor light M corresponding to the laser light L can be obtained by correcting the detection result of the monitor light receiving element 12a using the detection results of the stray light receiving elements 12b and 12c. Therefore, the output of the laser beam L can be kept stable, and the reliability of the semiconductor laser device 100 can be improved.

尚、以上説明した内容は、本発明の趣旨を逸脱しない範囲で適宜変更可能である。例えば、複数の半導体レーザ素子を備えた半導体レーザ装置に対して本発明を適用してもよい。この場合、各半導体レーザ素子に対してモニタ光用受光素子がモニタ光の発光軸の延長線上にそれぞれ配置される。迷光用受光素子は各モニタ光用受光素子の近傍(両側)に配置してもいいし、複数のモニタ光用受光素子のうち、何れか1つのモニタ光用受光素子の近傍のみに迷光用受光素子を配置してもよい。   The contents described above can be changed as appropriate without departing from the spirit of the present invention. For example, the present invention may be applied to a semiconductor laser device including a plurality of semiconductor laser elements. In this case, for each semiconductor laser element, a light receiving element for monitor light is arranged on an extension line of the emission axis of the monitor light. The stray light receiving element may be arranged in the vicinity (on both sides) of each monitor light receiving element, or the stray light receiving element is only received in the vicinity of one of the monitor light receiving elements. An element may be arranged.

また、迷光用受光素子は半導体レーザ素子11のリアー端面11b側に配置されなくてもよく、図3及び図4に示すように半導体レーザ素子11bの側面側に配置されてもよい。図3は、その他の実施例である半導体レーザ装置200の断面図を示した図であり、図4は半導体レーザ部10の斜視図である。図3及び図4において、図1及び図2と同一の構成要素については同じ符号を付し、説明を省略する。また図4において、便宜上、キャップ19の図示は省略する。   Further, the stray light receiving element may not be arranged on the rear end face 11b side of the semiconductor laser element 11, but may be arranged on the side face side of the semiconductor laser element 11b as shown in FIGS. FIG. 3 is a cross-sectional view of a semiconductor laser device 200 according to another embodiment, and FIG. 4 is a perspective view of the semiconductor laser unit 10. 3 and 4, the same components as those in FIGS. 1 and 2 are denoted by the same reference numerals, and the description thereof is omitted. In FIG. 4, the cap 19 is not shown for convenience.

図3に示すように、モニタ光用受光素子22aは、受光面が半導体レーザ素子11のリアー端面11bに向くようにして半導体レーザ素子11の発光軸の延長線上に配置される。迷光用受光素子22bは、受光面が半導体レーザ素子11側に向くように半導体レーザ素子11の側面に配置される。   As shown in FIG. 3, the monitor light receiving element 22 a is arranged on the extended line of the light emitting axis of the semiconductor laser element 11 so that the light receiving surface faces the rear end face 11 b of the semiconductor laser element 11. The stray light receiving element 22b is disposed on the side surface of the semiconductor laser element 11 so that the light receiving surface faces the semiconductor laser element 11 side.

モニタ光用受光素子22aの検出信号は配線28a及び端子27aを介して、迷光用受光素子22bの検出信号は配線28b及び端子27bを介してモニタ出力補正部2に入力される。モニタ出力補正部2は、モニタ光用受光素子22aの検出信号から迷光用受光素子22bの検出信号に対して所定値を乗じた値を差し引き、この差し引いた値をモニタ光量とする。そしてモニタ出力補正部2は算出したモニタ光量を駆動制御部3に出力する。駆動制御部3は半導体レーザ素子11から出射されるレーザ光Lの出力が一定になるように、モニタ出力補正部2より入力されたモニタ光量に基づいて半導体レーザ素子11の駆動電流を決定し、該駆動電流を端子20及び配線21を介して半導体レーザ素子11に供給する。   The detection signal of the monitor light receiving element 22a is input to the monitor output correcting unit 2 via the wiring 28a and the terminal 27a, and the detection signal of the stray light receiving element 22b is input to the monitor output correcting unit 2 via the wiring 28b and the terminal 27b. The monitor output correction unit 2 subtracts a value obtained by multiplying the detection signal of the stray light receiving element 22b by a predetermined value from the detection signal of the monitor light receiving element 22a, and uses the subtracted value as the monitor light amount. Then, the monitor output correction unit 2 outputs the calculated monitor light amount to the drive control unit 3. The drive control unit 3 determines the drive current of the semiconductor laser element 11 based on the monitor light quantity input from the monitor output correction unit 2 so that the output of the laser light L emitted from the semiconductor laser element 11 becomes constant, The drive current is supplied to the semiconductor laser element 11 via the terminal 20 and the wiring 21.

即ち、迷光用受光素子は半導体レーザ素子11を備えるキャップ内に少なくとも1つ以上配置されればよい。尚、迷光用受光素子の位置はモニタ光用受光素子の位置の近傍であることが望ましい。   That is, at least one stray light receiving element may be disposed in a cap including the semiconductor laser element 11. The position of the stray light receiving element is preferably in the vicinity of the position of the monitor light receiving element.

半導体レーザ装置の断面図Cross section of semiconductor laser device 半導体レーザ部の斜視図Perspective view of semiconductor laser section その他の実施例における半導体レーザ装置の断面図Sectional drawing of the semiconductor laser apparatus in another Example その他の実施例における半導体レーザ部の斜視図The perspective view of the semiconductor laser part in other Examples

符号の説明Explanation of symbols

100、200 半導体レーザ装置
1、10 半導体レーザ部
11 半導体レーザ素子
12 受光素子
13 窓
14 ブロック
15 ステム
19 キャップ
2 モニタ出力補正部
3 駆動制御部
DESCRIPTION OF SYMBOLS 100, 200 Semiconductor laser apparatus 1, 10 Semiconductor laser part 11 Semiconductor laser element 12 Light receiving element 13 Window 14 Block 15 Stem 19 Cap 2 Monitor output correction part 3 Drive control part

Claims (3)

出射端面からレーザ光を出射する半導体レーザ素子と、該半導体レーザ素子の前記出射端面に対向した端面から出射されるモニタ光を検出するモニタ光検出手段と、該モニタ光検出手段の出力に基づいて前記半導体レーザ素子の出力を一定とするように制御する制御手段とを備える半導体レーザ装置において、
前記モニタ光検出手段の近傍において迷光を検出する迷光検出手段と、
前記モニタ光検出手段の検出結果を前記迷光検出手段の検出結果により補正する補正手段と、
を備えることを特徴とする半導体レーザ装置。
Based on a semiconductor laser element that emits laser light from an emission end face, monitor light detection means that detects monitor light emitted from an end face of the semiconductor laser element that faces the emission end face, and an output of the monitor light detection means In a semiconductor laser device comprising control means for controlling the output of the semiconductor laser element to be constant,
Stray light detection means for detecting stray light in the vicinity of the monitor light detection means;
Correction means for correcting the detection result of the monitor light detection means by the detection result of the stray light detection means;
A semiconductor laser device comprising:
前記半導体レーザ素子は窒化物半導体を含むものであることを特徴とする請求項1に記載の半導体レーザ装置。   The semiconductor laser device according to claim 1, wherein the semiconductor laser element includes a nitride semiconductor. 前記半導体レーザ素子は複数の横モードを有するものであることを特徴とする請求項1又は2に記載の半導体レーザ装置。   The semiconductor laser device according to claim 1, wherein the semiconductor laser element has a plurality of transverse modes.
JP2005206738A 2005-07-15 2005-07-15 Semiconductor laser device Withdrawn JP2007027372A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005206738A JP2007027372A (en) 2005-07-15 2005-07-15 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005206738A JP2007027372A (en) 2005-07-15 2005-07-15 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JP2007027372A true JP2007027372A (en) 2007-02-01

Family

ID=37787758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005206738A Withdrawn JP2007027372A (en) 2005-07-15 2005-07-15 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JP2007027372A (en)

Similar Documents

Publication Publication Date Title
US9985407B2 (en) Fiber laser apparatus and method of detecting failure of fiber laser apparatus
JP5677293B2 (en) Eye-safe laser-based illumination
WO2004093271A3 (en) Control system for a semiconductor laser
WO2018211831A1 (en) Optical detector and portable electronic equipment
US9872354B2 (en) LED drive circuit
US8432535B2 (en) Optoelectronic range finder
EP2031371A3 (en) Sample analyzer and sample analyzing method
US7781221B2 (en) System and method of compensating for system delay in analyte analyzation
WO2020251678A1 (en) Monitoring system for improved laser display systems
CN109870872B (en) Light source system, automatic adjusting method of light source system and projection equipment
JP2007027372A (en) Semiconductor laser device
JP2929992B2 (en) Optical transmission circuit
US7170602B2 (en) Particle monitoring device and processing apparatus including same
KR20140127628A (en) Organic layer damage measuring method for thin film encapsulation and the measuring apparatus thereof
US20220013989A1 (en) Semiconductor laser and electronic apparatus
JP7461787B2 (en) Laser Photoelectric Sensor
JP2018133435A (en) Semiconductor laser device, monitoring device, and monitoring method
CN108362616A (en) Dust sensor and its calibration method, airhandling equipment
KR20200014201A (en) Hermetic sealed beam projector module and method for manufacturing the same
WO2021199918A1 (en) Drive device, light-emitting device, and drive method
JP2008275462A (en) Positional dimension measuring device
JPH0242782A (en) Semiconductor laser module
WO2021220763A1 (en) Laser processing head and laser processing device
JP4657536B2 (en) Semiconductor laser drive device
US20230023205A1 (en) Laser processing head and laser processing device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061211

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081007