JP2007027226A - Reflecting optical system, illumination optical device, and exposure apparatus - Google Patents

Reflecting optical system, illumination optical device, and exposure apparatus Download PDF

Info

Publication number
JP2007027226A
JP2007027226A JP2005203876A JP2005203876A JP2007027226A JP 2007027226 A JP2007027226 A JP 2007027226A JP 2005203876 A JP2005203876 A JP 2005203876A JP 2005203876 A JP2005203876 A JP 2005203876A JP 2007027226 A JP2007027226 A JP 2007027226A
Authority
JP
Japan
Prior art keywords
light
multilayer mirror
optical system
mirror
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005203876A
Other languages
Japanese (ja)
Other versions
JP2007027226A5 (en
Inventor
Masayuki Shiraishi
雅之 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2005203876A priority Critical patent/JP2007027226A/en
Publication of JP2007027226A publication Critical patent/JP2007027226A/en
Publication of JP2007027226A5 publication Critical patent/JP2007027226A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Lenses (AREA)
  • Optical Filters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a reflecting optical system which can bend an extremely-short ultraviolet ray at a desired angle while suppressing an imbalance of polarization properties of the extremely-short ultraviolet ray and a loss of light intensity. <P>SOLUTION: The reflecting optical system 4 which bends the traveling direction of an extremely-short ultraviolet ray at a predetermined angle includes a first multilayer film mirror 4a into which the extremely-short ultraviolet ray is incident at a predetermined angle, and a second multilayer film mirror 4b into which the extremely-short ultraviolet ray reflected by the first multilayer film mirror 4a is incident at a predetermined angle. The traveling direction of the extremely-short ultraviolet ray incident into the first multilayer film mirror 4a and that of the extremely-short ultraviolet ray reflected by the second multilayer film mirror 4b form an angle θ which is larger than 70° and smaller than 110°. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、半導体集積回路等のリソグラフィで用いられる反射光学系、該反射光学系を備えた照明光学装置及び該反射光学系を備えた露光装置に関するものである。   The present invention relates to a reflection optical system used in lithography such as a semiconductor integrated circuit, an illumination optical apparatus including the reflection optical system, and an exposure apparatus including the reflection optical system.

極短紫外光(EUV光、波長1nm〜100nm)を露光光として用いる露光装置においては、EUV光を透過、屈折する材料が存在しないため、光学系は干渉効果を利用した多層膜ミラーにより構成されている。多層膜ミラーに対する光の反射率は入射する光の偏光により異なり、斜入射でない入射角で光が多層膜ミラーに入射した場合、通常S偏光の反射率がP偏光の反射率より高くなる。また、P偏光は、入射角45°付近のブリュースター角と呼ばれる角度で入射した場合、その反射率が0となる。即ち、光が入射角45°で多層膜ミラーに入射した場合、その多層膜ミラーにより反射される光は、入射した光の偏光度に関わらず、ほぼS偏光のみを含む光となる。露光装置に用いられる照明光学系においては高い偏光特性バランスを要求されるため、EUV光を多層膜ミラーに入射角45°で入射させ、略直角に折り曲げることは行われていない(例えば、特許文献1参照)。   In an exposure apparatus that uses extremely short ultraviolet light (EUV light, wavelength 1 nm to 100 nm) as exposure light, there is no material that transmits and refracts EUV light, so the optical system is composed of multilayer mirrors utilizing the interference effect. ing. The reflectance of light with respect to the multilayer mirror varies depending on the polarization of incident light. When light enters the multilayer mirror at an incident angle other than oblique incidence, the reflectance of S-polarized light is usually higher than that of P-polarized light. Further, when the P-polarized light is incident at an angle called a Brewster angle near an incident angle of 45 °, the reflectance becomes zero. That is, when light is incident on the multilayer mirror at an incident angle of 45 °, the light reflected by the multilayer mirror becomes light containing almost only S-polarized light regardless of the degree of polarization of the incident light. Since an illumination optical system used in an exposure apparatus requires a high balance of polarization characteristics, EUV light is incident on a multilayer mirror at an incident angle of 45 ° and is not bent at a substantially right angle (for example, Patent Documents). 1).

国際公開第2004/090955号パンフレットInternational Publication No. 2004/090955 Pamphlet

ところで、光の進行方向を略直角に折り曲げる場合、1つの多層膜ミラーに入射角45°で光を入射させる方法と、2つ以上の多層膜ミラーを用いることにより多層膜ミラーに入射角45°以外の入射角で光を入射させる方法とが考えられる。しかしながら、多層膜ミラーに対するEUV光のS偏光の反射率がP偏光の反射率よりも高いため、多層膜ミラーの数を増加させることはEUV光のS偏光の偏光度を増加させることとなり、照明光学系の偏光特性バランスが更に悪化する。また、例えば波長約13.5nmのEUV光を用いる場合、EUV光に対して用いられるMo/Si多層膜ミラーの反射率は60〜70%であるため、多層膜ミラーの数を増加させることはEUV光の光量の損失が大きく、照明光学系全体のスループットの低下を招く。したがって、偏光特性バランスの悪化、スループットの低下を回避するために、EUV光を用いた光学系(特に照明光学系)においては、EUV光を略直角に折り曲げる光学系は採用されておらず、光学系の設計及び構成の自由度を損ねていた。   By the way, when the light traveling direction is bent at a substantially right angle, light is incident on one multilayer mirror at an incident angle of 45 °, and two or more multilayer mirrors are used so that the incident angle is 45 ° on the multilayer mirror. It is conceivable that the light is incident at an incident angle other than. However, since the reflectance of S-polarized light of EUV light with respect to the multilayer mirror is higher than that of P-polarized light, increasing the number of multilayer mirrors increases the degree of polarization of S-polarized light of EUV light. The polarization characteristic balance of the optical system is further deteriorated. Further, for example, when EUV light having a wavelength of about 13.5 nm is used, the reflectance of the Mo / Si multilayer mirror used for EUV light is 60 to 70%, so that the number of multilayer mirrors can be increased. The loss of the amount of EUV light is large, leading to a reduction in throughput of the entire illumination optical system. Therefore, in order to avoid the deterioration of the polarization property balance and the decrease in the throughput, the optical system using EUV light (particularly the illumination optical system) does not employ an optical system that bends the EUV light substantially at right angles. The degree of freedom of system design and configuration was lost.

この発明の課題は、極短紫外光の偏光特性バランスの悪化及び光量の損失を抑制しつつ、極短紫外光を所望の角度に折り曲げることができる反射光学系、該反射光学系を備えた照明光学装置及び該反射光学系を備えた露光装置を提供することである。   An object of the present invention is to provide a reflection optical system that can bend the ultrashort ultraviolet light at a desired angle while suppressing deterioration in the polarization characteristic balance of the ultrashort ultraviolet light and loss of the amount of light, and an illumination equipped with the reflection optical system An optical apparatus and an exposure apparatus provided with the reflection optical system are provided.

この発明の反射光学系は、極短紫外光の進行方向を所定の角度に折り曲げる反射光学系において、前記極短紫外光を所定の角度で入射させる第1の多層膜ミラーと、前記第1の多層膜ミラーにより反射された前記極短紫外光を所定の角度で入射させる第2の多層膜ミラーとを備え、前記第1の多層膜ミラーに入射する前記極短紫外光の進行方向と、前記第2の多層膜ミラーにより反射された前記極短紫外光の進行方向とのなす角度θは、70°<θ<110°であることを特徴とする。   The reflective optical system according to the present invention is a reflective optical system that bends the traveling direction of ultrashort ultraviolet light at a predetermined angle. The first multilayer mirror that makes the ultrashort ultraviolet light incident at a predetermined angle; A second multilayer mirror that makes the ultra-short ultraviolet light reflected by the multilayer mirror incident at a predetermined angle, and a traveling direction of the ultra-short ultraviolet light incident on the first multilayer mirror; The angle θ formed with the traveling direction of the ultra-short ultraviolet light reflected by the second multilayer mirror is 70 ° <θ <110 °.

また、この発明の照明光学装置は、光源から射出される極短紫外光により被照射面を照明する照明光学装置において、この発明の反射光学系を備えることを特徴とする。   An illumination optical apparatus according to the present invention is an illumination optical apparatus that illuminates a surface to be irradiated with ultrashort ultraviolet light emitted from a light source, and includes the reflection optical system according to the present invention.

また、この発明の露光装置は、光源から射出される極短紫外光により照明された所定のパターンを感光性基板上に露光する露光装置において、この発明の反射光学系を備えることを特徴とする。   The exposure apparatus of the present invention is an exposure apparatus for exposing a predetermined pattern illuminated by ultrashort ultraviolet light emitted from a light source on a photosensitive substrate, and includes the reflective optical system of the present invention. .

この発明の反射光学系によれば、1つの多層膜ミラーを用いて極短紫外光の進行方向を略直角に折り曲げた場合の極短紫外光の偏光特性と比較して、2つの多層膜ミラーを用いて極短紫外光の進行方向を略直角(70°<θ<110°)に折り曲げた場合の極短紫外光の偏光特性バランスは良好である。即ち、極短紫外光のS偏光成分とP偏光成分との良好なバランスを維持した状態で、極短紫外光を所望の角度に折り曲げることができる。   According to the reflection optical system of the present invention, two multilayer mirrors are compared with the polarization characteristics of the ultrashort ultraviolet light when the traveling direction of the ultrashort ultraviolet light is bent at a substantially right angle by using one multilayer mirror. The polarization characteristic balance of the ultra-short ultraviolet light is good when the traveling direction of the ultra-short ultraviolet light is bent at a substantially right angle (70 ° <θ <110 °). That is, the ultrashort ultraviolet light can be bent to a desired angle while maintaining a good balance between the S-polarized component and the P-polarized component of the ultrashort ultraviolet light.

また、1つの多層膜ミラーを用いて極短紫外光の進行方向を略直角に折り曲げた後の極短紫外光の反射率及び偏光特性と比較して、2つの多層膜ミラーを用いて極短紫外光の進行方向を略直角(77°<θ<97°)に折り曲げた後の極短紫外光の反射率は高くなり、偏光特性バランスは良好となる。即ち、極短紫外光のS偏光成分とP偏光成分との良好なバランス及び極短紫外光の高反射率を維持した状態で、極短紫外光を所望の角度に折り曲げることができる。   Compared with the reflectivity and polarization characteristics of ultra-short ultraviolet light after bending the traveling direction of ultra-short ultraviolet light substantially at right angles using one multi-layer mirror, it is extremely short using two multi-layer mirrors. The reflectivity of the ultrashort ultraviolet light after the ultraviolet light traveling direction is bent at a substantially right angle (77 ° <θ <97 °) becomes high, and the polarization characteristic balance becomes good. That is, the ultrashort ultraviolet light can be bent at a desired angle while maintaining a good balance between the S-polarized component and the P-polarized component of the ultrashort ultraviolet light and a high reflectance of the ultrashort ultraviolet light.

また、この発明の照明光学装置によれば、この発明の反射光学系を備えているため、極短紫外光のS偏光成分とP偏光成分との良好なバランス及び極短紫外光の高反射率を維持した状態で、極短紫外光を所望の角度に折り曲げることができる。従って、極短紫外光の偏光特性バランスの悪化及び光量の損失を抑制しつつ、極短紫外光を被照射面に導く光学系の設計及び構成の自由度を高くすることができる。   Further, according to the illumination optical apparatus of the present invention, since the reflection optical system of the present invention is provided, a good balance between the S-polarized component and the P-polarized component of the ultrashort ultraviolet light and a high reflectivity of the ultrashort ultraviolet light While maintaining the above, it is possible to bend the ultra-short ultraviolet light at a desired angle. Accordingly, it is possible to increase the degree of freedom in the design and configuration of the optical system that guides the ultra-short ultraviolet light to the irradiated surface while suppressing the deterioration of the polarization characteristic balance of the ultra-short ultraviolet light and the loss of the light amount.

また、この発明の露光装置によれば、この発明の反射光学系を有する照明光学系を備えているため、極短紫外光のS偏光成分とP偏光成分との良好なバランス及び極短紫外光の高反射率を維持した状態で、極短紫外光を所望の角度に折り曲げることができる。従って、偏光特性バランスの悪化及び極短紫外光の光量の損失を抑制しつつ、照明光学系の設計及び構成の自由度を高くすることができ、かつ高スループット及び高解像度で露光を行うことができる。   Further, according to the exposure apparatus of the present invention, since the illumination optical system having the reflection optical system of the present invention is provided, a good balance between the S-polarized component and the P-polarized component of the ultrashort ultraviolet light and the ultrashort ultraviolet light Thus, it is possible to bend the ultra-short ultraviolet light at a desired angle while maintaining the high reflectance. Therefore, it is possible to increase the degree of freedom in the design and configuration of the illumination optical system while suppressing the deterioration of the polarization characteristic balance and the loss of the light amount of the ultrashort ultraviolet light, and to perform exposure with high throughput and high resolution. it can.

以下、図面を参照して、この発明の第1の実施の形態にかかる投影露光装置について説明する。図1は、この実施の形態にかかる投影露光装置の概略構成を示す図である。   A projection exposure apparatus according to a first embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing a schematic configuration of a projection exposure apparatus according to this embodiment.

この投影露光装置は、光源2、反射光学系4、コレクタミラー10、反射型フライアイ光学系12,14、コンデンサミラー18,20等により構成される照明光学装置により射出される露光光(照明光)、即ち13.5nmの波長の極短紫外光(以下、EUV光という。)を用いて、反射型投影光学系PLに対してマスクM及びウエハWを相対的に移動させつつマスクMに形成されている所定のパターンを感光性材料(レジスト)が塗布された感光性基板としてのウエハW上に露光するステップアンドスキャン方式の露光装置である。   This projection exposure apparatus includes exposure light (illumination light) emitted by an illumination optical apparatus including a light source 2, a reflection optical system 4, a collector mirror 10, reflection type fly-eye optical systems 12, 14, condenser mirrors 18, 20, and the like. ), That is, formed on the mask M while moving the mask M and the wafer W relative to the reflective projection optical system PL using ultrashort ultraviolet light (hereinafter referred to as EUV light) having a wavelength of 13.5 nm. It is a step-and-scan exposure apparatus that exposes a predetermined pattern on a wafer W as a photosensitive substrate coated with a photosensitive material (resist).

また、この投影露光装置においては、露光光であるEUV光の大気に対する透過率が低いため、EUV光が通過する光路は図示しない真空チャンバにより覆われている。   In this projection exposure apparatus, since the transmittance of EUV light as exposure light to the atmosphere is low, the optical path through which the EUV light passes is covered with a vacuum chamber (not shown).

光源2はEUV光を放出する光源であり、レーザ或いは放電によりプラズマを生成するプラズマ光源等を用いる。EUV光の中心波長は約13.5nmであり、無偏光の光を反射光学系4に導く。   The light source 2 is a light source that emits EUV light, and a plasma light source or the like that generates plasma by laser or discharge is used. The central wavelength of EUV light is about 13.5 nm, and unpolarized light is guided to the reflection optical system 4.

光源2が備える図示しない集光ミラーにより反射されたEUV光は、EUV光の進行方向を所定の角度に折り曲げる反射光学系4に入射する。図2は、反射光学系4の構成を示す図である。図2に示すように、EUV光は、反射光学系4を構成する第1多層膜ミラー4aに入射角22.5°で入射する。第1多層膜ミラー4aは、周期長7.52nmのMo(モリブデン)/Si(シリコン)多層膜50層対のミラーである。なお、Mo/Siの1層対のうち、Mo層の厚さは2.63nm、Si層の厚さは4.89nmである。この第1多層膜ミラー4aの構成は、EUV光の反射率が最も高くなるように第1多層膜ミラー4aに入射するEUV光の波長及び入射角度等に基づいて決定される。   The EUV light reflected by a condensing mirror (not shown) provided in the light source 2 enters the reflection optical system 4 that bends the traveling direction of the EUV light to a predetermined angle. FIG. 2 is a diagram showing the configuration of the reflective optical system 4. As shown in FIG. 2, the EUV light is incident on the first multilayer mirror 4a constituting the reflection optical system 4 at an incident angle of 22.5 °. The first multilayer mirror 4a is a mirror of 50 layer pairs of Mo (molybdenum) / Si (silicon) multilayer films having a periodic length of 7.52 nm. In the Mo / Si layer pair, the Mo layer has a thickness of 2.63 nm, and the Si layer has a thickness of 4.89 nm. The configuration of the first multilayer mirror 4a is determined based on the wavelength and incident angle of the EUV light incident on the first multilayer mirror 4a so that the EUV light has the highest reflectance.

ここで、第1多層膜ミラー4aに入射角22.5°で入射した場合における第1多層膜ミラー4aに対するS偏光の反射率は73.9%、第1多層膜ミラー4aに対するP偏光の反射率は62.9%である。入射光(EUV光)が無偏光であるため、入射光光量のうち第1多層膜ミラー4aに対するS偏光の光量を50%、第1多層膜ミラー4aに対するP偏光の光量を50%とすると、第1多層膜ミラー4aにより反射するEUV光のS偏光の光量は50%×0.739(反射率)=37.0%、P偏光50%×0.629(反射率)=31.5%となる。   Here, when the incident light enters the first multilayer mirror 4a at an incident angle of 22.5 °, the reflectance of the S-polarized light with respect to the first multilayer mirror 4a is 73.9%, and the reflection of the P-polarized light with respect to the first multilayer mirror 4a. The rate is 62.9%. Since the incident light (EUV light) is non-polarized light, the amount of S-polarized light with respect to the first multilayer mirror 4a is 50% and the amount of P-polarized light with respect to the first multilayer mirror 4a is 50%. The amount of S-polarized light of the EUV light reflected by the first multilayer mirror 4a is 50% × 0.739 (reflectance) = 37.0%, P-polarized light 50% × 0.629 (reflectance) = 31.5% It becomes.

第1多層膜ミラー4aにより反射されたEUV光は、第2多層膜ミラー4bに入射角22.5°で入射する。第2多層膜ミラー4bの多層膜の構成は、第1多層膜ミラー4aの多層膜の構成と同一である。第2多層膜ミラー4bの構成は、EUV光の反射率が最も高くなるように第2多層膜ミラー4bに入射するEUV光の波長及び入射角度等に基づいて決定される。EUV光の光路は同一平面内にあるため、第1多層膜ミラー4aに対するS偏光は第2多層膜ミラー4bに対するS偏光となり、第1多層膜ミラー4aに対するP偏光は第2多層膜ミラー4bに対するP偏光となる。即ち、第1多層膜ミラー4aに対するS偏光は第2多層膜ミラー4bによりS偏光として反射し、第1多層膜ミラー4aに対するP偏光は第2多層膜ミラー4bによりP偏光として反射する。従って、第2多層膜ミラー4bにより反射したEUV光のS偏光の光量は37.0%(第2多層膜ミラー4bに入射した際のS偏光の光量)×0.739(反射率)=27.3%、P偏光の光量は31.5%(第2多層膜ミラー4bに入射した際のP偏光の光量)×0.629(反射率)=19.8%となる。   The EUV light reflected by the first multilayer mirror 4a enters the second multilayer mirror 4b at an incident angle of 22.5 °. The configuration of the multilayer film of the second multilayer mirror 4b is the same as the configuration of the multilayer film of the first multilayer mirror 4a. The configuration of the second multilayer mirror 4b is determined based on the wavelength and incident angle of the EUV light incident on the second multilayer mirror 4b so that the reflectance of the EUV light becomes the highest. Since the optical path of the EUV light is in the same plane, S-polarized light for the first multilayer mirror 4a becomes S-polarized light for the second multilayer mirror 4b, and P-polarized light for the first multilayer mirror 4a is for the second multilayer mirror 4b. P-polarized light. That is, the S polarized light for the first multilayer mirror 4a is reflected as S polarized light by the second multilayer mirror 4b, and the P polarized light for the first multilayer mirror 4a is reflected as P polarized light by the second multilayer mirror 4b. Therefore, the amount of S-polarized light of the EUV light reflected by the second multilayer mirror 4b is 37.0% (the amount of S-polarized light incident on the second multilayer mirror 4b) × 0.739 (reflectance) = 27. The amount of P-polarized light is 31.5% (the amount of P-polarized light when incident on the second multilayer mirror 4b) × 0.629 (reflectance) = 19.8%.

反射光学系4(第1多層膜ミラー4a及び第2多層膜ミラー4b)を介したEUV光の反射率は、27.3%(S偏光の反射率)+19.8%(P偏光の反射率)=47.1%となる。また、反射光学系4を介したEUV光のS偏光とP偏光の光量のバランスから、EUV光の偏光度は0.16(S偏光)となる。また、第1多層膜ミラー4aに入射するEUV光の進行方向と、第2多層膜ミラー4bにより反射されたEUV光の進行方向とのなす角度θは、90°である。   The reflectivity of EUV light through the reflective optical system 4 (the first multilayer mirror 4a and the second multilayer mirror 4b) is 27.3% (S-polarized reflectance) + 19.8% (P-polarized reflectance). ) = 47.1%. Further, the degree of polarization of the EUV light is 0.16 (S-polarized light) from the balance between the amount of S-polarized light and P-polarized light of the EUV light via the reflective optical system 4. Further, the angle θ formed by the traveling direction of the EUV light incident on the first multilayer mirror 4a and the traveling direction of the EUV light reflected by the second multilayer mirror 4b is 90 °.

反射光学系4を射出したEUV光は、光源2が備える図示しない集光ミラーの第2焦点位置またはその近傍に集光され、コレクタミラー10により反射される。コレクタミラー10により反射されたEUV光は、オプティカルインテグレータとしての反射型フライアイ光学系12,14へ導かれる。入射側フライアイミラー12は、並列に配列された複数の凹面鏡である要素ミラーにより構成され、マスクM面やウエハW面と光学的に共役な位置またはその近傍に配置されている。   The EUV light emitted from the reflection optical system 4 is collected at or near a second focal position of a collecting mirror (not shown) provided in the light source 2 and reflected by the collector mirror 10. The EUV light reflected by the collector mirror 10 is guided to the reflective fly's eye optical systems 12 and 14 as an optical integrator. The incident-side fly's eye mirror 12 is composed of element mirrors, which are a plurality of concave mirrors arranged in parallel, and is arranged at a position optically conjugate with the mask M surface and wafer W surface or in the vicinity thereof.

入射側フライアイミラー12に入射することにより波面分割されたEUV光は、入射側フライアイミラー12により反射され、開口絞り16を介して、反射型フライアイ光学系12,14を構成する他方の射出側フライアイミラー14に入射する。射出側フライアイミラー14は、入射側フライアイミラー12を構成する複数の要素ミラーのそれぞれに対応して並列に配列された複数の凹面鏡である要素ミラーにより構成され、反射型投影光学系PLの瞳面と光学的に共役な位置に配置されている。   The EUV light wave-divided by being incident on the incident-side fly-eye mirror 12 is reflected by the incident-side fly-eye mirror 12 and the other of the reflective fly-eye optical systems 12 and 14 constituting the reflective fly-eye optical systems 12 and 14 via the aperture stop 16. The light enters the exit-side fly-eye mirror 14. The exit-side fly-eye mirror 14 is composed of element mirrors that are a plurality of concave mirrors arranged in parallel corresponding to each of the plurality of element mirrors constituting the entrance-side fly-eye mirror 12, and includes the reflective projection optical system PL. It is arranged at a position optically conjugate with the pupil plane.

射出側フライアイミラー14の射出面もしくはその近傍には多数の光源像で構成させる二次光源が形成される。射出側フライアイミラー14により反射されたEUV光は、開口絞り16を介してコンデンサミラー18に入射する。コンデンサミラー18に入射したEUV光は、コンデンサミラー18、コンデンサミラー20により反射され、マスクM上で集光する。反射光学系4、コレクタミラー10、反射型フライアイ光学系12,14、コンデンサミラー18,20により構成される照明光学系を介したEUV光は、所定の回路パターンが形成されている反射型マスクM上を重畳的に均一照明する。   A secondary light source composed of a large number of light source images is formed on or near the exit surface of the exit-side fly-eye mirror 14. The EUV light reflected by the emission side fly-eye mirror 14 enters the condenser mirror 18 through the aperture stop 16. The EUV light incident on the condenser mirror 18 is reflected by the condenser mirror 18 and the condenser mirror 20 and is condensed on the mask M. The EUV light that passes through the illumination optical system including the reflective optical system 4, the collector mirror 10, the reflective fly-eye optical systems 12 and 14, and the condenser mirrors 18 and 20 is a reflective mask on which a predetermined circuit pattern is formed. Uniformly illuminate over M.

なお、コレクタミラー10、反射型フライアイ光学系12,14、コンデンサミラー18は、基板としてガラス、セラミックス、金属などを用いており、その基板上にモリブデン(Mo)及びシリコン(Si)からなる多層膜が形成されている。   The collector mirror 10, the reflective fly's eye optical systems 12, 14, and the condenser mirror 18 use glass, ceramics, metal, or the like as a substrate, and a multilayer made of molybdenum (Mo) and silicon (Si) on the substrate. A film is formed.

反射型マスクMにより反射されたEUV光は、反射型投影光学系PLの瞳において二次光源像を形成し、レジストが塗布された感光性基板としてのウエハW上にマスクMに形成されたパターン像を投影露光する。   The EUV light reflected by the reflective mask M forms a secondary light source image at the pupil of the reflective projection optical system PL, and a pattern formed on the mask M on the wafer W as a photosensitive substrate coated with a resist. Project and expose the image.

この第1の実施の形態にかかる反射光学系によれば、1つの多層膜ミラーを用いてEUV光の進行方向を略直角に折り曲げた場合のEUV光の反射率と比較して、2つの多層膜ミラー(第1多層膜ミラー及び第2多層膜ミラー)を用いてEUV光の進行方向を略直角に折り曲げているにもかかわらず、EUV光の反射率は高くなる。また、1つの多層膜ミラーを用いてEUV光の進行方向を略直角に折り曲げた後のEUV光の偏光特性と比較して、2つの多層膜ミラーを用いてEUV光の進行方向を略直角に折り曲げた後のEUV光の偏光特性バランスは良好である。   According to the reflection optical system according to the first embodiment, two multilayers are compared with the reflectance of EUV light when the traveling direction of the EUV light is bent at a substantially right angle by using one multilayer mirror. Even though the film mirrors (the first multilayer film mirror and the second multilayer film mirror) are used to fold the traveling direction of the EUV light at a substantially right angle, the reflectance of the EUV light becomes high. Compared with the polarization characteristics of EUV light after folding the EUV light in a substantially right angle using one multilayer mirror, the EUV light in the substantially right angle using two multilayer mirrors. The polarization characteristic balance of the EUV light after bending is good.

比較例として、1枚の多層膜ミラーに入射角45°で波長13.5nmのEUV光(無偏光)を入射させて略直角に折り曲げた場合を考える。多層膜の周期と各層の厚さ及び材料は反射角が最大となるように最適化されており、例えば、周期長10.lnmのMo(厚さ3.54nm)/Si(厚さ6.57nm)多層膜を用いた。この多層膜ミラーに対するS偏光の反射率は72.4%、P偏光の反射率は5.5%である。この多層膜ミラーに入射するEUV光は無偏光であるため、S偏光の光量を50%、P偏光の光量を50%とすると、この多層膜ミラーにより反射されたEUV光のS偏光の光量は50%×0.724(反射率)=36.2%、P偏光の光量は50%×0.055(反射率)=2.8%となる。従って、この多層膜ミラーにより反射されたEUV光の光量は、S偏光の光量とP偏光の光量の合計で39.0%、即ち入射角45°で多層膜ミラーにより反射されるEUV光の反射率は無偏光入射の場合39.0%である。また、EUV光のS偏光とP偏光の光量のバランスから、多層膜ミラーにより反射されたEUV光の偏光度は0.86(S偏光)となる。   As a comparative example, consider a case where EUV light (non-polarized light) having a wavelength of 13.5 nm is incident on a single multilayer mirror and is bent at a substantially right angle. The period of the multilayer film and the thickness and material of each layer are optimized so as to maximize the reflection angle. A 1 nm Mo (thickness 3.54 nm) / Si (thickness 6.57 nm) multilayer film was used. The reflectance of S-polarized light to this multilayer mirror is 72.4%, and the reflectance of P-polarized light is 5.5%. Since the EUV light incident on the multilayer mirror is non-polarized, if the light quantity of S-polarized light is 50% and the light quantity of P-polarized light is 50%, the light quantity of S-polarized light reflected by the multilayer mirror is 50% × 0.724 (reflectance) = 36.2%, and the amount of P-polarized light is 50% × 0.055 (reflectance) = 2.8%. Therefore, the amount of EUV light reflected by this multilayer mirror is 39.0% in total of the amount of S-polarized light and P-polarized light, that is, the reflection of EUV light reflected by the multilayer mirror at an incident angle of 45 °. The rate is 39.0% for non-polarized incidence. In addition, the degree of polarization of the EUV light reflected by the multilayer mirror is 0.86 (S-polarized light) due to the balance between the amounts of S-polarized light and P-polarized light of the EUV light.

一方、この第1の実施の形態にかかる反射光学系(2つの多層膜ミラー)により反射されるEUV光の反射率は無偏光入射の場合、上述したように47.1%であり、1つの多層膜ミラーによりEUV光を略直角に折り曲げた場合よりEUV光の反射率は高くなる。また、この第1の実施の形態にかかる反射光学系により反射されるEUV光の偏光度は、上述したように0.16(S偏光)であり、1つの多層膜ミラーによりEUV光を略直角に折り曲げた場合よりEUV光の偏光特性バランスは良好である。   On the other hand, the reflectance of EUV light reflected by the reflective optical system (two multilayer mirrors) according to the first embodiment is 47.1% as described above in the case of non-polarized incidence, The reflectance of EUV light becomes higher than when EUV light is bent at a substantially right angle by the multilayer mirror. Further, the degree of polarization of the EUV light reflected by the reflecting optical system according to the first embodiment is 0.16 (S-polarized light) as described above, and the EUV light is substantially perpendicular by one multilayer mirror. The polarization characteristic balance of EUV light is better than that of the case where it is bent.

従って、この第1の実施の形態にかかる投影露光装置によれば、EUV光の高反射率及びS偏光成分とP偏光成分との良好なバランスを維持した状態で、EUV光を略直角に折り曲げることができる。即ち、EUV光の光量の損失及び偏光特性バランスの悪化を抑制しつつ、照明光学系の設計及び構成の自由度を高くすることができ、かつ高スループット及び高解像度で露光を行うことができる。   Therefore, according to the projection exposure apparatus according to the first embodiment, the EUV light is bent substantially at a right angle while maintaining a high reflectance of the EUV light and a good balance between the S-polarized component and the P-polarized component. be able to. That is, it is possible to increase the degree of freedom in the design and configuration of the illumination optical system while suppressing the loss of the EUV light amount and the deterioration of the polarization characteristic balance, and it is possible to perform exposure with high throughput and high resolution.

なお、この第1の実施の形態にかかる反射光学系においては、EUV光の進行方向を略直角に折り曲げているが、反射光学系に入射するEUV光の進行方向と反射光学系から射出するEUV光の進行方向とのなす角度θが70°<θ<110°の範囲内であればよい。図3は、反射光学系への入射光と出射光とのなす角と、その際のS偏光の偏光度とを示すグラフである。図3に示すように、70°<θ<110°の範囲内においては、1つの多層膜ミラーによりEUV光の進行方向を同一の角度に折り曲げた場合と比較して、EUV光の偏光度を0.1以上改善することができるため、EUV光の偏光特性はバランス良く維持される。   In the reflective optical system according to the first embodiment, the traveling direction of the EUV light is bent at a substantially right angle, but the traveling direction of the EUV light incident on the reflective optical system and the EUV light emitted from the reflective optical system. The angle θ formed with the light traveling direction may be in the range of 70 ° <θ <110 °. FIG. 3 is a graph showing the angle between the incident light and the outgoing light to the reflection optical system and the polarization degree of S-polarized light at that time. As shown in FIG. 3, within the range of 70 ° <θ <110 °, the degree of polarization of the EUV light is compared with the case where the traveling direction of the EUV light is bent at the same angle by one multilayer mirror. Since it can improve 0.1 or more, the polarization characteristic of EUV light is maintained with good balance.

また、図4は、反射光学系への入射光と出射光とのなす角と、その際のEUV光の透過率(反射率)とを示すグラフである。図4に示すように、反射光学系に入射するEUV光の進行方向と反射光学系から射出するEUV光の進行方向とのなす角度θを77°<θ<97°の範囲内にした場合、1つの多層膜ミラーによりEUV光の進行方向を同一の角度に折り曲げた場合と比較して、EUV光の偏光度が0.36以上改善され、EUV光の偏光特性がバランス良く維持されるだけでなく、EUV光の透過率(反射率)も高くなる。   FIG. 4 is a graph showing the angle formed between the incident light and the outgoing light to the reflective optical system, and the transmittance (reflectance) of the EUV light at that time. As shown in FIG. 4, when the angle θ between the traveling direction of the EUV light incident on the reflective optical system and the traveling direction of the EUV light emitted from the reflective optical system is within a range of 77 ° <θ <97 °, Compared to the case where the traveling direction of EUV light is bent at the same angle by a single multilayer mirror, the degree of polarization of EUV light is improved by 0.36 or more, and the polarization characteristics of EUV light are maintained in a well-balanced manner. In addition, the transmittance (reflectance) of EUV light is also increased.

次に、図面を参照して、この発明の第2の実施の形態にかかる投影露光装置について説明する。なお、この第2の実施の形態にかかる投影露光装置の構成は、図1に示す第1の実施の形態にかかる投影露光装置を構成する反射光学系4を、反射光学系6(図5〜図7参照)に変更したものである。したがって、第2の実施の形態の説明においては、第1の実施の形態にかかる投影露光装置の構成と同一の構成の詳細な説明は省略する。また、この第2の実施の形態にかかる投影露光装置の説明においては、第1の実施の形態にかかる投影露光装置と同一の構成には第1の実施の形態で用いたものと同一の符号を用いて説明を行う。また、以下の説明においては、図1中に示すXYZ直交座標系を設定し、このXYZ直交座標系を参照しつつ各部材の位置関係について説明する。XYZ直交座標系は、X軸及びY軸がウエハWに対して平行となるよう設定され、Z軸がウエハWに対して直交する方向に設定されている。   Next, a projection exposure apparatus according to a second embodiment of the present invention will be described with reference to the drawings. The configuration of the projection exposure apparatus according to the second embodiment is the same as that of the reflection optical system 4 (see FIGS. 5 to 5) that constitutes the projection exposure apparatus according to the first embodiment shown in FIG. (See FIG. 7). Therefore, in the description of the second embodiment, a detailed description of the same configuration as the configuration of the projection exposure apparatus according to the first embodiment is omitted. In the description of the projection exposure apparatus according to the second embodiment, the same reference numerals as those used in the first embodiment are used for the same configuration as the projection exposure apparatus according to the first embodiment. A description will be given using. In the following description, the XYZ orthogonal coordinate system shown in FIG. 1 is set, and the positional relationship of each member will be described with reference to this XYZ orthogonal coordinate system. The XYZ orthogonal coordinate system is set so that the X axis and the Y axis are parallel to the wafer W, and the Z axis is set in a direction orthogonal to the wafer W.

図5〜図7は、この実施の形態にかかる反射光学系6の構成を示す図である。図5及び図6に示すように、EUV光は、反射光学系6を構成する第1多層膜ミラー6aに入射角27.35°で入射する。第1多層膜ミラー6aは、周期長7.85nmのMo(モリブデン)/Si(シリコン)多層膜50層対のミラーである。なお、Mo/Siの1層対のうち、Mo層の厚さは2.75nm、Si層の厚さは5.10nmである。この第1多層膜ミラー6aの構成は、EUV光の反射率が最も高くなるように第1多層膜ミラー6aに入射するEUV光の波長及び入射角度等に基づいて決定される。   5-7 is a figure which shows the structure of the reflective optical system 6 concerning this Embodiment. As shown in FIGS. 5 and 6, the EUV light is incident on the first multilayer mirror 6 a constituting the reflective optical system 6 at an incident angle of 27.35 °. The first multilayer mirror 6a is a mirror of 50 layers of Mo (molybdenum) / Si (silicon) multilayers having a periodic length of 7.85 nm. Note that, in one Mo / Si layer pair, the Mo layer has a thickness of 2.75 nm, and the Si layer has a thickness of 5.10 nm. The configuration of the first multilayer mirror 6a is determined based on the wavelength and incident angle of the EUV light incident on the first multilayer mirror 6a so that the reflectance of the EUV light becomes the highest.

ここで、第1多層膜ミラー6aに入射角27.35°で入射した場合における第1多層膜ミラー6aに対するS偏光の反射率は73.6%、第1多層膜ミラー6aに対するP偏光の反射率は54.9%である。入射光(EUV光)が無偏光であるため、入射光光量のうち第1多層膜ミラー6aに対するS偏光の光量を50%、第1多層膜ミラー6aに対するP偏光の光量を50%とすると、第1多層膜ミラー6aにより反射するEUV光のS偏光の光量は50%×0.736(反射率)=36.8%、P偏光の光量は50%×0.549(反射率)=27.5%となる。なお、第1多層膜ミラー6aに入射するEUV光の進行方向はベクトル(1,0,0)であり、第1多層膜ミラー6aの法線方向はベクトル(−0.888,−0.325,0.325)である。また、第1多層膜ミラー6aに対するS偏光の向きはベクトル(0,−0.707,0.707)、P偏光の向きはベクトル(0,0.707,−0.707)である。   Here, when the light enters the first multilayer mirror 6a at an incident angle of 27.35 °, the reflectance of the S-polarized light with respect to the first multilayer mirror 6a is 73.6%, and the reflection of the P-polarized light with respect to the first multilayer mirror 6a. The rate is 54.9%. Since the incident light (EUV light) is non-polarized light, if the amount of S-polarized light for the first multilayer mirror 6a is 50% and the amount of P-polarized light for the first multilayer mirror 6a is 50% of the amount of incident light, The amount of S-polarized light of EUV light reflected by the first multilayer mirror 6a is 50% × 0.736 (reflectance) = 36.8%, and the amount of P-polarized light is 50% × 0.549 (reflectance) = 27. .5%. The traveling direction of the EUV light incident on the first multilayer mirror 6a is a vector (1, 0, 0), and the normal direction of the first multilayer mirror 6a is a vector (−0.888, −0.325). , 0.325). The direction of S-polarized light with respect to the first multilayer mirror 6a is a vector (0, -0.707, 0.707), and the direction of P-polarized light is a vector (0, 0.707, -0.707).

第1多層膜ミラー6aにより反射されたEUV光は、図7に示すように、第2多層膜ミラー6bに入射角27.35°で入射する。第2多層膜ミラー6bの多層膜の構成は、第1多層膜ミラー6aの多層膜の構成と同一である。第2多層膜ミラー6bの構成は、EUV光の反射率が最も高くなるように第2多層膜ミラー6bに入射するEUV光の波長及び入射角度等に基づいて決定される。ここで、第1多層膜ミラー6aにより反射され、第2多層膜ミラー6bに入射するEUV光の進行方向はベクトル(−0.577,−0.577,0.577)であり、第2多層膜ミラー6bの法線方向はベクトル(0.325,0.325,−0.888)である。また、第2多層膜ミラー6bに対するS偏光の向きはベクトル(0,−0.707,−0.707)、P偏光の向きはベクトル(−0.817,0.408,−0.408)である。   The EUV light reflected by the first multilayer mirror 6a is incident on the second multilayer mirror 6b at an incident angle of 27.35 ° as shown in FIG. The configuration of the multilayer film of the second multilayer mirror 6b is the same as the configuration of the multilayer film of the first multilayer mirror 6a. The configuration of the second multilayer mirror 6b is determined based on the wavelength and incident angle of the EUV light incident on the second multilayer mirror 6b so that the reflectance of the EUV light becomes the highest. Here, the traveling direction of the EUV light reflected by the first multilayer mirror 6a and incident on the second multilayer mirror 6b is a vector (−0.577, −0.577, 0.577), and the second multilayer The normal direction of the film mirror 6b is a vector (0.325, 0.325, -0.888). The direction of S-polarized light with respect to the second multilayer mirror 6b is a vector (0, -0.707, -0.707), and the direction of P-polarized light is a vector (-0.817, 0.408, -0.408). It is.

従って、第1多層膜ミラー6aに対するS偏光及びP偏光の向きは、第2多層膜ミラー6bに対するS偏光及びP偏光の向きと一致しないため、第1多層膜ミラー6aにより反射された第1多層膜ミラー6aに対するS偏光及びP偏光を、第2多層膜ミラー6bに対するS偏光及びP偏光の向きに分配し、第2多層膜ミラー6bに入射する前の状態でその割合を算出する。算出した結果、
(1)第1多層膜ミラー6aにより反射されたS偏光のうち、第2多層膜ミラー6bに対するS偏光になる割合は、0.25
(2)第1多層膜ミラー6aにより反射されたS偏光のうち、第2多層膜ミラー6bに対するP偏光になる割合は、0.75
(3)第1多層膜ミラー6aにより反射されたP偏光のうち、第2多層膜ミラー6bに対するS偏光になる割合は、0.75
(4)第1多層膜ミラー6aにより反射されたP偏光のうち、第2多層膜ミラー6bに対するP偏光になる割合は、0.25
となる。
Accordingly, the directions of the S-polarized light and the P-polarized light with respect to the first multilayer mirror 6a do not coincide with the directions of the S-polarized light and the P-polarized light with respect to the second multilayer mirror 6b, and therefore the first multilayer reflected by the first multilayer mirror 6a. S-polarized light and P-polarized light with respect to the film mirror 6a are distributed in the directions of S-polarized light and P-polarized light with respect to the second multilayer mirror 6b, and their ratios are calculated in a state before entering the second multilayer mirror 6b. As a result of calculation,
(1) The ratio of S-polarized light reflected by the first multilayer mirror 6a to S-polarized light with respect to the second multilayer mirror 6b is 0.25.
(2) The proportion of the S-polarized light reflected by the first multilayer mirror 6a that becomes P-polarized with respect to the second multilayer mirror 6b is 0.75.
(3) Of the P-polarized light reflected by the first multilayer mirror 6a, the ratio of S-polarized light to the second multilayer mirror 6b is 0.75.
(4) Of the P-polarized light reflected by the first multilayer mirror 6a, the ratio of being P-polarized with respect to the second multilayer mirror 6b is 0.25.
It becomes.

従って、
(1)の光量は、(50%×0.736)×0.25=9.2%
(2)の光量は、(50%×0.736)×0.75=27.6%
(3)の光量は、(50%×0.549)×0.75=20.6%
(4)の光量は、(50%×0.549)×0.25=6.9%
となり、第2多層膜ミラー6bに対するS偏光の光量は(1)+(3)=29.8%、第2多層膜ミラー6bに対するP偏光の光量は(2)+(4)=34.5%となる。これらの光が第2多層膜ミラー6bにより反射された場合、反射光のS偏光の光量は29.8%×0.736=21.9%、反射光のP偏光の光量は34.5%×0.549=18.9%となる。従って、反射光学系6を介したEUV光の光量はS偏光及びP偏光の光量の合計で40.8%、即ち、反射光学系6(第1多層膜ミラー6a及び第2多層膜ミラー6b)を介したEUV光の反射率は40.8%である。また、反射光学系6を介したEUV光のS偏光とP偏光の光量のバランスから、EUV光の偏光度は0.07(S偏光)となる。また、第1多層膜ミラー6aに入射するEUV光の進行方向は上述したようにベクトル(1,0,0)であり、第2多層膜ミラー6bにより反射されたEUV光の進行方向はベクトル(0,0,−1)となり、略平行に位置する異なる平面内に存在するが、第1多層膜ミラー6aに入射するEUV光の進行方向と第2多層膜ミラー6bにより反射されたEUV光の進行方向とのなす角度は、90°である。
Therefore,
The amount of light in (1) is (50% × 0.736) × 0.25 = 9.2%
The amount of light in (2) is (50% × 0.736) × 0.75 = 27.6%
The amount of light in (3) is (50% × 0.549) × 0.75 = 20.6%
The amount of light in (4) is (50% × 0.549) × 0.25 = 6.9%
Thus, the amount of S-polarized light for the second multilayer mirror 6b is (1) + (3) = 29.8%, and the amount of P-polarized light for the second multilayer mirror 6b is (2) + (4) = 34.5. %. When these lights are reflected by the second multilayer mirror 6b, the amount of S-polarized light of the reflected light is 29.8% × 0.736 = 21.9%, and the amount of P-polarized light of the reflected light is 34.5%. × 0.549 = 18.9%. Therefore, the total amount of S-polarized light and P-polarized light is 40.8%, that is, the reflective optical system 6 (the first multilayer mirror 6a and the second multilayer mirror 6b). The reflectivity of EUV light via is 40.8%. Further, the degree of polarization of the EUV light is 0.07 (S-polarized light) due to the balance of the amount of S-polarized light and P-polarized light of the EUV light via the reflective optical system 6. Further, the traveling direction of the EUV light incident on the first multilayer mirror 6a is the vector (1, 0, 0) as described above, and the traveling direction of the EUV light reflected by the second multilayer mirror 6b is the vector ( 0, 0, -1), which exist in different planes located substantially in parallel, but the traveling direction of the EUV light incident on the first multilayer mirror 6a and the EUV light reflected by the second multilayer mirror 6b The angle formed with the traveling direction is 90 °.

この第2の実施の形態にかかる反射光学系によれば、1つの多層膜ミラーを用いてEUV光の進行方向を略直角に折り曲げた場合のEUV光の反射率と比較して、2つの多層膜ミラー(第1多層膜ミラー及び第2多層膜ミラー)を用いてEUV光の進行方向を略直角に折り曲げているにもかかわらず、EUV光の反射率は高くなる。また、1つの多層膜ミラーを用いてEUV光の進行方向を略直角に折り曲げた後のEUV光の偏光特性と比較して、2つの多層膜ミラーを用いてEUV光の進行方向を略直角に折り曲げた後のEUV光の偏光特性バランスは良好である。   According to the reflective optical system according to the second embodiment, two multilayers are compared with the reflectance of EUV light when the traveling direction of the EUV light is bent at a substantially right angle by using one multilayer mirror. Even though the film mirrors (the first multilayer film mirror and the second multilayer film mirror) are used to fold the traveling direction of the EUV light at a substantially right angle, the reflectance of the EUV light becomes high. Compared with the polarization characteristics of EUV light after folding the EUV light in a substantially right angle using one multilayer mirror, the EUV light in the substantially right angle using two multilayer mirrors. The polarization characteristic balance of the EUV light after bending is good.

第1の実施の形態で用いた比較例と第2の実施の形態とを比較する。比較例では、多層膜ミラーにより反射されたEUV光の反射率は無偏光入射の場合39.0%であり、EUV光の偏光度は0.86(S偏光)となる。   The comparative example used in the first embodiment is compared with the second embodiment. In the comparative example, the reflectance of the EUV light reflected by the multilayer mirror is 39.0% in the case of non-polarized incidence, and the degree of polarization of the EUV light is 0.86 (S-polarized light).

一方、この第2の実施の形態にかかる反射光学系(2つの多層膜ミラー)により反射されるEUV光の反射率は無偏光入射の場合、上述したように40.8%であり、1つの多層膜ミラーによりEUV光を略直角に折り曲げた場合よりEUV光の反射率は高くなる。また、この第2の実施の形態にかかる反射光学系により反射されるEUV光の偏光度は、上述したように0.07(S偏光)であり、1つの多層膜ミラーによりEUV光を略直角に折り曲げた場合よりEUV光の偏光特性バランスは極めて良好である。   On the other hand, the reflectance of EUV light reflected by the reflective optical system (two multilayer mirrors) according to the second embodiment is 40.8% as described above in the case of non-polarized incidence. The reflectance of EUV light becomes higher than when EUV light is bent at a substantially right angle by the multilayer mirror. Further, the degree of polarization of the EUV light reflected by the reflecting optical system according to the second embodiment is 0.07 (S-polarized light) as described above, and the EUV light is substantially perpendicular by one multilayer film mirror. The polarization characteristic balance of the EUV light is much better than that when bent into the shape.

従って、この第2の実施の形態にかかる投影露光装置によれば、EUV光の高反射率及びS偏光成分とP偏光成分との良好なバランスを維持した状態で、EUV光を略直角に折り曲げることができる。即ち、EUV光の光量の損失及び偏光特性バランスの悪化を抑制しつつ、照明光学系の設計及び構成の自由度を高くすることができ、かつ高スループット及び高解像度で露光を行うことができる。   Therefore, according to the projection exposure apparatus according to the second embodiment, the EUV light is bent at a substantially right angle while maintaining a high reflectivity of the EUV light and a good balance between the S-polarized component and the P-polarized component. be able to. That is, it is possible to increase the degree of freedom in the design and configuration of the illumination optical system while suppressing the loss of the EUV light amount and the deterioration of the polarization characteristic balance, and it is possible to perform exposure with high throughput and high resolution.

なお、この第2の実施の形態にかかる反射光学系においては、EUV光の進行方向を略直角に折り曲げているが、反射光学系に入射するEUV光の進行方向と反射光学系から射出するEUV光の進行方向とのなす角度θが70°<θ<110°の範囲内であればよい。70°<θ<110°の範囲内においては、1つの多層膜ミラーによりEUV光の進行方向を同一の角度に折り曲げた場合と比較して、EUV光の偏光特性はバランス良く維持される。   In the reflective optical system according to the second embodiment, the traveling direction of the EUV light is bent at a substantially right angle, but the traveling direction of the EUV light incident on the reflective optical system and the EUV light emitted from the reflective optical system. The angle θ formed with the light traveling direction may be in the range of 70 ° <θ <110 °. Within the range of 70 ° <θ <110 °, the polarization characteristics of the EUV light are maintained in a balanced manner as compared with the case where the traveling direction of the EUV light is bent at the same angle by one multilayer mirror.

また、反射光学系に入射するEUV光の進行方向と反射光学系から射出するEUV光の進行方向とのなす角度θを77°<θ<97°の範囲内にした場合、1つの多層膜ミラーによりEUV光の進行方向を同一の角度に折り曲げた場合と比較して、EUV光の偏光特性がバランス良く維持されるだけでなく、EUV光の反射率も高くなる。   Further, when the angle θ formed by the traveling direction of the EUV light incident on the reflecting optical system and the traveling direction of the EUV light emitted from the reflecting optical system is within a range of 77 ° <θ <97 °, one multilayer mirror Compared to the case where the traveling direction of the EUV light is bent at the same angle, the polarization characteristics of the EUV light are not only maintained in a well-balanced manner, but also the reflectance of the EUV light is increased.

なお、上述の実施の形態にかかる投影露光装置においては、波長が13.5nmのEUV光を露光光として用いているが、波長が1nm以上100nm以下のEUV光を露光光として用いてもよい。この場合には、第1多層膜ミラー及び第2多層膜ミラーの反射面上に形成される多層膜の種類及び膜数は、露光光の波長及び露光光が反射光学系を構成する第1多層膜ミラー及び第2多層膜ミラーに入射する角度に基づいて最適な反射率を有するものに決定される。   In the projection exposure apparatus according to the above-described embodiment, EUV light having a wavelength of 13.5 nm is used as exposure light. However, EUV light having a wavelength of 1 nm to 100 nm may be used as exposure light. In this case, the type and the number of the multilayer films formed on the reflection surfaces of the first multilayer mirror and the second multilayer mirror are the same as the first multilayer in which the wavelength of the exposure light and the exposure light constitute the reflection optical system. Based on the angle of incidence on the film mirror and the second multilayer mirror, it is determined to have an optimum reflectance.

また、上述の実施の形態においては、第1多層膜ミラーと第2多層膜ミラーとに入射するEUV光の入射角度は同一であるが、第1多層膜ミラーに入射する入射角度と第2多層膜ミラーに入射する入射角度が異なるようにしてもよい。また、第1多層膜ミラーと第2多層膜ミラーの多層膜の構成も同一であるが、第1多層膜ミラーの多層膜の構成と第2多層膜ミラーの多層膜の構成が異なるようにしてもよい。   In the above-described embodiment, the incident angles of the EUV light incident on the first multilayer mirror and the second multilayer mirror are the same, but the incident angle incident on the first multilayer mirror and the second multilayer mirror are the same. The incident angle incident on the film mirror may be different. The first multilayer mirror and the second multilayer mirror have the same multilayer configuration, but the first multilayer mirror and the second multilayer mirror are configured differently. Also good.

また、上述の実施の形態にかかる投影露光装置においては、光源とコレクタミラーとの間の光路中に反射光学系を備えているが、照明光学装置内の他の光路中に反射光学系を備えるようにしてもよい。また、照明光学装置を構成するコレクタミラー、反射型フライアイ光学系、コンデンサミラー等の機能と、EUV光を所定の角度に折り曲げる反射光学系の機能とを併せ持つ反射部材を備えるようにしてもよい。更に、照明光学系ではなく、投影光学系等他の光学系に上述の反射光学系を用いることもできる。   In the projection exposure apparatus according to the above-described embodiment, the reflection optical system is provided in the optical path between the light source and the collector mirror, but the reflection optical system is provided in the other optical path in the illumination optical apparatus. You may do it. Further, a reflecting member having both functions of a collector mirror, a reflective fly's eye optical system, a condenser mirror and the like constituting the illumination optical device and a function of a reflecting optical system that bends EUV light at a predetermined angle may be provided. . Furthermore, the above-described reflection optical system can be used in another optical system such as a projection optical system instead of the illumination optical system.

また、上述の実施の形態においては、ステップアンドスキャン方式の露光装置を例に挙げて説明しているが、ステップアンドリピート方式の露光装置にもこの発明を適用することができる。また、上述の説明では、無偏光の光を用いて説明したが、無偏光以外のEUV光を用いることもできる。   In the above-described embodiment, the step-and-scan type exposure apparatus has been described as an example. However, the present invention can also be applied to a step-and-repeat type exposure apparatus. In the above description, non-polarized light is used. However, EUV light other than non-polarized light can be used.

第1の実施の形態にかかる投影露光装置の概略構成を示す図である。It is a figure which shows schematic structure of the projection exposure apparatus concerning 1st Embodiment. 第1の実施の形態にかかる反射光学系の構成を示す図である。It is a figure which shows the structure of the reflective optical system concerning 1st Embodiment. 反射光学系への入射光と出射光とのなす角度と、その際のS偏光の偏光度を示すグラフである。It is a graph which shows the angle which the incident light and reflected light to a reflective optical system make, and the polarization degree of S polarization at that time. 反射光学系への入射光と出射光とのなす角度と、その際の極短紫外光の反射率を示すグラフである。It is a graph which shows the angle | corner which the incident light and output light to a reflective optical system make, and the reflectance of the ultrashort ultraviolet light in that case. 第2の実施の形態にかかる反射光学系の構成を示す図である。It is a figure which shows the structure of the reflective optical system concerning 2nd Embodiment. 第2の実施の形態にかかる反射光学系の構成を示す図である。It is a figure which shows the structure of the reflective optical system concerning 2nd Embodiment. 第2の実施の形態にかかる反射光学系の構成を示す図である。It is a figure which shows the structure of the reflective optical system concerning 2nd Embodiment.

符号の説明Explanation of symbols

2…光源、4,6…反射光学系、10…コレクタミラー、12,14…反射型フライアイ光学系、16…開口絞り、18,20…コンデンサミラー、M…反射型マスク、PL…反射型投影光学系、W…ウエハ。   DESCRIPTION OF SYMBOLS 2 ... Light source 4,6 ... Reflection optical system, 10 ... Collector mirror, 12, 14 ... Reflection type fly eye optical system, 16 ... Aperture stop, 18, 20 ... Condenser mirror, M ... Reflection type mask, PL ... Reflection type Projection optical system, W ... wafer.

Claims (5)

極短紫外光の進行方向を所定の角度に折り曲げる反射光学系において、
前記極短紫外光を所定の角度で入射させる第1の多層膜ミラーと、
前記第1の多層膜ミラーにより反射された前記極短紫外光を所定の角度で入射させる第2の多層膜ミラーとを備え、
前記第1の多層膜ミラーに入射する前記極短紫外光の進行方向と、前記第2の多層膜ミラーにより反射された前記極短紫外光の進行方向とのなす角度θは、
70°< θ <110°
であることを特徴とする反射光学系。
In the reflection optical system that bends the traveling direction of the ultra-short ultraviolet light to a predetermined angle
A first multilayer mirror that makes the ultrashort ultraviolet light incident at a predetermined angle;
A second multilayer mirror that makes the ultra-short ultraviolet light reflected by the first multilayer mirror incident at a predetermined angle;
An angle θ formed between the traveling direction of the ultrashort ultraviolet light incident on the first multilayer mirror and the traveling direction of the ultrashort ultraviolet light reflected by the second multilayer mirror is:
70 ° <θ <110 °
Reflective optical system characterized by being.
前記第1の多層膜ミラーに入射する前記極短紫外光の進行方向と、前記第2の多層膜ミラーにより反射された前記極短紫外光の進行方向とのなす角度θは、
77°< θ < 97°
であることを特徴とする請求項1記載の反射光学系。
An angle θ formed between the traveling direction of the ultrashort ultraviolet light incident on the first multilayer mirror and the traveling direction of the ultrashort ultraviolet light reflected by the second multilayer mirror is:
77 ° <θ <97 °
The reflective optical system according to claim 1, wherein:
前記第1の多層膜ミラーに入射する前記極短紫外光と、前記第2の多層膜ミラーにより反射された前記極短紫外光とは略平行に位置する異なる平面内に存在することを特徴とする請求項1または請求項2記載の反射光学系。   The ultra-short ultraviolet light incident on the first multilayer mirror and the ultra-short ultraviolet light reflected by the second multilayer mirror are present in different planes positioned substantially parallel to each other. The reflective optical system according to claim 1 or 2. 光源から射出される極短紫外光により被照射面を照明する照明光学装置において、
請求項1乃至請求項3の何れか一項に記載の反射光学系を備えることを特徴とする照明光学装置。
In the illumination optical device that illuminates the irradiated surface with the ultrashort ultraviolet light emitted from the light source,
An illumination optical apparatus comprising the reflective optical system according to any one of claims 1 to 3.
光源から射出される極短紫外光により照明された所定のパターンを感光性基板上に露光する露光装置において、
請求項1乃至請求項3の何れか一項に記載の反射光学系を備えることを特徴とする露光装置。
In an exposure apparatus that exposes a predetermined pattern illuminated by ultrashort ultraviolet light emitted from a light source on a photosensitive substrate,
An exposure apparatus comprising the reflective optical system according to any one of claims 1 to 3.
JP2005203876A 2005-07-13 2005-07-13 Reflecting optical system, illumination optical device, and exposure apparatus Pending JP2007027226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005203876A JP2007027226A (en) 2005-07-13 2005-07-13 Reflecting optical system, illumination optical device, and exposure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005203876A JP2007027226A (en) 2005-07-13 2005-07-13 Reflecting optical system, illumination optical device, and exposure apparatus

Publications (2)

Publication Number Publication Date
JP2007027226A true JP2007027226A (en) 2007-02-01
JP2007027226A5 JP2007027226A5 (en) 2008-10-30

Family

ID=37787645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005203876A Pending JP2007027226A (en) 2005-07-13 2005-07-13 Reflecting optical system, illumination optical device, and exposure apparatus

Country Status (1)

Country Link
JP (1) JP2007027226A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010032753A1 (en) * 2008-09-18 2010-03-25 株式会社ニコン Aperture stop, optical system, exposure apparatus and electronic device manufacturing method
JP2013506979A (en) * 2009-09-30 2013-02-28 カール・ツァイス・エスエムティー・ゲーエムベーハー Illumination optics unit for microlithography
JP2014530509A (en) * 2011-10-11 2014-11-17 カール・ツァイス・エスエムティー・ゲーエムベーハー collector

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09330878A (en) * 1996-04-11 1997-12-22 Canon Inc X-ray reduction aligner and method for manufacturing device using the same
JP2002323599A (en) * 2001-04-27 2002-11-08 Nikon Corp Method of manufacturing multilayer film reflecting mirror and exposure device
JP2004510344A (en) * 2000-09-29 2004-04-02 カール ツァイス シュティフトゥング トレイディング アズ カール ツァイス Illumination optics especially for microlithography
WO2004100236A1 (en) * 2003-05-09 2004-11-18 Nikon Corporation Illumination optical system, projection/exposure device, micro device manufacturing method, illumination device manufacturing method, projection/exposure device adjustment method, and projection/exposure device manufacturing method
JP2005086031A (en) * 2003-09-09 2005-03-31 Canon Inc Aligner
JP2005519459A (en) * 2002-03-01 2005-06-30 カール・ツァイス・エスエムティー・アーゲー Illumination optical system with nested concentrator for annular illumination of exit pupil

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09330878A (en) * 1996-04-11 1997-12-22 Canon Inc X-ray reduction aligner and method for manufacturing device using the same
JP2004510344A (en) * 2000-09-29 2004-04-02 カール ツァイス シュティフトゥング トレイディング アズ カール ツァイス Illumination optics especially for microlithography
JP2002323599A (en) * 2001-04-27 2002-11-08 Nikon Corp Method of manufacturing multilayer film reflecting mirror and exposure device
JP2005519459A (en) * 2002-03-01 2005-06-30 カール・ツァイス・エスエムティー・アーゲー Illumination optical system with nested concentrator for annular illumination of exit pupil
WO2004100236A1 (en) * 2003-05-09 2004-11-18 Nikon Corporation Illumination optical system, projection/exposure device, micro device manufacturing method, illumination device manufacturing method, projection/exposure device adjustment method, and projection/exposure device manufacturing method
JP2005086031A (en) * 2003-09-09 2005-03-31 Canon Inc Aligner

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010032753A1 (en) * 2008-09-18 2010-03-25 株式会社ニコン Aperture stop, optical system, exposure apparatus and electronic device manufacturing method
JP5533656B2 (en) * 2008-09-18 2014-06-25 株式会社ニコン Imaging optical system, exposure apparatus, and electronic device manufacturing method
TWI486716B (en) * 2008-09-18 2015-06-01 尼康股份有限公司 A aperture shutter, an optical system, an exposure apparatus, and an electronic device
JP2013506979A (en) * 2009-09-30 2013-02-28 カール・ツァイス・エスエムティー・ゲーエムベーハー Illumination optics unit for microlithography
US9235137B2 (en) 2009-09-30 2016-01-12 Carl Zeiss Smt Gmbh Illumination optical unit for microlithography
JP2014530509A (en) * 2011-10-11 2014-11-17 カール・ツァイス・エスエムティー・ゲーエムベーハー collector
US9645503B2 (en) 2011-10-11 2017-05-09 Carl Zeiss Smt Gmbh Collector

Similar Documents

Publication Publication Date Title
JP6420864B2 (en) Spectral purity filters, radiation systems, and collectors
JP5475756B2 (en) Method for forming a spectral purity filter
JP5311757B2 (en) Reflective optical element, exposure apparatus, and device manufacturing method
US7511888B2 (en) Projection optical system, exposure apparatus, device manufacturing method, and device manufactured by using the same
JP4134544B2 (en) Imaging optical system and exposure apparatus
JPH05281469A (en) Broadband optical reduction system using adapted elements formed of material with different refractive index
JP2008288299A (en) Multilayer-film reflecting mirror, illuminator, exposure apparatus, and manufacturing method for device
JP2004258670A (en) Fixation of high numerical aperture and dynamic radial transverse electric polarizer
JP5913471B2 (en) Catadioptric projection objective having an inclined deflection mirror, projection exposure apparatus, projection exposure method, and mirror
KR20190051041A (en) Projection exposure method and projection exposure apparatus for microlithography
JP4776891B2 (en) Illumination optical system, exposure apparatus, and device manufacturing method
JP2001264696A (en) Illumination optical system and exposure device provided with the same
TW200908083A (en) Exposure apparatus and semiconductor device fabrication method
JP4431497B2 (en) Optical imaging system, especially catadioptric reduction objective lens
JP6588436B2 (en) Polarization system
JP6510979B2 (en) Optical system of microlithography projection exposure apparatus
JP2007027226A (en) Reflecting optical system, illumination optical device, and exposure apparatus
US20090135510A1 (en) Reflective projection optical system, exposure apparatus, device manufacturing method, projection method, and exposure method
JP2006194764A (en) Multilayer reflection mirror and exposure system
US8031404B2 (en) Fly&#39;s eye integrator, illuminator, lithographic apparatus and method
TWI236542B (en) Projection optical system
JP2007088237A (en) Multilayer reflector and euv exposure apparatus
JP2007189079A (en) Illuminating optical system, exposure device having it, and manufacturing method of device
JP6053737B2 (en) Illumination optical apparatus, exposure apparatus, and article manufacturing method
JP2008304711A (en) Projection optical system, exposure device, and device manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110315