JP2007025714A - Optical transmission system using raman amplification - Google Patents

Optical transmission system using raman amplification Download PDF

Info

Publication number
JP2007025714A
JP2007025714A JP2006245499A JP2006245499A JP2007025714A JP 2007025714 A JP2007025714 A JP 2007025714A JP 2006245499 A JP2006245499 A JP 2006245499A JP 2006245499 A JP2006245499 A JP 2006245499A JP 2007025714 A JP2007025714 A JP 2007025714A
Authority
JP
Japan
Prior art keywords
optical
line
transmission
fiber
transmission system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006245499A
Other languages
Japanese (ja)
Other versions
JP4882615B2 (en
Inventor
Toshiki Tanaka
俊毅 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2006245499A priority Critical patent/JP4882615B2/en
Publication of JP2007025714A publication Critical patent/JP2007025714A/en
Application granted granted Critical
Publication of JP4882615B2 publication Critical patent/JP4882615B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical transmission system reducing differences in Raman gain on an up line and a down line through easy control even in case of trouble occurrence in system constitution performing Raman amplification with exciting light supplied from an optical repeater station common to the up line and down line. <P>SOLUTION: In the optical transmission system of the present invention, the up line and down line comprise a plurality of transmission sections, and signal light is Raman-amplified and transmitted by supplying the exciting light generated by the optical repeater station 30 common to the lines to the respective transmission sections. In the optical repeater station 30, exciting light power supplied to the transmission sections of the up line, and exciting light power supplied to the transmission sections of the down line are individually settable. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、信号光をラマン増幅して伝送する光伝送システムに関し、特に、上り回線および下り回線について共通の光中継局で生成した励起光を供給して信号光のラマン増幅を行う光伝送システムに関する。   The present invention relates to an optical transmission system for transmitting signal light by Raman amplification, and in particular, an optical transmission system for supplying pump light generated by a common optical repeater station for uplink and downlink to perform Raman amplification of signal light. About.

従来、長距離の光伝送システムでは光信号を電気信号に変換し、タイミング再生(retiming)、波形等化(reshaping)および識別再生(regenerating)を行う光再生中継器を用いて伝送を行っていた。しかし、現在では光増幅器の実用化が進み、光増幅器を線形中継器として用いる光増幅中継伝送方式が検討されている。光再生中継器を光増幅中継器に置き換えることにより、中継器内の部品点数を大幅に削減し、信頼性を確保するとともに大幅なコストダウンが見込まれる。また、光伝送システムの大容量化を実現する方法のひとつとして、1本の伝送路に2つ以上の異なる波長を持つ光信号を多重して伝送する波長多重(WDM)光伝送方式が注目されている。   Conventionally, in a long-distance optical transmission system, an optical signal is converted into an electrical signal, and transmission is performed using an optical regenerative repeater that performs timing regeneration (retiming), waveform equalization (reshaping), and identification regeneration (regenerating). . At present, however, optical amplifiers have been put into practical use, and optical amplification repeater transmission systems using optical amplifiers as linear repeaters are being studied. By replacing the optical regenerative repeater with an optical amplifying repeater, the number of parts in the repeater can be greatly reduced, ensuring reliability and a significant cost reduction. Also, as one of the methods for realizing an increase in capacity of an optical transmission system, a wavelength division multiplexing (WDM) optical transmission system that multiplexes and transmits optical signals having two or more different wavelengths on one transmission line has attracted attention. ing.

WDM光伝送方式と光増幅中継伝送方式を組み合わせたWDM光増幅中継伝送方式においては、光増幅器を用いて2つ以上の異なる波長を持つ光信号を一括して増幅することが可能であり、簡素な構成(経済的)で、大容量かつ長距離伝送が実現可能である。   In the WDM optical amplifying and repeating transmission system that combines the WDM optical transmission system and the optical amplifying and repeating transmission system, it is possible to amplify optical signals having two or more different wavelengths by using an optical amplifier. With a simple configuration (economical), large capacity and long distance transmission can be realized.

図2は、一般的なWDM光増幅中継伝送システムの構成例を示す図である。
図2のシステムは、例えば、光送信局101と、光受信局102と、それら送受信局間を接続する光伝送路103と、この光伝送路103の途中に所要の間隔で配置される複数の光中継局104とから構成される。光送信局101は、波長の異なる複数の光信号をそれぞれ出力する複数の光送信器(E/O)101Aと、複数の光信号を波長多重する合波器101Bと、合波器101BからのWDM信号光を所要のレベルに増幅して光伝送路103に出力するポストアンプ101Cとを有する。光受信局102は、光伝送路103を介して伝送された各波長帯のWDM信号光を所要のレベルに増幅するプリアンプ102Cと、プリアンプ102Cからの出力光を波長に応じて複数の光信号に分ける分波器102Bと、複数の光信号をそれぞれ受信処理する複数の光受信器(O/E)102Aとを有する。光伝送路103は、光送信局101および光受信局102の間をそれぞれ接続する複数の伝送区間を有する。光送信局101から送信されたWDM信号光は、光伝送路103を伝搬し、伝送区間ごとに配置される光中継局104にて光増幅され、再び光伝送路103を伝搬し、それを繰り返して光受信局102まで伝送される。
FIG. 2 is a diagram illustrating a configuration example of a general WDM optical amplification repeater transmission system.
The system in FIG. 2 includes, for example, an optical transmission station 101, an optical reception station 102, an optical transmission path 103 that connects these transmission / reception stations, and a plurality of optical transmission paths 103 that are arranged at required intervals along the optical transmission path 103. And an optical repeater station 104. The optical transmission station 101 includes a plurality of optical transmitters (E / O) 101A that output a plurality of optical signals having different wavelengths, a multiplexer 101B that wavelength-multiplexes the plurality of optical signals, and a multiplexer 101B. A post-amplifier 101C that amplifies the WDM signal light to a required level and outputs it to the optical transmission line 103; The optical receiving station 102 amplifies the WDM signal light of each wavelength band transmitted via the optical transmission path 103 to a required level, and outputs light from the preamplifier 102C into a plurality of optical signals according to the wavelength. It has a branching filter 102B for dividing and a plurality of optical receivers (O / E) 102A for receiving and processing a plurality of optical signals. The optical transmission path 103 has a plurality of transmission sections that connect the optical transmitting station 101 and the optical receiving station 102 respectively. The WDM signal light transmitted from the optical transmission station 101 propagates through the optical transmission path 103, is optically amplified by the optical relay station 104 arranged for each transmission section, propagates again through the optical transmission path 103, and repeats this. To the optical receiving station 102.

上記のようなWDM光増幅中継伝送システムの光中継局104には、例えば、エルビウムドープ光ファイバ増幅器(EDFA)が一般に用いられる。また最近では、EDFAにラマン増幅を併用することが盛んに検討されている。さらに、光中継局を用いない無中継光伝送システムも提案されていて、この無中継光伝送システムでは、遠隔増幅法(remote-pumping)による分布型ラマン増幅等の制御が検討されている。   For example, an erbium-doped optical fiber amplifier (EDFA) is generally used for the optical repeater station 104 of the WDM optical amplification repeater transmission system as described above. Recently, it has been actively studied to use Raman amplification in combination with EDFA. Furthermore, a repeaterless optical transmission system that does not use an optical repeater has been proposed. In this repeaterless optical transmission system, control of distributed Raman amplification by remote-pumping has been studied.

光ファイバを増幅媒体として用いたラマン増幅においては、その利得が使用する光ファイバのモードフィールド径に反比例して得られる。したがって、モードフィールド径が小さい光ファイバはラマン増幅に適している。例えば、1.3μm零分散ファイバの波長分散および分散スロープ(波長分散の波長に対する1次微分)に対して逆符号の波長分散および分散スロープを有する負分散ファイバは、モードフィールド径が約5μmであって、光伝送路として一般に用いられる1.3μm零分散ファイバや分散シフトファイバ(DSF,NZ−DSF)のモードフィールド径よりも小さいため、より大きなラマン利得が得られる。   In Raman amplification using an optical fiber as an amplification medium, the gain is obtained in inverse proportion to the mode field diameter of the optical fiber used. Therefore, an optical fiber having a small mode field diameter is suitable for Raman amplification. For example, a negative dispersion fiber having a chromatic dispersion and a dispersion slope of opposite signs to the chromatic dispersion and dispersion slope (first derivative with respect to the wavelength of chromatic dispersion) of a 1.3 μm zero dispersion fiber has a mode field diameter of about 5 μm. Thus, a larger Raman gain can be obtained because it is smaller than the mode field diameter of a 1.3 μm zero dispersion fiber or dispersion shifted fiber (DSF, NZ-DSF) generally used as an optical transmission line.

なお、以下の説明においては、1.3μm零分散ファイバや分散シフトファイバなどの正分散ファイバ(positive dispersion fiber)を+Dファイバと略し、上記のような負分散ファイバ(negative dispersion fiber)を−Dファイバと略すことにする。
また、従来のWDM光中継伝送システムでは、光伝送路の非線形効果による伝送特性の劣化が低減されるように、光伝送路の波長分散を管理する方法が用いられている。例えば、下記の非特許文献1では、+Dファイバと−Dファイバを組み合わせた混合伝送路を用いた複数の伝送区間で生じる累積分散を、+Dファイバを用いた1つの伝送区間(補償区間)において分散補償する技術が提案されている。具体的に、この文献1に示された光伝送路の平均零分散波長は約1551nmであり、信号光波長は1544.5nm〜1556.5nmである。また、混合伝送路を用いた各伝送区間および+Dファイバを用いた補償区間の各々の波長分散は、約−2ps/nm/kmおよび約+20ps/nm/kmである。このような構成によれば、信号光と自然放出光の群速度および信号光同士の群速度が異なるようになるので、非線形効果の相互作用時間を短くすることができ、4光波混合(Four wave mixing;FWM)および相互位相変調(Cross phase modulation;XPM)などによる伝送特性の劣化を低減することが可能になる。また、平均の零分散波長を信号光波長内としているので、自己位相変調(Self phase modulation;SPM)と波長分散による伝送特性の劣化も低減可能である。
In the following description, positive dispersion fibers such as 1.3 μm zero dispersion fiber and dispersion shifted fiber are abbreviated as + D fibers, and negative dispersion fibers as described above are −D fibers. I will abbreviate.
In the conventional WDM optical repeater transmission system, a method of managing the chromatic dispersion of the optical transmission line is used so that the deterioration of the transmission characteristics due to the nonlinear effect of the optical transmission line is reduced. For example, in Non-Patent Document 1 below, cumulative dispersion generated in a plurality of transmission sections using a mixed transmission path in which + D fibers and −D fibers are combined is dispersed in one transmission section (compensation section) using + D fibers. Compensation techniques have been proposed. Specifically, the average zero dispersion wavelength of the optical transmission line shown in this document 1 is about 1551 nm, and the signal light wavelength is 1544.5 nm to 1556.5 nm. The chromatic dispersion of each transmission section using the mixed transmission path and the compensation section using the + D fiber is about −2 ps / nm / km and about +20 ps / nm / km. According to such a configuration, the group speed of the signal light and the spontaneous emission light and the group speed of the signal lights become different, so that the interaction time of the nonlinear effect can be shortened, and four-wave mixing (Four wave) It is possible to reduce deterioration of transmission characteristics due to mixing (FWM) and cross phase modulation (XPM). In addition, since the average zero dispersion wavelength is within the signal light wavelength, it is possible to reduce deterioration of transmission characteristics due to self phase modulation (SPM) and wavelength dispersion.

上記のような従来のWDM光中継伝送システムについて、分布型ラマン増幅器を適用する場合、+Dファイバは−Dファイバに比べてモードフィールド径が大きいのでラマン利得を効率的に得ることが困難である。このため、+Dファイバを用いた区間における損失を補うだけの所要のラマン利得を得るには、非常に大きな励起光パワーが必要となり、励起光源の信頼性などの面で不利になってしまうという問題がある。上記のような問題を克服するためには、例えば、−Dファイバよりもモードフィールド径が小さく長さの短いラマン増幅用ファイバを適用し、ラマン利得がより効率的に得られるようにして、+Dファイバの区間における損失を補うようにすることが考えられる。   When the distributed Raman amplifier is applied to the conventional WDM optical repeater transmission system as described above, the + D fiber has a larger mode field diameter than the -D fiber, so that it is difficult to efficiently obtain the Raman gain. For this reason, in order to obtain the required Raman gain sufficient to compensate for the loss in the section using the + D fiber, a very large pump light power is required, which is disadvantageous in terms of the reliability of the pump light source. There is. In order to overcome the above-described problems, for example, a Raman amplification fiber having a smaller mode field diameter and a shorter length than that of the −D fiber is applied so that the Raman gain can be obtained more efficiently. It is conceivable to make up for losses in the fiber section.

しかしながら、上記のようなモードフィールド径の小さなラマン増幅用ファイバを用いた場合には、そのラマン増幅用ファイバ中で生じる信号光における非線形効果が大きくなってしまうという問題が生じる。また、−Dファイバにおける分布型ラマン増幅を実現するための構成、およびラマン増幅用ファイバにおける集中型ラマン増幅を実現するための構成がそれぞれ必要になるため、光増幅器の種類が増加してしまうという欠点もある。さらに、光伝送システム全体における非線形効果による伝送波形歪みが増加してしまうという問題点も考えられる。   However, when the Raman amplification fiber having a small mode field diameter as described above is used, there arises a problem that the nonlinear effect in the signal light generated in the Raman amplification fiber is increased. In addition, since a configuration for realizing distributed Raman amplification in -D fiber and a configuration for realizing concentrated Raman amplification in Raman amplification fiber are required, the types of optical amplifiers increase. There are also drawbacks. Furthermore, there is a problem that transmission waveform distortion due to nonlinear effects in the entire optical transmission system increases.

+Dファイバと−Dファイバを組み合わせた混合伝送路を用いて波長分散を管理する他の方法としては、例えば、下記の非特許文献2等にあるように、1伝送区間あたりの混合伝送路の累積波長分散をほぼ零とし、伝送中に生じる累積分散を端局において補償する方法も提案されている。   As another method for managing chromatic dispersion using a mixed transmission line that combines a + D fiber and a -D fiber, for example, as described in Non-Patent Document 2 below, for example, the accumulation of mixed transmission lines per transmission section A method has also been proposed in which the chromatic dispersion is made substantially zero and the accumulated dispersion generated during transmission is compensated at the terminal station.

しかしながら、1伝送区間あたりの混合伝送路の累積波長分散をほぼ零にした場合、SPMによる波形劣化は軽減されるが、同じ量の非線形効果を受ける領域において波長間のビット配置が同じになる状態が各々の伝送区間ごとに生じるため、XPMによる波形劣化が問題となる。
そこで、本願の発明者らは、光伝送システムにおいて、正の累積波長分散が生じる混合伝送路と負の累積波長分散が生じる混合伝送路とを併用して光伝送路を構成することにより波長分散の補償を行うようにする技術を提案している(例えば特願2001−075721号)。
However, when the cumulative chromatic dispersion of the mixed transmission line per transmission section is almost zero, the waveform deterioration due to SPM is reduced, but the bit arrangement between wavelengths is the same in a region that receives the same amount of nonlinear effect. Occurs in each transmission section, and waveform degradation due to XPM becomes a problem.
Therefore, the inventors of the present application, in an optical transmission system, constitutes an optical transmission line by using a mixed transmission line in which positive cumulative chromatic dispersion is generated and a mixed transmission line in which negative cumulative chromatic dispersion is generated. Has been proposed (for example, Japanese Patent Application No. 2001-077571).

図3は、上記の先願発明にかかる光伝送システムの構成例を示す図である。このシステム構成では、各光中継局において、上り回線および下り回線に対して同じ励起光源が用いられ、上下回線をセットにした単位システムが1つのラマン増幅器(ラマン増幅器)により励起されてラマン増幅が行われる。このような構成によれば、すべての伝送区間において−Dファイバに励起光が入射されるため、効率よくラマン利得を得ることができると同時に、光増幅器の種類を1つにすることができる。
M. Murakami et al., ”Long-haul 16x10 WDM transmission experiment using higher order fiber dispersion management technique”, pp.313-314, ECOC’98, 1998. C.R.Davidson et al., ”1800 Gb/s transmission of one hundred and eighty 10 Gb/s WDMchannels over 7、000 km using the full EDFA C-band”, PD25, OFC2000, 2000.
FIG. 3 is a diagram illustrating a configuration example of the optical transmission system according to the above-described prior invention. In this system configuration, in each optical repeater station, the same pumping light source is used for the uplink and the downlink, and a unit system in which the upper and lower lines are set is excited by one Raman amplifier (Raman amplifier) to perform Raman amplification. Done. According to such a configuration, pump light is incident on the -D fiber in all transmission sections, so that a Raman gain can be obtained efficiently and at the same time, one type of optical amplifier can be provided.
M. Murakami et al., “Long-haul 16x10 WDM transmission experiment using higher order fiber dispersion management technique”, pp.313-314, ECOC'98, 1998. CRDavidson et al., “1800 Gb / s transmission of one hundred and eighty 10 Gb / s WDMchannels over 7, 000 km using the full EDFA C-band”, PD25, OFC2000, 2000.

しかしながら、上記の図3に示したような光伝送システムについて、各伝送区間で信号光の分布型ラマン増幅を行うようにした場合、例えば図4に示すように、上り回線および下り回線について、区間平均の波長分散が正負で異なる2種類の伝送区間を共通のラマン増幅器を用いて励起する箇所が生じるため、各々の回線におけるラマン利得の制御が難しくなってしまうという欠点がある。   However, in the optical transmission system as shown in FIG. 3, when distributed Raman amplification of signal light is performed in each transmission section, for example, as shown in FIG. Since there are places where two common transmission sections with positive and negative average chromatic dispersion are excited using a common Raman amplifier, it is difficult to control the Raman gain in each line.

すなわち、図4で「+」と略記した区間平均の波長分散が正になる伝送区間と、「−」と略記した区間平均の波長分散が負になる伝送区間とでは、波長分散を調整するために−Dファイバの長さが異なるように設定される。このため、前述の図3に示したように上り回線および下り回線に対するラマン増幅器を各中継器で共通化した場合には、図4の点線で囲んだ部分に示すように、区間平均の波長分散が正負で異なる2種類の伝送区間を1つのラマン増幅器を用いて励起する箇所が生じることになる。   That is, in order to adjust the chromatic dispersion, a transmission section in which the average chromatic dispersion of the section abbreviated as “+” in FIG. 4 is positive and a transmission section in which the chromatic dispersion of the section average abbreviated as “−” is negative. -D fibers are set to have different lengths. Therefore, when the Raman amplifiers for the uplink and downlink are shared by each repeater as shown in FIG. 3, the average wavelength dispersion of the section is shown as shown by the dotted line in FIG. There are places where two types of transmission sections having different positive and negative are excited using one Raman amplifier.

図5は、図4の点線部分を拡大して示した例示図である。ここでは、励起光源200から出力される励起光が光カプラ201で2分岐され、一方の分岐光は、合波器202Aを介して、区間平均の波長分散が負になるように+Dファイバ203Aおよび−Dファイバ203Bの長さが調整された上り回線の伝送区間に対して−Dファイバ203B側から与えられる。他方の分岐光は、合波器202Bを介して、区間平均の波長分散が正になるように+Dファイバ203Aおよび−Dファイバ203Bの長さが調整された下り回線の伝送区間に対して−Dファイバ203B側から与えられる。このとき、上り回線および下り回線の各伝送区間で生じるラマン利得は、その絶対量が−Dファイバ203Bの長さに応じて変化するため、上り回線側と下り回線側で大きく異なるようになってしまう。   FIG. 5 is an exemplary diagram showing the dotted line portion of FIG. 4 in an enlarged manner. Here, the excitation light output from the excitation light source 200 is bifurcated by the optical coupler 201, and one of the branched lights passes through the multiplexer 202A and the + D fiber 203A and the + D fiber 203A and the average wavelength dispersion becomes negative. -It is given from the -D fiber 203B side to the uplink transmission section in which the length of the D fiber 203B is adjusted. The other split light is -D with respect to the downlink transmission section in which the lengths of the + D fiber 203A and the -D fiber 203B are adjusted so that the chromatic dispersion of the section average becomes positive through the multiplexer 202B. It is given from the fiber 203B side. At this time, the Raman gain generated in each transmission section of the uplink and the downlink varies greatly depending on the length of the -D fiber 203B, and thus greatly differs between the uplink side and the downlink side. End up.

具体的な一例を挙げると、50kmの伝送区間について平均の波長分散を−2.7ps/nm/kmにするには、+Dファイバ203Aおよび−Dファイバ203Bの長さをそれぞれ32.5kmおよび17.5kmに設定することが可能である。一方、50kmの伝送区間について平均の波長分散を+2.7ps/nm/kmにするためには、+Dファイバ203Aおよび−Dファイバ203Bの長さをそれぞれ36.7kmおよび13.3kmに設定することが可能である。ここで、区間平均の波長分散が−2.7ps/nm/kmに設定された上り回線の伝送区間と、区間平均の波長分散が+2.7ps/nm/kmに設定された下り回線の伝送区間とを共通のラマン増幅器で励起した場合を考えると、上り回線および下り回線におけるラマン利得の差は、次の表1のパラメータを用いて計算すると、約0.5dBになる。   As a specific example, in order to obtain an average chromatic dispersion of −2.7 ps / nm / km for a transmission section of 50 km, the lengths of the + D fiber 203A and the −D fiber 203B are 32.5 km and 17. It can be set to 5 km. On the other hand, in order to set the average chromatic dispersion to +2.7 ps / nm / km for the transmission section of 50 km, the lengths of the + D fiber 203A and the -D fiber 203B may be set to 36.7 km and 13.3 km, respectively. Is possible. Here, an uplink transmission section in which the section average chromatic dispersion is set to -2.7 ps / nm / km, and a downlink transmission section in which the section average chromatic dispersion is set to +2.7 ps / nm / km. And a common Raman amplifier are used, the difference between the Raman gains in the uplink and the downlink is approximately 0.5 dB when calculated using the parameters in Table 1 below.

Figure 2007025714
また、上り回線および下り回線の各伝送区間を共通のラマン増幅器により励起して分布型ラマン増幅を行う光伝送システムについては、混合伝送路を適用するか否かに拘わらず、障害等の発生時におけるラマン利得の制御が難しくなってしまうという欠点がある。
Figure 2007025714
For optical transmission systems that perform distributed Raman amplification by exciting each transmission section of the uplink and downlink with a common Raman amplifier, regardless of whether a mixed transmission path is applied or not There is a drawback that it becomes difficult to control the Raman gain.

すなわち、例えば図6に示すように、光中継局近傍の光伝送路において障害が生じた場合を想定すると、その障害点には修理等のために所要の光ファイバ(図の破線)が挿入されることがある。このとき、上り回線および下り回線の各伝送区間を共通のラマン増幅器で励起していると、光ファイバが挿入された伝送区間(図6では上り回線側)のラマン利得と、光ファイバが挿入されなかった伝送区間(図6では下り回線側)のラマン利得とが異なるようになり、光伝送システム全体でのラマン利得の制御が難しくなる。また、上記のような障害等の発生時におけるシステム全体への影響を低減するために、例えば、光ファイバの挿入等が行われた伝送区間に対応するラマン増幅器の供給パワーを下げるなどの措置を施したとすれば、伝送光の光SNRが劣化してしまうという問題が生じる。   That is, for example, as shown in FIG. 6, assuming that a failure occurs in the optical transmission line near the optical repeater station, a required optical fiber (broken line in the figure) is inserted at the failure point for repair or the like. Sometimes. At this time, if each transmission section of the uplink and the downlink is excited by a common Raman amplifier, the Raman gain of the transmission section in which the optical fiber is inserted (uplink side in FIG. 6) and the optical fiber are inserted. The Raman gain in the transmission section (the downlink side in FIG. 6) that did not exist becomes different, and it becomes difficult to control the Raman gain in the entire optical transmission system. In addition, in order to reduce the influence on the entire system at the time of occurrence of the above-mentioned failure, for example, measures such as lowering the supply power of the Raman amplifier corresponding to the transmission section in which the optical fiber is inserted or the like are taken. If applied, there arises a problem that the optical SNR of the transmitted light deteriorates.

本発明は上記の点に着目してなされたもので、上り回線および下り回線に対して共通の光中継局から供給される励起光によりラマン増幅を行うシステム構成について、障害等の発生時においても容易な制御によって各回線でのラマン利得の差を低減することのできる光伝送システムを提供することを目的とする。   The present invention has been made paying attention to the above points, and in a system configuration that performs Raman amplification with pumping light supplied from a common optical repeater station for uplink and downlink, even when a failure or the like occurs. An object of the present invention is to provide an optical transmission system capable of reducing a difference in Raman gain in each line by easy control.

上記の目的を達成するため、本発明にかかるラマン増幅を用いた光伝送システムは、信号光が互いに反対方向に伝搬する上り回線および下り回線を有し、該各回線が複数の伝送区間から構成されており、各々の伝送区間に対して各回線に共通の光中継局で生成した励起光をそれぞれ供給することにより信号光をラマン増幅して伝送する光伝送システムであって、前記各回線に共通の光中継局は、上り回線の伝送区間に供給する励起光パワーと、下り回線の伝送区間に供給する励起光パワーとを個別に設定可能にしたものである。   In order to achieve the above object, an optical transmission system using Raman amplification according to the present invention has an uplink and a downlink in which signal light propagates in opposite directions, and each line is composed of a plurality of transmission sections. An optical transmission system for transmitting signal light by Raman amplification by supplying pumping light generated by a common optical repeater station to each transmission line for each transmission section. The common optical repeater station can individually set the pumping light power supplied to the uplink transmission section and the pumping light power supplied to the downlink transmission section.

かかる構成では、各回線に共通の光中継局から上り回線の伝送区間および下り回線の伝送区間のそれぞれに対して、パワー設定の異なる励起光を供給することが可能になるため、各回線の区間平均の波長分散が正負で異なる場合や、障害発生時における光ファイバの挿入などが生じた場合であっても、各回線でのラマン利得の差を低減させることができる。   In such a configuration, it becomes possible to supply pumping light having different power settings from the optical repeater station common to each line to each of the uplink transmission section and the downlink transmission section. Even when the average chromatic dispersion is different between positive and negative, or when an optical fiber is inserted when a failure occurs, the difference in Raman gain in each line can be reduced.

上記のように本発明のラマン増幅を用いた光伝送システムによれば、障害等の発生時においてもラマン利得の制御を容易に行うことが可能である。   As described above, according to the optical transmission system using Raman amplification of the present invention, it is possible to easily control the Raman gain even when a failure or the like occurs.

以下、本発明を実施するための最良の形態を図面に基づいて説明する。
図1は、本発明の一実施形態による光伝送システムの要部構成を示す図である。
図1において、本光伝送システムは、図示を省略した光端局間に上り回線および下り回線が設けられ、各回線の分布型ラマン増幅を一括して行うラマン増幅器を備えた光中継局30が光伝送路上に一定の間隔で複数配置された基本構成を備える。なお、図1では、複数の光中継局30のうちの1台についての具体的なラマン増幅器の構成例が一点鎖線で囲んだ部分に表されていて、その他の各光中継局30については、上り回線および下り回線上に描かれている1組の三角印により表されている。
Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing a main configuration of an optical transmission system according to an embodiment of the present invention.
In FIG. 1, this optical transmission system includes an optical repeater station 30 provided with an uplink and a downlink between optical terminal stations (not shown) and having a Raman amplifier that collectively performs distributed Raman amplification of each line. A basic configuration is provided in which a plurality of light sources are arranged at regular intervals on the optical transmission line. In FIG. 1, a specific Raman amplifier configuration example for one of the plurality of optical repeaters 30 is shown in a portion surrounded by an alternate long and short dash line, and for the other optical repeaters 30, It is represented by a set of triangles drawn on the uplink and downlink.

隣り合う光中継局30の間は、光伝送路10により上り回線および下り回線にそれぞれ対応させて互いに接続されている。各伝送区間に用いられる光伝送路10は、+Dファイバおよび−Dファイバを組み合わせた混合伝送路とするのが好ましいが、一般的な光ファイバ伝送路とすることも可能である。
各光中継局30に設けられるラマン増幅器は、例えば、ラマン増幅のための励起光を生成する2台の励起光源31a,31bと、各励起光源31a,31bによって生成された励起光を上り回線および下り回線に分配するための合分波器32と、その合分波器32により分波された一方の励起光を上り回線に与える合波器33Aと、他方の励起光を下り回線に与える合波器33Bとを有する。
Adjacent optical repeaters 30 are connected to each other by the optical transmission line 10 so as to correspond to the uplink and the downlink, respectively. The optical transmission line 10 used in each transmission section is preferably a mixed transmission line in which a + D fiber and a -D fiber are combined, but may be a general optical fiber transmission line.
The Raman amplifier provided in each optical repeater station 30 includes, for example, two pumping light sources 31a and 31b that generate pumping light for Raman amplification, and pumping light generated by each pumping light source 31a and 31b as an uplink and A multiplexer / demultiplexer 32 for distributing to the downlink, a multiplexer 33A for supplying one excitation light demultiplexed by the multiplexer / demultiplexer 32 to the uplink, and a multiplexer for supplying the other excitation light to the downlink. And a waver 33B.

各励起光源31a,31bは、各回線を伝送される信号光の波長帯域に応じて波長の設定された励起光を生成する公知の光源である。各励起光源31a,31bで生成される各々の励起光のパワーは個別に設定することが可能であって、ここでは、励起光源31aで生成される励起光のパワーをPaとし、励起光源31bで生成される励起光のパワーをPbとする。   Each pumping light source 31a, 31b is a known light source that generates pumping light having a wavelength set according to the wavelength band of signal light transmitted through each line. The power of each pumping light generated by each pumping light source 31a, 31b can be set individually. Here, the power of the pumping light generated by the pumping light source 31a is Pa, and the pumping light source 31b The power of the generated excitation light is Pb.

合分波器32は、各励起光源31a,31bから出力される各々の励起光を合波した後に所定のパワー比率n:1(n≠1)で分岐して各合波器33A,33Bにそれぞれ出力する。
各合波器33A,33Bは、合分波器32から出力される励起光を、上流側に接続された光伝送路10に対して、信号光の伝搬方向とは逆方向に伝搬するように与えると共に、上流側の光伝送路10を伝搬した信号光を透過して下流側の光伝送路10に伝達する。
The multiplexer / demultiplexer 32 multiplexes the respective excitation lights output from the respective excitation light sources 31a and 31b, branches them at a predetermined power ratio n: 1 (n ≠ 1), and branches them to the respective multiplexers 33A and 33B. Output each.
Each of the multiplexers 33A and 33B propagates the excitation light output from the multiplexer / demultiplexer 32 in the direction opposite to the propagation direction of the signal light with respect to the optical transmission line 10 connected on the upstream side. The signal light propagated through the upstream optical transmission line 10 is transmitted and transmitted to the downstream optical transmission line 10.

上記のような構成を有する各光中継局30では、励起光源31aから出力されるパワーPaの励起光と、励起光源31bから出力されるパワーPbの励起光とが、合分波器32によって合波された後にn:1に分岐されて各合波器33A,33Bに送られる。このとき、合分波器32から上り回線側の合波器33Aに送られる励起光のパワーはPa×n+Pbとなり、合分波器32から下り回線側の合波器33Bに送られる励起光のパワーはPa+Pb×nとなる。したがって、各励起光源31a,31bから出力される各々の励起光のパワーPa,Pbを適宜に調整することによって、上り回線側の光伝送路10に供給される励起光のパワーと、上り回線側の光伝送路10に供給される励起光のパワーとを独立に設定することが可能となる。   In each optical repeater station 30 having the above-described configuration, the excitation light with the power Pa output from the excitation light source 31a and the excitation light with the power Pb output from the excitation light source 31b are combined by the multiplexer / demultiplexer 32. After being waved, it is branched to n: 1 and sent to the multiplexers 33A and 33B. At this time, the power of the pumping light sent from the multiplexer / demultiplexer 32 to the upstream side multiplexer 33A is Pa × n + Pb, and the pumping light sent from the multiplexer / demultiplexer 32 to the downstream side multiplexer 33B is transmitted. The power is Pa + Pb × n. Therefore, by appropriately adjusting the power Pa and Pb of each pump light output from each pump light source 31a and 31b, the power of the pump light supplied to the optical transmission line 10 on the uplink side and the uplink side It is possible to set the power of the pumping light supplied to the optical transmission line 10 independently.

これにより、例えば、上り回線および下り回線の光伝送路10として+Dファイバと−Dファイバを組み合わせた混合伝送路を用い、区間平均の波長分散が正になる伝送区間と区間平均の波長分散が負になる伝送区間とが適宜に配置されるようなシステム構成については、上り回線と下り回線で区間平均の波長分散が正負で異なる2種類の伝送区間に対して励起光を供給することになる符号相違点の光中継局30において、各回線に共通のラマン増幅器により、パワー設定の異なる励起光が各回線の混合伝送路に与えられるようになる。このため、従来のように正の混合伝送路と負の混合伝送路とで−Dファイバの長さが異なる場合であっても、その長さの差に応じて各回線に供給する励起光のパワーを各々調整することにより、それぞれの混合伝送路で生じるラマン利得がほぼ等しくなるようにすることができる。   As a result, for example, a mixed transmission line combining + D fiber and −D fiber is used as the optical transmission line 10 for the uplink and the downlink, and the transmission average in which the average wavelength dispersion is positive and the average average wavelength dispersion are negative. For the system configuration in which the transmission sections to be appropriately arranged are the codes that supply the pumping light to two types of transmission sections in which the average chromatic dispersion is different between positive and negative in the uplink and the downlink In the optical repeater station 30 of the difference, the pump light having different power settings is given to the mixed transmission line of each line by the Raman amplifier common to each line. For this reason, even if the length of the -D fiber is different between the positive mixed transmission line and the negative mixed transmission line as in the prior art, the excitation light supplied to each line according to the difference in the lengths. By adjusting the respective powers, the Raman gains generated in the respective mixed transmission lines can be made substantially equal.

また、光伝送路10として混合伝送路を用いる場合に限らず、一般的な光ファイバ伝送路を用いる場合についても、上述の図6で示したような障害等の発生時において、修理用の光ファイバが対応する伝送区間に挿入されたか否かに応じて、伝送区間に供給する励起光のパワーを回線ごとに調整できるため、上り回線および下り回線におけるラマン利得の差を低減することが可能になる。   Further, not only when a mixed transmission line is used as the optical transmission line 10, but also when a general optical fiber transmission line is used, a repair light can be used when a failure or the like as shown in FIG. Depending on whether or not the fiber is inserted into the corresponding transmission section, the power of the pumping light supplied to the transmission section can be adjusted for each line, so that the difference in Raman gain between the uplink and the downlink can be reduced. Become.

なお、上記の実施形態では、各励起光源31a,31bで生成される励起光のパワーPa,Pbを個別に設定することにより、上り回線および下り回線に供給する各々の励起光のパワーを独立して制御するようにしたが、本発明はこれに限らず、例えば、合分波器32としてパワー分岐比を調整することのできる公知のデバイスを用いて励起光源で生成される励起光を各回線に分配し、各々の励起光パワーを独立して制御するようにしてもよい。この場合、1つの励起光源で生成される励起光をパワー分岐比の可変な分波器により各回線に分配することも可能である。   In the above embodiment, the power Pa and Pb of the pumping light generated by the pumping light sources 31a and 31b is individually set, so that the power of each pumping light supplied to the uplink and the downlink is independent. However, the present invention is not limited to this. For example, the excitation light generated by the excitation light source using a known device capable of adjusting the power branching ratio as the multiplexer / demultiplexer 32 is supplied to each line. The pump light power may be controlled independently. In this case, it is also possible to distribute the pumping light generated by one pumping light source to each line by a duplexer with a variable power branching ratio.

本発明の一実施形態による光伝送システムの要部構成を示す図である。It is a figure which shows the principal part structure of the optical transmission system by one Embodiment of this invention. 一般的なWDM光増幅中継伝送システムの構成例を示す図である。It is a figure which shows the structural example of a general WDM optical amplification repeater transmission system. 先願発明にかかる光伝送システムの構成例を示す図である。It is a figure which shows the structural example of the optical transmission system concerning prior invention. 図3の光伝送システムに関する欠点を説明するための図である。It is a figure for demonstrating the fault regarding the optical transmission system of FIG. 図4における点線部分を拡大して示した例示図である。It is the illustration which expanded and showed the dotted-line part in FIG. 従来のシステム構成において障害等の発生時における問題点を説明するための図である。It is a figure for demonstrating the problem at the time of the occurrence of a failure etc. in the conventional system configuration.

符号の説明Explanation of symbols

10,10P,10N 光伝送路
30 光中継局
31a,31b 励起光源
32 合分波器
33A,33B 合波器
10, 10P, 10N Optical transmission line 30 Optical repeater station 31a, 31b Excitation light source 32 Multiplexer / demultiplexer 33A, 33B Multiplexer

Claims (2)

信号光が互いに反対方向に伝搬する上り回線および下り回線を有し、該各回線が複数の伝送区間から構成されており、各々の伝送区間に対して各回線に共通の光中継局で生成した励起光をそれぞれ供給することにより信号光をラマン増幅して伝送する光伝送システムであって、
前記各回線に共通の光中継局は、上り回線の伝送区間に供給する励起光パワーと、下り回線の伝送区間に供給する励起光パワーとを個別に設定可能であることを特徴とするラマン増幅を用いた光伝送システム。
The signal light has an uplink and a downlink that propagate in opposite directions, each of which is composed of a plurality of transmission sections, and each transmission section is generated by an optical repeater common to each line. An optical transmission system for transmitting signal light by Raman amplification by supplying pumping light,
The optical amplification station common to each line can individually set the pumping light power supplied to the uplink transmission section and the pumping light power supplied to the downlink transmission section. Optical transmission system using
請求項1に記載のラマン増幅を用いた光伝送システムであって、
前記各回線に共通の光中継局は、生成する励起光のパワーを個別に設定可能な複数の励起光源と、該各励起光源で生成された励起光を合波した後に所定のパワー比率で2分岐して上り回線および下り回線に分配する合分波器とを有することを特徴とするラマン増幅を用いた光伝送システム。
An optical transmission system using Raman amplification according to claim 1,
The optical repeater station common to each line has a plurality of pumping light sources capable of individually setting the power of the pumping light to be generated and 2 at a predetermined power ratio after combining the pumping lights generated by the pumping light sources. An optical transmission system using Raman amplification, characterized by having a multiplexer / demultiplexer that branches and distributes to an uplink and a downlink.
JP2006245499A 2006-09-11 2006-09-11 Optical transmission system using Raman amplification Expired - Fee Related JP4882615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006245499A JP4882615B2 (en) 2006-09-11 2006-09-11 Optical transmission system using Raman amplification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006245499A JP4882615B2 (en) 2006-09-11 2006-09-11 Optical transmission system using Raman amplification

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002066430A Division JP3866592B2 (en) 2002-03-12 2002-03-12 Optical transmission system using Raman amplification

Publications (2)

Publication Number Publication Date
JP2007025714A true JP2007025714A (en) 2007-02-01
JP4882615B2 JP4882615B2 (en) 2012-02-22

Family

ID=37786440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006245499A Expired - Fee Related JP4882615B2 (en) 2006-09-11 2006-09-11 Optical transmission system using Raman amplification

Country Status (1)

Country Link
JP (1) JP4882615B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020074537A (en) * 2015-09-29 2020-05-14 日本電気株式会社 Optical repeater and control method therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11238930A (en) * 1998-02-20 1999-08-31 Kdd Optical amplification transmission system and optical amplification repeater system thereof
JP2000049705A (en) * 1998-07-06 2000-02-18 Alcatel Pseudo distribution amplification inside soliton signal optical fiber transmission system
JP2000354005A (en) * 1999-06-11 2000-12-19 Fujitsu Ltd Method for equalizing gain, optical amplifier, and optical transmission system
JP2001249369A (en) * 2000-03-02 2001-09-14 Nec Corp Optical amplifier and optical amplification repeater using the same, and wavelength multiplex transmission device
JP2001251006A (en) * 2000-03-06 2001-09-14 Fujitsu Ltd Equipment and method for distributed light amplification and optical communication system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11238930A (en) * 1998-02-20 1999-08-31 Kdd Optical amplification transmission system and optical amplification repeater system thereof
JP2000049705A (en) * 1998-07-06 2000-02-18 Alcatel Pseudo distribution amplification inside soliton signal optical fiber transmission system
JP2000354005A (en) * 1999-06-11 2000-12-19 Fujitsu Ltd Method for equalizing gain, optical amplifier, and optical transmission system
JP2001249369A (en) * 2000-03-02 2001-09-14 Nec Corp Optical amplifier and optical amplification repeater using the same, and wavelength multiplex transmission device
JP2001251006A (en) * 2000-03-06 2001-09-14 Fujitsu Ltd Equipment and method for distributed light amplification and optical communication system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020074537A (en) * 2015-09-29 2020-05-14 日本電気株式会社 Optical repeater and control method therefor
US11463190B2 (en) 2015-09-29 2022-10-04 Nec Corporation Optical repeater and control method for optical repeater

Also Published As

Publication number Publication date
JP4882615B2 (en) 2012-02-22

Similar Documents

Publication Publication Date Title
US6882466B1 (en) Optical amplifier
US6741389B2 (en) Optical transmission system and optical transmission method utilizing Raman amplification
JP4612228B2 (en) Optical communication apparatus and wavelength division multiplexing transmission system
US10313020B2 (en) Optical transmission system and related remote optically pumped amplifier (ROPA) and method
US8111454B2 (en) Optical communication using shared optical pumps
US6930823B2 (en) Optical transmission method and optical transmission system utilizing Raman amplification
JP2002229084A (en) Raman amplifier and optical transmission system using the same
JP2001223420A (en) Raman amplifier, optical transmission system and optical fiber
JP3779691B2 (en) Broadband erbium-doped optical fiber amplifier and wavelength division multiplexing optical transmission system employing the same
JP4487420B2 (en) Optical amplification transmission system
JP4523188B2 (en) Optical amplification transmission system
JP4549591B2 (en) apparatus
US7075709B2 (en) Optical transmission system, optical repeater, and optical transmission method
JP4176527B2 (en) Raman amplifier and optical transmission system using the same
JP2004289811A (en) Optical transmission system
JP4458928B2 (en) Optical transmission system
US8233216B2 (en) Optical amplifier bandwidth alteration
JP4882615B2 (en) Optical transmission system using Raman amplification
JP2004104473A (en) Optical amplification repeater
JP3866592B2 (en) Optical transmission system using Raman amplification
JP2005019501A (en) Method of exciting optical amplifier, optical amplifier unit and light transmission system using this method
JP4316594B2 (en) Optical transmission system using Raman amplification
JP2001255563A (en) Optical transmission system
JP4695713B2 (en) Raman amplifier and optical transmission system using the same
JP5077319B2 (en) Optical amplification transmission system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111108

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees