JP2007025634A - Resist protective coating material and patterning process - Google Patents

Resist protective coating material and patterning process Download PDF

Info

Publication number
JP2007025634A
JP2007025634A JP2006117444A JP2006117444A JP2007025634A JP 2007025634 A JP2007025634 A JP 2007025634A JP 2006117444 A JP2006117444 A JP 2006117444A JP 2006117444 A JP2006117444 A JP 2006117444A JP 2007025634 A JP2007025634 A JP 2007025634A
Authority
JP
Japan
Prior art keywords
resist
protective film
carbon atoms
film material
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006117444A
Other languages
Japanese (ja)
Other versions
JP4662062B2 (en
Inventor
Jun Hatakeyama
畠山  潤
Takeshi Watanabe
武 渡辺
Yuji Harada
裕次 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2006117444A priority Critical patent/JP4662062B2/en
Publication of JP2007025634A publication Critical patent/JP2007025634A/en
Application granted granted Critical
Publication of JP4662062B2 publication Critical patent/JP4662062B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a protective coating material effective for liquid immersion lithography, the material which facilitates preferable liquid immersion lithography, can be removed simultaneously with a photoresist layer during development, and has excellent process compatibility, and to provide a patterning process using the material. <P>SOLUTION: The resist protective coating material comprises a polymer compound having a partial structure expressed by general formula (1). In formula (1), R<SP>0</SP>represents a hydrogen atom, a fluorine atom, or a 1-8C alkyl group or alkylene group; and R<SP>1</SP>represents a 1-6C straight chain or branched alkyl group or alkylene group and containing at least one fluorine atom. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体素子などの製造工程における微細加工、特に波長193nmのArFエキシマレーザーを光源とし、投影レンズとウエハーの間に水を挿入する液浸フォトリソグラフィーにおいて、フォトレジストを保護すべくレジスト上層材料として用いるレジスト保護膜材料及びこれを用いたレジストパターンの形成方法に関する。   The present invention relates to microfabrication in a manufacturing process of a semiconductor device or the like, particularly in immersion photolithography in which an ArF excimer laser having a wavelength of 193 nm is used as a light source and water is inserted between a projection lens and a wafer to protect the photoresist. The present invention relates to a resist protective film material used as a material and a resist pattern forming method using the same.

近年、LSIの高集積化と高速度化に伴い、パターンルールの微細化が求められている中、現在汎用技術として用いられている光露光では、光源の波長に由来する本質的な解像度の限界に近づきつつある。レジストパターン形成の際に使用する露光光として、水銀灯のg線(436nm)もしくはi線(365nm)を光源とする光露光が広く用いられた。更なる微細化のための手段として、露光波長を短波長化する方法が有効とされ、64Mビット(加工寸法が0.25μm以下)DRAM(ダイナミック・ランダム・アクセス・メモリー)以降の量産プロセスには、露光光源としてi線(365nm)に代わって短波長のKrFエキシマレーザー(248nm)が利用された。しかし、更に微細な加工技術(加工寸法が0.2μm以下)を必要とする集積度256M及び1G以上のDRAMの製造には、より短波長の光源が必要とされ、10年ほど前からArFエキシマレーザー(193nm)を用いたフォトグラフィーが本格的に検討されてきた。当初ArFリソグラフィーは180nmノードのデバイス作製から適用されるはずであったが、KrFエキシマリソグラフィーは130nmノードデバイス量産まで延命され、ArFリソグラフィーの本格適用は90nmノードからである。更に、NAを0.9にまで高めたレンズと組み合わせて65nmノードデバイスの検討が行われている。次の45nmノードデバイスには露光波長の短波長化が推し進められ、波長157nmのF2リソグラフィーが候補に挙がった。しかしながら、投影レンズに高価なCaF2単結晶を大量に用いることによるスキャナーのコストアップ、ソフトペリクルの耐久性が極めて低いためのハードペリクル導入に伴う光学系の変更、レジストのエッチング耐性低下等の種々の問題により、F2リソグラフィーの先送りと、ArF液浸リソグラフィーの早期導入が提唱された(非特許文献1:Proc. SPIE Vol. 4690 xxix)。 In recent years, with the higher integration and higher speed of LSIs, there is a demand for finer pattern rules. In light exposure currently used as a general-purpose technology, the intrinsic resolution limit derived from the wavelength of the light source Is approaching. As exposure light used for forming a resist pattern, light exposure using a g-ray (436 nm) or i-line (365 nm) of a mercury lamp as a light source has been widely used. As a means for further miniaturization, a method of shortening the exposure wavelength is effective, and for mass production processes after 64 Mbit (process size is 0.25 μm or less) DRAM (Dynamic Random Access Memory). As a light source for exposure, a short wavelength KrF excimer laser (248 nm) was used in place of i-line (365 nm). However, in order to manufacture DRAMs with a density of 256M and 1G or more that require finer processing technology (processing dimensions of 0.2 μm or less), a light source with a shorter wavelength is required, and an ArF excimer has been used for about 10 years. Photography using a laser (193 nm) has been studied in earnest. At first, ArF lithography was supposed to be applied from the device fabrication of the 180 nm node, but KrF excimer lithography was extended to 130 nm node device mass production, and full-scale application of ArF lithography is from the 90 nm node. Further, a 65 nm node device is being studied in combination with a lens whose NA is increased to 0.9. For the next 45 nm node device, the exposure wavelength has been shortened, and F 2 lithography with a wavelength of 157 nm was nominated. However, various factors such as an increase in the cost of the scanner by using a large amount of expensive CaF 2 single crystal for the projection lens, a change in the optical system due to the introduction of the hard pellicle because the durability of the soft pellicle is extremely low, and a decrease in resist etching resistance, etc. Because of this problem, it was proposed to postpone F 2 lithography and early introduction of ArF immersion lithography (Non-patent Document 1: Proc. SPIE Vol. 4690 xxix).

ArF液浸リソグラフィーにおいて、投影レンズとウエハーの間に水を含浸させることが提案されている。193nmにおける水の屈折率は1.44であり、NA1.0以上のレンズを使ってもパターン形成が可能で、理論上はNAを1.44にまで上げることができる。NAの向上分だけ解像力が向上し、NA1.2以上のレンズと強い超解像技術の組み合わせで45nmノードの可能性が示されている(非特許文献2:Proc. SPIE Vol. 5040 p724)。   In ArF immersion lithography, it has been proposed to impregnate water between the projection lens and the wafer. The refractive index of water at 193 nm is 1.44, and it is possible to form a pattern using a lens having an NA of 1.0 or more. Theoretically, the NA can be increased to 1.44. The resolution is improved by the improvement of NA, and the possibility of a 45 nm node is shown by a combination of a lens of NA 1.2 or higher and strong super-resolution technology (Non-patent Document 2: Proc. SPIE Vol. 5040 p724).

ここで、レジスト膜の上に水が存在することによる様々な問題が指摘された。発生した酸や、クエンチャーとしてレジスト膜に添加されているアミン化合物が水に溶解してしまうことによる形状変化や、膨潤によるパターン倒れなどである。そのため、レジスト膜と水との間に保護膜を設けることが有効であることが提案されている(非特許文献3:2nd Immersion Work Shop, July 11, 2003, Resist and Cover Material Investigation for Immersion Lithography)。   Here, various problems due to the presence of water on the resist film have been pointed out. This includes shape change caused by dissolution of the generated acid and an amine compound added to the resist film as a quencher in water, and pattern collapse due to swelling. Therefore, it is proposed that it is effective to provide a protective film between the resist film and water (Non-patent Document 3: 2nd Immersion Work Shop, July 11, 2003, Resist and Cover Material Investigation Lithography). .

レジスト上層の保護膜は、今まで反射防止膜として検討された経緯がある。例えば、特許文献1〜3:特開昭62−62520号公報、特開昭62−62521号公報、特開昭60−38821号公報に示されるARCOR法などである。ARCOR法はレジスト膜上に透明な反射防止膜を形成し、露光後剥離する工程を含む方法であり、その簡便な方法で微細かつ高精度及び合わせ精度の高いパターンを形成する方法である。反射防止膜として低屈折率材料のパーフルオロアルキル化合物(パーフルオロアルキルポリエーテル、パーフルオロアルキルアミン)を用いると、レジスト−反射防止膜界面の反射光を大幅に低減し、寸法精度が向上する。フッ素系の材料としては、前述の材料以外に特許文献4:特開平5−74700号公報に示されるパーフルオロ(2,2−ジメチル−1,3−ジオキソール)−テトラフルオロエチレン共重合体、パーフルオロ(アリルビニルエーテル)、パーフルオロブテニルビニルエーテルの環化重合体などの非晶質ポリマーなどが提案されている。   The protective film on the resist upper layer has been studied as an antireflection film until now. Examples thereof include the ARCOR method disclosed in Patent Documents 1 to 3, Japanese Patent Application Laid-Open Nos. 62-62520, 62-62521, and 60-38821. The ARCOR method is a method including a step of forming a transparent antireflection film on a resist film and peeling off after exposure, and is a method of forming a fine pattern with high accuracy and high alignment accuracy by the simple method. When a perfluoroalkyl compound (perfluoroalkyl polyether, perfluoroalkylamine), which is a low refractive index material, is used as the antireflection film, the reflected light at the resist-antireflection film interface is greatly reduced, and the dimensional accuracy is improved. As the fluorine-based material, in addition to the aforementioned materials, perfluoro (2,2-dimethyl-1,3-dioxole) -tetrafluoroethylene copolymer disclosed in JP-A-5-74700 can be used. Amorphous polymers such as cyclized polymers of fluoro (allyl vinyl ether) and perfluorobutenyl vinyl ether have been proposed.

しかし、上記パーフルオロアルキル化合物は、有機物との相溶性が低いことから、塗布膜厚を制御するための希釈液にはフロンなどが用いられているが、周知の通りフロンは現在環境保全の観点からその使用が問題となっている。また、上記化合物は均一な成膜性に問題があり、反射防止膜としては十分であるとはいえなかった。また、フォトレジスト膜の現像前に、反射防止膜をフロンで剥離しなければならなかった。そのため、従来装置に反射防止膜剥離用のシステムの増設をしなければならない、フロン系溶剤のコストがかなりかさむなど実用面でのデメリットが大きかった。   However, since the perfluoroalkyl compound has low compatibility with organic substances, chlorofluorocarbon is used as a diluent for controlling the coating film thickness. Therefore, its use has become a problem. Moreover, the said compound had a problem in uniform film formability, and it could not be said that it was enough as an antireflection film. Further, before developing the photoresist film, the antireflection film had to be peeled off with chlorofluorocarbon. For this reason, there have been significant demerits in practical use, such as the need to add a system for removing the antireflection film to the conventional apparatus and the considerable cost of the fluorocarbon solvent.

従来装置に増設なしで反射防止膜の剥離を行おうとすると、現像ユニットを使って剥離を行うのが最も望ましい。フォトレジストの現像ユニットで用いられる溶液は、現像液であるアルカリ水溶液と、リンス液である純水であるので、これらの溶液で容易に剥離できる反射防止膜材料が望ましいといえる。そのため、数多くの水溶性の反射防止膜材料及びこれらを用いるパターン形成方法が提案された。例えば、特許文献5,6:特開平6−273926号公報、特許第2803549号公報などである。   When the antireflection film is peeled off without adding to the conventional apparatus, it is most desirable to peel off using the developing unit. Since the solution used in the photoresist developing unit is an alkaline aqueous solution as a developer and pure water as a rinse solution, it can be said that an antireflection film material that can be easily peeled off with these solutions is desirable. Therefore, many water-soluble antireflection film materials and pattern forming methods using these have been proposed. For example, Patent Documents 5 and 6: JP-A-6-273926, Patent 2803549, and the like.

ところが、水溶性保護膜は、露光中に水に溶解してしまうので液浸リソグラフィーには用いることができない。一方で、非水溶性のフッ素系ポリマーは特殊なフロン系の剥離剤が必要であるということとフロン系溶媒専用の剥離カップが必要という問題があり、非水溶性で、簡便に剥離可能なレジスト保護膜が求められていた。   However, since the water-soluble protective film is dissolved in water during exposure, it cannot be used for immersion lithography. On the other hand, water-insoluble fluorine-based polymers have the problems that a special fluorocarbon-based release agent is required and that a special cup for fluorocarbon solvents is required. There was a need for a protective film.

ヘキサフルオロアルコール基はアルカリ溶解性を有し、かつ撥水性が高い特性を有するために液浸露光用レジスト保護膜として検討されている(非特許文献4:Proc. SPIE Vol. 5753−05 (2005))。
更に疎水性の高いアルカリ現像可能なレジスト保護膜の開発が望まれている。
Since the hexafluoroalcohol group has alkali solubility and high water repellency, it has been studied as a resist protective film for immersion exposure (Non-patent Document 4: Proc. SPIE Vol. 5753-05 (2005). )).
Furthermore, development of a resist protective film having high hydrophobicity and capable of alkali development is desired.

Proc. SPIE Vol. 4690 xxixProc. SPIE Vol. 4690 xxix Proc. SPIE Vol. 5040 p724Proc. SPIE Vol. 5040 p724 2nd Immersion Work Shop, July 11, 2003, Resist and Cover Material Investigation for Immersion Lithography2nd Immersion Work Shop, July 11, 2003, Resist and Cover Material Investing for Immersion Lithography Proc. SPIE Vol. 5753−05 (2005)Proc. SPIE Vol. 5753-05 (2005) 特開昭62−62520号公報JP-A-62-62520 特開昭62−62521号公報JP-A-62-62521 特開昭60−38821号公報JP 60-38821 A 特開平5−74700号公報JP-A-5-74700 特開平6−273926号公報JP-A-6-273926 特許第2803549号公報Japanese Patent No. 2803549

本発明は、上記事情に鑑みなされたもので、良好な液浸リソグラフィーを可能とし、しかもフォトレジスト層の現像時に同時に除去することができて、優れたプロセス適用性を有する液浸リソグラフィー用として有効な保護膜材料、及びこのような材料を用いたパターン形成方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and enables good immersion lithography and can be removed at the same time as development of a photoresist layer, and is effective for immersion lithography having excellent process applicability. An object of the present invention is to provide a protective film material and a pattern forming method using such a material.

本発明者らは、上記目的を達成するため鋭意検討を行った結果、下記一般式(1)で示される部分構造を有する高分子化合物の膜をレジスト保護膜材料としてレジスト膜上に形成した場合、この保護膜(レジスト上層膜)が非水溶性で、かつアルカリ水溶液に溶解可能であり、しかもレジスト層とミキシングすることがなく、アルカリ水による現像時に、現像と一括して剥離可能であり、プロセス的な適用性がかなり広くなることを知見し、本発明をなすに至ったものである。   As a result of intensive studies to achieve the above object, the present inventors have formed a film of a polymer compound having a partial structure represented by the following general formula (1) on a resist film as a resist protective film material In addition, this protective film (resist upper layer film) is water-insoluble and can be dissolved in an alkaline aqueous solution, and does not mix with the resist layer, and can be peeled off together with development during development with alkaline water. It has been found that process applicability is considerably widened, and the present invention has been made.

Figure 2007025634

(式中、R0は水素原子、フッ素原子、又は炭素数1〜8のアルキル基又はアルキレン基であり、R1は炭素数1〜6の直鎖状又は分岐状のアルキル基又はアルキレン基で、少なくとも1個以上のフッ素原子を含む。)
Figure 2007025634

(In the formula, R 0 is a hydrogen atom, a fluorine atom, an alkyl group or alkylene group having 1 to 8 carbon atoms, and R 1 is a linear or branched alkyl group or alkylene group having 1 to 6 carbon atoms. And at least one fluorine atom.)

即ち、本発明は下記のレジスト保護膜材料及びパターン形成方法を提供する。
請求項1:
下記一般式(1)で示される部分構造を有する高分子化合物を含むことを特徴とするレジスト保護膜材料。

Figure 2007025634

(式中、R0は水素原子、フッ素原子、又は炭素数1〜8のアルキル基又はアルキレン基であり、R1は炭素数1〜6の直鎖状又は分岐状のアルキル基又はアルキレン基で、少なくとも1個以上のフッ素原子を含む。)
請求項2:
下記一般式(2)で示される繰り返し単位を有する高分子化合物を含むことを特徴とするレジスト保護膜材料。
Figure 2007025634

(式中、R0は水素原子、フッ素原子、又は炭素数1〜8のアルキル基又はアルキレン基であり、R1は炭素数1〜6の直鎖状又は分岐状のアルキル基又はアルキレン基で、少なくとも1個以上のフッ素原子を含む。R2は炭素数1〜10の直鎖状、分岐状又は環状のアルキレン基又はアルキリジン基で、フッ素原子を有していてもよく、R0又はR1と結合して環を形成してもよい。R0又はR1とR2が結合してこれらが結合する炭素原子と共に環を形成する場合、R0は炭素数1〜8のアルキレン基又はR1は炭素数1〜6の直鎖状又は分岐状のアルキレン基、R2は炭素数1〜10の直鎖状又は分岐状のアルキリジン基を示す。又は、R1とR2が結合してこれらが結合している炭素原子と共に環を形成していてもよく、環を形成する場合、R1は炭素数1〜6の直鎖状又は分岐状のアルキレン基、R2は炭素数1〜10の直鎖状又は分岐状のアルキリジン基を示す。R3、R4は水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。Xは−O−、−C(=O)−O−又は−C(=O)−O−R5−C(=O)−O−である。R5は炭素数1〜10の直鎖状、分岐状又は環状のアルキレン基である。0≦a≦1、0≦b≦1、0<a+b≦1の範囲である。)
請求項3:
更に、高分子化合物が、カルボキシル基を有する繰り返し単位、一般式(2)で示される以外のフルオロアルコールを有する繰り返し単位、及びパーフルオロアルキル基を有する繰り返し単位から選ばれる1種又は2種以上の繰り返し単位を有する請求項2記載のレジスト保護膜材料。
請求項4:
更に、上記高分子化合物を溶解する溶媒を含有する請求項1、2又は3記載のレジスト保護膜材料。
請求項5:
ウエハーに形成したフォトレジスト層上にレジスト上層膜材料による保護膜を形成し、露光を行った後、現像を行うリソグラフィーによるパターン形成方法において、上記レジスト上層膜材料として請求項1乃至4のいずれか1項記載のレジスト保護膜材料を用いることを特徴とするパターン形成方法。
請求項6:
ウエハーに形成したフォトレジスト層上にレジスト上層膜材料による保護膜を形成し、水中で露光を行った後、現像を行う液浸リソグラフィーによるパターン形成方法において、上記レジスト上層膜材料として請求項1乃至4のいずれか1項記載のレジスト保護膜材料を用いることを特徴とするパターン形成方法。
請求項7:
液浸リソグラフィーが、180〜250nmの範囲の露光波長を用い、投影レンズとウエハーの間に水を挿入させたものである請求項6記載のパターン形成方法。
請求項8:
露光後に行う現像工程において、アルカリ現像液によりフォトレジスト層の現像とレジスト上層膜材料の保護膜の剥離とを同時に行う請求項6又は7記載のパターン形成方法。 That is, the present invention provides the following resist protective film material and pattern forming method.
Claim 1:
A resist protective film material comprising a polymer compound having a partial structure represented by the following general formula (1).
Figure 2007025634

(In the formula, R 0 is a hydrogen atom, a fluorine atom, an alkyl group or alkylene group having 1 to 8 carbon atoms, and R 1 is a linear or branched alkyl group or alkylene group having 1 to 6 carbon atoms. And at least one fluorine atom.)
Claim 2:
A resist protective film material comprising a polymer compound having a repeating unit represented by the following general formula (2).
Figure 2007025634

(In the formula, R 0 is a hydrogen atom, a fluorine atom, an alkyl group or alkylene group having 1 to 8 carbon atoms, and R 1 is a linear or branched alkyl group or alkylene group having 1 to 6 carbon atoms. R 2 is a linear, branched or cyclic alkylene group or alkylidene group having 1 to 10 carbon atoms, which may have a fluorine atom, R 0 or R A ring may be formed by bonding to 1. When R 0 or R 1 and R 2 are bonded to form a ring together with the carbon atom to which these are bonded, R 0 is an alkylene group having 1 to 8 carbon atoms or R 1 represents a linear or branched alkylene group having 1 to 6 carbon atoms, and R 2 represents a linear or branched alkylidine group having 1 to 10 carbon atoms, or R 1 and R 2 are bonded to each other. May form a ring together with the carbon atom to which they are bonded, and when forming a ring, 1 is a linear or branched alkylene groups having 1 to 6 carbon atoms, R 2 is a straight or branched alkylidine group having 1 to 10 carbon atoms .R 3, R 4 is a hydrogen atom, a fluorine atom X is —O—, —C (═O) —O—, or —C (═O) —O—R 5 —C (═O) —O—. R 5 is a linear, branched or cyclic alkylene group having 1 to 10 carbon atoms in the range of 0 ≦ a ≦ 1, 0 ≦ b ≦ 1, 0 <a + b ≦ 1.
Claim 3:
Furthermore, the polymer compound is one or more selected from a repeating unit having a carboxyl group, a repeating unit having a fluoroalcohol other than that represented by the general formula (2), and a repeating unit having a perfluoroalkyl group. The resist protective film material of Claim 2 which has a repeating unit.
Claim 4:
Furthermore, the resist protective film material of Claim 1, 2, or 3 containing the solvent which melt | dissolves the said high molecular compound.
Claim 5:
5. A lithography pattern forming method in which a protective film made of a resist upper layer film material is formed on a photoresist layer formed on a wafer, exposed and then developed, and the resist upper layer film material is used as the resist upper layer film material. A pattern forming method comprising using the resist protective film material according to claim 1.
Claim 6:
A pattern forming method by immersion lithography in which a protective film made of a resist upper layer film material is formed on a photoresist layer formed on a wafer, exposed in water, and then developed, wherein the resist upper layer film material is used as the resist upper layer film material. 5. A pattern forming method using the resist protective film material according to any one of 4 above.
Claim 7:
The pattern forming method according to claim 6, wherein the immersion lithography uses an exposure wavelength in the range of 180 to 250 nm and water is inserted between the projection lens and the wafer.
Claim 8:
8. The pattern forming method according to claim 6, wherein the development of the photoresist layer and the removal of the protective film of the resist upper layer film material are simultaneously performed with an alkali developer in the development step performed after the exposure.

本発明のパターン形成方法によれば、レジスト膜上に形成されるレジスト保護膜が、非水溶性でアルカリ水溶液(アルカリ現像液)に溶解可能であり、しかもレジスト膜とミキシングしないものであるので、良好な液浸リソグラフィーを行うことができ、またアルカリ現像時にレジスト膜の現像と保護膜の除去とを同時に一括して行うことができる。   According to the pattern forming method of the present invention, the resist protective film formed on the resist film is non-water soluble and can be dissolved in an alkaline aqueous solution (alkaline developer), and does not mix with the resist film. Good immersion lithography can be performed, and development of the resist film and removal of the protective film can be simultaneously performed at the same time during alkali development.

本発明のレジスト保護膜材料は、特に、ウエハーに形成したフォトレジスト層上にレジスト上層膜材料による保護膜を形成し、水中で露光を行った後、現像を行う液浸リソグラフィーによるパターン形成方法において、上記レジスト上層膜材料として好適に用いられるもので、下記一般式(1)で示される部分構造を有する高分子化合物を添加してなることを特徴とする。   In particular, the resist protective film material of the present invention is a pattern forming method by immersion lithography in which a protective film made of a resist upper layer film material is formed on a photoresist layer formed on a wafer, exposed in water, and then developed. It is suitably used as the resist upper layer film material, and is characterized by adding a polymer compound having a partial structure represented by the following general formula (1).

Figure 2007025634

(式中、R0は水素原子、フッ素原子、又は炭素数1〜8のアルキル基又はアルキレン基であり、R1は炭素数1〜6の直鎖状又は分岐状のアルキル基又はアルキレン基で、少なくとも1個以上のフッ素原子を含む。)
なお、R0又はR1がアルキレン基である場合、式(1)は2価の基となる。但し、R0とR1は同時にアルキレン基にならない。
Figure 2007025634

(In the formula, R 0 is a hydrogen atom, a fluorine atom, an alkyl group or alkylene group having 1 to 8 carbon atoms, and R 1 is a linear or branched alkyl group or alkylene group having 1 to 6 carbon atoms. And at least one fluorine atom.)
When R 0 or R 1 is an alkylene group, the formula (1) is a divalent group. However, R 0 and R 1 are not an alkylene group at the same time.

一般式(1)で示される部分構造を有する高分子化合物の繰り返し単位としては、下記一般式(2)に示すものが好ましい。

Figure 2007025634

(式中、R0は水素原子、フッ素原子、又は炭素数1〜8のアルキル基又はアルキレン基であり、R1は炭素数1〜6の直鎖状又は分岐状のアルキル基又はアルキレン基で、少なくとも1個以上のフッ素原子を含む。R2は炭素数1〜10の直鎖状、分岐状又は環状のアルキレン基又はアルキリジン基で、フッ素原子を有していてもよく、R0又はR1と結合して環を形成してもよい。R0又はR1とR2が結合してこれらが結合する炭素原子と共に環を形成する場合、R0は炭素数1〜8のアルキレン基又はR1は炭素数1〜6の直鎖状又は分岐状のアルキレン基、R2は炭素数1〜10の直鎖状又は分岐状のアルキリジン基を示す。又は、R1とR2が結合してこれらが結合している炭素原子と共に環を形成していてもよく、環を形成する場合、R1は炭素数1〜6の直鎖状又は分岐状のアルキレン基、R2は炭素数1〜10の直鎖状又は分岐状のアルキリジン基を示す。R3、R4は水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。Xは−O−、−C(=O)−O−又は−C(=O)−O−R5−C(=O)−O−である。R5は炭素数1〜10の直鎖状、分岐状又は環状のアルキレン基である。0≦a≦1、0≦b≦1、0<a+b≦1の範囲である。) As the repeating unit of the polymer compound having the partial structure represented by the general formula (1), those represented by the following general formula (2) are preferable.
Figure 2007025634

(In the formula, R 0 is a hydrogen atom, a fluorine atom, an alkyl group or alkylene group having 1 to 8 carbon atoms, and R 1 is a linear or branched alkyl group or alkylene group having 1 to 6 carbon atoms. R 2 is a linear, branched or cyclic alkylene group or alkylidene group having 1 to 10 carbon atoms, which may have a fluorine atom, R 0 or R A ring may be formed by bonding to 1. When R 0 or R 1 and R 2 are bonded to form a ring together with the carbon atom to which these are bonded, R 0 is an alkylene group having 1 to 8 carbon atoms or R 1 represents a linear or branched alkylene group having 1 to 6 carbon atoms, and R 2 represents a linear or branched alkylidine group having 1 to 10 carbon atoms, or R 1 and R 2 are bonded to each other. May form a ring together with the carbon atom to which they are bonded, and when forming a ring, 1 is a linear or branched alkylene groups having 1 to 6 carbon atoms, R 2 is a straight or branched alkylidine group having 1 to 10 carbon atoms .R 3, R 4 is a hydrogen atom, a fluorine atom X is —O—, —C (═O) —O—, or —C (═O) —O—R 5 —C (═O) —O—. R 5 is a linear, branched or cyclic alkylene group having 1 to 10 carbon atoms in the range of 0 ≦ a ≦ 1, 0 ≦ b ≦ 1, 0 <a + b ≦ 1.

この場合、式(1)の部分構造を有する高分子化合物としては、式(2)の繰り返し単位を有するポリマーが好ましく、一般式(2)で示される繰り返し単位のポリマーを使うことによって、水への溶解速度が0.1Å(オングストローム)/s以下であり、2.38質量%テトラメチルアンモニウムヒドロキシド水溶液からなる現像液の溶解速度が300Å/s以上のレジスト保護膜を形成することができる。   In this case, the polymer having the partial structure of the formula (1) is preferably a polymer having a repeating unit of the formula (2), and the polymer having the repeating unit represented by the general formula (2) can be used. And a resist protective film having a dissolution rate of a developing solution of 2.38 mass% tetramethylammonium hydroxide aqueous solution of 300 Å / s or more can be formed.

一般式(2)で示される繰り返し単位aを与えるモノマーとしては、具体的には下記に例示することができる。   Specific examples of the monomer that gives the repeating unit a represented by the general formula (2) include the following.

Figure 2007025634
Figure 2007025634

Figure 2007025634
Figure 2007025634

一般式(2)で示される繰り返し単位bを与えるモノマーとしては、具体的には下記に例示することができる。   Specific examples of the monomer that gives the repeating unit b represented by the general formula (2) include the following.

Figure 2007025634
Figure 2007025634

本発明のレジスト保護膜用ポリマーの繰り返し単位としては、一般式(2)で示される単位a及び/又はbが必須であるが、アルカリ溶解性と、レジスト膜とのミキシングを防止するためにカルボキシル基を有する繰り返し単位cを共重合することができる。繰り返し単位cとしては、具体的には下記に例示することができる。   As the repeating unit of the resist protective film polymer of the present invention, the unit a and / or b represented by the general formula (2) is essential, but in order to prevent alkali solubility and mixing with the resist film, The repeating unit c having a group can be copolymerized. Specific examples of the repeating unit c include the following.

Figure 2007025634
Figure 2007025634

Figure 2007025634
Figure 2007025634

また、一般式(2)に示される以外のフルオロアルコールを有する繰り返し単位dを共重合させることができる。繰り返し単位dとしては、具体的には下記に例示することができる。   Moreover, the repeating unit d which has fluoro alcohol other than shown by General formula (2) can be copolymerized. Specific examples of the repeating unit d can be given below.

Figure 2007025634
Figure 2007025634

更に、レジスト膜とのミキシングを防止するために、パーフルオロアルキル基を有する繰り返し単位eを共重合することもできる。繰り返し単位eは下記に例示することができる。   Furthermore, in order to prevent mixing with the resist film, a repeating unit e having a perfluoroalkyl group can be copolymerized. The repeating unit e can be exemplified below.

Figure 2007025634
Figure 2007025634

上記繰り返し単位a、b、c、d、eの比率は0≦a≦1.0、0≦b≦1.0、0<a+b≦1.0、0≦c≦0.9、0≦d≦0.9、0≦e≦0.9、好ましくは0≦a≦0.8、0≦b≦0.8、0.1≦a+b≦0.8、0≦c≦0.6、0≦d≦0.8、0≦e≦0.8の範囲であり、a+b+c+d+e=1である。   The ratio of the repeating units a, b, c, d, e is 0 ≦ a ≦ 1.0, 0 ≦ b ≦ 1.0, 0 <a + b ≦ 1.0, 0 ≦ c ≦ 0.9, 0 ≦ d. ≦ 0.9, 0 ≦ e ≦ 0.9, preferably 0 ≦ a ≦ 0.8, 0 ≦ b ≦ 0.8, 0.1 ≦ a + b ≦ 0.8, 0 ≦ c ≦ 0.6, 0 ≦ d ≦ 0.8, 0 ≦ e ≦ 0.8, and a + b + c + d + e = 1.

なお、ここで、a+b+c+d+e=1とは、繰り返し単位a、b、c、d、eを含む高分子化合物において、繰り返し単位a、b、c、d、eの合計量が全繰り返し単位の合計量に対して100モル%であることを示す。   Here, a + b + c + d + e = 1 means that in a polymer compound containing repeating units a, b, c, d and e, the total amount of repeating units a, b, c, d and e is the total amount of all repeating units. It shows that it is 100 mol%.

本発明の高分子化合物は、ゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算の重量平均分子量が1,000〜500,000、好ましくは2,000〜30,000であることが望ましい。重量平均分子量が小さすぎるとレジスト材料とミキシングを起こしたり、水に溶解し易くなったりする。大きすぎるとスピンコート後の成膜性に問題が生じたり、アルカリ溶解性が低下したりすることがある。   The polymer compound of the present invention has a polystyrene-reduced weight average molecular weight of 1,000 to 500,000, preferably 2,000 to 30,000, as determined by gel permeation chromatography (GPC). If the weight average molecular weight is too small, mixing with the resist material occurs, or it becomes easy to dissolve in water. If it is too large, there may be a problem in film formability after spin coating, or the alkali solubility may be lowered.

これら高分子化合物を合成するには、1つの方法としては繰り返し単位a〜eを得るための不飽和結合を有するモノマーを有機溶剤中、ラジカル開始剤を加え、加熱重合を行うことにより、高分子化合物を得ることができる。重合時に使用する有機溶剤としては、トルエン、ベンゼン、テトラヒドロフラン、ジエチルエーテル、ジオキサン、メタノール、エタノール、イソプロパノール等が例示できる。重合開始剤としては、2,2’−アゾビスイソブチロニトリル(AIBN)、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、ジメチル−2,2−アゾビス(2−メチルプロピオネート)、ベンゾイルパーオキシド、ラウロイルパーオキシド等が例示でき、好ましくは50℃から80℃に加熱して重合できる。反応時間としては2〜100時間、好ましくは5〜20時間である。モノマー段階のスルホ基はアルカリ金属塩であって、重合後に酸処理によってスルホン酸残基にしてもよい。   In order to synthesize these polymer compounds, as one method, a monomer having an unsaturated bond for obtaining repeating units a to e is added to a radical initiator in an organic solvent, and heat polymerization is performed to obtain a polymer. A compound can be obtained. Examples of the organic solvent used at the time of polymerization include toluene, benzene, tetrahydrofuran, diethyl ether, dioxane, methanol, ethanol, isopropanol and the like. As polymerization initiators, 2,2'-azobisisobutyronitrile (AIBN), 2,2'-azobis (2,4-dimethylvaleronitrile), dimethyl-2,2-azobis (2-methylpropio) Nate), benzoyl peroxide, lauroyl peroxide, and the like, preferably polymerized by heating from 50 ° C to 80 ° C. The reaction time is 2 to 100 hours, preferably 5 to 20 hours. The sulfo group in the monomer stage is an alkali metal salt and may be converted to a sulfonic acid residue by acid treatment after polymerization.

本発明のレジスト保護膜材料は、上記高分子化合物を溶媒に溶解させて用いることが好ましい。またこの場合、スピンコーティング法による成膜性の点から、上記高分子化合物の濃度が0.1〜20質量%、特に0.5〜10質量%となるように溶媒を使用することが好ましい。   The resist protective film material of the present invention is preferably used by dissolving the polymer compound in a solvent. In this case, it is preferable to use a solvent so that the concentration of the polymer compound is 0.1 to 20% by mass, particularly 0.5 to 10% by mass, from the viewpoint of film formability by spin coating.

用いられる溶媒としては特に限定されないが、レジスト層を溶解させる溶媒は好ましくない。例えば、レジスト溶媒として用いられるシクロヘキサノン、メチル−2−n−アミルケトン等のケトン類、3−メトキシブタノール、3−メチル−3−メトキシブタノール、1−メトキシ−2−プロパノール、1−エトキシ−2−プロパノール等のアルコール類、プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル類、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、乳酸エチル、ピルビン酸エチル、酢酸ブチル、3−メトキシプロピオン酸メチル、3−エトキシプロピオン酸エチル、酢酸tert−ブチル、プロピオン酸tert−ブチル、プロピレングリコールモノ−tert−ブチルエーテルアセテート等のエステル類などは好ましくない。   The solvent used is not particularly limited, but a solvent that dissolves the resist layer is not preferable. For example, ketones such as cyclohexanone and methyl-2-n-amyl ketone used as a resist solvent, 3-methoxybutanol, 3-methyl-3-methoxybutanol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol Alcohols such as propylene glycol monomethyl ether, ethylene glycol monomethyl ether, propylene glycol monoethyl ether, ethylene glycol monoethyl ether, propylene glycol dimethyl ether and diethylene glycol dimethyl ether, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate , Ethyl lactate, ethyl pyruvate, butyl acetate, methyl 3-methoxypropionate, 3-ethoxy Ethyl propionate, acetate tert- butyl, tert- butyl propionate, and esters such as propylene glycol monobutyl -tert- butyl ether acetate is not preferable.

レジスト層を溶解しない溶媒としては、炭素数4以上の高級アルコール、トルエン、キシレン、アニソール、ヘキサン、シクロヘキサン、エーテルなどの非極性溶媒を挙げることができる。特に炭素数4以上の高級アルコールが好ましく用いられ、具体的には1−ブチルアルコール、2−ブチルアルコール、イソブチルアルコール、tert−ブチルアルコール、1−ペンタノール、2−ペンタノール、3−ペンタノール、tert−アミルアルコール、ネオペンチルアルコール、2−メチル−1−ブタノール、3−メチル−1−ブタノール、3−メチル−3−ペンタノール、シクロペンタノール、1−ヘキサノール、2−ヘキサノール、3−ヘキサノール、2,3−ジメチル−2−ブタノール、3,3−ジメチル−1−ブタノール、3,3−ジメチル−2−ブタノール、2−ジエチル−1−ブタノール、2−メチル−1−ペンタノール、2−メチル−2−ペンタノール、2−メチル−3−ペンタノール、3−メチル−1−ペンタノール、3−メチル−2−ペンタノール、3−メチル−3−ペンタノール、4−メチル−1−ペンタノール、4−メチル−2−ペンタノール、4−メチル−3−ペンタノール、シクロヘキサノール、ジイソプロピルエーテル、ジイソブチルエーテル、メチルシクロペンチルエーテル、メチルシクロヘキシルエーテルが挙げられる。   Examples of the solvent that does not dissolve the resist layer include non-polar solvents such as higher alcohols having 4 or more carbon atoms, toluene, xylene, anisole, hexane, cyclohexane, and ether. In particular, higher alcohols having 4 or more carbon atoms are preferably used. Specifically, 1-butyl alcohol, 2-butyl alcohol, isobutyl alcohol, tert-butyl alcohol, 1-pentanol, 2-pentanol, 3-pentanol, tert-amyl alcohol, neopentyl alcohol, 2-methyl-1-butanol, 3-methyl-1-butanol, 3-methyl-3-pentanol, cyclopentanol, 1-hexanol, 2-hexanol, 3-hexanol, 2,3-dimethyl-2-butanol, 3,3-dimethyl-1-butanol, 3,3-dimethyl-2-butanol, 2-diethyl-1-butanol, 2-methyl-1-pentanol, 2-methyl 2-pentanol, 2-methyl-3-pentanol, 3-methyl-1-pentane 3-methyl-2-pentanol, 3-methyl-3-pentanol, 4-methyl-1-pentanol, 4-methyl-2-pentanol, 4-methyl-3-pentanol, cyclohexanol , Diisopropyl ether, diisobutyl ether, methylcyclopentyl ether, and methylcyclohexyl ether.

一方、フッ素系の溶媒もレジスト層を溶解しないので好ましく用いることができる。
このようなフッ素置換された溶媒を例示すると、2−フルオロアニソール、3−フルオロアニソール、4−フルオロアニソール、2,3−ジフルオロアニソール、2,4−ジフルオロアニソール、2,5−ジフルオロアニソール、5,8−ジフルオロ−1,4−ベンゾジオキサン、2,3−ジフルオロベンジルアルコール、1,3−ジフルオロ−2−プロパノール、2’,4’−ジフルオロプロピオフェノン、2,4−ジフルオロトルエン、トリフルオロアセトアルデヒドエチルヘミアセタール、トリフルオロアセトアミド、トリフルオロエタノール、2,2,2−トリフルオロエチルブチレート、エチルヘプタフルオロブチレート、エチルヘプタフルオロブチルアセテート、エチルヘキサフルオログルタリルメチル、エチル−3−ヒドロキシ−4,4,4−トリフルオロブチレート、エチル−2−メチル−4,4,4−トリフルオロアセトアセテート、エチルペンタフルオロベンゾエート、エチルペンタフルオロプロピオネート、エチルペンタフルオロプロピニルアセテート、エチルパーフルオロオクタノエート、エチル−4,4,4−トリフルオロアセトアセテート、エチル−4,4,4−トリフルオロブチレート、エチル−4,4,4−トリフルオロクロトネート、エチルトリフルオロスルホネート、エチル−3−(トリフルオロメチル)ブチレート、エチルトリフルオロピルベート、S−エチルトリフルオロアセテート、フルオロシクロヘキサン、2,2,3,3,4,4,4−ヘプタフルオロ−1−ブタノール、1,1,1,2,2,3,3−ヘプタフルオロ−7,7−ジメチル−4,6−オクタンジオン、1,1,1,3,5,5,5−ヘプタフルオロペンタン−2,4−ジオン、3,3,4,4,5,5,5−ヘプタフルオロ−2−ペンタノール、3,3,4,4,5,5,5−ヘプタフルオロ−2−ペンタノン、イソプロピル4,4,4−トリフルオロアセトアセテート、メチルパーフルオロデナノエート、メチルパーフルオロ(2−メチル−3−オキサヘキサノエート)、メチルパーフルオロノナノエート、メチルパーフルオロオクタノエート、メチル−2,3,3,3−テトラフルオロプロピオネート、メチルトリフルオロアセトアセテート、1,1,1,2,2,6,6,6−オクタフルオロ−2,4−ヘキサンジオン、2,2,3,3,4,4,5,5−オクタフルオロ−1−ペンタノール、1H,1H,2H,2H−パーフルオロ−1−デカノール、パーフルオロ(2,5−ジメチル−3,6−ジオキサンアニオニック)酸メチルエステル、2H−パーフルオロ−5−メチル−3,6−ジオキサノナン、1H,1H,2H,3H,3H−パーフルオロノナン−1,2−ジオール、1H,1H,9H−パーフルオロ−1−ノナノール、1H,1H−パーフルオロオクタノール、1H,1H,2H,2H−パーフルオロオクタノール、2H−パーフルオロ−5,8,11,14−テトラメチル−3,6,9,12,15−ペンタオキサオクタデカン、パーフルオロトリブチルアミン、パーフルオロトリヘキシルアミン、パーフルオロ−2,5,8−トリメチル−3,6,9−トリオキサドデカン酸メチルエステル、パーフルオロトリペンチルアミン、パーフルオロトリプロピルアミン、1H,1H,2H,3H,3H−パーフルオロウンデカン−1,2−ジオール、トルフルオロブタノール1,1,1−トリフルオロ−5−メチル−2,4−ヘキサンジオン、1,1,1−トリフルオロ−2−プロパノール、3,3,3−トリフルオロ−1−プロパノール、1,1,1−トリフルオロ−2−プロピルアセテート、パーフルオロブチルテトラヒドロフラン、パーフルオロ(ブチルテトラヒドロフラン)、パーフルオロデカリン、パーフルオロ(1,2−ジメチルシクロヘキサン)、パーフルオロ(1,3−ジメチルシクロヘキサン)、プロピレングリコールトリフルオロメチルエーテルアセテート、プロピレングリコールメチルエーテルトリフルオロメチルアセテート、トリフルオロメチル酢酸ブチル、3−トリフルオロメトキシプロピオン酸メチル、パーフルオロシクロヘキサノン、プロピレングリコールトリフルオロメチルエーテル、トリフルオロ酢酸ブチル、1,1,1−トリフルオロ−5,5−ジメチル−2,4−ヘキサンジオン、1,1,1,3,3,3−ヘキサフルオロ−2−プロパノール、1,1,1,3,3,3−ヘキサフルオロ−2−メチル−2−プロパノール、2,2,3,4,4,4−ヘキサフルオロ−1−ブタノール、2−トリフルオロメチル−2−プロパノール,2,2,3,3−テトラフルオロ−1−プロパノール、3,3,3−トリフルオロ−1−プロパノール、4,4,4−トリフルオロ−1−ブタノールなどが挙げられ、これらの1種を単独で又は2種以上を混合して使用することができるが、これらに限定されるものではない。
On the other hand, a fluorine-based solvent can be preferably used because it does not dissolve the resist layer.
Examples of such fluorine-substituted solvents include 2-fluoroanisole, 3-fluoroanisole, 4-fluoroanisole, 2,3-difluoroanisole, 2,4-difluoroanisole, 2,5-difluoroanisole, 5, 8-difluoro-1,4-benzodioxane, 2,3-difluorobenzyl alcohol, 1,3-difluoro-2-propanol, 2 ′, 4′-difluoropropiophenone, 2,4-difluorotoluene, trifluoroacetaldehyde Ethyl hemiacetal, trifluoroacetamide, trifluoroethanol, 2,2,2-trifluoroethyl butyrate, ethyl heptafluorobutyrate, ethyl heptafluorobutyl acetate, ethyl hexafluoroglutaryl methyl, ethyl-3-hydroxy 4,4,4-trifluorobutyrate, ethyl-2-methyl-4,4,4-trifluoroacetoacetate, ethyl pentafluorobenzoate, ethyl pentafluoropropionate, ethyl pentafluoropropynyl acetate, ethyl perfluoroocta Noate, ethyl-4,4,4-trifluoroacetoacetate, ethyl-4,4,4-trifluorobutyrate, ethyl-4,4,4-trifluorocrotonate, ethyltrifluorosulfonate, ethyl-3 -(Trifluoromethyl) butyrate, ethyl trifluoropyruvate, S-ethyl trifluoroacetate, fluorocyclohexane, 2,2,3,3,4,4,4-heptafluoro-1-butanol, 1,1,1 , 2,2,3,3-heptafluoro-7,7-dimethyl Til-4,6-octanedione, 1,1,1,3,5,5,5-heptafluoropentane-2,4-dione, 3,3,4,4,5,5,5-heptafluoro- 2-pentanol, 3,3,4,4,5,5,5-heptafluoro-2-pentanone, isopropyl 4,4,4-trifluoroacetoacetate, methyl perfluorodenanoate, methyl perfluoro (2 -Methyl-3-oxahexanoate), methyl perfluorononanoate, methyl perfluorooctanoate, methyl-2,3,3,3-tetrafluoropropionate, methyl trifluoroacetoacetate, 1,1, 1,2,2,6,6,6-octafluoro-2,4-hexanedione, 2,2,3,3,4,4,5,5-octafluoro-1-pentanol, 1H, H, 2H, 2H-perfluoro-1-decanol, perfluoro (2,5-dimethyl-3,6-dioxane anionic) acid methyl ester, 2H-perfluoro-5-methyl-3,6-dioxanonane, 1H 1H, 2H, 3H, 3H-perfluorononane-1,2-diol, 1H, 1H, 9H-perfluoro-1-nonanol, 1H, 1H-perfluorooctanol, 1H, 1H, 2H, 2H-perfluoro Octanol, 2H-perfluoro-5,8,11,14-tetramethyl-3,6,9,12,15-pentaoxaoctadecane, perfluorotributylamine, perfluorotrihexylamine, perfluoro-2,5 8-trimethyl-3,6,9-trioxadodecanoic acid methyl ester, perfluorotripentyl Min, perfluorotripropylamine, 1H, 1H, 2H, 3H, 3H-perfluoroundecane-1,2-diol, trifluorobutanol 1,1,1-trifluoro-5-methyl-2,4-hexanedione 1,1,1-trifluoro-2-propanol, 3,3,3-trifluoro-1-propanol, 1,1,1-trifluoro-2-propyl acetate, perfluorobutyltetrahydrofuran, perfluoro (butyl Tetrahydrofuran), perfluorodecalin, perfluoro (1,2-dimethylcyclohexane), perfluoro (1,3-dimethylcyclohexane), propylene glycol trifluoromethyl ether acetate, propylene glycol methyl ether trifluoromethyl acetate, trifluorome Butyl butyl acetate, methyl 3-trifluoromethoxypropionate, perfluorocyclohexanone, propylene glycol trifluoromethyl ether, butyl trifluoroacetate, 1,1,1-trifluoro-5,5-dimethyl-2,4-hexanedione 1,1,1,3,3,3-hexafluoro-2-propanol, 1,1,1,3,3,3-hexafluoro-2-methyl-2-propanol, 2,2,3,4 , 4,4-hexafluoro-1-butanol, 2-trifluoromethyl-2-propanol, 2,2,3,3-tetrafluoro-1-propanol, 3,3,3-trifluoro-1-propanol, 4,4,4-trifluoro-1-butanol and the like can be used, and one of these can be used alone or in admixture of two or more. But it is not limited thereto.

本発明の非水溶性でかつアルカリ可溶性のレジスト保護膜(上層膜)材料を使ったパターン形成方法について説明する。
まず、フォトレジスト層の上に非水溶性でかつアルカリ可溶性のレジスト保護膜(上層膜)材料をスピンコート法などで成膜する。膜厚は10〜500nmの範囲が好ましい。露光方法はレジスト保護膜と投影レンズの間が空気あるいは窒素などの気体であるドライ露光でもよいが、レジスト保護膜と投影レンズ間が液体で満たされている液浸露光でもよい。液浸露光では水が好ましく用いられる。液浸露光において、ウエハー裏面への水の回り込みや、基板からの溶出を防ぐために、ウエハーエッジや裏面のクリーニングの有無、及びそのクリーニング方法は重要である。例えばレジスト保護膜をスピンコート後に40〜130℃の範囲で10〜300秒ベークすることによって溶媒を揮発させる。レジスト層形成や、ドライ露光の場合はスピンコート時にエッジクリーニングを行うが、液浸露光の場合、親水性の高い基板面が水に接触すると、エッジ部分の基板面に水が残ることがあり、好ましいことではない。そのためレジスト保護膜のスピンコート時にはエッジクリーニングをしない方法が挙げられる。
The pattern forming method using the water-insoluble and alkali-soluble resist protective film (upper layer film) material of the present invention will be described.
First, a water-insoluble and alkali-soluble resist protective film (upper film) material is formed on the photoresist layer by spin coating or the like. The film thickness is preferably in the range of 10 to 500 nm. The exposure method may be dry exposure in which the space between the resist protective film and the projection lens is a gas such as air or nitrogen, but may be immersion exposure in which the space between the resist protective film and the projection lens is filled with liquid. Water is preferably used in the immersion exposure. In immersion exposure, the presence or absence of cleaning of the wafer edge and back surface and the cleaning method are important in order to prevent water from flowing around the wafer back surface and elution from the substrate. For example, the solvent is volatilized by baking the resist protective film in the range of 40 to 130 ° C. for 10 to 300 seconds after spin coating. In the case of resist layer formation and dry exposure, edge cleaning is performed at the time of spin coating, but in the case of immersion exposure, when a highly hydrophilic substrate surface comes into contact with water, water may remain on the substrate surface of the edge portion, It is not preferable. Therefore, there is a method in which edge cleaning is not performed during spin coating of the resist protective film.

レジスト保護膜を形成後、KrF又はArF液浸リソグラフィーによって水中で露光する。露光後、ポストエクスポジュアーベーク(PEB)を行い、アルカリ現像液で10〜300秒現像を行う。アルカリ現像液は2.38質量%のテトラメチルアンモニウムヒドロキシド水溶液が一般的に広く用いられており、本発明のレジスト保護膜の剥離とレジスト膜の現像を同時に行う。PEB前に、レジスト保護膜上に水が残っている場合がある。水が残っている状態でPEBを行うと、水が保護膜を通過しレジスト中の酸を吸い出してしまい、パターン形成ができなくなる。PEB前に保護膜上の水を完全に除去するため、PEB前のスピンドライ、保護膜表面の乾燥空気や窒素によるパージ、あるいは露光後のステージ上の水回収ノズル形状や水回収プロセスの最適化などによって保護膜上の水を乾燥あるいは回収する必要がある。更に、本発明に示される撥水性の高いレジスト保護膜は、水回収性に優れている特徴がある。   After forming the resist protective film, exposure is performed in water by KrF or ArF immersion lithography. After exposure, post-exposure baking (PEB) is performed, and development is performed with an alkali developer for 10 to 300 seconds. 2.38 mass% tetramethylammonium hydroxide aqueous solution is generally widely used as the alkali developer, and the resist protective film is peeled off and the resist film is developed simultaneously. Before PEB, water may remain on the resist protective film. If PEB is carried out with water remaining, the water passes through the protective film and sucks out the acid in the resist, so that the pattern cannot be formed. In order to completely remove water on the protective film before PEB, spin dry before PEB, purge with dry air or nitrogen on the surface of the protective film, or optimization of the water recovery nozzle shape and water recovery process on the stage after exposure For example, it is necessary to dry or recover the water on the protective film. Furthermore, the resist protective film having high water repellency shown in the present invention is characterized by excellent water recoverability.

レジスト材料の種類は、特に限定されない。ポジ型でもネガ型でもよく、通常の炭化水素系の単層レジスト材料でもよく、珪素原子などを含んだバイレイヤーレジスト材料でもよい。KrF露光におけるレジスト材料は、ベース樹脂としてポリヒドロキシスチレン又はポリヒドロキシスチレン−(メタ)アクリレート共重合体の、ヒドロキシ基あるいはカルボキシル基の水素原子が酸不安定基で置換された重合体が好ましく用いられる。   The type of resist material is not particularly limited. It may be a positive type or a negative type, and may be an ordinary hydrocarbon-based single layer resist material or a bilayer resist material containing silicon atoms. As a resist material in KrF exposure, a polymer in which a hydrogen atom of a hydroxy group or a carboxyl group of a polyhydroxystyrene or polyhydroxystyrene- (meth) acrylate copolymer is substituted with an acid labile group is preferably used as a base resin. .

ArF露光におけるレジスト材料は、ベース樹脂として芳香族を含まない構造が必須であり、具体的にはポリアクリル酸及びその誘導体、ノルボルネン誘導体−無水マレイン酸交互重合体及びポリアクリル酸又はその誘導体との3あるいは4元共重合体、テトラシクロドデセン誘導体−無水マレイン酸交互重合体及びポリアクリル酸又はその誘導体との3あるいは4元共重合体、ノルボルネン誘導体−マレイミド交互重合体及びポリアクリル酸又はその誘導体との3あるいは4元共重合体、テトラシクロドデセン誘導体−マレイミド交互重合体及びポリアクリル酸又はその誘導体との3あるいは4元共重合体、及びこれらの2つ以上の、あるいはポリノルボルネン及びメタセシス開環重合体から選択される1種あるいは2種以上の高分子重合体が好ましく用いられる。   The resist material in ArF exposure must have a structure that does not contain aromatics as a base resin. Specifically, polyacrylic acid and its derivatives, norbornene derivative-maleic anhydride alternating polymer, and polyacrylic acid or its derivatives. Tri- or quaternary copolymer, tetracyclododecene derivative-maleic anhydride alternating polymer and polyacrylic acid or a derivative thereof, ternary or quaternary copolymer, norbornene derivative-maleimide alternating polymer and polyacrylic acid or the like Tri- or quaternary copolymers with derivatives, tetracyclododecene derivative-maleimide alternating polymers and ternary or quaternary copolymers with polyacrylic acid or its derivatives, and two or more of these, or polynorbornene and One or more polymer polymerizations selected from metathesis ring-opening polymers It is preferably used.

以下、合成例及び実施例と比較例を示して本発明を具体的に説明するが、本発明は下記実施例に制限されるものではない。なお、実施例中、GPCはゲルパーミエーションクロマトグラフィーであり、ポリスチレン換算の重量平均分子量(Mw)、数平均分子量(Mn)を求めた。
また、合成例で使用したモノマー1〜8の構造式を下記に示す。
EXAMPLES Hereinafter, although a synthesis example, an Example, and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example. In the examples, GPC is gel permeation chromatography, and the weight average molecular weight (Mw) and number average molecular weight (Mn) in terms of polystyrene were determined.
Moreover, the structural formula of the monomers 1-8 used by the synthesis example is shown below.

Figure 2007025634
Figure 2007025634

[合成例1]
200mLのフラスコにモノマー1を36g、溶媒としてメタノールを40g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素フローを3回繰り返した。室温まで昇温後、重合開始剤として2,2’−アゾビス(2,4−ジメチルバレロニトリル)を3g加え、65℃まで昇温後、25時間反応させた。この反応溶液をヘキサンに晶出させて樹脂を単離した。得られた樹脂の組成は1H−NMR、分子量はGPCで確認し、実施例ポリマー1とした。

Figure 2007025634
[Synthesis Example 1]
To a 200 mL flask, 36 g of monomer 1 and 40 g of methanol as a solvent were added. The reaction vessel was cooled to −70 ° C. in a nitrogen atmosphere, and vacuum degassing and nitrogen flow were repeated three times. After raising the temperature to room temperature, 3 g of 2,2′-azobis (2,4-dimethylvaleronitrile) was added as a polymerization initiator, and the temperature was raised to 65 ° C., followed by reaction for 25 hours. The reaction solution was crystallized from hexane to isolate the resin. The composition of the obtained resin was 1 H-NMR, the molecular weight was confirmed by GPC, and Example polymer 1 was obtained.
Figure 2007025634

[合成例2]
200mLのフラスコにモノマー1を25.6g、モノマー3を9g、溶媒としてメタノールを40g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素フローを3回繰り返した。室温まで昇温後、重合開始剤として2,2’−アゾビス(2,4−ジメチルバレロニトリル)を3g加え、65℃まで昇温後、25時間反応させた。この反応溶液をヘキサンに晶出させて樹脂を単離した。得られた樹脂の組成は1H−NMR、分子量はGPCで確認し、実施例ポリマー2とした。

Figure 2007025634
[Synthesis Example 2]
Monomer 1 (25.6 g), monomer 3 (9 g), and methanol (40 g) as a solvent were added to a 200 mL flask. The reaction vessel was cooled to −70 ° C. in a nitrogen atmosphere, and vacuum degassing and nitrogen flow were repeated three times. After raising the temperature to room temperature, 3 g of 2,2′-azobis (2,4-dimethylvaleronitrile) was added as a polymerization initiator, and the temperature was raised to 65 ° C., followed by reaction for 25 hours. The reaction solution was crystallized from hexane to isolate the resin. The composition of the obtained resin was confirmed by 1 H-NMR, and the molecular weight was confirmed by GPC.
Figure 2007025634

[合成例3]
200mLのフラスコにモノマー2を26.9g、モノマー3を9g、溶媒としてメタノールを40g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素フローを3回繰り返した。室温まで昇温後、重合開始剤として2,2’−アゾビス(2,4−ジメチルバレロニトリル)を3g加え、65℃まで昇温後、25時間反応させた。この反応溶液をヘキサンに晶出させて樹脂を単離した。得られた樹脂の組成は1H−NMR、分子量はGPCで確認し、実施例ポリマー3とした。

Figure 2007025634
[Synthesis Example 3]
To a 200 mL flask, 26.9 g of monomer 2, 9 g of monomer 3 and 40 g of methanol as a solvent were added. The reaction vessel was cooled to −70 ° C. in a nitrogen atmosphere, and vacuum degassing and nitrogen flow were repeated three times. After raising the temperature to room temperature, 3 g of 2,2′-azobis (2,4-dimethylvaleronitrile) was added as a polymerization initiator, and the temperature was raised to 65 ° C., followed by reaction for 25 hours. The reaction solution was crystallized from hexane to isolate the resin. The composition of the obtained resin was confirmed by 1 H-NMR, and the molecular weight was confirmed by GPC.
Figure 2007025634

[合成例4]
200mLのフラスコにモノマー1を12.8g、メタクリル酸を1.3g、モノマー3を15g、溶媒としてメタノールを40g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素フローを3回繰り返した。室温まで昇温後、重合開始剤として2,2’−アゾビス(2,4−ジメチルバレロニトリル)を3g加え、65℃まで昇温後、25時間反応させた。この反応溶液をヘキサンに晶出させて樹脂を単離した。得られた樹脂の組成は1H−NMR、分子量はGPCで確認し、実施例ポリマー4とした。

Figure 2007025634
[Synthesis Example 4]
To a 200 mL flask, 12.8 g of monomer 1, 1.3 g of methacrylic acid, 15 g of monomer 3 and 40 g of methanol as a solvent were added. The reaction vessel was cooled to −70 ° C. in a nitrogen atmosphere, and vacuum degassing and nitrogen flow were repeated three times. After raising the temperature to room temperature, 3 g of 2,2′-azobis (2,4-dimethylvaleronitrile) was added as a polymerization initiator, and the temperature was raised to 65 ° C., followed by reaction for 25 hours. The reaction solution was crystallized from hexane to isolate the resin. The composition of the obtained resin was confirmed by 1 H-NMR, and the molecular weight was confirmed by GPC.
Figure 2007025634

[合成例5]
200mLのフラスコにモノマー1を9.2g、モノマー4を7.5g、モノマー3を15g、溶媒としてメタノールを40g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素フローを3回繰り返した。室温まで昇温後、重合開始剤として2,2’−アゾビス(2,4−ジメチルバレロニトリル)を3g加え、65℃まで昇温後、25時間反応させた。この反応溶液をヘキサンに晶出させて樹脂を単離した。得られた樹脂の組成は1H−NMR、分子量はGPCで確認し、実施例ポリマー5とした。

Figure 2007025634
[Synthesis Example 5]
To a 200 mL flask, 9.2 g of monomer 1, 7.5 g of monomer 4, 15 g of monomer 3 and 40 g of methanol as a solvent were added. The reaction vessel was cooled to −70 ° C. in a nitrogen atmosphere, and vacuum degassing and nitrogen flow were repeated three times. After raising the temperature to room temperature, 3 g of 2,2′-azobis (2,4-dimethylvaleronitrile) was added as a polymerization initiator, and the temperature was raised to 65 ° C., followed by reaction for 25 hours. The reaction solution was crystallized from hexane to isolate the resin. The composition of the obtained resin was confirmed by 1 H-NMR, and the molecular weight was confirmed by GPC.
Figure 2007025634

[合成例6]
200mLのフラスコにモノマー5を31.5g、モノマー6を4.2g、モノマー7を7.2g、溶媒としてメタノールを20g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素フローを3回繰り返した。室温まで昇温後、重合開始剤として2,2’−アゾビス(2,4−ジメチルバレロニトリル)を3g加え、85℃まで昇温後、25時間反応させた。この反応溶液をヘキサンに晶出させて樹脂を単離した。得られた樹脂の組成は1H−NMR、分子量はGPCで確認し、実施例ポリマー6とした。

Figure 2007025634
[Synthesis Example 6]
To a 200 mL flask, 31.5 g of monomer 5, 4.2 g of monomer 6, 7.2 g of monomer 7 and 20 g of methanol as a solvent were added. The reaction vessel was cooled to −70 ° C. in a nitrogen atmosphere, and vacuum degassing and nitrogen flow were repeated three times. After raising the temperature to room temperature, 3 g of 2,2′-azobis (2,4-dimethylvaleronitrile) was added as a polymerization initiator, and the temperature was raised to 85 ° C. and reacted for 25 hours. The reaction solution was crystallized from hexane to isolate the resin. The composition of the obtained resin was confirmed by 1 H-NMR, and the molecular weight was confirmed by GPC.
Figure 2007025634

[合成例7]
200mLのフラスコにモノマー5を21.5g、α−トリフルオロメチルアクリル酸を3.0g、モノマー7を10.5g、溶媒としてメタノールを20g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素フローを3回繰り返した。室温まで昇温後、重合開始剤として2,2’−アゾビス(2,4−ジメチルバレロニトリル)を3g加え、85℃まで昇温後、25時間反応させた。この反応溶液をヘキサンに晶出させて樹脂を単離した。得られた樹脂の組成は1H−NMR、分子量はGPCで確認し、実施例ポリマー7とした。

Figure 2007025634
[Synthesis Example 7]
In a 200 mL flask, 21.5 g of monomer 5, 3.0 g of α-trifluoromethylacrylic acid, 10.5 g of monomer 7 and 20 g of methanol as a solvent were added. The reaction vessel was cooled to −70 ° C. in a nitrogen atmosphere, and vacuum degassing and nitrogen flow were repeated three times. After raising the temperature to room temperature, 3 g of 2,2′-azobis (2,4-dimethylvaleronitrile) was added as a polymerization initiator, and the temperature was raised to 85 ° C. and reacted for 25 hours. The reaction solution was crystallized from hexane to isolate the resin. The composition of the obtained resin was 1 H-NMR, the molecular weight was confirmed by GPC, and Example polymer 7 was obtained.
Figure 2007025634

[比較合成例1]
200mLのフラスコにモノマー8を35g、溶媒としてメタノールを40g添加した。この反応容器を窒素雰囲気下、−70℃まで冷却し、減圧脱気、窒素フローを3回繰り返した。室温まで昇温後、重合開始剤として2,2’−アゾビス(2,4−ジメチルバレロニトリル)を3g加え、65℃まで昇温後、25時間反応させた。この反応溶液をヘキサンに晶出させて樹脂を単離した。得られた樹脂の組成は1H−NMR、分子量はGPCで確認し、比較例ポリマー1とした。

Figure 2007025634
[Comparative Synthesis Example 1]
To a 200 mL flask, 35 g of monomer 8 and 40 g of methanol as a solvent were added. The reaction vessel was cooled to −70 ° C. in a nitrogen atmosphere, and vacuum degassing and nitrogen flow were repeated three times. After raising the temperature to room temperature, 3 g of 2,2′-azobis (2,4-dimethylvaleronitrile) was added as a polymerization initiator, and the temperature was raised to 65 ° C., followed by reaction for 25 hours. The reaction solution was crystallized from hexane to isolate the resin. The composition of the obtained resin was confirmed by 1 H-NMR, the molecular weight was confirmed by GPC, and Comparative polymer 1 was obtained.
Figure 2007025634

実施例ポリマー1〜7、比較例ポリマー1は上記合成例に示したポリマーを用いた。実施例ポリマー1〜7、比較例ポリマー1の0.5gをイソブチルアルコール25gに溶解させ、それぞれ0.2ミクロンサイズのポリプロピレンフィルターで濾過し、レジスト保護膜溶液を作製した。   Examples Polymers 1 to 7 and Comparative Example Polymer 1 used the polymers shown in the above synthesis examples. Example Polymers 1 to 7 and Comparative Example Polymer 1 (0.5 g) were dissolved in isobutyl alcohol (25 g) and filtered through a 0.2 micron polypropylene filter to prepare a resist protective film solution.

シリコン基板上にレジスト保護膜をスピンコートし、100℃で60秒間ベークした後、50nm膜厚の保護膜を作製し、J.A.ウーラム社製分光エリプソメトリを用いて波長193nmにおける保護膜の屈折率を求めた。結果を表1に示す。   After spin-coating a resist protective film on a silicon substrate and baking at 100 ° C. for 60 seconds, a 50 nm thick protective film was produced. A. The refractive index of the protective film at a wavelength of 193 nm was determined using spectroscopic ellipsometry manufactured by Woollam. The results are shown in Table 1.

Figure 2007025634
Figure 2007025634

次に、上記方法でレジスト保護膜を形成したウエハーを純水で5分間リンスし、膜厚の変動を観察した。結果を表2に示す。   Next, the wafer on which the resist protective film was formed by the above method was rinsed with pure water for 5 minutes, and the change in film thickness was observed. The results are shown in Table 2.

Figure 2007025634
Figure 2007025634

また、上記方法でレジスト保護膜を形成したウエハーを2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液で現像し、膜厚の変動を観察した。結果を表3に示す。   Further, the wafer on which the resist protective film was formed by the above method was developed with an aqueous 2.38 mass% tetramethylammonium hydroxide (TMAH) solution, and the change in film thickness was observed. The results are shown in Table 3.

Figure 2007025634
Figure 2007025634

上記方法でレジスト保護膜を形成して水平に保ったウエハー上に50μLの純水を滴下し、水玉を形成した。次にこのウエハーを徐々に傾斜させ、水玉が転落し始めるウエハーの角度(転落角)を求めた。結果を表4に示す。   50 μL of pure water was dropped onto a wafer that was kept horizontal by forming a resist protective film by the above method to form polka dots. Next, this wafer was gradually tilted, and the angle (falling angle) of the wafer at which the polka dots began to fall was determined. The results are shown in Table 4.

Figure 2007025634
Figure 2007025634

転落角が小さいことは、水が流動し易いことを示し、スキャン露光におけるスキャンスピードを高くできることを示す。本発明のアルカリ溶解性基を有するポリマーの場合は、ヘキサフルオロアルコール基を有するポリマーよりも転落角が小さい特徴がある。   A small sliding angle indicates that water easily flows and indicates that the scanning speed in scanning exposure can be increased. The polymer having an alkali-soluble group according to the present invention has a feature that the falling angle is smaller than that of a polymer having a hexafluoroalcohol group.

更に、下記に示すレジストポリマー5g、PAG0.25g、クエンチャーであるトリ−n−ブチルアミン0.6gを55gのプロピレングリコールモノエチルエーテルアセテート(PGMEA)溶液に溶解し、0.2ミクロンサイズのポリプロピレンフィルターで濾過し、レジスト溶液を作製した。Si基板上に作製した日産化学工業(株)製反射防止膜ARC−29Aの87nm膜厚上にレジスト溶液を塗布し、120℃で60秒ベークして膜厚150nmのレジスト膜を作製した。その上にレジスト保護膜を塗布し、100℃で60秒間ベークした。擬似的な液浸露光を再現するために、露光後の膜の純水リンスを5分間行った。ニコン製ArFスキャナーS307E(NA0.85 σ0.93 4/5輪帯照明、6%ハーフトーン位相シフトマスク)で露光し、純水をかけながら5分間リンスを行い、110℃で60秒間ポストエクスポジュアーベーク(PEB)を行い、2.38質量%TMAH現像液で60秒間現像を行った。
保護膜なしで露光、純水リンス、PEB、現像、また露光後純水リンスを行わない通常のプロセスも行った。
ウエハーを割断し、75nmラインアンドスペースのパターン形状、感度を比較した。結果を表5に示す。
Furthermore, 5 g of resist polymer shown below, 0.25 g of PAG, and 0.6 g of tri-n-butylamine as a quencher were dissolved in 55 g of a propylene glycol monoethyl ether acetate (PGMEA) solution to obtain a 0.2 micron size polypropylene filter. And a resist solution was prepared. A resist solution was applied on an 87 nm film thickness of an anti-reflective film ARC-29A manufactured by Nissan Chemical Industries, Ltd. produced on a Si substrate, and baked at 120 ° C. for 60 seconds to prepare a resist film having a film thickness of 150 nm. A resist protective film was applied thereon and baked at 100 ° C. for 60 seconds. In order to reproduce the simulated immersion exposure, the exposed film was rinsed with pure water for 5 minutes. Expose with Nikon ArF scanner S307E (NA0.85 σ0.93 4/5 annular illumination, 6% halftone phase shift mask), rinse for 5 minutes while applying pure water, post-exposure at 110 ° C for 60 seconds Arbake (PEB) was performed, and development was performed for 60 seconds with a 2.38 mass% TMAH developer.
A normal process without exposure, pure water rinsing, PEB, development, and post-exposure pure water rinsing was also performed without a protective film.
The wafer was cleaved, and the pattern shape and sensitivity of the 75 nm line and space were compared. The results are shown in Table 5.

Figure 2007025634
Figure 2007025634

Figure 2007025634
Figure 2007025634

保護膜なしで露光後純水リンスを行った場合はT−top形状になった。これは発生した酸が水に溶解したためと考えられる。一方、本発明の保護膜を使った場合は形状の変化は起こらなかった。ヘキサフルオロアルコールだけを溶解性基とした保護膜の場合は、現像後のレジスト形状が膜減りでかつテーパー形状となった。   When pure water rinsing was performed after exposure without a protective film, a T-top shape was obtained. This is probably because the generated acid was dissolved in water. On the other hand, when the protective film of the present invention was used, the shape did not change. In the case of a protective film containing only hexafluoroalcohol as a soluble group, the resist shape after development was reduced and became a tapered shape.

Claims (8)

下記一般式(1)で示される部分構造を有する高分子化合物を含むことを特徴とするレジスト保護膜材料。
Figure 2007025634

(式中、R0は水素原子、フッ素原子、又は炭素数1〜8のアルキル基又はアルキレン基であり、R1は炭素数1〜6の直鎖状又は分岐状のアルキル基又はアルキレン基で、少なくとも1個以上のフッ素原子を含む。)
A resist protective film material comprising a polymer compound having a partial structure represented by the following general formula (1).
Figure 2007025634

(In the formula, R 0 is a hydrogen atom, a fluorine atom, an alkyl group or alkylene group having 1 to 8 carbon atoms, and R 1 is a linear or branched alkyl group or alkylene group having 1 to 6 carbon atoms. And at least one fluorine atom.)
下記一般式(2)で示される繰り返し単位を有する高分子化合物を含むことを特徴とするレジスト保護膜材料。
Figure 2007025634

(式中、R0は水素原子、フッ素原子、又は炭素数1〜8のアルキル基又はアルキレン基であり、R1は炭素数1〜6の直鎖状又は分岐状のアルキル基又はアルキレン基で、少なくとも1個以上のフッ素原子を含む。R2は炭素数1〜10の直鎖状、分岐状又は環状のアルキレン基又はアルキリジン基で、フッ素原子を有していてもよく、R0又はR1と結合して環を形成してもよい。R0又はR1とR2が結合してこれらが結合する炭素原子と共に環を形成する場合、R0は炭素数1〜8のアルキレン基又はR1は炭素数1〜6の直鎖状又は分岐状のアルキレン基、R2は炭素数1〜10の直鎖状又は分岐状のアルキリジン基を示す。又は、R1とR2が結合してこれらが結合している炭素原子と共に環を形成していてもよく、環を形成する場合、R1は炭素数1〜6の直鎖状又は分岐状のアルキレン基、R2は炭素数1〜10の直鎖状又は分岐状のアルキリジン基を示す。R3、R4は水素原子、フッ素原子、メチル基又はトリフルオロメチル基である。Xは−O−、−C(=O)−O−又は−C(=O)−O−R5−C(=O)−O−である。R5は炭素数1〜10の直鎖状、分岐状又は環状のアルキレン基である。0≦a≦1、0≦b≦1、0<a+b≦1の範囲である。)
A resist protective film material comprising a polymer compound having a repeating unit represented by the following general formula (2).
Figure 2007025634

(In the formula, R 0 is a hydrogen atom, a fluorine atom, an alkyl group or alkylene group having 1 to 8 carbon atoms, and R 1 is a linear or branched alkyl group or alkylene group having 1 to 6 carbon atoms. R 2 is a linear, branched or cyclic alkylene group or alkylidene group having 1 to 10 carbon atoms, which may have a fluorine atom, R 0 or R A ring may be formed by bonding to 1. When R 0 or R 1 and R 2 are bonded to form a ring together with the carbon atom to which these are bonded, R 0 is an alkylene group having 1 to 8 carbon atoms or R 1 represents a linear or branched alkylene group having 1 to 6 carbon atoms, and R 2 represents a linear or branched alkylidine group having 1 to 10 carbon atoms, or R 1 and R 2 are bonded to each other. May form a ring together with the carbon atom to which they are bonded, and when forming a ring, 1 is a linear or branched alkylene groups having 1 to 6 carbon atoms, R 2 is a straight or branched alkylidine group having 1 to 10 carbon atoms .R 3, R 4 is a hydrogen atom, a fluorine atom X is —O—, —C (═O) —O—, or —C (═O) —O—R 5 —C (═O) —O—. R 5 is a linear, branched or cyclic alkylene group having 1 to 10 carbon atoms in the range of 0 ≦ a ≦ 1, 0 ≦ b ≦ 1, 0 <a + b ≦ 1.
更に、高分子化合物が、カルボキシル基を有する繰り返し単位、一般式(2)で示される以外のフルオロアルコールを有する繰り返し単位、及びパーフルオロアルキル基を有する繰り返し単位から選ばれる1種又は2種以上の繰り返し単位を有する請求項2記載のレジスト保護膜材料。   Furthermore, the polymer compound is one or more selected from a repeating unit having a carboxyl group, a repeating unit having a fluoroalcohol other than that represented by the general formula (2), and a repeating unit having a perfluoroalkyl group. The resist protective film material of Claim 2 which has a repeating unit. 更に、上記高分子化合物を溶解する溶媒を含有する請求項1、2又は3記載のレジスト保護膜材料。   Furthermore, the resist protective film material of Claim 1, 2, or 3 containing the solvent which melt | dissolves the said high molecular compound. ウエハーに形成したフォトレジスト層上にレジスト上層膜材料による保護膜を形成し、露光を行った後、現像を行うリソグラフィーによるパターン形成方法において、上記レジスト上層膜材料として請求項1乃至4のいずれか1項記載のレジスト保護膜材料を用いることを特徴とするパターン形成方法。   5. A lithography pattern forming method in which a protective film made of a resist upper layer film material is formed on a photoresist layer formed on a wafer, exposed and then developed, and the resist upper layer film material is used as the resist upper layer film material. A pattern forming method comprising using the resist protective film material according to claim 1. ウエハーに形成したフォトレジスト層上にレジスト上層膜材料による保護膜を形成し、水中で露光を行った後、現像を行う液浸リソグラフィーによるパターン形成方法において、上記レジスト上層膜材料として請求項1乃至4のいずれか1項記載のレジスト保護膜材料を用いることを特徴とするパターン形成方法。   A pattern formation method by immersion lithography in which a protective film made of a resist upper layer film material is formed on a photoresist layer formed on a wafer, exposed in water, and then developed, wherein the resist upper layer film material is used as the resist upper layer film material. 5. A pattern forming method using the resist protective film material according to any one of 4 above. 液浸リソグラフィーが、180〜250nmの範囲の露光波長を用い、投影レンズとウエハーの間に水を挿入させたものである請求項6記載のパターン形成方法。   The pattern forming method according to claim 6, wherein the immersion lithography uses an exposure wavelength in the range of 180 to 250 nm and water is inserted between the projection lens and the wafer. 露光後に行う現像工程において、アルカリ現像液によりフォトレジスト層の現像とレジスト上層膜材料の保護膜の剥離とを同時に行う請求項6又は7記載のパターン形成方法。   8. The pattern forming method according to claim 6, wherein the development of the photoresist layer and the removal of the protective film of the resist upper layer film material are simultaneously performed with an alkali developer in the development step performed after the exposure.
JP2006117444A 2005-06-15 2006-04-21 Resist protective film material and pattern forming method Active JP4662062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006117444A JP4662062B2 (en) 2005-06-15 2006-04-21 Resist protective film material and pattern forming method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005174615 2005-06-15
JP2006117444A JP4662062B2 (en) 2005-06-15 2006-04-21 Resist protective film material and pattern forming method

Publications (2)

Publication Number Publication Date
JP2007025634A true JP2007025634A (en) 2007-02-01
JP4662062B2 JP4662062B2 (en) 2011-03-30

Family

ID=37786415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006117444A Active JP4662062B2 (en) 2005-06-15 2006-04-21 Resist protective film material and pattern forming method

Country Status (1)

Country Link
JP (1) JP4662062B2 (en)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297590A (en) * 2006-04-04 2007-11-15 Shin Etsu Chem Co Ltd Resist material and pattern formation method using the same
JP2008158149A (en) * 2006-12-22 2008-07-10 Daicel Chem Ind Ltd Resin composition for forming resist protective film, and method for forming pattern using the composition
JP2009031767A (en) * 2007-07-04 2009-02-12 Shin Etsu Chem Co Ltd Resist material, and pattern formation method
JP2009109751A (en) * 2007-10-30 2009-05-21 Tokyo Ohka Kogyo Co Ltd Negative resist composition and method of forming resist pattern
JP2009242287A (en) * 2008-03-31 2009-10-22 Sumitomo Chemical Co Ltd Fluorine-containing compound, and polymer having constitutional unit derived from the same
JP2009276363A (en) * 2008-05-12 2009-11-26 Shin Etsu Chem Co Ltd Resist material and pattern-forming method
JP2009301017A (en) * 2008-05-12 2009-12-24 Shin-Etsu Chemical Co Ltd Resist protective film material and patterning process
WO2010071029A1 (en) * 2008-12-15 2010-06-24 セントラル硝子株式会社 Polymerizable fluoromonomer, fluoropolymer, resist material, and method of pattern formation
US7771914B2 (en) 2006-10-17 2010-08-10 Shin-Etsu Chemical Co., Ltd. Resist composition and patterning process
WO2011145663A1 (en) * 2010-05-18 2011-11-24 Jsr株式会社 Composition for formation of overlay film for immersion exposure and method for formation of photo-resist pattern
EP2500775A2 (en) 2011-03-15 2012-09-19 Shin-Etsu Chemical Co., Ltd. Patterning process and composition for forming silicon-containing film usable therefor
US8440386B2 (en) 2010-03-24 2013-05-14 Shin-Etsu Chemical Co., Ltd. Patterning process, resist composition, and acetal compound
US8492078B2 (en) 2010-01-20 2013-07-23 Shin-Etsu Chemical Co., Ltd. Patterning process
US8691494B2 (en) 2011-04-28 2014-04-08 Shin-Etsu Chemical Co., Ltd. Patterning process
US8703408B2 (en) 2010-07-06 2014-04-22 Shin-Etsu Chemical Co., Ltd. Patterning process
US8722321B2 (en) 2011-04-22 2014-05-13 Shin-Etsu Chemical Co., Ltd. Patterning process
US8753805B2 (en) 2011-06-22 2014-06-17 Shin-Etsu Chemical Co., Ltd. Patterning process and resist composition
US8790866B2 (en) 2011-08-26 2014-07-29 Shin-Etsu Chemical Co., Ltd. Patterning process and resist composition
US8791290B2 (en) 2010-03-24 2014-07-29 Shin-Etsu Chemical Co., Ltd. Acetal compound, polymer, resist composition, and patterning process
US8822136B2 (en) 2011-10-27 2014-09-02 Shin-Etsu Chemical Co., Ltd. Patterning process and resist composition
US8828647B2 (en) 2011-05-30 2014-09-09 Shin-Etsu Chemical Co., Ltd. Patterning process and resist composition
US8865390B2 (en) 2011-09-16 2014-10-21 Shin-Etsu Chemical Co., Ltd. Patterning process and resist composition
US8877424B2 (en) 2012-02-10 2014-11-04 Shin-Etsu Chemical Co., Ltd. Monomer, polymer, resist composition, and patterning process
US8999630B2 (en) 2011-07-14 2015-04-07 Shin-Etsu Chemical Co., Ltd. Patterning process and resist composition
US9017931B2 (en) 2012-08-20 2015-04-28 Shin-Etsu Chemical Co., Ltd. Patterning process and resist composition
US9046772B2 (en) 2013-02-22 2015-06-02 Shin-Etsu Chemical Co., Ltd. Monomer, polymer, resist composition, and patterning process
US9057949B2 (en) 2011-12-15 2015-06-16 Shin-Etsu Chemical Co., Ltd. Patterning process, resist composition, polymer, and polymerizable ester compound
US9081290B2 (en) 2012-06-19 2015-07-14 Shin-Etsu Chemical Co., Ltd. Patterning process and resist composition
US9086624B2 (en) 2012-08-10 2015-07-21 Shin-Etsu Chemical Co., Ltd. Monomer, polymer, resist composition, and patterning process
US9091933B2 (en) 2011-11-17 2015-07-28 Shin-Etsu Chemical Co., Ltd. Negative pattern forming process
US9122152B2 (en) 2012-07-09 2015-09-01 Shin-Etsu Chemicals Co., Ltd. Patterning process and resist composition
US9164384B2 (en) 2013-04-26 2015-10-20 Shin-Etsu Chemical Co., Ltd. Patterning process and resist composition
US9182668B2 (en) 2013-04-10 2015-11-10 Shin-Etsu Chemical Co., Ltd. Patterning process, resist composition, polymer, and monomer
EP2950143A1 (en) 2014-05-28 2015-12-02 Shin-Etsu Chemical Co., Ltd. Resist composition and patterning process
US9213235B2 (en) 2013-01-17 2015-12-15 Shin-Etsu Chemical Co., Ltd. Patterning process, resist composition, polymer, and monomer
US9235122B2 (en) 2013-01-15 2016-01-12 Shin-Etsu Chemical Co., Ltd. Monomer, polymer, resist composition, and patterning process
US9256127B2 (en) 2014-05-09 2016-02-09 Shin-Etsu Chemical Co., Ltd. Monomer, polymer, resist composition, and patterning process
EP2993520A1 (en) 2014-09-04 2016-03-09 Shin-Etsu Chemical Co., Ltd. Resist composition and patterning process
US9316909B2 (en) 2010-07-08 2016-04-19 Shin-Etsu Chemical Co., Ltd. Patterning process
EP3088955A2 (en) 2015-04-28 2016-11-02 Shin-Etsu Chemical Co., Ltd. Resist composition and patterning process
US9519213B2 (en) 2013-03-05 2016-12-13 Shin-Etsu Chemical Co., Ltd. Patterning process and resist composition
US9551932B2 (en) 2013-01-28 2017-01-24 Shin-Etsu Chemical Co., Ltd. Patterning process and resist composition
US9709890B2 (en) 2014-09-18 2017-07-18 Shin-Etsu Chemical Co., Ltd. Resist composition and patterning process
WO2018012283A1 (en) * 2016-07-13 2018-01-18 旭硝子株式会社 Method for producing coating composition and method for producing photoresist laminate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006133716A (en) * 2004-02-20 2006-05-25 Daikin Ind Ltd Resist laminate used for immersion lithography
JP2007024959A (en) * 2005-07-12 2007-02-01 Tokyo Ohka Kogyo Co Ltd Material for forming protective film, and method for forming photoresist pattern by using the same
JP2007249154A (en) * 2006-02-14 2007-09-27 Daikin Ind Ltd Method for forming resist laminate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006133716A (en) * 2004-02-20 2006-05-25 Daikin Ind Ltd Resist laminate used for immersion lithography
JP2007024959A (en) * 2005-07-12 2007-02-01 Tokyo Ohka Kogyo Co Ltd Material for forming protective film, and method for forming photoresist pattern by using the same
JP2007249154A (en) * 2006-02-14 2007-09-27 Daikin Ind Ltd Method for forming resist laminate

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007297590A (en) * 2006-04-04 2007-11-15 Shin Etsu Chem Co Ltd Resist material and pattern formation method using the same
US7771914B2 (en) 2006-10-17 2010-08-10 Shin-Etsu Chemical Co., Ltd. Resist composition and patterning process
JP2008158149A (en) * 2006-12-22 2008-07-10 Daicel Chem Ind Ltd Resin composition for forming resist protective film, and method for forming pattern using the composition
JP2009031767A (en) * 2007-07-04 2009-02-12 Shin Etsu Chem Co Ltd Resist material, and pattern formation method
JP2009109751A (en) * 2007-10-30 2009-05-21 Tokyo Ohka Kogyo Co Ltd Negative resist composition and method of forming resist pattern
JP2009242287A (en) * 2008-03-31 2009-10-22 Sumitomo Chemical Co Ltd Fluorine-containing compound, and polymer having constitutional unit derived from the same
JP4650644B2 (en) * 2008-05-12 2011-03-16 信越化学工業株式会社 Resist material and pattern forming method
JP2009276363A (en) * 2008-05-12 2009-11-26 Shin Etsu Chem Co Ltd Resist material and pattern-forming method
JP2009301017A (en) * 2008-05-12 2009-12-24 Shin-Etsu Chemical Co Ltd Resist protective film material and patterning process
KR101343962B1 (en) 2008-12-15 2013-12-20 샌트랄 글래스 컴퍼니 리미티드 Polymerizable fluoromonomer, fluoropolymer, resist material, and method of pattern formation and semiconductor device
US9678426B2 (en) 2008-12-15 2017-06-13 Central Glass Company, Limited Polymerizable fluoromonomer, fluoropolymer, resist material, and method of pattern formation
WO2010071029A1 (en) * 2008-12-15 2010-06-24 セントラル硝子株式会社 Polymerizable fluoromonomer, fluoropolymer, resist material, and method of pattern formation
US8716385B2 (en) 2008-12-15 2014-05-06 Central Glass Company, Limited Polymerizable fluoromonomer, fluoropolymer, resist material, and method of pattern formation
US9678425B2 (en) 2008-12-15 2017-06-13 Central Glass Company, Limited Polymerizable fluoromonomer, fluoropolymer, resist material, and method of pattern formation
US8492078B2 (en) 2010-01-20 2013-07-23 Shin-Etsu Chemical Co., Ltd. Patterning process
US8791290B2 (en) 2010-03-24 2014-07-29 Shin-Etsu Chemical Co., Ltd. Acetal compound, polymer, resist composition, and patterning process
US8440386B2 (en) 2010-03-24 2013-05-14 Shin-Etsu Chemical Co., Ltd. Patterning process, resist composition, and acetal compound
JP5725020B2 (en) * 2010-05-18 2015-05-27 Jsr株式会社 Composition for forming immersion upper layer film and method for forming photoresist pattern
WO2011145663A1 (en) * 2010-05-18 2011-11-24 Jsr株式会社 Composition for formation of overlay film for immersion exposure and method for formation of photo-resist pattern
US8703408B2 (en) 2010-07-06 2014-04-22 Shin-Etsu Chemical Co., Ltd. Patterning process
US9316909B2 (en) 2010-07-08 2016-04-19 Shin-Etsu Chemical Co., Ltd. Patterning process
US8951711B2 (en) 2011-03-15 2015-02-10 Shin-Etsu Chemical Co., Ltd. Patterning process and composition for forming silicon-containing film usable therefor
EP2500775A2 (en) 2011-03-15 2012-09-19 Shin-Etsu Chemical Co., Ltd. Patterning process and composition for forming silicon-containing film usable therefor
US8835102B2 (en) 2011-03-15 2014-09-16 Shin-Etsu Chemical Co., Ltd. Patterning process and composition for forming silicon-containing film usable therefor
US8722321B2 (en) 2011-04-22 2014-05-13 Shin-Etsu Chemical Co., Ltd. Patterning process
US8691494B2 (en) 2011-04-28 2014-04-08 Shin-Etsu Chemical Co., Ltd. Patterning process
US8828647B2 (en) 2011-05-30 2014-09-09 Shin-Etsu Chemical Co., Ltd. Patterning process and resist composition
US8753805B2 (en) 2011-06-22 2014-06-17 Shin-Etsu Chemical Co., Ltd. Patterning process and resist composition
US9104105B2 (en) 2011-06-22 2015-08-11 Shin-Etsu Chemical Co., Ltd. Patterning process and resist composition
US8999630B2 (en) 2011-07-14 2015-04-07 Shin-Etsu Chemical Co., Ltd. Patterning process and resist composition
US8790866B2 (en) 2011-08-26 2014-07-29 Shin-Etsu Chemical Co., Ltd. Patterning process and resist composition
US8865390B2 (en) 2011-09-16 2014-10-21 Shin-Etsu Chemical Co., Ltd. Patterning process and resist composition
US8822136B2 (en) 2011-10-27 2014-09-02 Shin-Etsu Chemical Co., Ltd. Patterning process and resist composition
US9091933B2 (en) 2011-11-17 2015-07-28 Shin-Etsu Chemical Co., Ltd. Negative pattern forming process
US9057949B2 (en) 2011-12-15 2015-06-16 Shin-Etsu Chemical Co., Ltd. Patterning process, resist composition, polymer, and polymerizable ester compound
US8877424B2 (en) 2012-02-10 2014-11-04 Shin-Etsu Chemical Co., Ltd. Monomer, polymer, resist composition, and patterning process
US9081290B2 (en) 2012-06-19 2015-07-14 Shin-Etsu Chemical Co., Ltd. Patterning process and resist composition
US9122152B2 (en) 2012-07-09 2015-09-01 Shin-Etsu Chemicals Co., Ltd. Patterning process and resist composition
US9086624B2 (en) 2012-08-10 2015-07-21 Shin-Etsu Chemical Co., Ltd. Monomer, polymer, resist composition, and patterning process
US9017931B2 (en) 2012-08-20 2015-04-28 Shin-Etsu Chemical Co., Ltd. Patterning process and resist composition
US9235122B2 (en) 2013-01-15 2016-01-12 Shin-Etsu Chemical Co., Ltd. Monomer, polymer, resist composition, and patterning process
US9213235B2 (en) 2013-01-17 2015-12-15 Shin-Etsu Chemical Co., Ltd. Patterning process, resist composition, polymer, and monomer
US9551932B2 (en) 2013-01-28 2017-01-24 Shin-Etsu Chemical Co., Ltd. Patterning process and resist composition
US9046772B2 (en) 2013-02-22 2015-06-02 Shin-Etsu Chemical Co., Ltd. Monomer, polymer, resist composition, and patterning process
US9519213B2 (en) 2013-03-05 2016-12-13 Shin-Etsu Chemical Co., Ltd. Patterning process and resist composition
US9182668B2 (en) 2013-04-10 2015-11-10 Shin-Etsu Chemical Co., Ltd. Patterning process, resist composition, polymer, and monomer
US9164384B2 (en) 2013-04-26 2015-10-20 Shin-Etsu Chemical Co., Ltd. Patterning process and resist composition
US9256127B2 (en) 2014-05-09 2016-02-09 Shin-Etsu Chemical Co., Ltd. Monomer, polymer, resist composition, and patterning process
EP2950143A1 (en) 2014-05-28 2015-12-02 Shin-Etsu Chemical Co., Ltd. Resist composition and patterning process
EP2993520A1 (en) 2014-09-04 2016-03-09 Shin-Etsu Chemical Co., Ltd. Resist composition and patterning process
US10131730B2 (en) 2014-09-04 2018-11-20 Shin-Etsu Chemical Co., Ltd. Resist composition and patterning process
US9709890B2 (en) 2014-09-18 2017-07-18 Shin-Etsu Chemical Co., Ltd. Resist composition and patterning process
EP3088955A2 (en) 2015-04-28 2016-11-02 Shin-Etsu Chemical Co., Ltd. Resist composition and patterning process
WO2018012283A1 (en) * 2016-07-13 2018-01-18 旭硝子株式会社 Method for producing coating composition and method for producing photoresist laminate
JPWO2018012283A1 (en) * 2016-07-13 2019-05-16 Agc株式会社 METHOD FOR PRODUCING COATING COMPOSITION AND METHOD FOR PRODUCING PHOTORESIST LAMINATE

Also Published As

Publication number Publication date
JP4662062B2 (en) 2011-03-30

Similar Documents

Publication Publication Date Title
JP4662062B2 (en) Resist protective film material and pattern forming method
JP4763511B2 (en) Resist protective film material and pattern forming method
JP4697406B2 (en) Polymer compound, resist protective film material and pattern forming method
JP4355944B2 (en) Pattern forming method and resist upper layer film material used therefor
JP4684139B2 (en) Resist protective film material and pattern forming method
KR101226410B1 (en) Resist Protective Coating Material and Patterning Process
JP4771083B2 (en) Resist protective film material and pattern forming method
JP4861237B2 (en) Resist protective film material and pattern forming method
JP5247035B2 (en) Resist protective film material and pattern forming method
JP4571598B2 (en) Resist protective film material and pattern forming method
JP4482760B2 (en) Resist protective film material and pattern forming method
TWI383996B (en) Polymer, resist protective coating material, and patterning process
KR101118160B1 (en) Resist protective coating material and patterning process
JP4553146B2 (en) Resist protective film material and pattern forming method
JP4761065B2 (en) Resist protective film material and pattern forming method
JP4718348B2 (en) Resist protective film material and pattern forming method
JP4687893B2 (en) Resist protective film material and pattern forming method
JP4424492B2 (en) Resist protective film material and pattern forming method
JP4749232B2 (en) Resist upper layer antireflection film material and pattern forming method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101221

R150 Certificate of patent or registration of utility model

Ref document number: 4662062

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3