JP2007024629A - IMAGING PLATE FOR gamma-RAY SENSITIVITY DESENSITIZED NEUTRON AND PARTICLE BEAM - Google Patents

IMAGING PLATE FOR gamma-RAY SENSITIVITY DESENSITIZED NEUTRON AND PARTICLE BEAM Download PDF

Info

Publication number
JP2007024629A
JP2007024629A JP2005205747A JP2005205747A JP2007024629A JP 2007024629 A JP2007024629 A JP 2007024629A JP 2005205747 A JP2005205747 A JP 2005205747A JP 2005205747 A JP2005205747 A JP 2005205747A JP 2007024629 A JP2007024629 A JP 2007024629A
Authority
JP
Japan
Prior art keywords
gamma
powder
imaging plate
ray
neutron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005205747A
Other languages
Japanese (ja)
Other versions
JP4803516B2 (en
Inventor
Masaki Katagiri
政樹 片桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Original Assignee
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Agency filed Critical Japan Atomic Energy Agency
Priority to JP2005205747A priority Critical patent/JP4803516B2/en
Publication of JP2007024629A publication Critical patent/JP2007024629A/en
Application granted granted Critical
Publication of JP4803516B2 publication Critical patent/JP4803516B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Luminescent Compositions (AREA)
  • Conversion Of X-Rays Into Visible Images (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a neutron imaging plate with a low γ-ray sensitivity. <P>SOLUTION: A powder obtained by uniformly mixing a fluorescent powder of BaFBr:Eu<SP>2+</SP>and a boric acid (H<SB>3</SB><SP>10</SP>BO<SB>3</SB>) powder with a<SP>10</SP>B isotope composition ratio of 90% is applied on a metal substrate and sintered. Defects are thermally diffused and introduced to the surface of the fluorescent powder of BaFBr:Eu<SP>2+</SP>to obtain a surface sensitive stimulable phosphor. The inhibiting capacity of an α particle and an<SP>7</SP>Li particle emitted when<SP>10</SP>B capatures a neutron is greater than the inhibiting capacity of an electron emitted by the γ beam functioning as a back ground is used to lower the sensitivity to the γ beam. Thus, the imaging plate with desensitized γ-beam sensitivity is obtained. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明の低ガンマ線感度化中性子イメージングプレートは、原子炉から発生する中性子を用いた中性子散乱実験装置用の高感度・高空間分解能中性子イメージ検出器あるいは中性子ラジオグラフィ用の高感度・高空間分解能中性子イメージ検出器として使用される。また、原子炉施設内での中性子線量計測あるいは中性子分布モニタにも使用できる。さらに、原子炉で発生する中性子ビームあるいは大強度陽子加速器を用いて発生するパルス中性子ビームのプロファイルモニタとして使用される。   The low-gamma-sensitivity neutron imaging plate of the present invention is a high-sensitivity, high-spatial-resolution neutron image detector for high-sensitivity, high-spatial-resolution neutron image detectors for neutron scattering experiments using neutrons generated from nuclear reactors. Used as an image detector. It can also be used for neutron dose measurement or neutron distribution monitoring in the reactor facility. Furthermore, it is used as a profile monitor for a neutron beam generated in a nuclear reactor or a pulsed neutron beam generated using a high-intensity proton accelerator.

一方、低ガンマ線感度化粒子線イメージングプレートについては、陽子ビームあるいは重粒子線ビームなどのビームプロファイルモニタとして使用される。また、α線線量モニタあるいはα線イメージ検出器としても使用される。   On the other hand, the low-gamma-ray-sensitized particle beam imaging plate is used as a beam profile monitor such as a proton beam or a heavy particle beam. It is also used as an α-ray dose monitor or an α-ray image detector.

中性子用イメージングプレートとしては、中性子捕獲断面積の大きなGdを含むGdを中性子コンバータとして用い、輝尽性蛍光体としてBaFBr:Eu2+を用いた中性子イメージングプレートが富士写真フィルムよりBAS−NDという商品名で市販されてきた(非特許文献1)。このイメージングプレートは、図9の従来例に示すように、輝尽性蛍光体BaFBr:Eu2+粉末と中性子コンバータGd粉末を接着剤と混ぜて基板に塗布する事により製作されてきた。しかし、この市販の中性子イメージングプレートでは、中性子コンバータとしてGdを用いているため、中性子捕獲断面積は大きいものの(n,e)反応により放出される2次電子が約80keVと小さくかつGd自体の原子番号Zが64と大きい。このため、中性子イメージを検出する上で非常に大きな性能指標であるガンマ線感度特性(γ線バッグラウンドに対する影響度)が悪いとう欠点があった。 As a neutron imaging plate, Gd 2 O 3 containing Gd having a large neutron capture cross section is used as a neutron converter, and a neutron imaging plate using BaFBr: Eu 2+ as a stimulable phosphor is BAS-ND from Fuji Photo Film. (Non-Patent Document 1). As shown in the conventional example of FIG. 9, this imaging plate has been manufactured by mixing a stimulable phosphor BaFBr: Eu 2+ powder and a neutron converter Gd 2 O 3 powder with an adhesive and applying the mixture to a substrate. However, since this commercially available neutron imaging plate uses Gd 2 O 3 as a neutron converter, although the neutron capture cross section is large, secondary electrons emitted by the (n, e) reaction are as small as about 80 keV and Gd Its own atomic number Z is as large as 64. For this reason, there is a drawback that the gamma-ray sensitivity characteristic (influence on the γ-ray bag round), which is a very large performance index in detecting a neutron image, is poor.

このため、中性子コンバータとして軽い元素でかつ中性子の捕獲反応により大きなエネルギーを放出する元素を用いる必要がある。この条件に合う元素として10B(ホウ素)がある。しかし、10Bを構成元素としたSrBPO:Eu2+などの輝尽性蛍光体が色々開発されてきたが(非特許文献2)、輝尽性蛍光体内での10Bの構成割合が低いことと輝尽性発光特性もBaFX:Eu2+と比較して良くないことから市販されてはいない。 For this reason, it is necessary to use a light element as a neutron converter and an element that emits large energy by a neutron capture reaction. There is 10 B (boron) as an element meeting this condition. However, various stimulable phosphors such as SrBPO 5 : Eu 2+ having 10 B as a constituent element have been developed (Non-patent Document 2), but the composition ratio of 10 B in the stimulable phosphor is low. In addition, the photostimulable luminescence properties are not commercially available because they are not as good as BaFX: Eu 2+ .

一方、低ガンマ線化を図るため、図10に示すように、無水ホウ酸(B)が低温度で溶融しガラス化することを利用して、中性子コンバータとして用いると同時に接着剤として利用するガラス状化イメージングプレートが開発された(特許文献1)。しかし、従来に比較し多少ガンマ線感度は低くなるものの十分な値ではなかった。 On the other hand, as shown in FIG. 10, in order to reduce gamma rays, boric anhydride (B 2 O 3 ) is melted and vitrified at a low temperature to be used as a neutron converter and at the same time as an adhesive. A vitrified imaging plate has been developed (Patent Document 1). However, although the gamma ray sensitivity is somewhat lower than before, it is not a sufficient value.

また、低ガンマ線感度化を目指した粒子線イメージングプレートについては、開発がほとんど行われていない。
N.Niimura et al.: An imaging plate neutron detector,Nucl.Instrum & Methods A349, 521(1994)及び原子力工業,41[6],54(1995) K. Sakasai他、A SrBPO5 : Eu2+storage phosphor for neutron imaging,Apl.phys.A74,[Suppl.], S1589-S1591 (2002) 特願平2005-53919号
In addition, little development has been done on particle beam imaging plates aimed at reducing the sensitivity of gamma rays.
N. Niimura et al .: An imaging plate neutron detector, Nucl. Instrum & Methods A349, 521 (1994) and Nuclear Industry, 41 [6], 54 (1995) K. Sakasai et al., A SrBPO5: Eu2 + storage phosphor for neutron imaging, Apl.phys.A74, [Suppl.], S1589-S1591 (2002) Japanese Patent Application No. 2005-53919

上記背景技術に記載されるように、上記市販されてきたイメージングプレートには中性子イメージを検出する上で非常に大きな性能指標であるガンマ線感度特性が悪いとう欠点があり、また、これを解決するため、10Bを構成元素としたSrBPO:Eu2+などの輝尽性蛍光体が開発されてきたが、未だ市販されておらず、更にまた、無水ホウ酸(B)の低温度溶融化特性を利用して、中性子コンバータとして用いると同時に接着剤として利用するガラス状化イメージングプレートが開発されたが、未だ十分なものではない等の問題点が残存していた。そこで、本発明はこれらの問題点を解決するために研究の結果発明されたものである。 As described in the background art above, the commercially available imaging plates have a drawback that the gamma ray sensitivity characteristic, which is a very large performance index for detecting a neutron image, is poor, and in order to solve this Stimulable phosphors such as SrBPO 5 : Eu 2+ having 10 B as a constituent element have been developed, but are not yet commercially available, and furthermore, low temperature melting of boric anhydride (B 2 O 3 ) A vitrified imaging plate has been developed that uses it as a neutron converter and at the same time as an adhesive, but still has problems such as not being sufficient. Therefore, the present invention has been invented as a result of research in order to solve these problems.

本発明においては、蛍光体粉末に中性子コンバータである10Bを含むホウ酸(H 10BO)粉末などを均一に混合した後、適当な温度範囲内で一定時間焼結すると、蛍光体粉末の表面に熱拡散により欠陥が生じ、その表面部分が輝尽性蛍光体となることを確認した。 In the present invention, the phosphor powder is uniformly mixed with boric acid (H 3 10 BO 3 ) powder containing 10 B, which is a neutron converter, and then sintered for a certain time within an appropriate temperature range. It was confirmed that defects were generated by thermal diffusion on the surface of the film and that the surface portion became a stimulable phosphor.

即ち、本発明においては、 BaFX:Eu2+(X:Br,ClあるいはBrとClの混合)蛍光体粉末と、10B同位体の組成比が80%以上のホウ酸(H 10BO)粉末とを、均一に混合した粉末を金属基板に塗布し、500℃以上700℃以下の温度範囲内で一定時間焼結し、BaFX:Eu2+(X:Br,ClあるいはBrとClの混合)蛍光体粉末の表面に欠陥を熱拡散により導入し、表面有感輝尽性蛍光体とした低ガンマ線感度化中性子イメージングプレートである。 That is, in the present invention, BaFX: Eu 2+ (X: Br, Cl or a mixture of Br and Cl) phosphor powder and boric acid (H 3 10 BO 3 ) having a composition ratio of 10 B isotope of 80% or more. Powder uniformly mixed with powder is applied to a metal substrate and sintered for a certain time within a temperature range of 500 ° C. to 700 ° C., BaFX: Eu 2+ (X: Br, Cl or a mixture of Br and Cl) This is a low gamma-ray-sensitized neutron imaging plate in which defects are introduced into the surface of the phosphor powder by thermal diffusion to form a surface-sensitive photostimulable phosphor.

本発明において、この表面有感輝尽性蛍光体を用いた場合、中性子コンバータである10Bが中性子を捕獲した際放出するα粒子とLi粒子の阻止能が、バックグラウンドとなるガンマ線により発生する電子の阻止能より非常に大きいため、ガンマ線に対する感度を大幅に低下させることが可能となる。また、表面の有感な輝尽性蛍光体部分に中性子コンバータである10Bが入り込むため、損失なくα粒子とLi粒子のエネルギーを輝尽性蛍光体部分が吸収することができるため、低ガンマ線感度化中性子イメージングプレートが実現することができる。 In the present invention, when this surface-sensitive photostimulable phosphor is used, the blocking ability of α particles and 7 Li particles emitted when 10 B, which is a neutron converter, captures neutrons is generated by the background gamma rays. Since it is much larger than the stopping power of electrons, it is possible to greatly reduce the sensitivity to gamma rays. Further, since 10 B which is a neutron converter enters the sensitive phosphor portion on the surface, the stimulable phosphor portion can absorb the energy of α particles and 7 Li particles without loss. A gamma-ray sensitive neutron imaging plate can be realized.

(実施例1)
実施例1として、BaFBr:Eu2+蛍光体粉末と、10B同位体の組成比が90%のホウ酸(H 10BO)粉末とを、均一に混合した粉末を金属基板に塗布した後、焼結し、BaFBr:Eu2+蛍光体粉末の表面に欠陥を熱拡散により導入し、表面有感輝尽性蛍光体とした低ガンマ線感度化中性子イメージングプレートについて説明する。
(Example 1)
As Example 1, after applying a uniformly mixed powder of BaFBr: Eu 2+ phosphor powder and boric acid (H 3 10 BO 3 ) powder having a 10 B isotope composition ratio of 90% to a metal substrate A low-gamma-ray-sensitized neutron imaging plate will be described in which defects are introduced into the surface of the BaFBr: Eu 2+ phosphor powder by thermal diffusion to form a surface-sensitive photostimulable phosphor.

図1の製作方法に示すように、本実施例においては、中性子イメージングプレートの検出素材である輝尽性蛍光体をほとんど輝尽性蛍光を示さないBaFBr:Eu2+をベースに熱拡散処理することによりBaFBr:Eu2+の表面に形成することを特長としている。従来の輝尽性蛍光体の構造と本発明のこの表面有感輝尽性蛍光体の構造とを比較した図を図2に示す。表面有感輝尽性蛍光体を用いた場合、中性子コンバータである10Bが中性子を捕獲した際放出するα粒子とLi粒子の阻止能が、バックグラウンドとなるガンマ線により発生する電子の阻止能より大きくなるため、ガンマ線に対する感度を大幅に低下させることできる。また、表面の有感な輝尽性蛍光体部分に中性子コンバータである10Bが一部入り込む構造となるため、損失を少なくα粒子とLi粒子のエネルギー(全部で約2.3MeV)を輝尽性蛍光体部分で吸収することができるようにし、中性子イメージングプレートの低ガンマ線感度化を実現する。ホウ酸(H 10BO)粉末は焼結されて10となる As shown in the fabrication method of FIG. 1, in this embodiment, the photostimulable phosphor, which is a detection material of the neutron imaging plate, is subjected to a thermal diffusion treatment based on BaFBr: Eu 2+ that hardly exhibits stimulable fluorescence. It is characterized by being formed on the surface of BaFBr: Eu 2+ . FIG. 2 shows a comparison between the structure of a conventional photostimulable phosphor and the structure of the surface-sensitive photostimulable phosphor of the present invention. When a surface-sensitive photostimulable phosphor is used, the stopping power of α particles and 7 Li particles emitted when 10 B, which is a neutron converter, captures neutrons is the stopping power of electrons generated by gamma rays as a background. Since it becomes larger, the sensitivity to gamma rays can be greatly reduced. Moreover, since 10 B, which is a neutron converter, partially enters the sensitive phosphor portion on the surface, the energy of α particles and 7 Li particles (approximately 2.3 MeV in total) is reduced with little loss. It is possible to absorb the stimulable phosphor portion, and to realize low gamma ray sensitivity of the neutron imaging plate. Boric acid (H 3 10 BO 3 ) powder is sintered to 10 B 2 O 3 .

イメージング化について説明すると、中性子コンバータとしての役割を有する10B同位体から放出された粒子線(α線とLi粒子)を表面有感輝尽性蛍光体であるBaFBr:Eu2+の表面部分に潜像として蓄積する。蓄積された潜像は、中性子の照射後に励起レーザー光を用いて、スキャンすることにより中性子を起因とする粒子線のイメージングプレート内部への蓄積量を求め、最終的に中性子イメージを検出する。励起波長(635nm)と輝尽性蛍光波長(400nm)は市販のBASシリーズあるいはBAS−NDシリーズと同じなので、実際には富士写真フィルムが市販しているイメージングプレート読み取り装置BAS−1800により読み取ることができる。 The imaging will be described. The particle beam (α ray and 7 Li particle) emitted from 10 B isotope which has a role as a neutron converter is applied to the surface portion of the surface sensitive photostimulable phosphor BaFBr: Eu 2+. Accumulate as a latent image. The accumulated latent image is scanned with excitation laser light after neutron irradiation to obtain an accumulation amount of particle beams caused by neutrons in the imaging plate, and finally a neutron image is detected. Since the excitation wavelength (635 nm) and the stimulable fluorescence wavelength (400 nm) are the same as those of the commercially available BAS series or BAS-ND series, it can actually be read by an imaging plate reader BAS-1800 commercially available from Fuji Photo Film. it can.

本実施例では、蛍光体粉末として日亜化学製X線検出用蛍光体BaFBr:Eu2+を用いた。この蛍光体の輝尽性蛍光特性は、市販のBAS−MSイメージングプレートに使用されている輝尽性蛍光特性の100分の1以下であった。また、10B同位体の組成比が90%のホウ酸(H 10BO)粉末についてはステラケミファ製を用いた。750mgのX線検出用蛍光体BaFBr:Eu2+粉末と500mgのホウ酸(H 10BO)粉末を混合し5cmx5cmのサイズのアルミニウム基板に塗布した。塗布した後、電気炉において600℃で焼結を行った。熱処理拡散の効果を調べるために、焼結時間を30分、1時間、1時間30分、2時間、3時間、4時間、8時間及び10時間の8種類について行った。焼結後、まず、熱処理が及ぼす蛍光スペクトルへの影響を評価した。評価用の放射線線源としてはAm?241から放出される5.4MeVのα線を用いた。中性子捕獲反応によって放出される粒子がα線とLiであることからほぼこれらの粒子線と同じ効果が得られる。α線照射により発生する即発蛍光のスペクトルを日立製分光蛍光光度計F?2500を用いて測定した。30分焼結の場合と4時間の場合を比較した結果を図3に示す。蛍光スペクトルの形状のほとんど変化がなく、輝尽性蛍光量は約85%となった。この結果、長時間の熱拡散処理でもほとんど蛍光体としての特性が劣化しないことがわかった。 In this example, Nichia X-ray detection phosphor BaFBr: Eu 2+ was used as the phosphor powder. The stimulable fluorescence characteristic of this phosphor was 1/100 or less of the stimulable fluorescence characteristic used in the commercially available BAS-MS imaging plate. Further, the composition ratio of 10 B isotope 90% of boric acid (H 3 10 BO 3) powder was used made by Stella Chemifa for. 750 mg of X-ray detection phosphor BaFBr: Eu 2+ powder and 500 mg of boric acid (H 3 10 BO 3 ) powder were mixed and applied to an aluminum substrate having a size of 5 cm × 5 cm. After coating, sintering was performed at 600 ° C. in an electric furnace. In order to investigate the effect of the heat treatment diffusion, the sintering time was 30 minutes, 1 hour, 1 hour 30 minutes, 2 hours, 3 hours, 4 hours, 8 hours and 10 hours. After sintering, first, the influence of the heat treatment on the fluorescence spectrum was evaluated. As a radiation source for evaluation, α-ray of 5.4 MeV emitted from Am? 241 was used. Since the particles emitted by the neutron capture reaction are α rays and 7 Li, almost the same effect as these particle rays can be obtained. The spectrum of prompt fluorescence generated by α-ray irradiation was measured using Hitachi spectrofluorometer F-2500. The result of comparing the case of 30 minutes sintering and the case of 4 hours is shown in FIG. There was almost no change in the shape of the fluorescence spectrum, and the amount of photostimulable fluorescence was about 85%. As a result, it has been found that the characteristics as a phosphor hardly deteriorate even after a long-time thermal diffusion treatment.

次に、それぞれの焼結試料について、図4に示す方法により冷中性子、60keVガンマ線、Co60ガンマ線(約1200keVガンマ線)に対する感度測定試験を行った。イメージの読み取りには富士写真フィルムが市販しているイメージングプレート読み取り装置BAS−1800を用いた。試験結果を図5に示す。横軸が焼結時間であり、左側の縦軸は従来から使用されているBAS−ND中性子イメージングプレートに対する相対検出効率である。焼結時間の増加と共に、冷中性子に対する感度が増加することが確認できたことから、焼結温度を一定にし、焼結時間を変えることにより、表面有感輝尽性蛍光体の表面有感層の厚さが変化することを確認できた。特に、10時間の焼結では67%の相対中性子検出効率が得られた。一方、右側縦軸は従来から使用されているBAS−ND中性子イメージングプレートに対する実効的なガンマ線に対する検出効率(中性子検出効率で規格化して補正)である。60keVガンマ線については、中性子に対する検出効率の変化とほぼ同等の変化を示すことが確認できた。3時間までの焼成時間では2%であり、最大の中性子検出効率が得られる10時間でも7%の実効ガンマ線感度であった。中性子と同じような蛍光を示す理由は、ガンマ線エネルギーが低い場合、電子の阻止能も見かけ上高くなることが原因と考えられる。一方、Co60ガンマ線(約1200keVガンマ線)に対する感度は焼結時間にはあまり影響されずほぼ一定の1%から2%であることがわかった。この結果、中性子イメージングプレートを使う上で最大の問題である高エネルギーのガンマ線に対する感度がBAS−ND中性子イメージングプレートに比較して約50から100倍低下させることができることを確認できた。   Next, each of the sintered samples was subjected to a sensitivity measurement test for cold neutrons, 60 keV gamma rays, and Co60 gamma rays (about 1200 keV gamma rays) by the method shown in FIG. For reading the image, an imaging plate reader BAS-1800 commercially available from Fuji Photo Film was used. The test results are shown in FIG. The horizontal axis represents the sintering time, and the left vertical axis represents the relative detection efficiency with respect to the BAS-ND neutron imaging plate conventionally used. Since it was confirmed that the sensitivity to cold neutrons increased with increasing sintering time, the surface sensitive layer of the surface sensitive photostimulable phosphor could be obtained by changing the sintering time at a constant sintering temperature. It was confirmed that the thickness of the material changed. In particular, 67% relative neutron detection efficiency was obtained after 10 hours of sintering. On the other hand, the vertical axis on the right side shows the effective gamma ray detection efficiency (corrected by normalization with the neutron detection efficiency) for the BAS-ND neutron imaging plate used conventionally. About 60 keV gamma rays, it has confirmed that it showed a change substantially equivalent to the change of the detection efficiency with respect to a neutron. The firing time up to 3 hours was 2%, and the effective gamma ray sensitivity was 7% even at 10 hours when the maximum neutron detection efficiency was obtained. The reason for showing fluorescence similar to that of neutrons is considered to be due to the apparent increase in electron stopping power when gamma ray energy is low. On the other hand, it was found that the sensitivity to Co60 gamma rays (about 1200 keV gamma rays) was almost constant 1% to 2% without much influence on the sintering time. As a result, it was confirmed that the sensitivity to high energy gamma rays, which is the biggest problem in using the neutron imaging plate, can be reduced by about 50 to 100 times compared to the BAS-ND neutron imaging plate.

また、蛍光体粉末としてBaFCl:Eu2+についても上記実施例と同じ製作方法で低ガンマ線感度化中性子イメージングプレートを製作した。蛍光体粉末として日亜化学製X線検出用蛍光体BaFCl:Eu2+を用いた。この蛍光体の輝尽性蛍光特性は、市販のBAS−MSイメージングプレートに使用されている輝尽性蛍光特性の100分の1以下であった。また、10B同位体の組成比が90%のホウ酸(H 10BO)粉末についてはステラケミファ製を用いた。蛍光体としてBaFCl:Eu2+焼結時間が1時間の低ガンマ線感度化中性子イメージングプレートについて中性子検出効率を同じ条件で製作したBaFBr:Eu2+蛍光体を用いた低ガンマ線感度化中性子イメージングプレートと比較した結果、PSL(富士写真フィルムBAS1800の輝尽性蛍光強度を示す値)としてそれぞれ1.44と1.51が得られた。BaFCl:Eu2+蛍光体を用いた低ガンマ線感度化中性子イメージングプレート中性子感度は約5%低い95%でありほとんど同じ特性であった。また、ガンマ線感度についてもほぼ同じ結果が得られた。 Moreover, a low-gamma-ray-sensitized neutron imaging plate was also produced for BaFCl: Eu 2+ as a phosphor powder by the same production method as in the above example. As a phosphor powder, X-ray detection phosphor BaFCl: Eu 2+ manufactured by Nichia Corporation was used. The stimulable fluorescence characteristic of this phosphor was 1/100 or less of the stimulable fluorescence characteristic used in the commercially available BAS-MS imaging plate. Further, the composition ratio of 10 B isotope 90% of boric acid (H 3 10 BO 3) powder was used made by Stella Chemifa for. BaFCl: Eu 2+ as a phosphor with a low gamma-ray-sensitized neutron imaging plate with a sintering time of 1 hour, compared with a low gamma-ray-sensitized neutron imaging plate using a BaFBr: Eu 2+ phosphor manufactured with the same neutron detection efficiency As a result, 1.44 and 1.51 were obtained as PSL (value indicating the stimulable fluorescence intensity of Fuji Photo Film BAS1800), respectively. Low-gamma-ray sensitized neutron imaging plate using BaFCl: Eu 2+ phosphor The neutron sensitivity was about 5% lower and 95%, almost the same characteristics. In addition, almost the same results were obtained with respect to gamma ray sensitivity.

さらに、上記実施例では焼成温度を600℃に固定して焼結時間を変化させて表面有感輝尽性蛍光体の表面有感層の厚さが変化することを確認したが、焼成時間を一定として、焼成温度を変化させることにより表面有感輝尽性蛍光体の表面有感層の厚さを制御することができる。
(実施例2)
実施例2として、BaFBr:Eu2+蛍光体粉末と、11B同位体の組成比が99.9%のホウ酸(H 11BO)粉末とを、均一に混合した粉末を金属基板に塗布した後、焼結し、BaFBr:Eu2+蛍光体粉末の表面に欠陥を熱拡散により導入し、表面有感輝尽性蛍光体とした低ガンマ線感度化粒子線イメージングプレートについて説明する
本実施例の低ガンマ線感度化粒子線イメージングプレートの構造を図6に示す。構造は実施例1で説明した低ガンマ線感度化中性子イメージングプレートと、10B同位体の組成比が90%のホウ酸(H 10BO)粉末の代わりに11B同位体の組成比が99.9%%以上のホウ酸(H 11BO)粉末を用いること以外は同じである。11B同位体の組成比が99.9%%以上のホウ酸(H 11BO)粉末としては富山薬品製を用いた。本ホウ酸(H 11BO)を用いることにより中性子に対する感度をほとんどなくすることができる。蛍光体粉末としては実施例1と同じ日亜化学製X線検出用蛍光体BaFBr:Eu2+を用いた。製作方法については実施例1と全く同じである。焼結時間が1時間の低ガンマ線感度化粒子線イメージングプレートについてAm−241の5.4MeVα線及び60keVガンマ線に対する検出感度を富士写真フィルムが市販しているイメージングプレート読み取り装置BAS−1800を用いて評価した。評価の結果、従来のBAS−MSイメージングプレートの場合α線に対するガンマ線のPSL(富士写真フィルムBAS1800の輝尽性蛍光強度を示す値)の比が0.417であったのに対して、本イメージングプレーとでは、0.042となり、約10倍改善されることが確認できた。
(実施例3)
実施例3として、実施例1と2において、焼結温度を620℃以下の範囲内で使用する場合に、金属基板としてアルミニウム板を使う際に、アルミニウム板の両面に、無機ガラス接着剤を塗布して用いることを特長とした低ガンマ線感度化中性子イメージングプレートについて説明する。金属基板としてアルミニウム板を使い電気炉で低ガンマ線感度化中性子イメージングプレートを製作するとアルミニウムが基板表面から少しずつ蒸発するため、その蒸気が低ガンマ線感度化中性子イメージングプレートの表面と反応し一部が黒化する。このため、金属基板としてアルミニウム板を使う場合には表面から蒸発しないように高温で耐性を有する材料でコーティングする必要がある。実施例では、図7に示すように0.3mmの厚さのアルミニウム基板に900℃の耐熱性を有する日興製無機接着剤(商品名HEATLESS GLASS)であるBS−600−3を厚さ50μm塗布したて用いた。この基板を用いて実施例1と同じ方法で低ガンマ線感度化中性子イメージングプレートを製作し評価試験を行った結果、焼結温度が620℃でコーティングが有効であり、アルミニウムの蒸気による黒化を防ぐことができることが確認できた。
(実施例4)
実施例4として、実施例1と2において、金属基板としてチタン(Ti)板あるいはチタン合金板を用いることを特長とした低ガンマ線感度化中性子イメージングプレートについて説明する。金属基板としてアルミニウム板を使い電気炉で低ガンマ線感度化中性子イメージングプレートを製作するとアルミニウムが基板表面から少しずつ蒸発するため、このため、融点が1000℃以上の特性を有するチタン(Ti)板あるいはチタン合金板を用いた。中性子イメージングプレートの基板として用いる場合、素材の中性子による放射化の問題があるがチタン(Ti)は、従来より放射化が少ないことから中性子照射場で使用されている金属であるアルミニウムの中性子捕獲断面積に対して約2倍の断面積を有するが非常に小さいため実用上問題はない。金属基板としてチタン(Ti)板あるいはチタン合金板を基板として用いた低ガンマ線感度化中性子イメージングプレートの製作試験を行った結果、表面が安定な状態で製作できることが確認できた。
(実施例5)
実施例5として、実施例1−4において、蛍光体粉末とホウ酸粉末を混合した粉末の重量の0.5%以上2%以下のNaClあるいはNaCO粉末を加えて、輝尽性蛍光の放出を増加させることを特長とした低ガンマ線感度化中性子イメージングプレートあるいは低ガンマ線感度化粒子線イメージングプレートについて説明する。
Further, in the above examples, it was confirmed that the thickness of the surface sensitive layer of the surface sensitive photostimulable phosphor was changed by fixing the firing temperature at 600 ° C. and changing the sintering time. As a constant, the thickness of the surface sensitive layer of the surface sensitive photostimulable phosphor can be controlled by changing the firing temperature.
(Example 2)
As Example 2, a powder obtained by uniformly mixing BaFBr: Eu 2+ phosphor powder and boric acid (H 3 11 BO 3 ) powder having a composition ratio of 11 B isotope of 99.9% was applied to a metal substrate. After that, the low-gamma-ray-sensitized particle beam imaging plate which is sintered and introduced into the surface of the BaFBr: Eu 2+ phosphor powder by thermal diffusion to form a surface-sensitive photostimulable phosphor will be described. FIG. 6 shows the structure of a low-gamma-sensitized particle beam imaging plate. The structure is the low gamma-ray sensitized neutron imaging plate described in Example 1, and the composition ratio of 11 B isotope is 99 instead of boric acid (H 3 10 BO 3 ) powder having a composition ratio of 10 B isotope of 90%. It is the same except that 9% or more boric acid (H 3 11 BO 3 ) powder is used. As a boric acid (H 3 11 BO 3 ) powder having a composition ratio of 11 B isotope of 99.9% or more, Toyama Pharmaceutical Co., Ltd. was used. By using this boric acid (H 3 11 BO 3 ), the sensitivity to neutrons can be almost eliminated. As the phosphor powder, the same X-ray detection phosphor BaFBr: Eu 2+ manufactured by Nichia Corporation as used in Example 1 was used. The manufacturing method is exactly the same as in the first embodiment. Evaluation of detection sensitivity of Am-241 for 5.4 MeVα ray and 60 keV gamma ray for low-gamma ray sensitive particle beam imaging plate with sintering time of 1 hour using imaging plate reader BAS-1800 marketed by Fuji Photo Film did. As a result of the evaluation, in the case of the conventional BAS-MS imaging plate, the ratio of PSL of gamma rays to α rays (value indicating the stimulable fluorescence intensity of Fuji Photo Film BAS1800) was 0.417, whereas this imaging In play, it was confirmed to be 0.042, an improvement of about 10 times.
Example 3
As Example 3, when using an aluminum plate as a metal substrate in the case where the sintering temperature is used within the range of 620 ° C. or less in Examples 1 and 2, an inorganic glass adhesive is applied to both surfaces of the aluminum plate. A neutron imaging plate with low gamma-ray sensitivity, which is characterized by being used as an image sensor, will be described. When an aluminum plate is used as a metal substrate and a neutron imaging plate with low gamma-ray sensitivity is manufactured in an electric furnace, aluminum gradually evaporates from the surface of the substrate, so that the vapor reacts with the surface of the neutron imaging plate with low gamma-ray sensitivity and partially black. Turn into. For this reason, when using an aluminum plate as a metal substrate, it is necessary to coat with a material having resistance at high temperatures so as not to evaporate from the surface. In the example, BS-600-3, which is Nikko's inorganic adhesive (trade name HEATLESS GLASS) having a heat resistance of 900 ° C., was applied to a 0.3 mm thick aluminum substrate as shown in FIG. Used freshly. As a result of producing a low-gamma-ray sensitive neutron imaging plate using this substrate and performing an evaluation test in the same manner as in Example 1, the coating temperature is effective at a sintering temperature of 620 ° C., and blackening due to aluminum vapor is prevented. It was confirmed that it was possible.
Example 4
As a fourth embodiment, a low-gamma-sensitivity neutron imaging plate characterized by using a titanium (Ti) plate or a titanium alloy plate as a metal substrate in the first and second embodiments will be described. When an aluminum plate is used as a metal substrate and a neutron imaging plate with low gamma-ray sensitivity is manufactured in an electric furnace, aluminum evaporates little by little from the surface of the substrate. Therefore, a titanium (Ti) plate or titanium having a melting point of 1000 ° C. or more. An alloy plate was used. When used as a substrate for a neutron imaging plate, there is a problem of activation by neutrons of the material, but titanium (Ti) is less activated than before, so neutron capture of aluminum, a metal used in neutron irradiation fields, is interrupted. Although it has a cross-sectional area approximately twice as large as the area, it is very small, so there is no practical problem. As a result of a production test of a low-gamma-ray sensitive neutron imaging plate using a titanium (Ti) plate or a titanium alloy plate as a metal substrate, it was confirmed that the surface can be produced in a stable state.
(Example 5)
As Example 5, the emission of photostimulable fluorescence by adding NaCl or NaCO 3 powder of 0.5% to 2% of the weight of the powder obtained by mixing phosphor powder and boric acid powder in Example 1-4. A low-gamma-sensitivity neutron imaging plate or a low-gamma-sensitivity particle beam imaging plate, which is characterized by increasing the number of particles, will be described.

実施例1の焼結時間が3時間の低ガンマ線感度化粒子線イメージングプレートについて混合粉末の重量2%のNaCl粉末を添加し同じ条件で低ガンマ線感度化中性子イメージングプレートの製作を行った。図4に示す方法により冷中性子、60keVガンマ線、Co60ガンマ線(約1200keVガンマ線)に対する感度測定試験を行った。この結果、混合粉末の重量2%のNaCl粉末を添加しない場合とした場合で、中性子感度を評価した場合、富士写真フィルムBAS1800の輝尽性蛍光強度を示すPSL値としてそれぞれ7.6と10.0が得られた。この結果、2%のNaCl粉末を添加しない場合に比較して1.3倍増加させることができることを確認した。また、ガンマ線感度の特性もほとんど変化がなかった。
(実施例6)
実施例6は、実施例1−5において蛍光体として用いたBaFX:Eu2+(X:Br,ClあるいはBrとClの混合)蛍光体の代わりにBaFSrX:Eu2+(X:Br,ClあるいはBrとClの混合)蛍光体を用いる例である。実施例として、ストロンチウム(Sr)を構成素材として含んだBaFSrBr:Eu2+蛍光体については、蛍光体としての特性はBaFBr:Eu2+とほとんど変わらないため、実施例1および2と同じ製作方法で低ガンマ線感度化中性子イメージングプレートあるいは低ガンマ線感度化粒子線イメージングプレートを製作することができる。
(実施例7)
実施例7では、実施例1−6において、蛍光体粉末とホウ酸粉末を均一に混合した粉末を金属基板に塗布する際、混合粉末の重量の1%から5%の重量の無機接着剤を加えたエタノールあるいはイソプロピルアルコールを混合補助剤として用いて湿式で混合し、金属基板に塗布することを特長とした低ガンマ線感度化中性子イメージングプレートあるいは低ガンマ線感度化粒子線イメージングプレートについて説明する。
A low-gamma-ray-sensitized neutron imaging plate was manufactured under the same conditions by adding NaCl powder having a weight of 2% of the mixed powder to the low-gamma-ray-sensitized particle beam imaging plate of Example 1 having a sintering time of 3 hours. A sensitivity measurement test for cold neutrons, 60 keV gamma rays, and Co60 gamma rays (about 1200 keV gamma rays) was performed by the method shown in FIG. As a result, in the case where the 2% by weight NaCl powder of the mixed powder was not added and the neutron sensitivity was evaluated, the PSL values indicating the stimulable fluorescence intensity of Fuji Photo Film BAS1800 were 7.6 and 10. 0 was obtained. As a result, it was confirmed that it could be increased 1.3 times compared to the case where 2% NaCl powder was not added. In addition, the gamma-ray sensitivity characteristics hardly changed.
(Example 6)
In Example 6, instead of the BaFX: Eu 2+ (X: Br, Cl or a mixture of Br and Cl) phosphor used as the phosphor in Example 1-5, BaFSrX: Eu 2+ (X: Br, Cl or Br) was used instead of the phosphor. This is an example using a phosphor. As an example, the BaFSrBr: Eu 2+ phosphor containing strontium (Sr) as a constituent material has almost the same characteristics as the phosphor as BaFBr: Eu 2+. Gamma-ray-sensitized neutron imaging plates or low-gamma-ray-sensitized particle beam imaging plates can be manufactured.
(Example 7)
In Example 7, when a powder obtained by uniformly mixing phosphor powder and boric acid powder in Example 1-6 is applied to a metal substrate, an inorganic adhesive having a weight of 1% to 5% of the weight of the mixed powder is applied. A low-gamma-sensitized neutron imaging plate or a low-gamma-ray-sensitized particle beam imaging plate, characterized in that the added ethanol or isopropyl alcohol is mixed as a mixing aid in a wet manner and applied to a metal substrate, will be described.

図8をもとに説明する。蛍光体粉末とホウ酸粉末を均一に混合した粉末を金属基板に塗布する方法として、従来から用いられているエタノールあるいはイソプロピルアルコールを混合して用いた湿式の混合方法を用いて、金属板に塗布した場合、ホウ酸粉末が微分のため帯状の模様を作成してしまう。このため、このまま焼結し中性子イメージングプレートを製作すると一様性が悪くなり帯状の模様が現れる。   This will be described with reference to FIG. As a method of applying a uniform mixture of phosphor powder and boric acid powder to a metal substrate, a wet mixing method using a mixture of ethanol or isopropyl alcohol conventionally used is applied to the metal plate. In this case, the boric acid powder creates a band-like pattern due to differentiation. For this reason, if a neutron imaging plate is manufactured by sintering as it is, the uniformity becomes worse and a band-like pattern appears.

これを防ぐために、エタノールあるいはイソプロピルアルコールに混合粉末の重量の1%から5%の重量の無機接着剤を加えた混合補助剤を作製し湿式で混合する。実施例1の場合について、750mgのX線検出用蛍光体BaFBr:Eu2+粉末と500mgのホウ酸(H 10BO)粉末を混合するがこの場合重量%で1%の日興製無機接着剤(商品名HEATLESS GLASS)であるBS−600−1を12.5mgをエタノールに混ぜて湿式で混合し5cmx5cmのサイズのアルミニウム基板に塗布した。この試料について600℃で4時間焼成した場合、添加しない場合には帯状の模様が現れたが、添加した場合中性子イメージングプレートは帯状の模様がなくなり一様な中性子有感特性を持つ低ガンマ線感度化中性子イメージングプレートとなった。 In order to prevent this, a mixing aid in which an inorganic adhesive having a weight of 1% to 5% of the weight of the mixed powder is added to ethanol or isopropyl alcohol is prepared and mixed in a wet manner. In the case of Example 1, 750 mg of X-ray detection phosphor BaFBr: Eu 2+ powder and 500 mg of boric acid (H 3 10 BO 3 ) powder are mixed, but in this case 1% by weight of Nikko inorganic adhesive 12.5 mg of BS-600-1 (trade name HEATLESS GLASS) was mixed with ethanol, wet-mixed, and applied to an aluminum substrate having a size of 5 cm × 5 cm. When this sample was baked at 600 ° C for 4 hours, a band-like pattern appeared when it was not added, but when it was added, the neutron imaging plate disappeared and the gamma-ray sensitivity with uniform neutron sensitivity was eliminated. It became a neutron imaging plate.

本発明の低ガンマ線感度化中性子イメージングプレートは、原子炉から発生する中性子を用いた中性子散乱実験装置用の高感度・高空間分解能中性子イメージ検出器あるいは中性子ラジオグラフィ用の高感度・高空間分解能中性子イメージ検出器として使用され、また、原子炉施設内での中性子線量計測あるいは中性子分布モニタにも使用でき、さらに、原子炉で発生する中性子ビームあるいは大強度陽子加速器を用いて発生するパルス中性子ビームのプロファイルモニタとして使用される。   The low-gamma-sensitivity neutron imaging plate of the present invention is a high-sensitivity, high-spatial-resolution neutron image detector for high-sensitivity, high-spatial-resolution neutron image detectors for neutron scattering experiments using neutrons generated from nuclear reactors. It can be used as an image detector, and can also be used for neutron dosimetry or neutron distribution monitoring in a nuclear reactor facility. In addition, it can be used to generate a neutron beam generated in a nuclear reactor or a pulsed neutron beam generated using a high-intensity proton accelerator. Used as a profile monitor.

更にまた、陽子ビームあるいは重粒子線ビームなどのビームプロファイルモニタとして使用され、また、α線線量モニタあるいはα線イメージ検出器としても使用される。   Furthermore, it is used as a beam profile monitor such as a proton beam or a heavy particle beam, and is also used as an α-ray dose monitor or an α-ray image detector.

BaFBr:Eu2+蛍光体粉末と、10B同位体の組成比が90%のホウ酸(H 10BO)粉末とを、均一に混合した粉末を金属基板に塗布した後、焼結して作製する低ガンマ線感度化中性子イメージングプレートの製作方法を示す図。After applying uniformly mixed powder of BaFBr: Eu 2+ phosphor powder and boric acid (H 3 10 BO 3 ) powder having a composition ratio of 10 B isotope of 90% to a metal substrate, sintering is performed. The figure which shows the manufacturing method of the low-gamma-ray sensitivity neutron imaging plate to produce. 従来の輝尽性蛍光体の構造と本発明の表面有感輝尽性蛍光体の構造との比較した図。The figure which compared the structure of the conventional photostimulable phosphor with the structure of the surface sensitive photostimulable phosphor of this invention. 焼成時間が30分焼結の場合と4時間焼結の場合の即発蛍光のスペクトルを比較した結果を示す図。The figure which shows the result of having compared the spectrum of the prompt fluorescence in the case of sintering for 30 minutes, and the case of sintering for 4 hours. 焼結試料の中性子及びガンマ線に対する検出特性を評価する方法を示す図。The figure which shows the method of evaluating the detection characteristic with respect to the neutron and gamma ray of a sintered sample. 焼成時間が30分から8時間の低ガンマ線感度化中性子イメージングプレートの冷中性子、60keVガンマ線、Co60ガンマ線に対する感度測定試験結果を示す図。The figure which shows the sensitivity measurement test result with respect to the cold neutron, 60 keV gamma ray, and Co60 gamma ray of the low gamma ray sensitivity neutron imaging plate whose baking time is 30 minutes to 8 hours. 低ガンマ線感度化粒子線イメージングプレートの構造を示す図。The figure which shows the structure of a low gamma-ray-sensitized particle beam imaging plate. アルミニウム基板に900℃の耐熱性を有する日興製無機接着剤BS−600−3を厚さ50μm塗布した基板を用いた低ガンマ線感度化中性子イメージングプレートを示す図。The figure which shows the low gamma-ray-sensitized neutron imaging plate using the board | substrate which apply | coated the 50-micrometer-thick Nikko inorganic adhesive BS-600-3 which has 900 degreeC heat resistance to the aluminum substrate. 混合粉末の重量の1%から5%の重量の無機接着剤を加えたエタノールを混合補助剤として用いて湿式で混合して基板に塗布し焼結して低ガンマ線感度化中性子イメージングプレートを製作する方法を示す図。A low gamma-ray-sensitized neutron imaging plate is manufactured by wet mixing using ethanol with inorganic adhesive weight of 1% to 5% of the mixed powder as a mixing aid, applying it to the substrate and sintering. The figure which shows a method. 輝尽性蛍光体BaFBr:Eu2+粉末と中性子コンバータGd粉末を接着剤と混ぜて基板に塗布して製作する従来の市販されている中性子イメージングプレートの構造を示す図。Stimulable phosphor BaFBr: Eu 2+ powder and a neutron converter Gd 2 O 3 powder to show the structure of a neutron imaging plates are conventional commercially available fabricated by coating the substrate mixed with glue FIG. 無水ホウ酸(B)を溶融しガラス化することを利用して作製する従来のガラス状化イメージングプレートの構造を示す図。Shows the structure of a conventional vitrifying imaging plate to produce by utilizing the fact that the vitrified by melting boric anhydride (B 2 O 3).

Claims (7)

BaFX:Eu2+(X:Br,ClあるいはBrとClの混合)蛍光体粉末と、10B同位体の組成比が80%以上のホウ酸(H 10BO)粉末とを、均一に混合した粉末を金属基板に塗布し、500℃以上700℃以下の温度範囲内で一定時間焼結し、BaFX:Eu2+(X:Br,ClあるいはBrとClの混合)蛍光体粉末の表面に欠陥を熱拡散により導入し、表面有感輝尽性蛍光体とし、10Bが中性子を捕獲した際放出するα粒子とLi粒子の阻止能が、バックグラウンドとなるガンマ線により発生する電子の阻止能より大きいことを利用して、ガンマ線に対する感度を低下させることを特長とした低ガンマ線感度化中性子イメージングプレート。 BaFX: Eu 2+ (X: Br, Cl or a mixture of Br and Cl) phosphor powder and boric acid (H 3 10 BO 3 ) powder having a composition ratio of 10 B isotopes of 80% or more uniformly mixed The applied powder is applied to a metal substrate and sintered within a temperature range of 500 ° C. or higher and 700 ° C. or lower for a certain period of time. BaFX: Eu 2+ (X: Br, Cl or a mixture of Br and Cl) Is introduced by thermal diffusion to form a surface-sensitive photostimulable phosphor, and the stopping power of α particles and 7 Li particles emitted when 10 B captures neutrons is the stopping power of electrons generated by background gamma rays. A neutron imaging plate with low gamma-ray sensitivity, which is characterized by lowering the sensitivity to gamma rays by utilizing its larger size. BaFX:Eu2+(X:Br,ClあるいはBrとClの混合)蛍光体粉末と、11B同位体の組成比が99%以上のホウ酸(H 11BO)粉末とを、均一に混合した粉末を金属基板に塗布し、500℃以上700℃以下の温度範囲内で一定時間焼結し、BaFX:Eu2+(X:Br,ClあるいはBrとClの混合)蛍光体粉末の表面に欠陥を熱拡散により導入し、表面有感輝尽性蛍光体とし、粒子線の阻止能が、バックグラウンドとなるガンマ線により発生する電子の阻止能より大きいことを利用して、ガンマ線に対する感度を低下させることを特長とした低ガンマ線感度化粒子線イメージングプレート。 BaFX: Eu 2+ (X: Br, Cl or a mixture of Br and Cl) phosphor powder and boric acid (H 3 11 BO 3 ) powder having a composition ratio of 11 B isotopes of 99% or more uniformly mixed The applied powder is applied to a metal substrate and sintered within a temperature range of 500 ° C. or higher and 700 ° C. or lower for a certain period of time. BaFX: Eu 2+ (X: Br, Cl or a mixture of Br and Cl) Is made into a surface-sensitive photostimulable phosphor, and the sensitivity to gamma rays is reduced by utilizing the fact that the stopping power of particle beams is larger than the stopping power of electrons generated by the background gamma rays. This is a low-gamma-ray sensitive particle beam imaging plate. 請求項1及び2において、620℃以下の範囲内で使用する場合に、金属基板としてアルミニウム板を使う際に、アルミニウム板の両面に、無機ガラス接着剤を塗布して用いることを特長とした低ガンマ線感度化中性子イメージングプレート及び低ガンマ線感度化粒子線イメージングプレート。   In claim 1 and 2, when using an aluminum plate as a metal substrate when used within a range of 620 ° C. or lower, an inorganic glass adhesive is applied to both sides of the aluminum plate and used. Gamma-ray-sensitized neutron imaging plate and low-gamma-ray-sensitized particle beam imaging plate. 請求項1及び2において、金属基板としてチタン(Ti)板あるいはチタン合金板を用いることを特長とした低ガンマ線感度化中性子イメージングプレート及び低ガンマ線感度化粒子線イメージングプレート。   3. The low-gamma-ray-sensitized neutron imaging plate and low-gamma-ray-sensitized particle beam imaging plate according to claim 1, wherein a titanium (Ti) plate or a titanium alloy plate is used as the metal substrate. 請求項1−4のいずれかにおいて、蛍光体粉末とホウ酸粉末との混合粉末の重量の0.5%以上2%以下のNaClあるいはNaCO粉末を加えて、輝尽性蛍光の放出を増加させることを特長とした低ガンマ線感度化中性子イメージングプレートあるいは低ガンマ線感度化粒子線イメージングプレート。 5. The emission of stimulable fluorescence is increased by adding 0.5% or more and 2% or less of NaCl or NaCO 3 powder based on the weight of the mixed powder of phosphor powder and boric acid powder according to any one of claims 1-4. A low-gamma-ray sensitive neutron imaging plate or a low-gamma-sensitized particle beam imaging plate. 請求項1−5のいずれかにおいて、BaFX:Eu2+蛍光体の代わりにBaFSrX:Eu2+蛍光体を用いることを特長とした低ガンマ線感度化中性子イメージングプレートあるいは低ガンマ線感度化粒子線イメージングプレート。 6. The low-gamma-ray-sensitized neutron imaging plate or low-gamma-ray-sensitized particle beam imaging plate according to claim 1, wherein a BaFSrX: Eu2 + phosphor is used instead of the BaFX: Eu2 + phosphor. 請求項1−6のいずれかにおいて、蛍光体粉末とホウ酸粉末を均一に混合した粉末を金属基板に塗布する際、混合粉末の重量の0.5%から5%の重量の無機接着剤を加えたエタノールあるいはイソプロピルアルコールを混合補助剤として用いて湿式で均一に混合し、金属基板に塗布することを特長とした低ガンマ線感度化中性子イメージングプレートあるいは低ガンマ線感度化粒子線イメージングプレート。   In any one of Claims 1-6, when apply | coating the powder which mixed phosphor powder and boric acid powder uniformly on a metal substrate, the inorganic adhesive of the weight of 0.5 to 5% of the weight of mixed powder is added. A low-gamma-sensitized neutron imaging plate or low-gamma-ray-sensitized particle beam imaging plate, characterized in that the added ethanol or isopropyl alcohol is used as a mixing aid to mix evenly and apply to a metal substrate.
JP2005205747A 2005-07-14 2005-07-14 Low-gamma-sensitized neutron and particle beam imaging plates Active JP4803516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005205747A JP4803516B2 (en) 2005-07-14 2005-07-14 Low-gamma-sensitized neutron and particle beam imaging plates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005205747A JP4803516B2 (en) 2005-07-14 2005-07-14 Low-gamma-sensitized neutron and particle beam imaging plates

Publications (2)

Publication Number Publication Date
JP2007024629A true JP2007024629A (en) 2007-02-01
JP4803516B2 JP4803516B2 (en) 2011-10-26

Family

ID=37785595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005205747A Active JP4803516B2 (en) 2005-07-14 2005-07-14 Low-gamma-sensitized neutron and particle beam imaging plates

Country Status (1)

Country Link
JP (1) JP4803516B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011185600A (en) * 2010-03-04 2011-09-22 Wakasawan Energ Kenkyu Center Method of measuring dose distribution of fast neutron
WO2014092202A1 (en) * 2012-12-12 2014-06-19 株式会社トクヤマ Neutron scintillator, neutron detection method, and neutron detector
JP2015010837A (en) * 2013-06-26 2015-01-19 日立Geニュークリア・エナジー株式会社 Radiation-ray measurement device
WO2015064587A1 (en) * 2013-10-28 2015-05-07 株式会社トクヤマ Neutron scintillator and neutron detector
WO2015190444A1 (en) * 2014-06-09 2015-12-17 株式会社トクヤマ Neutron scintillator and neutron detector

Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60154447A (en) * 1984-01-23 1985-08-14 Japan Atom Energy Res Inst Gamma-ray compensation-type neutron ionization chamber
JPS62209398A (en) * 1986-03-11 1987-09-14 コニカ株式会社 Radiation picture conversion panel including silane couplingagent
JPS6412300A (en) * 1987-07-03 1989-01-17 Fuji Photo Film Co Ltd Radiation image conversion panel and its manufacturing method
JPS6443800A (en) * 1987-08-11 1989-02-16 Konishiroku Photo Ind Radiation image conversion panel
JPH01131500A (en) * 1987-08-17 1989-05-24 Konica Corp Radiograph conversion panel
JPH0244800A (en) * 1988-08-05 1990-02-14 Inax Corp Radiowave absorbing tile
JPH0378688A (en) * 1989-08-22 1991-04-03 Nemoto Tokushu Kagaku Kk Thermoluminescent dosimetric element for detecting neutron
JPH04359199A (en) * 1991-06-05 1992-12-11 Konica Corp Manufacture of radiation image conversion panel
JPH0525476A (en) * 1990-12-18 1993-02-02 Fujitsu Ltd Production of stimulable phosphor
JPH09221336A (en) * 1995-12-14 1997-08-26 Kagaku Gijutsu Shinko Jigyodan Stimulated phosphor glass composition
JPH10138542A (en) * 1996-09-12 1998-05-26 Aoi Denshi Kk Thermal head
JPH10268097A (en) * 1997-03-19 1998-10-09 Agfa Gevaert Nv Radiation image storage panel including coloring agent
JP2000106449A (en) * 1998-09-28 2000-04-11 Aisin Chem Co Ltd Substrate for thin film silicon solar cell
JP2000171598A (en) * 1998-12-03 2000-06-23 Toshiba Corp Storage phosphor sheet, device for discriminating and reading out radiation using it and method for discriminating and measuring radiation
JP2001174594A (en) * 1999-12-17 2001-06-29 Fuji Photo Film Co Ltd Manufacturing method for radiological image conversion panel
JP2002221578A (en) * 2001-01-29 2002-08-09 Japan Atom Energy Res Inst Radiation and neutron image detector
JP2002533737A (en) * 1998-12-23 2002-10-08 デュール デンタル ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Flat panel storage element for X-ray images
JP2003105331A (en) * 2001-09-28 2003-04-09 Okaya Electric Ind Co Ltd Method for forming fluorescent layer
JP2003183637A (en) * 2001-09-14 2003-07-03 Inst Of Physical & Chemical Res Neutron scintillator
JP2003203750A (en) * 2001-12-28 2003-07-18 Fujikura Ltd Resistance circuit enameled base board
JP2003248061A (en) * 2002-02-26 2003-09-05 Japan Atom Energy Res Inst Scintillator for detection neutron, and neutron detector using the same
JP2004053264A (en) * 2002-07-16 2004-02-19 Konica Minolta Holdings Inc Radiological image conversion panel and its manufacturing method
JP2004149501A (en) * 2002-09-04 2004-05-27 Mitsubishi Chemicals Corp Diarylethene compound, photochromic material, color dosimeter, and optical memory device
JP2006234773A (en) * 2005-02-28 2006-09-07 Japan Atomic Energy Agency Vitrified imaging plate

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60154447A (en) * 1984-01-23 1985-08-14 Japan Atom Energy Res Inst Gamma-ray compensation-type neutron ionization chamber
JPS62209398A (en) * 1986-03-11 1987-09-14 コニカ株式会社 Radiation picture conversion panel including silane couplingagent
JPS6412300A (en) * 1987-07-03 1989-01-17 Fuji Photo Film Co Ltd Radiation image conversion panel and its manufacturing method
JPS6443800A (en) * 1987-08-11 1989-02-16 Konishiroku Photo Ind Radiation image conversion panel
JPH01131500A (en) * 1987-08-17 1989-05-24 Konica Corp Radiograph conversion panel
JPH0244800A (en) * 1988-08-05 1990-02-14 Inax Corp Radiowave absorbing tile
JPH0378688A (en) * 1989-08-22 1991-04-03 Nemoto Tokushu Kagaku Kk Thermoluminescent dosimetric element for detecting neutron
JPH0525476A (en) * 1990-12-18 1993-02-02 Fujitsu Ltd Production of stimulable phosphor
JPH04359199A (en) * 1991-06-05 1992-12-11 Konica Corp Manufacture of radiation image conversion panel
JPH09221336A (en) * 1995-12-14 1997-08-26 Kagaku Gijutsu Shinko Jigyodan Stimulated phosphor glass composition
JPH10138542A (en) * 1996-09-12 1998-05-26 Aoi Denshi Kk Thermal head
JPH10268097A (en) * 1997-03-19 1998-10-09 Agfa Gevaert Nv Radiation image storage panel including coloring agent
JP2000106449A (en) * 1998-09-28 2000-04-11 Aisin Chem Co Ltd Substrate for thin film silicon solar cell
JP2000171598A (en) * 1998-12-03 2000-06-23 Toshiba Corp Storage phosphor sheet, device for discriminating and reading out radiation using it and method for discriminating and measuring radiation
JP2002533737A (en) * 1998-12-23 2002-10-08 デュール デンタル ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Flat panel storage element for X-ray images
JP2001174594A (en) * 1999-12-17 2001-06-29 Fuji Photo Film Co Ltd Manufacturing method for radiological image conversion panel
JP2002221578A (en) * 2001-01-29 2002-08-09 Japan Atom Energy Res Inst Radiation and neutron image detector
JP2003183637A (en) * 2001-09-14 2003-07-03 Inst Of Physical & Chemical Res Neutron scintillator
JP2003105331A (en) * 2001-09-28 2003-04-09 Okaya Electric Ind Co Ltd Method for forming fluorescent layer
JP2003203750A (en) * 2001-12-28 2003-07-18 Fujikura Ltd Resistance circuit enameled base board
JP2003248061A (en) * 2002-02-26 2003-09-05 Japan Atom Energy Res Inst Scintillator for detection neutron, and neutron detector using the same
JP2004053264A (en) * 2002-07-16 2004-02-19 Konica Minolta Holdings Inc Radiological image conversion panel and its manufacturing method
JP2004149501A (en) * 2002-09-04 2004-05-27 Mitsubishi Chemicals Corp Diarylethene compound, photochromic material, color dosimeter, and optical memory device
JP2006234773A (en) * 2005-02-28 2006-09-07 Japan Atomic Energy Agency Vitrified imaging plate

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011185600A (en) * 2010-03-04 2011-09-22 Wakasawan Energ Kenkyu Center Method of measuring dose distribution of fast neutron
WO2014092202A1 (en) * 2012-12-12 2014-06-19 株式会社トクヤマ Neutron scintillator, neutron detection method, and neutron detector
JPWO2014092202A1 (en) * 2012-12-12 2017-01-12 株式会社トクヤマ Neutron scintillator, neutron detection method and neutron detector
US9567517B2 (en) 2012-12-12 2017-02-14 Tokuyama Corporation Neutron scintillator, neutron detection method and neutron detector
JP2015010837A (en) * 2013-06-26 2015-01-19 日立Geニュークリア・エナジー株式会社 Radiation-ray measurement device
WO2015064587A1 (en) * 2013-10-28 2015-05-07 株式会社トクヤマ Neutron scintillator and neutron detector
US9500754B2 (en) 2013-10-28 2016-11-22 Tokuyama Corporation Neutron scintillator and neutron detector
JPWO2015064587A1 (en) * 2013-10-28 2017-03-09 株式会社トクヤマ Neutron scintillator and neutron detector
WO2015190444A1 (en) * 2014-06-09 2015-12-17 株式会社トクヤマ Neutron scintillator and neutron detector
JP6043031B2 (en) * 2014-06-09 2016-12-14 株式会社トクヤマ Neutron scintillator and neutron detector
US9753161B2 (en) 2014-06-09 2017-09-05 Tokuyama Corporation Neutron scintillator and neutron detector

Also Published As

Publication number Publication date
JP4803516B2 (en) 2011-10-26

Similar Documents

Publication Publication Date Title
Yanagida et al. A review and future of RPL dosimetry
CA2771063A1 (en) Multi-element x-ray detector, its rear-earth luminescent materials, production of multi-element scintillator and detector in general
JP3882292B2 (en) A novel photostimulable phosphor
Manam et al. Characterization and TSL dosimetric properties of Mn doped BaSO4 phosphor prepared by recrystallisation method
JP4803516B2 (en) Low-gamma-sensitized neutron and particle beam imaging plates
US8563949B2 (en) Fluoroperovskite radiation dosimeters and storage phosphors
US8399849B1 (en) Fast neutron detector
Dujardin et al. Synthesis and scintillation properties of some dense X-ray phosphors
Li et al. Preparation and characterization of multilayer Gd2O2S: Tb phosphor screen for X‐ray detection application
Hunyadi et al. Scintillator of polycrystalline perovskites for high‐sensitivity detection of charged‐particle radiations
Mittani et al. Investigation of neutron converters for production of optically stimulated luminescence (OSL) neutron dosimeters using Al2O3: C
Leonard et al. Evaluation of a fluorochlorozirconate glass‐ceramic storage phosphor plate for gamma‐ray computed radiography
Rajakrishna et al. Improvement in Plastic Scintillator with Loading of BaFBr: Eu²⁺ Radioluminescence Phosphor
Oza et al. Luminescence study of Dy or Ce activated LiCaBO3 phosphor for γ‐ray and C5+ ion beam irradiation
Knitel et al. Luminescence and storage properties of LiYSiO4: Ce
JP4587843B2 (en) Vitrified imaging plate
Gou et al. Novel environmental radiation dosimeter—Mn: CaF2 transparent glass ceramic: Dependence of thermoluminescence performance on slag addition and crystallisation behaviour
Thoms et al. Neutron detection with imaging plates part I. Image storage and readout
Dotzler et al. Photoluminescence, optically stimulated luminescence, and thermoluminescence study of RbMgF3: Eu2+
Driewer et al. Radiation hardness of the storage phosphor europium doped potassium chloride for radiation therapy dosimetry
US20210223421A1 (en) Composite material for detecting free neutrons with an effective atomic number similar to body tissue by using beryllium oxide and/or lithium tetraborate, dosimeter, and a method for capturing or detecting free neutrons
Appleby et al. Photostimulated luminescence from BaCl2: Eu2+ nanocrystals in lithium borate glasses following neutron irradiation
Appleby et al. Lithium borate glass ceramics as thermal neutron imaging plates
KR101406299B1 (en) Phosphor for radiation imaging and method for manufacturing the same
Leonard et al. Scintillator glasses

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110506

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110729

R150 Certificate of patent or registration of utility model

Ref document number: 4803516

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250