JP2007024475A - Storage type air conditioning system - Google Patents

Storage type air conditioning system Download PDF

Info

Publication number
JP2007024475A
JP2007024475A JP2005211637A JP2005211637A JP2007024475A JP 2007024475 A JP2007024475 A JP 2007024475A JP 2005211637 A JP2005211637 A JP 2005211637A JP 2005211637 A JP2005211637 A JP 2005211637A JP 2007024475 A JP2007024475 A JP 2007024475A
Authority
JP
Japan
Prior art keywords
power
discharge
storage
pattern
stored
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005211637A
Other languages
Japanese (ja)
Other versions
JP4566084B2 (en
Inventor
Hideaki Kodate
秀明 古立
Tomio Mogi
富雄 茂木
Masanori Kita
正憲 北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2005211637A priority Critical patent/JP4566084B2/en
Publication of JP2007024475A publication Critical patent/JP2007024475A/en
Application granted granted Critical
Publication of JP4566084B2 publication Critical patent/JP4566084B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a storage type air conditioning system capable of efficiently equalizing electric power demand. <P>SOLUTION: The storage type air conditioning system has air conditioners 2A, 2B and a storage battery 33 for storing commercial electric power of a commercial power source 10, and supplies stored electric power and the commercial electric power, stored in the storage battery 33, to operate the air conditioners 2A, 2B. The storage type air conditioning system comprises a storage air-conditioning controller 33 carrying out charge to the storage battery 33 at night when electric power demand is less, and discharging stored electric power charged in the storage battery 33, in a discharge period T2 including at least a peak period T3 of electric power demand. The storage air-conditioning controller 33 is constituted to control the discharge of the stored electric power so that the residual electric power amount Wz of the stored electric power is almost zero at the end of the discharge period T2. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、蓄電式空気調和システムに関する。   The present invention relates to a power storage type air conditioning system.

近年、夏および冬では昼と夜とで電力消費量の格差が非常に大きくなる傾向があり、このことが電力の効率的な供給を行う上での弊害となっている。特に、地球温暖化を始めとした環境問題やエネルギー問題に対応するためには、電力需要の平準化による電力供給の効率化が重要である。一日の電力需要の格差の主たる要因の一つは空調用電力需要であると言われており、夏暑いとき或いは冬寒いときの空気調和機の一斉作動が電力需要のピーク値を押し上げていると考えられている。このような問題の解消を図る空気調和装置として、従来から蓄熱式の空気調和機が提案されている(例えば、特許文献1参照)。   In recent years, in summer and winter, the difference in power consumption between day and night has tended to become very large, which has been an adverse effect on the efficient supply of power. In particular, in order to cope with environmental problems and energy problems such as global warming, it is important to improve the efficiency of power supply by leveling power demand. It is said that one of the main causes of the difference in daily power demand is air conditioning power demand, and the simultaneous operation of air conditioners during hot summers or cold winters has boosted the peak value of power demand. It is believed that. Conventionally, a heat storage type air conditioner has been proposed as an air conditioner for solving such problems (see, for example, Patent Document 1).

蓄熱式空気調和機は、電力需要の少ない夜間に空調機を作動させて蓄熱材に蓄熱あるいは蓄冷し、昼間にその熱を利用して空調するものである。こうすることによって、昼間に発生する電力需要のピークを夜間にシフトすることができ、全体的に電力需要の平準化に寄与することができる。その代表的な蓄熱式空気調和機しては、蓄熱材に氷を用いた氷蓄熱式の空気調和機がある。
特開2004−301400号公報
A heat storage type air conditioner operates an air conditioner at night when electric power demand is low, stores heat or stores heat in a heat storage material, and performs air conditioning using the heat in the daytime. By doing so, the peak of power demand generated during the daytime can be shifted to nighttime, which can contribute to the leveling of power demand as a whole. As a typical heat storage type air conditioner, there is an ice heat storage type air conditioner using ice as a heat storage material.
JP 2004-301400 A

しかしながら、氷蓄熱式の空気調和機にあっては、ヒートポンプ作用で氷を作ることから、冷媒の蒸発温度が低いため通常の冷房運転と比較して効率が悪くなり省エネ効果が低い。また、氷蓄熱における潜熱と暖房時の温水の顕熱との違いにより、冷房と暖房の能力がアンバランスになるなどの問題があった。   However, in the ice heat storage type air conditioner, since ice is produced by the heat pump action, since the evaporation temperature of the refrigerant is low, the efficiency becomes lower and the energy saving effect is lower than in the normal cooling operation. In addition, there is a problem that the cooling and heating capacities are unbalanced due to the difference between the latent heat in ice storage and the sensible heat of hot water during heating.

本発明は、上述した事情に鑑みてなされたものであり、電力需要の平準化を効率良く行うことが可能な蓄電式空気調和システムを提供することを目的とする。   The present invention has been made in view of the above-described circumstances, and an object thereof is to provide a power storage type air conditioning system capable of efficiently leveling power demand.

上記目的を達成するために、本発明は、一或いは複数の空調機と、商用電源の商用電力を蓄電する蓄電池とを有し、前記蓄電池に蓄電された蓄電電力および前記商用電力を供給して前記空調機を作動させる蓄電式空気調和システムであって、電力需要が少ない夜間に前記蓄電池への充電を実行すると共に、少なくとも前記電力需要のピーク期間を含む放電期間に前記蓄電池に充電された蓄電電力を放電する蓄電制御手段を備え、前記蓄電制御手段は前記放電期間の終了時に前記蓄電電力の残電力量が略ゼロとなるように前記蓄電電力の放電を制御することを特徴とする。   In order to achieve the above object, the present invention includes one or a plurality of air conditioners and a storage battery that stores commercial power of a commercial power source, and supplies the stored power and the commercial power stored in the storage battery. A power storage air conditioning system for operating the air conditioner, wherein the storage battery is charged at night when power demand is low, and the storage battery is charged at least during a discharge period including a peak period of the power demand Power storage control means for discharging power is provided, wherein the power storage control means controls the discharge of the stored power so that the remaining power amount of the stored power becomes substantially zero at the end of the discharge period.

また本発明は、上記発明において、一日の電力需要の変動パターンの予測値である電力需要変動予測パターンを記憶する記憶手段を備え、前記蓄電制御手段は、前記電力需要変動予測パターンと、前記電力需要ピーク時の前記商用電源の使用電力量の上限値とに基づいて、前記放電期間における前記蓄電電力の放電パターンを決定することを特徴とする。   Further, the present invention, in the above invention, further comprises storage means for storing a power demand fluctuation prediction pattern that is a predicted value of a fluctuation pattern of a daily power demand, wherein the power storage control means includes the power demand fluctuation prediction pattern, A discharge pattern of the stored electric power in the discharge period is determined based on an upper limit value of the power consumption of the commercial power source at a power demand peak.

また本発明は、上記発明において、前記蓄電池の蓄電電力の残電力量を検出する残量検出手段を更に備え、前記蓄電制御手段は、翌日の前記電力需要変動予測パターンが今回と同じ場合には、翌日の放電パターンを前記放電期間終了時の残電力量に基づいて補正することを特徴とする。   In the above invention, the present invention further comprises a remaining amount detecting means for detecting a remaining power amount of the stored power of the storage battery, wherein the storage control means is configured such that when the power demand fluctuation prediction pattern on the next day is the same as this time, The discharge pattern of the next day is corrected based on the remaining power amount at the end of the discharge period.

また本発明は、上記発明において、前記蓄電池の蓄電電力の残電力量を検出する残量検出手段を更に備え、前記蓄電制御手段は、前記放電期間内に検出された前記残電力量に基づいて、前記放電期間の残りの時間における前記放電パターンを補正することを特徴とする。   In the above invention, the present invention further comprises a remaining amount detecting means for detecting a remaining power amount of the stored power of the storage battery, wherein the storage control means is based on the remaining power amount detected within the discharge period. The discharge pattern in the remaining time of the discharge period is corrected.

また本発明は、上記発明において、気温を検出する温度センサを更に備え、前記蓄電制御手段は、前記気温に基づいて前記電力需要変動予測パターンを補正すると共に、当該補正後の電力需要変動予測パターンに基づいて前記放電パターンを決定することを特徴とする。   In the above invention, the present invention further includes a temperature sensor that detects an air temperature, and the power storage control unit corrects the power demand fluctuation prediction pattern based on the air temperature, and the corrected power demand fluctuation prediction pattern. The discharge pattern is determined based on the above.

また本発明は、上記発明において、前記蓄電制御手段は、前記放電期間のうち前記ピーク期間において前記放電電力量を増加させることを特徴とする。   Moreover, the present invention is characterized in that, in the above-mentioned invention, the power storage control means increases the discharge power amount in the peak period of the discharge period.

本発明によれば、商用電力により充電される蓄電池を備え、電力需要が少ない夜間に前記蓄電池への充電を実行すると共に、少なくとも前記電力需要のピーク期間を含む放電期間に前記蓄電池に充電された蓄電電力を放電するようにしたため、電力需要の平準化を効率良く行うことができる。   According to the present invention, the storage battery is charged with commercial power, and the storage battery is charged at night when power demand is low, and the storage battery is charged at least during a discharge period including a peak period of the power demand. Since the stored power is discharged, the power demand can be leveled efficiently.

以下、本発明の実施の形態について図面を参照して説明する。
<第1実施の形態>
図1は本実施の形態に係る蓄電式空気調和システム1の概略構成を示すブロック図である。蓄電式空気調和システム1は、空調機群2と、蓄電ユニット3と、PCSコントローラ4とを備えている。上記空調機群2は、室外機と、当該室外機に冷媒回路にて接続された1または複数の室内機を備えた複数の空調機2A、2B(図示例では2つ)を有し、それぞれの空調機2A、2Bは、例えばAC200Vの電力が供給されるAC負荷ライン11に互いに並列に接続されている。
Embodiments of the present invention will be described below with reference to the drawings.
<First embodiment>
FIG. 1 is a block diagram showing a schematic configuration of a power storage type air conditioning system 1 according to the present embodiment. The power storage type air conditioning system 1 includes an air conditioner group 2, a power storage unit 3, and a PCS controller 4. The air conditioner group 2 includes an outdoor unit and a plurality of air conditioners 2A and 2B (two in the illustrated example) each including one or a plurality of indoor units connected to the outdoor unit by a refrigerant circuit. The air conditioners 2A and 2B are connected in parallel to an AC load line 11 to which, for example, AC 200V is supplied.

蓄電ユニット3は、例えばAC200Vの交流電力を供給する商用電源10の電力供給ライン12から分岐された蓄電電力供給ライン13に接続されて、商用電力を蓄電するものであり、DC電源30と、蓄電空調コントローラ31と、電池充電器32と、蓄電池33とを有している。上記蓄電電力供給ライン13は2系統に分岐され、一方の蓄電電力供給ライン系統13AにはDC電源30が、他方の蓄電電力供給ライン系統13Bには電池充電器32がそれぞれ接続されている。   The power storage unit 3 is connected to a power storage power supply line 13 branched from the power supply line 12 of the commercial power supply 10 that supplies AC power of, for example, AC 200 V, and stores the commercial power. It has an air conditioning controller 31, a battery charger 32, and a storage battery 33. The stored power supply line 13 is branched into two systems. A DC power source 30 is connected to one stored power supply line system 13A, and a battery charger 32 is connected to the other stored power supply line system 13B.

DC電源30は、各種回路の動作電圧を生成するものであり、商用電源10からの交流電力を所定電圧(例えば5V)の直流電力に変換して蓄電空調コントローラ31に供給する。蓄電空調コントローラ31は、当該蓄電ユニット3の蓄電・放電を制御するものであり、例えばEEPROM等のメモリ31Aを内蔵し、当該メモリ31Aに格納された制御プログラムにしたがって動作する。また、電池充電器32は、商用電源10からの交流電力を直流電力に変換して出力するコンバータ回路32Aを内蔵し、蓄電空調コントローラ31の指示の下、当該直流電力を電池充電ライン14を介して蓄電池33に供給する。本実施の形態では、蓄電空調コントローラ31Aは、電力需要が一日の間で比較的小さくなる夜間の時間帯に電池充電器32に対して蓄電池33への充電開始信号を出力し、これにより、蓄電池33への充電が開始される。蓄電池33は、鉛蓄電池、あるいは、ニッカド、ニッケル−水素、ニッケル−亜鉛、ナトリウム−イオウ、ゼブラ電池、リチウム等のバッテリであり、当該蓄電池33から引き出された電池放電ライン15を介して、蓄電された電力が上記PCSコントローラ4に出力される。   The DC power supply 30 generates operating voltages for various circuits, converts AC power from the commercial power supply 10 into DC power of a predetermined voltage (for example, 5 V), and supplies the DC power to the power storage air conditioning controller 31. The power storage air-conditioning controller 31 controls the power storage / discharge of the power storage unit 3. The power storage air-conditioning controller 31 incorporates a memory 31 </ b> A such as an EEPROM and operates according to a control program stored in the memory 31 </ b> A. The battery charger 32 incorporates a converter circuit 32A that converts AC power from the commercial power supply 10 into DC power and outputs the DC power. Under the instruction of the power storage air conditioning controller 31, the DC power is supplied via the battery charging line 14. Supplied to the storage battery 33. In the present embodiment, the power storage air-conditioning controller 31A outputs a charge start signal to the storage battery 33 to the battery charger 32 during the night time when the power demand is relatively small during the day, Charging to the storage battery 33 is started. The storage battery 33 is a lead storage battery or a battery such as nickel cadmium, nickel-hydrogen, nickel-zinc, sodium-sulfur, zebra battery, lithium, and the like, and is charged via a battery discharge line 15 drawn from the storage battery 33. The generated power is output to the PCS controller 4.

PCSコントローラ4は、上記商用電源10からの電力供給ライン12と、AC負荷ライン11との間に介在し、蓄電空調コントローラ31の指示の下、商用電力に蓄電電力を所定の割合で連携させてAC負荷ライン11に出力するものである。すなわち、このPCSコントローラ4は、電池放電ライン15に接続されて蓄電池33から供給される直流電力を交流電力に変換してAC負荷ライン11に出力するインバータ回路4Aを内蔵しており、蓄電空調コントローラ31Aは、PCSコントローラ4に対して制御信号を出力して、電力需要が一日の間で比較的大きい昼間の時間帯に、蓄電池33の蓄電電力が所定の割合でAC負荷ライン11に供給されるように制御し、それ以外の時間帯には商用電力が供給されるように制御する。   The PCS controller 4 is interposed between the power supply line 12 from the commercial power supply 10 and the AC load line 11 and links the stored power to the commercial power at a predetermined ratio under the instruction of the power storage air conditioning controller 31. This is output to the AC load line 11. That is, the PCS controller 4 includes an inverter circuit 4A that is connected to the battery discharge line 15 and converts the DC power supplied from the storage battery 33 into AC power and outputs the AC power to the AC load line 11. 31A outputs a control signal to the PCS controller 4 so that the stored power of the storage battery 33 is supplied to the AC load line 11 at a predetermined rate during the daytime when the power demand is relatively large during the day. Control is performed so that commercial power is supplied during other time periods.

このような構成の蓄電式空気調和システム1によれば、蓄電空調コントローラ31は、PCSコントローラ4を制御して、電力需要のピーク時間帯には蓄電池33の蓄電電力および商用電力をAC負荷ライン11に供給し、それ以外の時間帯には商用電力のみをAC負荷ライン11に供給するので、電力需要がピークとなる昼間の時間帯には、蓄電池33から蓄電電力および商用電力が供給されて各空調機2A、2Bが運転され、さらに蓄電池33の充電に関しては電力需要の小さい夜間に行うので、商用電源10における電力ピーク時の消費量が抑制される。   According to the power storage air conditioning system 1 having such a configuration, the power storage air conditioning controller 31 controls the PCS controller 4 so that the stored power and commercial power of the storage battery 33 are supplied to the AC load line 11 during the peak time of power demand. Since only commercial power is supplied to the AC load line 11 during other time periods, stored power and commercial power are supplied from the storage battery 33 during daytime periods when the power demand peaks. Since the air conditioners 2A and 2B are operated and the storage battery 33 is charged at night when the power demand is small, the consumption amount of the commercial power supply 10 at the time of power peak is suppressed.

ここで、本蓄電式空気調和システム1では、上記の通り、一日の間で電力需要が比較的大きい昼間の時間帯に空調機2A、2Bを運転する際、蓄電電力だけではなく商用電力も併せて各空調機2A、2Bに供給することとしている。すなわち、蓄電池33として、昼間の時間帯に空調機2A、2Bが使用する電力を十分に蓄えることのできるだけの容量を有するものを用いれば、昼間の時間帯に商用電力を使用せずとも、蓄電池33に蓄電された電力だけで各空調機2A、2Bを運転することが可能であるものの、かかる蓄電池33のコストが非常に高くなるため現実的ではない。   Here, in the electricity storage type air conditioning system 1, as described above, when operating the air conditioners 2 </ b> A and 2 </ b> B during the daytime when the power demand is relatively large during the day, not only the stored power but also the commercial power is used. In addition, the air conditioners 2A and 2B are supplied. That is, as long as the storage battery 33 has a capacity that can sufficiently store the power used by the air conditioners 2A and 2B during the daytime, the storage battery can be used without using commercial power during the daytime. Although it is possible to operate each of the air conditioners 2A and 2B with only the electric power stored in 33, the cost of the storage battery 33 becomes very high, which is not realistic.

そこで本蓄電式空気調和システム1では、昼間の時間帯には、蓄電電力および商用電力を空調機2A、2Bに供給することで、蓄電池33のコストを低減することとしている。このとき、本実施の形態では、昼間の時間帯の間は常に蓄電池33を放電させて蓄電電力の供給を継続し、これにより、昼間の時間帯における商用電力の電力消費量を全体的に下げるようにしている(いわゆる、ピークシフト)。   Therefore, in the power storage type air conditioning system 1, the cost of the storage battery 33 is reduced by supplying stored power and commercial power to the air conditioners 2A and 2B during the daytime. At this time, in the present embodiment, the storage battery 33 is always discharged during the daytime period to continue supplying the stored power, thereby reducing the power consumption of the commercial power in the daytime period as a whole. (So-called peak shift).

具体的には、本実施の形態では、電力需要、すなわち、空調機群2の冷暖房負荷比率の一日の変動予測パターンP(以下、「冷暖房負荷予測パターンP」と言う)が、春夏秋冬の季節と対応付けて複数パターンだけ予めメモリ31Aに格納されている。冷暖房負荷比率は冷暖房負荷の最大値に対する要求負荷の割合を示すものであり、一日の電力需要の変動パターンと略等価とみなすことができる。一般には、空調機群2の大半は昼間に空気調和動作のために作動されるため、図2に示すように、冷暖房負荷比率は夜間よりも昼間の時間帯の方が高くなる傾向にあり、また、空調機群2を商用電力だけで作動させている場合には、商用電力消費量の変動パターン(以下、「商用電力予測パターン」Cと言う)は冷暖房負荷予測パターンPに近似することになる。したがって、図3に示すように、知留間の時間帯の間、常に冷暖房負荷比率のうちの一定割合を蓄電電力で負担するような放電パターンHで蓄電池33を放電することで、商用電力の変動パターンCaを商用電力予測パターンCが全体的に下方にシフトさせたパターンとすることができ、一日の電力需要の平準化が図られることになる。   Specifically, in the present embodiment, the power demand, that is, the daily fluctuation prediction pattern P of the cooling / heating load ratio of the air conditioner group 2 (hereinafter referred to as “heating / heating load prediction pattern P”) Only a plurality of patterns are stored in advance in the memory 31A in association with each season. The heating / cooling load ratio indicates the ratio of the required load to the maximum value of the heating / cooling load, and can be regarded as substantially equivalent to the fluctuation pattern of the daily power demand. In general, since most of the air conditioner group 2 is operated for air conditioning operation in the daytime, as shown in FIG. 2, the heating / cooling load ratio tends to be higher in the daytime period than in the nighttime. When the air conditioner group 2 is operated only with commercial power, the fluctuation pattern of the commercial power consumption (hereinafter referred to as “commercial power prediction pattern” C) is approximated to the cooling / heating load prediction pattern P. Become. Therefore, as shown in FIG. 3, by discharging the storage battery 33 with the discharge pattern H that always bears a certain ratio of the heating / cooling load ratio with the stored power during the time period between Chiru-to, the commercial power The fluctuation pattern Ca can be a pattern in which the commercial power prediction pattern C is shifted downward as a whole, and the daily power demand is leveled.

このときの蓄電電力の放電制御について詳述すると、蓄電空調コントローラ31は、図4に示すように、現在日付に基づいて現在の季節に適合した冷暖房負荷予測パターンPを決定しメモリ31Aから読み出す(ステップSa1)。次いで、蓄電空調コントローラ31は冷暖房負荷予測パターンPのピーク値Pmaxに基づいて、昼間の時間帯の放電パターンHを決定する(ステップSa2)。具体的には、前掲図3に示すように、冷暖房負荷による消費電力を商用電力で負担する割合の上限値G(以下、「商用電力負担上限値G」と言う)が予め設定されており、蓄電空調コントローラ31は、(Pmax−G)に相当する割合A(以下、「放電電力負担割合A」と言う)を放電電力に割り当てることで、商用電力が冷暖房負荷の消費電力を負担する割合が商用電力負担上限値Gを越えないようにしている。そして、蓄電空調コントローラ31は、昼間の時間帯の間、放電電力負担割合Aで常に放電するパターンを放電パターンHとして決定する。なお、放電電力負担割合Aの場合の放電電力Whは、冷暖房負荷比率が100%のときの消費電力量をWdとすると、放電電力Wh=Wd×Aである。   Describing in detail the discharge control of the stored power at this time, as shown in FIG. 4, the power storage air-conditioning controller 31 determines a cooling / heating load prediction pattern P suitable for the current season based on the current date and reads it from the memory 31A ( Step Sa1). Next, the power storage air conditioning controller 31 determines the discharge pattern H in the daytime period based on the peak value Pmax of the air conditioning load prediction pattern P (step Sa2). Specifically, as shown in FIG. 3 above, an upper limit value G (hereinafter referred to as “commercial power burden upper limit value G”) of the ratio of sharing the power consumed by the heating and cooling load with commercial power is set in advance. The power storage air-conditioning controller 31 assigns a ratio A (hereinafter referred to as “discharge power share ratio A”) corresponding to (Pmax−G) to the discharge power so that the ratio of the commercial power to the power consumption of the heating / cooling load can be increased. The commercial power burden upper limit G is not exceeded. Then, the power storage air-conditioning controller 31 determines, as the discharge pattern H, a pattern that is always discharged at the discharge power share ratio A during the daytime period. The discharge power Wh in the case of the discharge power share ratio A is discharge power Wh = Wd × A, where Wd is the power consumption when the heating / cooling load ratio is 100%.

ここで、各空調機2A、2Bによる室内の空気調和動作が開始され得る時間が予め放電開始時間t0(例えば8:00)として設定されており、上述のステップSa1およびSa2の処理は放電開始時間t0よりも前に行われる。そして、放電開始時間t0に至ると、図4に示すように、蓄電空調コントローラ31は、PCSコントローラ4を制御して、上記放電パターンHにしたがって蓄電池33を放電させる(ステップSa3)。これにより、昼間の時間帯においては、冷暖房負荷による消費電力のうちの一定割合が蓄電池33の放電電力により補われるため、商用電力の電力消費パターンが全体としてΔP(=A)だけ下方にシフトし、昼間の時間帯の電力需要およびそのピークが押し下げられる。また、比較的電力需要の小さい夜間においては、上述の通り、蓄電池33への充電が実行されて商用電力が消費されて電力需要が増えるため、昼夜を通じての電力需要が平準化されることになる。   Here, the time when the air conditioning operation of the room by each of the air conditioners 2A and 2B can be started is set in advance as the discharge start time t0 (for example, 8:00), and the processing of the above steps Sa1 and Sa2 is the discharge start time. It is performed before t0. When the discharge start time t0 is reached, as shown in FIG. 4, the power storage air-conditioning controller 31 controls the PCS controller 4 to discharge the storage battery 33 in accordance with the discharge pattern H (step Sa3). As a result, in the daytime hours, a certain percentage of the power consumption due to the heating and cooling load is compensated by the discharge power of the storage battery 33, so that the power consumption pattern of the commercial power shifts downward by ΔP (= A) as a whole. In the daytime, power demand and its peak are pushed down. In addition, at night when the power demand is relatively small, as described above, charging of the storage battery 33 is executed and the commercial power is consumed to increase the power demand. Therefore, the power demand throughout the day and night is leveled. .

ところで、放電電力負担割合Aや空調機2A、2Bの実際の稼動状態、蓄電池33の劣化等によっては、放電期間T2において蓄電池33の蓄電電力が不足したり、或いは、夜間充電期間T1の開始時に蓄電電力が残っている恐れがある。そこで、本実施の形態では、翌日の冷暖房負荷予測パターンPが今日のものと同じ場合には、蓄電池33の蓄電電力の過不足に応じて翌日の放電パターンHを補正することとしている。   By the way, depending on the discharge power share ratio A, the actual operating state of the air conditioners 2A and 2B, the deterioration of the storage battery 33, the storage power of the storage battery 33 is insufficient in the discharge period T2, or at the start of the night charge period T1. There is a risk that the stored power remains. Therefore, in the present embodiment, when the next day's heating / cooling load prediction pattern P is the same as that of today, the discharge pattern H of the next day is corrected according to the excess or deficiency of the stored power of the storage battery 33.

すなわち、一日の放電期間T2が終了し、夜間充電期間T1の開始時(例えば22:00)に至った場合、蓄電空調コントローラ31は、図4に示すように、翌日が季節の変わり目であるか否かを判断し(ステップSa4)、翌日が季節の変わり目である場合には(ステップSa4:Yes)、翌日の冷暖房負荷予測パターンPは今回と異なるため、放電パターンHの補正は行わない。
一方、翌日が季節の変わり目でない場合には(ステップSa4:No)、蓄電空調コントローラ31は、蓄電池33の蓄電電力の過不足に応じて翌日の放電パターンHを補正する(ステップSa6)。具体的には、蓄電空調コントローラ31は、残量検出器34(図1参照)の検出結果に基づいて蓄電池33の残電力量を検出し、図5に示すように、充電期間T0の開始時に蓄電電力が残っている場合には、その残電力量に応じて放電パターンHの放電電力負担割合Aを上げ、蓄電電力が不足していた場合には放電パターンHの放電電力負担割合Aを下げる。
That is, when the one-day discharge period T2 ends and the night charge period T1 starts (for example, 22:00), the power storage air-conditioning controller 31 has the next day as the turn of the season as shown in FIG. (Step Sa4), and if the next day is a change of season (step Sa4: Yes), the next day's heating / cooling load prediction pattern P is different from this time, so the discharge pattern H is not corrected.
On the other hand, when the next day is not the turn of the season (step Sa4: No), the power storage air-conditioning controller 31 corrects the discharge pattern H of the next day according to the excess or deficiency of the stored battery 33 (step Sa6). Specifically, the power storage air-conditioning controller 31 detects the remaining power amount of the storage battery 33 based on the detection result of the remaining amount detector 34 (see FIG. 1), and at the start of the charging period T0 as shown in FIG. When the stored power remains, the discharge power burden ratio A of the discharge pattern H is increased according to the remaining power amount, and when the stored power is insufficient, the discharge power burden ratio A of the discharge pattern H is decreased. .

例えば、蓄電池33の残電力量Wzがゼロより大きい場合、(残電力量Wz/放電期間T2の時間長)の値に応じて放電電力負担割合Aを上げるように放電パターンHを補正する。また例えば、蓄電池33の残電力量Wzがゼロである場合には、蓄電池33のフル充電容量をWjとして、放電電力負担割合Aを、(Wj/放電期間T2の時間長)に対応した値(すなわち、放電電力負担割合Aが取り得る最大値)まで下げる。これにより、放電期間T2中に蓄電電力が過不足なく放電される。   For example, when the remaining power amount Wz of the storage battery 33 is greater than zero, the discharge pattern H is corrected so as to increase the discharge power burden ratio A according to the value of (remaining power amount Wz / time length of the discharge period T2). For example, when the remaining power amount Wz of the storage battery 33 is zero, the full charge capacity of the storage battery 33 is Wj, and the discharge power share ratio A is a value corresponding to (Wj / time length of the discharge period T2) ( That is, the discharge power share ratio A is reduced to the maximum value). As a result, the stored power is discharged without excess or deficiency during the discharge period T2.

このように本実施の形態によれば、夜間の間に商用電源10の商用電力を蓄電する蓄電池33を設け、電力需要が大きくなる昼間の時間帯には、商用電力と共に蓄電池33の蓄電電力を各空調機2A、2Bに供給して作動させる構成とし、夜間電力を蓄熱材ではなく、当該蓄熱材よりも効率の良い蓄電池33に蓄える構成としているため、夜間に蓄えた電力を昼間に効率良く利用することができ、また、これにより、一日の電力需要の平準化を効率良く行うことができる。   As described above, according to the present embodiment, the storage battery 33 for storing the commercial power of the commercial power supply 10 is provided during the night, and the stored power of the storage battery 33 is supplied together with the commercial power during the daytime when the power demand increases. Since it is configured to supply and operate each air conditioner 2A, 2B and store the nighttime power not in the heat storage material but in the storage battery 33 that is more efficient than the heat storage material, the power stored at night can be efficiently used in the daytime. It can be used, and thereby, the daily power demand can be leveled efficiently.

また、本実施の形態によれば、放電期間T2の終了時に蓄電電力の残電力量が略ゼロとなるように蓄電池33の放電を制御するようにしたため、夜間に蓄えた電力を昼間の時間帯に効率良く使い切ることができる。また、一般に、夜間の電力料金は昼間の電力料金よりも安く設定されているため、夜間電力を蓄電池33に蓄え、昼間の時間帯に使用することで電力料金を削減することができる。   In addition, according to the present embodiment, since the discharge of the storage battery 33 is controlled so that the remaining power amount of the stored power becomes substantially zero at the end of the discharge period T2, the power stored in the night time Can be used up efficiently. In general, since the nighttime power rate is set lower than the daytime power rate, the power rate can be reduced by storing the nighttime power in the storage battery 33 and using it during the daytime.

また、本実施の形態によれば、電力需要変動予測パターンと略同じパターンを見なされる冷暖房負荷比率予測パターンPと、冷暖房負荷比率のピーク時(すなわち、電力需要のピーク時)の商用電力の使用電力量の負担上限値Gとに基づいて、放電期間T2における蓄電電力の放電パターンHを決定する構成としたため、その日の電力需要の状況に応じて効率良く蓄電池33の放電を行うことができる。   In addition, according to the present embodiment, the heating / cooling load ratio prediction pattern P that is regarded as substantially the same pattern as the power demand fluctuation prediction pattern, and the use of commercial power at the peak of the heating / cooling load ratio (that is, at the peak of power demand). Since the discharge pattern H of the stored power in the discharge period T2 is determined based on the load upper limit value G of the electric energy, the storage battery 33 can be discharged efficiently according to the power demand situation of the day.

また、本実施の形態によれば、翌日の冷暖房負荷比率予測パターンPが今回と同じ場合には、翌日の放電パターンHを放電期間T2終了時の残電力量に基づいて補正する構成としたため、実際の冷暖房負荷比率の変動パターンと冷暖房負荷比率予測パターンPとの間にずれが生じている場合であっても、電力需要の状況に応じた蓄電池33の放電を行うことができ、さらに、より確実に蓄電電力を使い切ることができる。   Further, according to the present embodiment, when the heating / cooling load ratio prediction pattern P of the next day is the same as this time, the discharge pattern H of the next day is corrected based on the remaining power amount at the end of the discharge period T2, Even when there is a deviation between the actual fluctuation pattern of the cooling / heating load ratio and the prediction pattern P of the heating / cooling load ratio, the storage battery 33 can be discharged according to the power demand situation, and more The stored power can be used up reliably.

<第2実施の形態>
上述した第1実施の形態では、放電期間T2内で蓄電池33の蓄電電力を過不足なく放電させるべく、放電期間T2が終了したときに蓄電池33の残電力量に基づいて翌日の放電パターンHを補正するようにした。これに対して、本実施の形態では、放電期間T2内の途中で放電パターンHを補正する。
<Second Embodiment>
In 1st Embodiment mentioned above, in order to discharge the electrical storage electric power of the storage battery 33 without excess and deficiency within the discharge period T2, when the discharge period T2 is complete | finished, the discharge pattern H of the next day is based on the remaining electric energy of the storage battery 33. I corrected it. On the other hand, in the present embodiment, the discharge pattern H is corrected in the middle of the discharge period T2.

すなわち、図6に示すように、本実施の形態では、放電期間T2の間のうち、冷暖房負荷比率がピークとなる時間帯が経過した後の時間t1(例えば16:00)に、蓄電空調コントローラ31は残量検出器34の検出結果に基づいて蓄電池33の残電力量を検出し、その残電力量に基づいて、放電期間T2の残りの時間内で蓄電電力を使い切るように放電パターンHを補正する。   That is, as shown in FIG. 6, in the present embodiment, during the discharge period T2, the power storage air conditioning controller at time t1 (for example, 16:00) after the time zone in which the heating / cooling load ratio reaches its peak has elapsed. 31 detects the remaining power amount of the storage battery 33 based on the detection result of the remaining amount detector 34, and based on the remaining power amount, sets the discharge pattern H to use up the stored power within the remaining time of the discharge period T2. to correct.

図7は本実施の形態にかかる放電制御処理のフローチャートである。なお、この図において、第1実施の形態と同様の処理については同じ符号を付してその説明を省略する。
同図に示すように、蓄電空調コントローラ31は、放電期間T2において現在時刻が時間t1になった場合(ステップSb1:YES)、残量検出器34(図1参照)から蓄電池33の残電力量Wzを検出し(ステップSb2)、この残電力量Wzと、放電期間T2の残り時間とに基づいて、放電期間T2の残りの時間における放電パターンHを補正する(ステップSb4)。この補正について具体的には、残りの時間で残電力量Wzを使い切るべく、蓄電空調コントローラ31は、この時間t1以降の放電電力負担割合Aを、(残電力量Wz/放電期間T2の残り時間)の値に対応した負担割合とした放電パターンHに補正する。そして、蓄電空調コントローラ31は、放電期間T2の残りの時間においては、補正後の放電パターンHに基づいて蓄電池33の放電を実行する(ステップSb4)。
FIG. 7 is a flowchart of the discharge control process according to the present embodiment. In this figure, the same processes as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
As shown in the figure, when the current time is time t1 in the discharge period T2 (step Sb1: YES), the power storage air-conditioning controller 31 receives the remaining power amount of the storage battery 33 from the remaining amount detector 34 (see FIG. 1). Wz is detected (step Sb2), and the discharge pattern H in the remaining time of the discharge period T2 is corrected based on the remaining power amount Wz and the remaining time of the discharge period T2 (step Sb4). Specifically, for this correction, in order to use up the remaining power amount Wz in the remaining time, the power storage air-conditioning controller 31 calculates the discharge power burden ratio A after this time t1 as (remaining power amount Wz / remaining time of discharge period T2). ) Is corrected to the discharge pattern H having a burden ratio corresponding to the value of. The power storage air-conditioning controller 31 then discharges the storage battery 33 based on the corrected discharge pattern H for the remaining time of the discharge period T2 (step Sb4).

以上の処理により、前掲図6に示すように、放電期間T2の残りの期間で残電力量Wzが不足し得る場合には、放電パターンHの放電電力負担割合Aが引き下げられ、また、残電力量Wzが余る場合には、放電パターンHの放電電力負担割合Aが引き上げられて、放電期間T2の終了時に蓄電池33の蓄電電力を使い切ることができる。   With the above processing, as shown in FIG. 6, when the remaining power amount Wz can be insufficient in the remaining period of the discharging period T2, the discharge power burden ratio A of the discharge pattern H is reduced, and the remaining power is reduced. When the amount Wz remains, the discharge power share ratio A of the discharge pattern H is increased, and the stored power of the storage battery 33 can be used up at the end of the discharge period T2.

このように、本実施の形態によれば、上述の第1実施の形態の効果に加え、さらに、次の効果を奏する。すなわち、放電期間T2内に検出された蓄電池33の残電力量に基づいて、放電期間T2の残りの時間における放電パターンHを補正する構成としたため、実際の冷暖房負荷比率の変動パターンと冷暖房負荷比率予測パターンPとの間にずれが生じている場合であっても、蓄電電力を毎日確実に効率良く使い切ることができる。   Thus, according to the present embodiment, in addition to the effects of the first embodiment described above, the following effects are further achieved. That is, since the discharge pattern H in the remaining time of the discharge period T2 is corrected based on the remaining power amount of the storage battery 33 detected during the discharge period T2, the actual fluctuation pattern of the cooling / heating load ratio and the cooling / heating load ratio Even when there is a deviation from the predicted pattern P, the stored power can be used up reliably and efficiently every day.

<第3実施の形態>
上述した第1および第2実施の形態では、昼間の時間帯に常に一定電力量の蓄電電力を放電させることで、商用電力予測パターンCを全体的に下方にシフトさせた商用電力変動パターンCaを得るようにした。これに対して、本実施の形態では、図8に示すように、昼間の時間帯に常に一定電力量の蓄電電力を放電させることに加え、冷暖房負荷比率のピークを含むピーク期間T3(時間t2〜時間t3)においては、蓄電空調コントローラ31が蓄電電力の放電量を高くして、商用電力変動パターンCaのピークを引き下げることとしている(いわゆる、ピークカット)。
<Third Embodiment>
In the first and second embodiments described above, the commercial power fluctuation pattern Ca obtained by shifting the commercial power prediction pattern C as a whole downward is obtained by always discharging the stored power of a certain amount of power during the daytime. I tried to get it. In contrast, in the present embodiment, as shown in FIG. 8, in addition to always discharging a constant amount of stored power during the daytime period, a peak period T3 (time t2 including a peak of the heating / cooling load ratio) is included. In time t3), the power storage air-conditioning controller 31 increases the discharge amount of the stored power to lower the peak of the commercial power fluctuation pattern Ca (so-called peak cut).

すなわち、本実施の形態では、蓄電空調コントローラ31が冷暖房負荷予測パターンPのピーク値Pmaxに基づいて昼間の時間帯の放電パターンHを決定する際に(上記ステップSa1)、図8に示すように、ピーク期間T3の間だけ放電電力負担割合Aをピークカット率B(%)だけ引き上げるようにする。これにより、ピーク期間T3においては、ピークシフトΔPに加えてカット率Bの分だけ商用電力変動パターンCaが商用電力予測パターンCよりも下方にシフトされて、商用電力の消費量のピークがカットされる。これにより、電力需要の平準化に加えて、電力需要のピークも抑制することができるため、例えば、需要電力が商用電力の契約電力を越えないように制御することも可能となる。   That is, in the present embodiment, when the power storage air-conditioning controller 31 determines the discharge pattern H in the daytime period based on the peak value Pmax of the cooling / heating load prediction pattern P (step Sa1), as shown in FIG. In the peak period T3, the discharge power burden ratio A is increased by the peak cut rate B (%). Thus, in the peak period T3, the commercial power fluctuation pattern Ca is shifted downward from the commercial power prediction pattern C by the cut rate B in addition to the peak shift ΔP, and the peak of the commercial power consumption is cut. The Thereby, in addition to leveling of power demand, it is also possible to suppress the peak of power demand. For example, it is possible to control so that demand power does not exceed contract power of commercial power.

なお、上記のように、ピーク期間T3の間だけ放電電力負担割合Aをピークカット率B(%)だけ引き上げた場合、その引き上げ分だけ蓄電電力の放電量が増加するため、放電期間T2の終了前に蓄電電力が尽きてしまう恐れがある。そこで、放電期間T2のうち、ピーク期間T3に至る前の期間、或いは、ピーク期間T3の後の期間における放電電力負担割合Aを予め引き下げるようにしても良い。例えば、夏には、午前中よりも午後の方が電力需要が高くなるため、ピーク期間T3に至る前の期間の放電電力負担割合Aを予め引き下げた放電パターンHとし、また、冬には、午後よりも午前中の方が電力需要が高くなるため、ピーク期間T3の後の期間の放電電力負担割合Aを予め引き下げた放電パターンHとする。   As described above, when the discharge power share A is increased by the peak cut rate B (%) only during the peak period T3, the discharge amount of the stored power increases by the increase, so the end of the discharge period T2 There is a risk that the stored power will run out before. Therefore, the discharge power burden ratio A in the discharge period T2 before the peak period T3 or after the peak period T3 may be reduced in advance. For example, in the summer, the power demand is higher in the afternoon than in the morning, so the discharge power burden ratio A in the period before the peak period T3 is reduced in advance, and in winter, Since the power demand is higher in the morning than in the afternoon, the discharge power burden ratio A in the period after the peak period T3 is set to a discharge pattern H that has been reduced in advance.

このとき、放電期間T2の間で蓄電電力を使い切るために、上述の第1実施の形態と同様に、放電期間T2の終了時に、蓄電池33の残電力量Wzに応じて翌日の放電パターンHに対してピークカット率Bまたは放電電力負担割合Aを補正しても良く、また、第2実施の形態と同様に、ピーク期間T3が経過したときに蓄電池33の残電力量Wzに応じて放電期間T2の残りの時間における放電電力負担割合Aを補正しても良い。   At this time, in order to use up the stored power during the discharge period T2, the discharge pattern H of the next day is changed according to the remaining power amount Wz of the storage battery 33 at the end of the discharge period T2, as in the first embodiment. On the other hand, the peak cut rate B or the discharge power share ratio A may be corrected, and, similarly to the second embodiment, the discharge period according to the remaining power amount Wz of the storage battery 33 when the peak period T3 has elapsed. You may correct | amend the discharge electric power burden ratio A in the remaining time of T2.

このように、本実施の形態によれば、上述した第1および第2実施の形態の効果に加え、あらに、ピーク期間T3の間だけ放電電力負担割合Aをピークカット率Bだけ増加させた放電パターンHとしたため、電力需要の平準化に加えて、電力需要のピークも抑制することができ、例えば、需要電力が商用電力の契約電力を越えないように制御することが可能となる。   Thus, according to the present embodiment, in addition to the effects of the first and second embodiments described above, the discharge power share ratio A is increased by the peak cut rate B only during the peak period T3. Since the discharge pattern H is used, in addition to leveling of power demand, it is possible to suppress the peak of power demand. For example, it is possible to control so that demand power does not exceed contract power of commercial power.

なお、上述した第1乃至第3実施の形態は、あくまでも本発明の一態様を示すものであり、本発明の範囲内で任意に変形および応用が可能である。
例えば、前掲図1に仮想線にて示すように、蓄電式空気調和システム1に温度センサ50を設けて放電期間T2の開始前に外気温度を検出する構成とすると共に、季節および外気温度ごとに冷暖房負荷予測パターンPを予めメモリ31Aに格納する構成とし、蓄電空調コントローラ31が、季節および外気温度に基づいて冷暖房負荷予測パターンPを選択するようにしても良い。
これにより、日々の気温差に大きく影響を受けるその日の冷暖房負荷比率の変動パターンに、より適合した冷暖房負荷予測パターンPを選択することができ、その冷暖房負荷予測パターンPに応じて放電パターンHを決定することで、より効率の良い放電パターンHとすることができる。
なお、季節ごとに冷暖房負荷予測パターンPを予めメモリ31Aに格納し、季節基づいて選択した冷暖房負荷予測パターンPを蓄電空調コントローラ31が外気温に基づいて冷暖房負荷比率のピーク値やピーク期間T3などを補正し、この補正後の冷暖房負荷予測パターンPに基づいて放電パターンHを決定する構成としても良い。
The first to third embodiments described above merely show one aspect of the present invention, and can be arbitrarily modified and applied within the scope of the present invention.
For example, as shown by the phantom line in FIG. 1, the temperature sensor 50 is provided in the electric storage air conditioning system 1 to detect the outside air temperature before the start of the discharge period T2, and for each season and outside air temperature. The cooling / heating load prediction pattern P may be stored in the memory 31A in advance, and the power storage air conditioning controller 31 may select the cooling / heating load prediction pattern P based on the season and the outside air temperature.
Thereby, it is possible to select a cooling / heating load prediction pattern P that is more suitable for the fluctuation pattern of the heating / cooling load ratio of the day that is greatly affected by the daily temperature difference, and the discharge pattern H can be selected according to the cooling / heating load prediction pattern P. By determining, a more efficient discharge pattern H can be obtained.
In addition, the cooling / heating load prediction pattern P is previously stored in the memory 31A for each season, and the storage / air conditioning controller 31 selects the cooling / heating load prediction pattern P selected based on the season based on the outside air temperature. And the discharge pattern H may be determined based on the corrected heating / cooling load prediction pattern P.

本発明の第1実施の形態に係る蓄電式空気調和システムの概略構成を示す回路図である。1 is a circuit diagram showing a schematic configuration of a power storage air conditioning system according to a first embodiment of the present invention. 冷暖房負予測パターンの一例を示す図である。It is a figure which shows an example of the air-conditioning negative prediction pattern. ピークシフト動作を説明するための図である。It is a figure for demonstrating a peak shift operation | movement. 第1実施の形態に係る放電制御のフローチャートである。It is a flowchart of the discharge control which concerns on 1st Embodiment. 第1実施の形態に係る残電力量に基づく放電パターンの補正を説明するための図である。It is a figure for demonstrating correction | amendment of the discharge pattern based on the remaining electric energy which concerns on 1st Embodiment. 第2実施の形態に係る残電力量に基づく放電パターンの補正を説明するための図である。It is a figure for demonstrating correction | amendment of the discharge pattern based on the remaining electric energy which concerns on 2nd Embodiment. 第2実施の形態に係る放電制御のフローチャートである。It is a flowchart of the discharge control which concerns on 2nd Embodiment. ピークシフトおよびピークカット動作を説明するための図である。It is a figure for demonstrating peak shift and peak cut operation | movement.

符号の説明Explanation of symbols

1 蓄電式空気調和システム
2A、2B 空調機
3 蓄電ユニット
4 PCSコントローラ
31 蓄電空調コントローラ
31A メモリ
33 蓄電池
P 冷暖房負荷予測パターン
T0 夜間充電期間
T2 放電期間
T3 ピーク期間
Wz 残電力量
DESCRIPTION OF SYMBOLS 1 Power storage type air conditioning system 2A, 2B Air conditioner 3 Power storage unit 4 PCS controller 31 Power storage air conditioning controller 31A Memory 33 Storage battery P Heating / cooling load prediction pattern T0 Night charge period T2 Discharge period T3 Peak period Wz Remaining electric energy

Claims (6)

一或いは複数の空調機と、商用電源の商用電力を蓄電する蓄電池とを有し、前記蓄電池に蓄電された蓄電電力および前記商用電力を供給して前記空調機を作動させる蓄電式空気調和システムであって、
電力需要が少ない夜間に前記蓄電池への充電を実行すると共に、少なくとも前記電力需要のピーク期間を含む放電期間に前記蓄電池に充電された蓄電電力を放電する蓄電制御手段を備え、
前記蓄電制御手段は前記放電期間の終了時に前記蓄電電力の残電力量が略ゼロとなるように前記蓄電電力の放電を制御する
ことを特徴とする蓄電式空気調和システム。
An energy storage air conditioning system that includes one or a plurality of air conditioners and a storage battery that stores commercial power of a commercial power supply, and operates the air conditioner by supplying the stored power stored in the storage battery and the commercial power. There,
The power storage control means for performing charging to the storage battery at night when power demand is low, and discharging stored power charged in the storage battery in a discharge period including at least a peak period of the power demand,
The storage type air conditioning system, wherein the storage control means controls the discharge of the stored power so that a remaining power amount of the stored power becomes substantially zero at the end of the discharge period.
一日の電力需要の変動パターンの予測値である電力需要変動予測パターンを記憶する記憶手段を備え、
前記蓄電制御手段は、
前記電力需要変動予測パターンと、前記電力需要ピーク時の前記商用電源の使用電力量の上限値とに基づいて、前記放電期間における前記蓄電電力の放電パターンを決定する
ことを特徴とする請求項1に記載の蓄電式空気調和システム。
Comprising storage means for storing a power demand fluctuation prediction pattern, which is a predicted value of a fluctuation pattern of a daily power demand,
The power storage control means includes
2. The discharge pattern of the stored power during the discharge period is determined based on the power demand fluctuation prediction pattern and an upper limit value of the amount of power used by the commercial power source at the time of the power demand peak. The electricity storage type air conditioning system described in 1.
前記蓄電池の蓄電電力の残電力量を検出する残量検出手段を更に備え、
前記蓄電制御手段は、
翌日の前記電力需要変動予測パターンが今回と同じ場合には、翌日の放電パターンを前記放電期間終了時の残電力量に基づいて補正する
ことを特徴とする請求項2に記載の蓄電式空気調和システム。
Further comprising a remaining amount detecting means for detecting a remaining power amount of the stored power of the storage battery,
The power storage control means includes
The storage-type air conditioning according to claim 2, wherein when the power demand fluctuation prediction pattern of the next day is the same as this time, the discharge pattern of the next day is corrected based on the remaining power amount at the end of the discharge period. system.
前記蓄電池の蓄電電力の残電力量を検出する残量検出手段を更に備え、
前記蓄電制御手段は、
前記放電期間内に検出された前記残電力量に基づいて、前記放電期間の残りの時間における前記放電パターンを補正する
ことを特徴とする請求項2に記載の蓄電式空気調和システム。
Further comprising a remaining amount detecting means for detecting a remaining power amount of the stored power of the storage battery,
The power storage control means includes
The electricity storage type air conditioning system according to claim 2, wherein the discharge pattern in the remaining time of the discharge period is corrected based on the remaining power amount detected within the discharge period.
気温を検出する温度センサを更に備え、
前記蓄電制御手段は、
前記気温に基づいて前記電力需要変動予測パターンを補正すると共に、当該補正後の電力需要変動予測パターンに基づいて前記放電パターンを決定する
ことを特徴とする請求項2乃至4のいずれかに記載の蓄電式空気調和システム。
A temperature sensor for detecting the temperature;
The power storage control means includes
The power demand fluctuation prediction pattern is corrected based on the temperature, and the discharge pattern is determined based on the corrected power demand fluctuation prediction pattern. Power storage air conditioning system.
前記蓄電制御手段は、
前記放電期間のうち前記ピーク期間において前記放電電力量を増加させる
ことを特徴とする請求項1乃至5のいずれかに記載の蓄電式空気調和システム。
The power storage control means includes
The electric storage air conditioning system according to any one of claims 1 to 5, wherein the discharge electric energy is increased in the peak period of the discharge period.
JP2005211637A 2005-07-21 2005-07-21 Energy storage air conditioning system Expired - Fee Related JP4566084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005211637A JP4566084B2 (en) 2005-07-21 2005-07-21 Energy storage air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005211637A JP4566084B2 (en) 2005-07-21 2005-07-21 Energy storage air conditioning system

Publications (2)

Publication Number Publication Date
JP2007024475A true JP2007024475A (en) 2007-02-01
JP4566084B2 JP4566084B2 (en) 2010-10-20

Family

ID=37785470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005211637A Expired - Fee Related JP4566084B2 (en) 2005-07-21 2005-07-21 Energy storage air conditioning system

Country Status (1)

Country Link
JP (1) JP4566084B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010041802A (en) * 2008-08-04 2010-02-18 Toshiba Corp Controller of secondary battery and control method
WO2013125156A1 (en) * 2012-02-23 2013-08-29 三洋電機株式会社 Power distribution system
JP7387928B1 (en) * 2023-02-16 2023-11-28 日鉄テックスエンジ株式会社 Load leveling device and load leveling method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08145436A (en) * 1994-11-25 1996-06-07 Toshiba Corp Cooling and heating demand-predicting method for building and air conditioning characteristic finding method
JPH09264583A (en) * 1996-03-29 1997-10-07 Mitsubishi Electric Corp Heat storage air conditioning system and its residual storage amount determining method
JPH1172253A (en) * 1997-08-29 1999-03-16 Daikin Ind Ltd Electric storage type air conditioner
JPH11125449A (en) * 1997-10-22 1999-05-11 Ntt Power And Building Facilities Inc Thermal load-predicting device
JP2001193987A (en) * 2000-01-13 2001-07-17 Daikin Ind Ltd Heat storage apparatus
JP2003050037A (en) * 2001-08-03 2003-02-21 Mitsubishi Heavy Ind Ltd Operation control system and operating method of heat accumulation type air conditioner and heat source device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08145436A (en) * 1994-11-25 1996-06-07 Toshiba Corp Cooling and heating demand-predicting method for building and air conditioning characteristic finding method
JPH09264583A (en) * 1996-03-29 1997-10-07 Mitsubishi Electric Corp Heat storage air conditioning system and its residual storage amount determining method
JPH1172253A (en) * 1997-08-29 1999-03-16 Daikin Ind Ltd Electric storage type air conditioner
JPH11125449A (en) * 1997-10-22 1999-05-11 Ntt Power And Building Facilities Inc Thermal load-predicting device
JP2001193987A (en) * 2000-01-13 2001-07-17 Daikin Ind Ltd Heat storage apparatus
JP2003050037A (en) * 2001-08-03 2003-02-21 Mitsubishi Heavy Ind Ltd Operation control system and operating method of heat accumulation type air conditioner and heat source device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010041802A (en) * 2008-08-04 2010-02-18 Toshiba Corp Controller of secondary battery and control method
WO2013125156A1 (en) * 2012-02-23 2013-08-29 三洋電機株式会社 Power distribution system
JP7387928B1 (en) * 2023-02-16 2023-11-28 日鉄テックスエンジ株式会社 Load leveling device and load leveling method

Also Published As

Publication number Publication date
JP4566084B2 (en) 2010-10-20

Similar Documents

Publication Publication Date Title
JP6001712B2 (en) Power conditioner, power system and control method
JP5660863B2 (en) Control apparatus and control method
JP5470087B2 (en) Rectifier control method for photovoltaic power generation system
JP4660422B2 (en) Energy supply system
JP5254500B1 (en) Distributed power generation system and control method of distributed power generation system
WO2011118627A1 (en) Power supply system
JP4566084B2 (en) Energy storage air conditioning system
JP5853144B2 (en) Power supply control device and power supply system including the same
JP2011200101A (en) Energy storage system
JP7349840B2 (en) power supply system
JP4916197B2 (en) Cogeneration system
JP5995804B2 (en) Storage system management device and control target value determination method
JP6713101B2 (en) Storage battery system and storage battery control method
JP5295694B2 (en) Fuel cell system and operation method thereof
JP2002048004A (en) Heat/electric power cogenerating device and environment control room using the same
JP5108720B2 (en) Control system for distributed energy generator
JP2007155188A (en) Heat pump type heat source device using solid oxide fuel cell as power source to carry out driving, and its operating method
JP2013176190A (en) Secondary battery control device
JP2018157647A (en) Information processing apparatus, control device for power storage apparatus, electric power system, control method, and program
JP6249356B2 (en) Storage battery control device, storage battery control system
KR20220075969A (en) Frequincy regulation operating method and grid system frequincy regulation system
WO2013125156A1 (en) Power distribution system
JP6344176B2 (en) Power supply equipment and operation method thereof
JP4601507B2 (en) Air conditioning system
JP4601506B2 (en) Air conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100426

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees